1
|
Yuan MH, Zhong WX, Wang YL, Liu YS, Song JW, Guo YR, Zeng B, Guo YP, Guo L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother Res 2024; 38:2128-2153. [PMID: 38400575 DOI: 10.1002/ptr.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.
Collapse
Affiliation(s)
- Ming-Hao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Rou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Liu K, Hao Z, Zheng H, Wang H, Zhang L, Yan M, Tuerhong R, Zhou Y, Wang Y, Pang T, Shi L. Repurposing of rilpivirine for preventing platelet β3 integrin-dependent thrombosis by targeting c-Src active autophosphorylation. Thromb Res 2023; 229:53-68. [PMID: 37413892 DOI: 10.1016/j.thromres.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND HIV-infected individuals are known to be at higher risk for thrombotic cardiovascular disease (CVD), which may also be differentially affected by components of anti-HIV drugs. To identify the effects of a series of FDA-approved anti-HIV drugs on platelet aggregation in humans, focusing on the novel pharmacological effects of rilpivirine (RPV), a reverse transcriptase inhibitor, on platelet function both in vitro and in vivo and the mechanisms involved. METHODS AND RESULTS In vitro studies showed that RPV was the only anti-HIV reagent that consistently and efficiently inhibited aggregation elicited by different agonists, exocytosis, morphological extension on fibrinogen, and clot retraction. Treatment of mice with RPV significantly prevented thrombus formation in FeCl3-injured mesenteric vessels, postcava with stenosis surgery, and ADP -induced pulmonary embolism models without defects in platelet viability, tail bleeding, and coagulation activities. RPV also improved cardiac performance in mice with post-ischemic reperfusion. A mechanistic study revealed that RPV preferentially attenuated fibrinogen-stimulated Tyr773 phosphorylation of β3-integrin by inhibiting Tyr419 autophosphorylation of c-Src. Molecular docking and surface plasmon resonance analyses showed that RPV can bind directly to c-Src. Further mutational analysis showed that the Phe427 residue of c-Src is critical for RPV interaction, suggesting a novel interaction site for targeting c-Src to block β3-integrin outside-in signaling. CONCLUSION These results demonstrated that RPV was able to prevent the progression of thrombotic CVDs by interrupting β3-integrin-mediated outside-in signaling via inhibiting c-Src activation without hemorrhagic side effects, highlighting RPV as a promising reagent for the prevention and therapy of thrombotic CVDs.
Collapse
Affiliation(s)
- Kui Liu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China
| | - Zhen Hao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Hao Zheng
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Luying Zhang
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Minghui Yan
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Reyisha Tuerhong
- College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China
| | - Yuling Zhou
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China.
| | - Tao Pang
- State Key Laboratory of Natural Medicines, New Drug Screening Center, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Shi
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, 2999 Jinshan Road, Xiamen 361000, China; College of Basic Medical Sciences, Dalian Medical University, No. 9 West Section, South Lv shun Road, Dalian 116044, China.
| |
Collapse
|
3
|
Kulkarni PP, Sonkar VK, Gautam D, Dash D. AMPK inhibition protects against arterial thrombosis while sparing hemostasis through differential modulation of platelet responses. Thromb Res 2020; 196:175-185. [PMID: 32890901 DOI: 10.1016/j.thromres.2020.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022]
Abstract
AMP-activated protein kinase (AMPK) is a metabolic master switch that has critical role in wide range of pathologies including cardiovascular disorders. As AMPK-α2 knockout mice exhibit impaired thrombus stability, we asked whether pharmacological inhibition of AMPK with a specific small-molecule inhibitor, compound C, could protect against arterial thrombosis without affecting hemostasis. Mice pre-administered with compound C exhibited decreased mesenteric arteriolar thrombosis but normal tail bleeding time compared to vehicle-treated animals. Compound C potently restricted platelet aggregation, clot retraction and integrin activation induced by thrombin and collagen. It impaired platelet spreading on both immobilized fibrinogen and collagen matrices; it, however, had no significant effect on thrombin-induced phosphatidylserine exposure that is characteristic of procoagulant platelets. In parallel, compound C brought about significant drop in thrombin-induced phosphorylation of myosin light chain (MLC) and MLC phosphatase (MYPT1) as well as abrogated rise in level of RhoA-GTP in thrombin-stimulated platelets. Thus, effects of compound C on agonist-induced platelet responses could be at least in part attributed to modulation of cytoskeletal changes mediated by RhoA-MYPT1-MLC signaling. An ideal antithrombotic drug would spare hemostatic responses that maintain vascular integrity while preferentially protecting against thrombosis. The present study suggests that AMPK could be one such potential therapeutic target.
Collapse
Affiliation(s)
- Paresh P Kulkarni
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology (ICMR), Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vijay K Sonkar
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology (ICMR), Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India; Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Deepa Gautam
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology (ICMR), Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Debabrata Dash
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology (ICMR), Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
4
|
Giamanco KA, Matthews RT. The Role of BEHAB/Brevican in the Tumor Microenvironment: Mediating Glioma Cell Invasion and Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:117-132. [PMID: 32845505 DOI: 10.1007/978-3-030-48457-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant gliomas are the most common tumors in the central nervous system (CNS) and, unfortunately, are also the most deadly. The lethal nature of malignant gliomas is due in large part to their unique and distinctive ability to invade the surrounding neural tissue. The invasive and dispersive nature of these tumors makes them particularly challenging to treat, and currently there are no effective therapies for malignant gliomas. The brain tumor microenvironment plays a particularly important role in mediating the invasiveness of gliomas, and, therefore, understanding its function is key to developing novel therapies to treat these deadly tumors. A defining aspect of the tumor microenvironment of gliomas is the unique composition of the extracellular matrix that enables tumors to overcome the typically inhibitory environment found in the CNS. One conspicuous component of the glioma tumor microenvironment is the neural-specific ECM molecule, brain-enriched hyaluronan binding (BEHAB)/brevican (B/b). B/b is highly overexpressed in gliomas, and its expression in these tumors contributes importantly to the tumor invasiveness and aggressiveness. However, B/b is a complicated protein with multiple splice variants, cleavage products, and glycoforms that contribute to its complex functions in these tumors and provide unique targets for tumor therapy. Here we review the role of B/b in glioma tumor microenvironment and explore targeting of this protein for glioma therapy.
Collapse
Affiliation(s)
- Kristin A Giamanco
- Department of Biological and Environmental Sciences, Western Connecticut State University, Danbury, CT, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
5
|
Hu M, Liu P, Liu Y, Yue M, Wang Y, Wang S, Chen X, Zhou Y, Zhou J, Hu X, Ke Y, Hu H. Platelet Shp2 negatively regulates thrombus stability under high shear stress. J Thromb Haemost 2019; 17:220-231. [PMID: 30444570 DOI: 10.1111/jth.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/30/2022]
Abstract
Essentials Shp2 negatively regulates thrombus stability under pathological shear rate. Shp2 suppresses TXA2 receptor-mediated platelet dense granule secretion. Through αIIbβ3 outside-in signaling, Shp2 targets calmodulin-dependent activation of Akt. Shp2 may serve to prevent the formation of unwanted occlusive thrombi. SUMMARY: Background Perpetuation is the final phase of thrombus formation; however, its mechanisms and regulation are poorly understood. Objective To investigate the mechanism of Shp2 in platelet function and thrombosis. Methods and results We demonstrate that the platelet-expressed Src homology region 2 domain-containing protein tyrosine phosphatase Shp2 is a negative regulator of thrombus stability under high shear stress. In a ferric chloride-induced mesenteric arteriole thrombosis model, megakaryocyte/platelet-specific Shp2-deficient mice showed less thrombi shedding than wild-type mice, although their occlusion times were comparable. In accordance with this in vivo phenotype, a microfluidic whole-blood perfusion assay revealed that the thrombi formed on collagen surfaces by Shp2-deficient platelets were more stable under high shear rates than those produced by wild-type platelets. Whereas Shp2 deficiency did not alter platelet responsiveness towards thrombin, ADP and collagen stimulation, Shp2-deficient platelets showed increased dense granule secretion when stimulated by the thromboxane A2 analog U46619. Shp2 appears to act downstream of integrin αIIb β3 outside-in signaling, inhibiting the phosphorylation of Akt (Ser473 and Thr308) and dense granule secretion. Calmodulin was also shown to bind both Shp2 and Akt, linking Shp2 to Akt activation. Conclusions Platelet Shp2 negatively regulates thrombus perpetuation under high shear stress. This signaling pathway may constitute an important mechanism for the prevention of unwanted occlusive thrombus formation, without dramatically interfering with hemostasis.
Collapse
Affiliation(s)
- M Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - P Liu
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Liu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - M Yue
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - S Wang
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - X Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - Y Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| | - J Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China
| | - X Hu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Ke
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - H Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy
| |
Collapse
|
6
|
Jessica MO, Fiorella R, Ocatavio S, Linnette R, Nahomy L, Kanth MB, Bismarck M, Rondina MT, Valance WA. TLT-1-CONTROLS EARLY THROMBUS FORMATION AND STABILITY BY FACILITATING AIIBB3 OUTSIDE-IN SIGNALING IN MICE. ACTA ACUST UNITED AC 2018; 6:1143-1149. [PMID: 30931337 DOI: 10.21474/ijar01/7469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platelets regulate inflammation as well as hemostasis. Inflammatory insults often induce hemostatic function through mechanisms that are not always understood. The triggering receptor expressed in myeloid cells (TREM)-like transcript 1 (TLT-1) is an abundantly expressed platelet receptor and its deletion leads to hemorrhage and edema after lipopolysaccharide and TNF-α treatment. To define a role for TLT-1 in immune derived bleeding we used a CXCL-2 mediated local inflammatory reaction in the vessels of the cremaster muscle of treml1 -/- and wild type mice. Our whole mount immunofluorescent staining of the cremaster muscle demonstrated a 50% reduction in clot size and increased extravasation of plasma molecules in treml1 -/- mice compared to wild type. We demonstrate that the decreased clotting in treml1 -/- mice is associated with a 2X reduction in integrin β3 phosphorylation on residue Y773 after platelet activation, which is consistent with treml1 -/- mice displaying reduced outside-in signaling and smaller thrombi. We further substantiate TLT-1's role in the regulation of immune derived bleeding using the reverse arthus reaction and demonstrate TLT-1's role in thrombosis using the thromboplastin initiated and collagen/epinephrine models of pulmonary embolism. Thus, the data presented here demonstrate that TLT-1 regulates early clot formation though the stabilization of αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
| | - Reyes Fiorella
- Laboratory of Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón PR
| | - Santiago Ocatavio
- Laboratory of Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón PR
| | - Rivera Linnette
- Laboratory of Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón PR
| | - Ledesma Nahomy
- University of Puerto Rico-Rio Piedras, Department of Biology
| | - Manne B Kanth
- Molecular Medicine Program and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Madera Bismarck
- University of Puerto Rico-Rio Piedras, Department of Biology
| | - Matthew T Rondina
- Molecular Medicine Program and Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah.,Department of Medicine and the George E. Whalen VAMC GRECC; Salt Lake City, Utah
| | - Washington A Valance
- University of Puerto Rico-Rio Piedras, Department of Biology.,Laboratory of Anatomy and Cell Biology, Universidad Central del Caribe, Bayamón PR
| |
Collapse
|
7
|
Loh JT, Su IH. Post-translational modification-regulated leukocyte adhesion and migration. Oncotarget 2018; 7:37347-37360. [PMID: 26993608 PMCID: PMC5095081 DOI: 10.18632/oncotarget.8135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/28/2016] [Indexed: 12/30/2022] Open
Abstract
Leukocytes undergo frequent phenotypic changes and rapidly infiltrate peripheral and lymphoid tissues in order to carry out immune responses. The recruitment of circulating leukocytes into inflamed tissues depends on integrin-mediated tethering and rolling of these cells on the vascular endothelium, followed by transmigration into the tissues. This dynamic process of migration requires the coordination of large numbers of cytosolic and transmembrane proteins whose functional activities are typically regulated by post-translational modifications (PTMs). Our recent studies have shown that the lysine methyltransferase, Ezh2, critically regulates integrin signalling and governs the adhesion dynamics of leukocytes via direct methylation of talin, a key molecule that controls these processes by linking integrins to the actin cytoskeleton. In this review, we will discuss the various modes of leukocyte migration and examine how PTMs of cytoskeletal/adhesion associated proteins play fundamental roles in the dynamic regulation of leukocyte migration. Furthermore, we will discuss molecular details of the adhesion dynamics controlled by Ezh2-mediated talin methylation and the potential implications of this novel regulatory mechanism for leukocyte migration, immune responses, and pathogenic processes, such as allergic contact dermatitis and tumorigenesis.
Collapse
Affiliation(s)
- Jia Tong Loh
- School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore
| | - I-Hsin Su
- School of Biological Sciences, College of Science, Nanyang Technological University, Republic of Singapore
| |
Collapse
|
8
|
Estevez B, Du X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology (Bethesda) 2017; 32:162-177. [PMID: 28228483 DOI: 10.1152/physiol.00020.2016] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Upon blood vessel injury, platelets are exposed to adhesive proteins in the vascular wall and soluble agonists, which initiate platelet activation, leading to formation of hemostatic thrombi. Pathological activation of platelets can induce occlusive thrombosis, resulting in ischemic events such as heart attack and stroke, which are leading causes of death globally. Platelet activation requires intracellular signal transduction initiated by platelet receptors for adhesion proteins and soluble agonists. Whereas many platelet activation signaling pathways have been established for many years, significant recent progress reveals much more complex and sophisticated signaling and amplification networks. With the discovery of new receptor signaling pathways and regulatory networks, some of the long-standing concepts of platelet signaling have been challenged. This review provides an overview of the new developments and concepts in platelet activation signaling.
Collapse
Affiliation(s)
- Brian Estevez
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Feng W, Valiyaveettil M, Dudiki T, Mahabeleshwar GH, Andre P, Podrez EA, Byzova TV. β 3 phosphorylation of platelet α IIbβ 3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thromb J 2017; 15:22. [PMID: 28860945 PMCID: PMC5576334 DOI: 10.1186/s12959-017-0145-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background It is well accepted that functional activity of platelet integrin αIIbβ3 is crucial for hemostasis and thrombosis. The β3 subunit of the complex undergoes tyrosine phosphorylation shown to be critical for outside-in integrin signaling and platelet clot retraction ex vivo. However, the role of this important signaling event in other aspects of prothrombotic platelet function is unknown. Method Here, we assess the role of β3 tyrosine phosphorylation in platelet function regulation with a knock-in mouse strain, where two β3 cytoplasmic tyrosines are mutated to phenylalanine (DiYF). We employed platelet transfusion technique and intravital microscopy for observing the cellular events involved in specific steps of thrombus growth to investigate in detail the role of β3 tyrosine phosphorylation in arterial thrombosis in vivo. Results Upon injury, DiYF mice exhibited delayed arterial occlusion and unstable thrombus formation. The mean thrombus volume in DiYF mice formed on collagen was only 50% of that in WT. This effect was attributed to DiYF platelets but not to other blood cells and endothelium, which also carry these mutations. Transfusion of isolated DiYF but not WT platelets into irradiated WT mice resulted in reversal of the thrombotic phenotype and significantly prolonged blood vessel occlusion times. DiYF platelets exhibited reduced adhesion to collagen under in vitro shear conditions compared to WT platelets. Decreased platelet microparticle release after activation, both in vitro and in vivo, were observed in DiYF mice compared to WT mice. Conclusion β3 tyrosine phosphorylation of platelet αIIbβ3 regulates both platelet pro-thrombotic activity and the formation of a stable platelet thrombus, as well as arterial microparticle release.
Collapse
Affiliation(s)
- Weiyi Feng
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China
| | - Manojkumar Valiyaveettil
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,US Army Medical Materiel Development Activity, 1430 Veterans Drive, Fort Detrick, Frederick, MD 21702 USA
| | - Tejasvi Dudiki
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | | | | | - Eugene A Podrez
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | - Tatiana V Byzova
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| |
Collapse
|
10
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
11
|
Liang J, Zheng S, Xiao X, Wei J, Zhang Z, Ernberg I, Matskova L, Huang G, Zhou X. Epstein-Barr virus-encoded LMP2A stimulates migration of nasopharyngeal carcinoma cells via the EGFR/Ca 2+/calpain/ITGβ4 axis. Biol Open 2017; 6:914-922. [PMID: 28512118 PMCID: PMC5483025 DOI: 10.1242/bio.024646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epstein-Barr virus (EBV)-encoded latent membrane protein 2A (LMP2A) promotes the motility of nasopharyngeal carcinoma (NPC) cells. Previously, we have shown that the localization of integrin β4 (ITGβ4) is regulated by LMP2A, with ITGβ4 concentrated at the cellular protrusions in LMP2A-expressing NPC cells. In the present study, we aim to further investigate mechanisms involved in this process and its contribution to cell motility. We show that expression of LMP2A was correlated with increased epidermal growth factor receptor (EGFR) activation, elevated levels of intracellular Ca2+, calpain activation and accelerated cleavage of ITGβ4. Activation of EGFR and calpain activity was responsible for a redistribution of ITGβ4 from the basal layer of NPC cells to peripheral membrane structures, which correlated with an increased migratory capacity of NPC cells. Furthermore, we demonstrated that the calpain inhibitor calpastatin was downregulated in NPC primary tumors. In conclusion, our results point to LMP2A-mediated targeting of the EGFR/Ca2+/calpain/ITGβ4 signaling system as a mechanism underlying the increased motility of NPC cells. We suggest that calpain-facilitated cleavage of ITGβ4 contributes to the malignant phenotype of NPC cells. Summary: LMP2A expression in nasopharyngeal carcinoma cells increases EGFR activation and cytosolic Ca2+, subsequently stimulates calpain-dependent cleavage of ITGβ4 and enhances cell motility.
Collapse
Affiliation(s)
- Jiezhen Liang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Shixing Zheng
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Jiazhang Wei
- Department of Otolaryngology-Head and Neck Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China, 530021
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden, 17177
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden, 17177
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Xiaoying Zhou
- Scientific Research Center, Life Science Institute, Guangxi Medical University, Nanning, China, 530021
| |
Collapse
|
12
|
Molica F, Stierlin FB, Fontana P, Kwak BR. Pannexin- and Connexin-Mediated Intercellular Communication in Platelet Function. Int J Mol Sci 2017; 18:E850. [PMID: 28420171 PMCID: PMC5412434 DOI: 10.3390/ijms18040850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/11/2022] Open
Abstract
The three major blood cell types, i.e., platelets, erythrocytes and leukocytes, are all produced in the bone marrow. While red blood cells are the most numerous and white cells are the largest, platelets are small fragments and account for a minor part of blood volume. However, platelets display a crucial function by preventing bleeding. Upon vessel wall injury, platelets adhere to exposed extracellular matrix, become activated, and form a platelet plug preventing hemorrhagic events. However, when platelet activation is exacerbated, as in rupture of an atherosclerotic plaque, the same mechanism may lead to acute thrombosis causing major ischemic events such as myocardial infarction or stroke. In the past few years, major progress has been made in understanding of platelet function modulation. In this respect, membrane channels formed by connexins and/or pannexins are of particular interest. While it is still not completely understood whether connexins function as hemichannels or gap junction channels to inhibit platelet aggregation, there is clear-cut evidence for a specific implication of pannexin1 channels in collagen-induced aggregation. The focus of this review is to summarize current knowledge of the role of connexins and pannexins in platelet aggregation and to discuss possible pharmacological approaches along with their limitations and future perspectives for new potential therapies.
Collapse
Affiliation(s)
- Filippo Molica
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| | - Florian B Stierlin
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
| | - Pierre Fontana
- Geneva Platelet Group, University of Geneva, 1211 Geneva, Switzerland.
- Division of Angiology and Haemostasis, Geneva University Hospitals, 1211 Geneva, Switzerland.
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.
- Department of Medical Specializations, Cardiology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
13
|
Calpain 1 cleaves and inactivates prostacyclin synthase in mesenteric arteries from diabetic mice. Basic Res Cardiol 2016; 112:10. [DOI: 10.1007/s00395-016-0596-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
|
14
|
Shi X, Yang J, Cui X, Huang J, Long Z, Zhou Y, Liu P, Tao L, Ruan Z, Xiao B, Zhang W, Li D, Dai K, Mao J, Xi X. Functional Effect of the Mutations Similar to the Cleavage during Platelet Activation at Integrin β3 Cytoplasmic Tail when Expressed in Mouse Platelets. PLoS One 2016; 11:e0166136. [PMID: 27851790 PMCID: PMC5112943 DOI: 10.1371/journal.pone.0166136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Previous studies in Chinese hamster ovary cells showed that truncational mutations of β3 at sites of F754 and Y759 mimicking calpain cleavage regulate integrin signaling. The roles of the sequence from F754 to C-terminus and the conservative N756ITY759 motif in platelet function have yet to be elaborated. Mice expressing β3 with F754 and Y759 truncations, or NITY deletion (β3-ΔTNITYRGT, β3-ΔRGT, or β3-ΔNITY) were established through transplanting the homozygous β3-deficient mouse bone marrow cells infected by the GFP tagged MSCV MigR1 retroviral vector encoding different β3 mutants into lethally radiated wild-type mice. The platelets were harvested for soluble fibrinogen binding and platelet spreading on immobilized fibrinogen. Platelet adhesion on fibrinogen- and collagen-coated surface under flow was also tested to assess the ability of the platelets to resist hydrodynamic drag forces. Data showed a drastic inhibition of the β3-ΔTNITYRGT platelets to bind soluble fibrinogen and spread on immobilized fibrinogen in contrast to a partially impaired fibrinogen binding and an almost unaffected spreading exhibited in the β3-ΔNITY platelets. Behaviors of the β3-ΔRGT platelets were consistent with the previous observations in the β3-ΔRGT knock-in platelets. The adhesion impairment of platelets with the β3 mutants under flow was in different orders of magnitude shown as: β3-ΔTNITYRGT>β3-ΔRGT>β3-ΔNITY to fibrinogen-coated surface, and β3-ΔTNITYRGT>β3-ΔNITY>β3-ΔRGT to collagen-coated surface. To evaluate the interaction of the β3 mutants with signaling molecules, GST pull-down and immunofluorescent assays were performed. Results showed that β3-ΔRGT interacted with kindlin but not c-Src, β3-ΔNITY interacted with c-Src but not kindlin, while β3-ΔTNITYRGT did not interact with both proteins. This study provided evidence in platelets at both static and flow conditions that the calpain cleavage-related sequences of integrin β3, i.e. T755NITYRGT762, R760GT762, and N756ITY759 participate in bidirectional, outside-in, and inside-out signaling, respectively and the association of c-Src or kindlin with β3 integrin may regulate these processes.
Collapse
Affiliation(s)
- Xiaofeng Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jichun Yang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiongying Cui
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiansong Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangbiao Long
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yulan Zhou
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lanlan Tao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheng Ruan
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Xiao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongya Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Suzhou, 215006, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- * E-mail: (JM); (XX)
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- * E-mail: (JM); (XX)
| |
Collapse
|
15
|
Roles of integrin β3 cytoplasmic tail in bidirectional signal transduction in a trans-dominant inhibition model. Front Med 2016; 10:311-9. [DOI: 10.1007/s11684-016-0460-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
16
|
Yıldırım C, Favre J, Weijers EM, Fontijn RD, van Wijhe MH, van Vliet SJ, Boon RA, Koolwijk P, van der Pouw Kraan TCTM, Horrevoets AJG. IFN-β affects the angiogenic potential of circulating angiogenic cells by activating calpain 1. Am J Physiol Heart Circ Physiol 2015; 309:H1667-78. [DOI: 10.1152/ajpheart.00810.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 09/01/2015] [Indexed: 01/15/2023]
Abstract
Circulating angiogenic cells (CACs) are monocyte-derived cells with endothelial characteristics, which contribute to both angiogenesis and arteriogenesis in a paracrine way. Interferon-β (IFN-β) is known to inhibit these divergent processes in animals and patients. We hypothesized that IFN-β might act by affecting the differentiation and function of CACs. CACs were cultured from peripheral blood mononuclear cells and phenotypically characterized by surface expression of monocytic and endothelial markers. IFN-β significantly reduced the number of CACs by 18–64%. Apoptosis was not induced by IFN-β, neither in mononuclear cells during differentiation, nor after maturation to CACs. Rather, IFN-β impaired adhesion to, and spreading on, fibronectin, which was dependent on α5β1 (VLA-5)-integrin. IFN-β affected the function of VLA-5 in mature CACs, leading to rounding and detachment of cells, by induction of calpain 1 activity. Cell rounding and detachment was completely reversed by inhibition of calpain 1 activity in mature CACs. During in vitro capillary formation, CAC addition and calpain 1 inhibition enhanced sprouting of endothelial cells to a comparable extent, but were not sufficient to rescue tube formation in the presence of IFN-β. We show that the IFN-β-induced reduction of the numbers of in vitro differentiated CACs is based on activation of calpain 1, resulting in an attenuated adhesion to extracellular matrix proteins via VLA-5. In vivo, this could lead to inhibition of vessel formation due to reduction of the locally recruited CAC numbers and their paracrine angiogenic factors.
Collapse
Affiliation(s)
- Cansu Yıldırım
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Julie Favre
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ester M. Weijers
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; and
| | - Ruud D. Fontijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Michiel H. van Wijhe
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; and
| | - Sandra J. van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Reinier A. Boon
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Pieter Koolwijk
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; and
| | | | - Anton J. G. Horrevoets
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Shinderman-Maman E, Cohen K, Weingarten C, Nabriski D, Twito O, Baraf L, Hercbergs A, Davis PJ, Werner H, Ellis M, Ashur-Fabian O. The thyroid hormone-αvβ3 integrin axis in ovarian cancer: regulation of gene transcription and MAPK-dependent proliferation. Oncogene 2015; 35:1977-87. [PMID: 26165836 DOI: 10.1038/onc.2015.262] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 12/18/2022]
Abstract
Ovarian carcinoma is the fifth common cause of cancer death in women, despite advanced therapeutic approaches. αvβ3 integrin, a plasma membrane receptor, binds thyroid hormones (L-thyroxine, T4; 3,5,3'-triiodo-L-thyronine, T3) and is overexpressed in ovarian cancer. We have demonstrated selective binding of fluorescently labeled hormones to αvβ3-positive ovarian cancer cells but not to integrin-negative cells. Physiologically relevant T3 (1 nM) and T4 (100 nM) concentrations in OVCAR-3 (high αvβ3) and A2780 (low αvβ3) cells promoted αv and β3 transcription in association with basal integrin levels. This transcription was effectively blocked by RGD (Arg-Gly-Asp) peptide and neutralizing αvβ3 antibodies, excluding T3-induced β3 messenger RNA, suggesting subspecialization of T3 and T4 binding to the integrin receptor pocket. We have provided support for extracellular regulated kinase (ERK)-mediated transcriptional regulation of the αv monomer by T3 and of β3 monomer by both hormones and documented a rapid (30-120 min) and dose-dependent (0.1-1000 nM) ERK activation. OVCAR-3 cells and αvβ3-deficient HEK293 cells treated with αvβ3 blockers confirmed the requirement for an intact thyroid hormone-integrin interaction in ERK activation. In addition, novel data indicated that T4, but not T3, controls integrin's outside-in signaling by phosphorylating tyrosine 759 in the β3 subunit. Both hormones induced cell proliferation (cell counts), survival (Annexin-PI), viability (WST-1) and significantly reduced the expression of genes that inhibit cell cycle (p21, p16), promote mitochondrial apoptosis (Nix, PUMA) and tumor suppression (GDF-15, IGFBP-6), particularly in cells with high integrin expression. At last, we have confirmed that hypothyroid environment attenuated ovarian cancer growth using a novel experimental platform that exploited paired euthyroid and severe hypothyroid serum samples from human subjects. To conclude, our data define a critical role for thyroid hormones as potent αvβ3-ligands, driving ovarian cancer cell proliferation and suggest that disruption of this axis may present a novel treatment strategy in this aggressive disease.
Collapse
Affiliation(s)
- E Shinderman-Maman
- Translational Hemato-Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - K Cohen
- Translational Hemato-Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - C Weingarten
- Translational Hemato-Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - D Nabriski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Endocrinology, Meir Medical Center, Kfar-Saba, Israel
| | - O Twito
- Department of Endocrinology, Meir Medical Center, Kfar-Saba, Israel
| | - L Baraf
- Department of Endocrinology, Meir Medical Center, Kfar-Saba, Israel
| | - A Hercbergs
- Radiation Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - P J Davis
- Department of Medicine, Albany Medical College, Albany, NY, USA
| | - H Werner
- Department of Human Molecular Genetics and Biochemistry.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Ellis
- Translational Hemato-Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O Ashur-Fabian
- Translational Hemato-Oncology Laboratory, The Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, Israel.,Department of Human Molecular Genetics and Biochemistry.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Estevez B, Shen B, Du X. Targeting integrin and integrin signaling in treating thrombosis. Arterioscler Thromb Vasc Biol 2015; 35:24-9. [PMID: 25256236 PMCID: PMC4270936 DOI: 10.1161/atvbaha.114.303411] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/09/2014] [Indexed: 12/19/2022]
Abstract
The critical roles of integrins in thrombosis have enabled the successful development and clinical use of the first generation of integrin antagonists as represented by abciximab (Reopro), eptifibatide (Integrilin), and tirofiban (Aggrastat). These integrin αIIbβ3 antagonists are not only potent antithrombotics but also have significant side effects. In particular, their induction of ligand-induced integrin conformational changes is associated with thrombocytopenia. Increased bleeding risk prevents integrin antagonists from being used at higher doses and in patients at risk for bleeding. To address the ligand-induced conformational changes caused by current integrin antagonists, compounds that minimally induce conformational changes in integrin αIIbβ3 have been developed. Recent studies on the mechanisms of integrin signaling suggest that selectively targeting integrin outside-in signaling mechanisms allows for potent inhibition of thrombosis, while maintaining hemostasis in animal models.
Collapse
Affiliation(s)
- Brian Estevez
- From the Department of Pharmacology, University of Illinois at Chicago
| | - Bo Shen
- From the Department of Pharmacology, University of Illinois at Chicago
| | - Xiaoping Du
- From the Department of Pharmacology, University of Illinois at Chicago.
| |
Collapse
|
19
|
Calpain activity and Toll-like receptor 4 expression in platelet regulate haemostatic situation in patients undergoing cardiac surgery and coagulation in mice. Mediators Inflamm 2014; 2014:484510. [PMID: 25258477 PMCID: PMC4167458 DOI: 10.1155/2014/484510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 01/02/2023] Open
Abstract
Human platelets express Toll-like receptors (TLR) 4. However, the mechanism by which TLR4 directly affects platelet aggregation and blood coagulation remains to be explored. Therefore, in this study, we evaluated the platelet TLR4 expression in patients who underwent CABG surgery; we explored the correlation between platelet TLR4 expression and the early outcomes in hospital of patients. Additionally, C57BL/6 and C57BL/6-TlrLPS−/− mice were used to explore the roles of platelet TLR4 in coagulation by platelet aggregometry and rotation thromboelastometry. In conclusion, our results highlight the important roles of TLR4 in blood coagulation and platelet function. Of clinical relevance, we also explored novel roles for platelet TLR4 that are associated with early outcomes in cardiac surgery.
Collapse
|
20
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
21
|
Abstract
Murine paired immunoglobulin-like receptors B (PIRB), as the ortholog of human leukocyte immunoglobulin-like receptor B2 (LILRB2), is involved in a variety of biological functions. Here, we found that PIRB and LILRB2 were expressed in mouse and human platelets, respectively. PIRB intracellular domain deletion (PIRB-TM) mice had thrombocythemia and significantly higher proportions of megakaryocytes in bone marrow. Agonist-induced aggregation and spreading on immobilized fibrinogen were facilitated in PIRB-TM platelets. The rate of clot retraction in platelet-rich plasma containing PIRB-TM platelets was also increased. Characterization of signaling confirmed that PIRB associated with phosphatases Shp1/2 in platelets. The phosphorylation of Shp1/2 was significantly downregulated in PIRB-TM platelets stimulated with collagen-related peptide (CRP) or on spreading. The results further revealed that the phosphorylation levels of the linker for activation of T cells, SH2 domain-containing leukocyte protein of 76kDa, and phospholipase C were enhanced in PIRB-TM platelets stimulated with CRP. The phosphorylation levels of FAK Y397 and integrin β3 Y759 were also enhanced in PIRB-TM platelet spread on fibrinogen. The PIRB/LILRB2 ligand angiopoietin-like-protein 2 (ANGPTL2) was expressed and stored in platelet α-granules. ANGPTL2 inhibited agonist-induced platelet aggregation and spreading on fibrinogen. The data presented here reveal that PIRB and its ligand ANGPTL2 possess an antithrombotic function by suppressing collagen receptor glycoprotein VI and integrin αIIbβ3-mediated signaling.
Collapse
|
22
|
Tsai JC, Lin YW, Huang CY, Lin CY, Tsai YT, Shih CM, Lee CY, Chen YH, Li CY, Chang NC, Lin FY, Tsai CS. The role of calpain-myosin 9-Rab7b pathway in mediating the expression of Toll-like receptor 4 in platelets: a novel mechanism involved in α-granules trafficking. PLoS One 2014; 9:e85833. [PMID: 24489676 PMCID: PMC3904858 DOI: 10.1371/journal.pone.0085833] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/02/2013] [Indexed: 01/26/2023] Open
Abstract
Toll-like receptors (TLRs) plays a critical role in innate immunity. In 2004, Aslam R. and Shiraki R. first determined that murine and human platelets express functional TLRs. Additionally, Andonegui G. demonstrated that platelets express TLR4, which contributes to thrombocytopenia. However, the underlying mechanisms of TLR4 expression by platelets have been rarely explored until now. The aim of this study was to identify the mechanism of TLR4 expression underlying thrombin treatment. The human washed platelets were used in this study. According to flowcytometry and western blot analysis, the surface levels of TLR4 were significantly enhanced in thrombin-activated human platelets and decreased by TMB-8, calpeptin, and U73122, but not Y27632 (a Rho-associated protein kinase ROCK inhibitor) indicating that thrombin-mediated TLR4 expression was modulated by PAR/PLC pathway, calcium and calpain. Co-immunoprecipitation (co-IP) assay demonstrated that the interaction between TLR4 and myosin-9 (a substrate of calpain) was regulated by calpain; cleavage of myosin-9 enhanced TLR4 expression in thrombin treated platelets. Transmission electron microscope data indicated that human platelets used α-granules to control TLR4 expression; the co-IP experiment suggested that myosin-9 did not coordinate with Rab7b to negatively regulate TLR4 trafficking in thrombin treated platelets. In summary, phospholipase Cγ-calpain-myosin 9-Rab7b axis was responsible for the mechanism underlying the regulation of TLR4 containing α-granules trafficking in thrombin-stimulated platelets, which was involved in coagulation.
Collapse
Affiliation(s)
- Jui-Chi Tsai
- Graduate Institute of Medical Sciences, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Departments of Internal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Wen Lin
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Yao Huang
- Departments of Internal Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Min Shih
- Departments of Internal Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chung-Yi Lee
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Sciences, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Nen-Chung Chang
- Departments of Internal Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Feng-Yen Lin
- Departments of Internal Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail: (FYL); (CST)
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (FYL); (CST)
| |
Collapse
|
23
|
Abstract
Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling.
Collapse
Affiliation(s)
- Elizabeth M Morse
- Department of Cell Biology and ‡Department of Pharmacology, Yale University School of Medicine , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
24
|
Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol 2012; 24:600-6. [PMID: 22980731 DOI: 10.1016/j.ceb.2012.08.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/06/2012] [Accepted: 08/20/2012] [Indexed: 12/11/2022]
Abstract
The integrin family of cell adhesion receptors mediates bi-directional signaling: 'inside-out' signaling activates the ligand binding function of integrins and 'outside-in' signaling mediates cellular responses induced by ligand binding to integrins leading to cell spreading, retraction, migration, and proliferation. Integrin signaling requires both heterotrimeric G proteins and monomeric small G proteins. This review focuses on recent development in the roles of G proteins in integrin outside-in signaling. The finding of direct interaction between the heterotrimeric G protein subunit Gα13 and integrin β subunits reveals a new mechanism for integrin signaling, and also uncovers a crosstalk between the signaling pathways initiated by G protein-coupled receptors (GPCRs) and integrins. This crosstalk, which may be referred to as 'inside-outside-in' signaling, dynamically regulates contractility and greatly promotes integrin outside-in signaling.
Collapse
Affiliation(s)
- Bo Shen
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | | | | |
Collapse
|
25
|
Kuchay SM, Wieschhaus AJ, Marinkovic M, Herman IM, Chishti AH. Targeted gene inactivation reveals a functional role of calpain-1 in platelet spreading. J Thromb Haemost 2012; 10:1120-32. [PMID: 22458296 PMCID: PMC3956748 DOI: 10.1111/j.1538-7836.2012.04715.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Calpains are implicated in a wide range of cellular functions including the maintenance of hemostasis via the regulation of cytoskeletal modifications in platelets. OBJECTIVES Determine the functional role of calpain isoforms in platelet spreading. METHODS AND RESULTS Platelets from calpain-1(-/-) mice show enhanced spreading on collagen- and fibrinogen-coated surfaces as revealed by immunofluorescence, differential interference contrast (DIC) and scanning electron microscopy. The treatment of mouse platelets with MDL, a cell permeable inhibitor of calpains 1/2, resulted in increased spreading. The PTP1B-mediated enhanced tyrosine dephosphorylation in calpain-1(-/-) platelets did not fully account for the enhanced spreading as platelets from the double knockout mice lacking calpain-1 and PTP1B showed only a partial rescue of the spreading phenotype. In non-adherent platelets, proteolysis and GTPase activity of RhoA and Rac1 were indistinguishable between the wild-type (WT) and calpain-1(-/-) platelets. In contrast, the ECM-adherent calpain-1(-/-) platelets showed higher Rac1 activity at the beginning of spreading, whereas RhoA was more active at later time points. The ECM-adherent calpain-1(-/-) platelets showed an elevated level of RhoA protein but not Rac1 and Cdc42. Proteolysis of recombinant RhoA, but not Rac1 and Cdc42, indicates that RhoA is a calpain-1 substrate in vitro. CONCLUSIONS Potentiation of the platelet spreading phenotype in calpain-1(-/-) mice suggests a novel role of calpain-1 in hemostasis, and may explain the normal bleeding time observed in the calpain-1(-/-) mice.
Collapse
Affiliation(s)
- S M Kuchay
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
26
|
Randriamboavonjy V, Fleming I. All cut up! The consequences of calpain activation on platelet function. Vascul Pharmacol 2012; 56:210-5. [DOI: 10.1016/j.vph.2012.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/15/2012] [Accepted: 02/16/2012] [Indexed: 11/29/2022]
|
27
|
Ahn J, Sanz-Moreno V, Marshall CJ. The metastasis gene NEDD9 product acts through integrin β3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J Cell Sci 2012; 125:1814-26. [PMID: 22328516 DOI: 10.1242/jcs.101444] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neural precursor expressed, developmentally down-regulated 9 (NEDD9), a member of the Cas family of signal transduction molecules, is amplified at the genetic level in melanoma, and elevated expression levels have been shown to correlate with melanoma progression and metastasis. NEDD9 interacts with the guanine nucleotide exchange factor DOCK3 to promote Rac activation and the elongated, mesenchymal-type of tumour cell invasion, but the molecular mechanisms through which NEDD9 promotes melanoma metastasis are not fully understood. We show that signalling through increased NEDD9 levels requires integrin β3 signalling, which leads to elevated phosphorylation of integrin β3. This results in increased Src and FAK but decreased ROCK signalling to drive elongated, mesenchymal-type invasion in environments that contain vitronectin. NEDD9 overexpression does not affect ROCK signalling through activation of RhoA but decreases ROCKII signalling through Src-dependent phosphorylation of a negative regulatory site Tyr722. In NEDD9-overexpressing melanoma cells, inhibition of Src with dasatinib results in a switch from Rac-driven elongated, mesenchymal-type invasion to ROCK-dependent rounded, amoeboid invasion. These findings brings into question whether dasatinib would work as a therapeutic agent to block melanoma invasion and metastasis. On the basis of the in vitro data presented here, a combination treatment of dasatinib and a ROCK inhibitor might be a better alternative in order to inhibit both elongated, mesenchymal-type and rounded, amoeboid motility.
Collapse
Affiliation(s)
- Jessica Ahn
- Division of Cancer Biology, Institute of Cancer Research, Cancer Research UK Centre Tumour Cell Signalling Unit, London, UK
| | | | | |
Collapse
|
28
|
Patterson C, Portbury A, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 2011; 109:453-62. [PMID: 21817165 PMCID: PMC3151485 DOI: 10.1161/circresaha.110.239749] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in the regulation of the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize the molecular mechanisms by which calpain inhibition has been shown to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is then discussed.
Collapse
Affiliation(s)
- Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Departments of Medicine, Pharmacology, Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea Portbury
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
29
|
Jevnikar Z, Obermajer N, Kos J. LFA-1 fine-tuning by cathepsin X. IUBMB Life 2011; 63:686-93. [PMID: 21796748 DOI: 10.1002/iub.505] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/20/2011] [Indexed: 01/14/2023]
Abstract
The adhesion molecule lymphocyte function-associated antigen (LFA)-1 plays a key role in immune surveillance and response. Its conformation is spatially and temporally regulated, enabling adhesion and deadhesion during T-cell migration. LFA-1 adhesion to its major ligand intercellular adhesion molecule 1 is controlled by adaptor proteins which bind the cytoplasmic tail of the β (2) subunit. Cathepsin X, a cysteine carboxypeptidase, promotes T-cell migration and morphological changes by cleaving the β (2) cytoplasmic tail of LFA-1. In this way, it modulates the affinity of LFA-1 for structural adaptors talin-1 and α-actinin-1 and enables the stepwise transition between intermediate and high-affinity conformations of LFA-1, an event that is necessary for effective T-cell function. Cathepsin X regulation that would allow precise modulation of LFA-1 affinity has a great potential for anti-LFA-1 therapy.
Collapse
Affiliation(s)
- Zala Jevnikar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
| | | | | |
Collapse
|
30
|
Abstract
Upon vascular injury, platelets are activated by adhesion to adhesive proteins, such as von Willebrand factor and collagen, or by soluble platelet agonists, such as ADP, thrombin, and thromboxane A(2). These adhesive proteins and soluble agonists induce signal transduction via their respective receptors. The various receptor-specific platelet activation signaling pathways converge into common signaling events that stimulate platelet shape change and granule secretion and ultimately induce the "inside-out" signaling process leading to activation of the ligand-binding function of integrin α(IIb)β(3). Ligand binding to integrin α(IIb)β(3) mediates platelet adhesion and aggregation and triggers "outside-in" signaling, resulting in platelet spreading, additional granule secretion, stabilization of platelet adhesion and aggregation, and clot retraction. It has become increasingly evident that agonist-induced platelet activation signals also cross talk with integrin outside-in signals to regulate platelet responses. Platelet activation involves a series of rapid positive feedback loops that greatly amplify initial activation signals and enable robust platelet recruitment and thrombus stabilization. Recent studies have provided novel insight into the molecular mechanisms of these processes.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Medicine, University of Kentucky
| | | | | | - Xiaoping Du
- Department of Pharmacology, University of Illinois at Chicago
| |
Collapse
|
31
|
Bledzka K, Bialkowska K, Nie H, Qin J, Byzova T, Wu C, Plow EF, Ma YQ. Tyrosine phosphorylation of integrin beta3 regulates kindlin-2 binding and integrin activation. J Biol Chem 2010; 285:30370-4. [PMID: 20702409 DOI: 10.1074/jbc.c110.134247] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Kindlins are essential for integrin activation in cell systems and do so by working in a cooperative fashion with talin via their direct interaction with integrin β cytoplasmic tails (CTs). Kindlins interact with the membrane-distal NxxY motif, which is distinct from the talin-binding site within the membrane-proximal NxxY motif. The Tyr residues in both motifs can be phosphorylated, and it has been suggested that this modification of the membrane-proximal NxxY motif negatively regulates interaction with the talin head domain. However, the influence of Tyr phosphorylation of the membrane-distal NxxY motif on kindlin binding is unknown. Using mutational analyses and phosphorylated peptides, we show that phosphorylation of the membrane-distal NITY(759) motif in the β(3) CT disrupts kindlin-2 recognition. Phosphorylation of this membrane-distal Tyr also disables the ability of kindlin-2 to coactivate the integrin. In direct binding studies, peptides corresponding to the non-phosphorylated β(3) CT interacted well with kindlin-2, whereas the Tyr(759)-phosphorylated peptide failed to bind kindlin-2 with measurable affinity. These observations indicate that transitions between the phosphorylated and non-phosphorylated states of the integrin β(3) CT determine reactivity with kindlin-2 and govern the role of kindlin-2 in regulating integrin activation.
Collapse
Affiliation(s)
- Kamila Bledzka
- Department of Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Anthis NJ, Haling JR, Oxley CL, Memo M, Wegener KL, Lim CJ, Ginsberg MH, Campbell ID. Beta integrin tyrosine phosphorylation is a conserved mechanism for regulating talin-induced integrin activation. J Biol Chem 2009; 284:36700-36710. [PMID: 19843520 PMCID: PMC2794784 DOI: 10.1074/jbc.m109.061275] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/09/2009] [Indexed: 01/04/2023] Open
Abstract
Integrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the beta integrin subunit. The phosphotyrosine-binding domain of the signaling protein Dok1, on the other hand, has an inactivating effect on integrins, a phenomenon that is modulated by integrin tyrosine phosphorylation. Using full-length tyrosine-phosphorylated (15)N-labeled beta3, beta1A, and beta7 integrin tails and an NMR-based protein-protein interaction assay, we show that talin1 binds to the NPXY motif and the membrane-proximal portion of beta3, beta1A, and beta7 tails, and that the affinity of this interaction is decreased by integrin tyrosine phosphorylation. Dok1 only interacts weakly with unphosphorylated tails, but its affinity is greatly increased by integrin tyrosine phosphorylation. The Dok1 interaction remains restricted to the integrin NPXY region, thus phosphorylation inhibits integrin activation by increasing the affinity of beta integrin tails for a talin competitor that does not form activating membrane-proximal interactions with the integrin. Key residues governing these specificities were identified by detailed structural analysis, and talin1 was engineered to bind preferentially to phosphorylated integrins by introducing the mutation D372R. As predicted, this mutation affects talin1 localization in live cells in an integrin phosphorylation-specific manner. Together, these results indicate that tyrosine phosphorylation is a common mechanism for regulating integrin activation, despite subtle differences in how these integrins interact with their binding proteins.
Collapse
Affiliation(s)
- Nicholas J Anthis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093.
| | - Jacob R Haling
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Camilla L Oxley
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Massimiliano Memo
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Kate L Wegener
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093
| | - Chinten J Lim
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Mark H Ginsberg
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Iain D Campbell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3DR, United Kingdom, California 92093.
| |
Collapse
|
33
|
Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, Morita Y, Kakinuma S, Yamazaki S, Okamura S, Tamura N, Goto S, Sawaguchi A, Manabe I, Takatsu K, Nakauchi H, Takaki S, Eto K. Lnk regulates integrin alphaIIbbeta3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 2009; 120:179-90. [PMID: 20038804 DOI: 10.1172/jci39503] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/28/2009] [Indexed: 12/20/2022] Open
Abstract
The nature of the in vivo cellular events underlying thrombus formation mediated by platelet activation remains unclear because of the absence of a modality for analysis. Lymphocyte adaptor protein (Lnk; also known as Sh2b3) is an adaptor protein that inhibits thrombopoietin-mediated signaling, and as a result, megakaryocyte and platelet counts are elevated in Lnk-/- mice. Here we describe an unanticipated role for Lnk in stabilizing thrombus formation and clarify the activities of Lnk in platelets transduced through integrin alphaIIbbeta3-mediated outside-in signaling. We equalized platelet counts in wild-type and Lnk-/- mice by using genetic depletion of Lnk and BM transplantation. Using FeCl3- or laser-induced injury and in vivo imaging that enabled observation of single platelet behavior and the multiple steps in thrombus formation, we determined that Lnk is an essential contributor to the stabilization of developing thrombi within vessels. Lnk-/- platelets exhibited a reduced ability to fully spread on fibrinogen and mediate clot retraction, reduced tyrosine phosphorylation of the beta3 integrin subunit, and reduced binding of Fyn to integrin alphaIIbbeta3. These results provide new insight into the mechanism of alphaIIbbeta3-based outside-in signaling, which appears to be coordinated in platelets by Lnk, Fyn, and integrins. Outside-in signaling modulators could represent new therapeutic targets for the prevention of cardiovascular events.
Collapse
Affiliation(s)
- Hitoshi Takizawa
- Research Institute, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yamada M, Yoshida Y, Mori D, Takitoh T, Kengaku M, Umeshima H, Takao K, Miyakawa T, Sato M, Sorimachi H, Wynshaw-Boris A, Hirotsune S. Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly. Nat Med 2009; 15:1202-7. [PMID: 19734909 PMCID: PMC2759411 DOI: 10.1038/nm.2023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/30/2009] [Indexed: 12/17/2022]
Abstract
Lissencephaly is a devastating neurological disorder due to defective neuronal migration. LIS1 (or PAFAH1B1) was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. Here, we show that more than half of LIS1 is degraded via calpain-dependent proteolysis, and that inhibition or knockdown of calpains protects LIS1 from proteolysis, resulting in the augmentation of LIS1 levels in Lis1+/− mouse embryonic fibroblast (MEF) cells, which leads to rescue of the aberrant distribution of cytoplasmic dynein, mitochondria and β-COP positive vesicles. We also show that calpain inhibitors improve neuronal migration of Lis1+/− cerebellar granular neurons. Intra-peritoneal injection of ALLN to pregnant Lis1+/− dams rescued apoptotic neuronal cell death and neuronal migration defects in Lis1+/− offspring. Furthermore, in utero knockdown of calpain by shRNA rescued defective cortical layering in Lis1+/− mice. Thus, the inhibition of calpain is a potential therapeutic intervention for lissencephaly.
Collapse
Affiliation(s)
- Masami Yamada
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Asahi-machi, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Trümpler A, Schlott B, Herrlich P, Greer PA, Böhmer FD. Calpain-mediated degradation of reversibly oxidized protein-tyrosine phosphatase 1B. FEBS J 2009; 276:5622-33. [PMID: 19712109 DOI: 10.1111/j.1742-4658.2009.07255.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Protein-tyrosine phosphatases (PTPs) are regulated by reversible inactivating oxidation of the catalytic-site cysteine. We have previously shown that reversible oxidation upon UVA irradiation is followed by calpain-mediated PTP degradation. Here, we address the mechanism of regulated cleavage and the physiological function of PTP degradation. Reversible oxidation of PTP1B in vitro strongly facilitated the association with calpain and led to greatly increased calpain-dependent inactivating cleavage. Both oxidation-induced association and cleavage depended exclusively on the presence of the catalytic (reversibly oxidized) cysteine residue 215. A major cleavage site was identified preceding amino acid position Ala77. In calpain-deficient cells, insulin signaling was apparently diminished, consistent with a possible role for calpain in removing a negative regulator of insulin signaling. Reversibly oxidized PTP1B may be a target of calpain in this context.
Collapse
Affiliation(s)
- Antje Trümpler
- Institute of Molecular Cell Biology, Friedrich Schiller University, Jena, Germany
| | | | | | | | | |
Collapse
|
36
|
Bodnar RJ, Yates CC, Rodgers ME, Du X, Wells A. IP-10 induces dissociation of newly formed blood vessels. J Cell Sci 2009; 122:2064-77. [PMID: 19470579 DOI: 10.1242/jcs.048793] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The signals that prune the exuberant vascular growth of tissue repair are still ill defined. We demonstrate that activation of CXC chemokine receptor 3 (CXCR3) mediates the regression of newly formed blood vessels. We present evidence that CXCR3 is expressed on newly formed vessels in vivo and in vitro. CXCR3 is expressed on vessels at days 7-21 post-wounding, and is undetectable in unwounded or healed skin. Treatment of endothelial cords with CXCL10 (IP-10), a CXCR3 ligand present during the resolving phase of wounds, either in vitro or in vivo caused dissociation even in the presence of angiogenic factors. Consistent with this, mice lacking CXCR3 express a greater number of vessels in wound tissue compared to wild-type mice. We then hypothesized that signaling from CXCR3 not only limits angiogenesis, but also compromises vessel integrity to induce regression. We found that activation of CXCR3 triggers micro-calpain activity, causing cleavage of the cytoplasmic tail of beta3 integrins at the calpain cleavage sites c'754 and c'747. IP-10 stimulation also activated caspase 3, blockage of which prevented cell death but not cord dissociation. This is the first direct evidence for an extracellular signaling mechanism through CXCR3 that causes the dissociation of newly formed blood vessels followed by cell death.
Collapse
Affiliation(s)
- Richard J Bodnar
- Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA 15240, USA.
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
| | - Ingrid Fleming
- From the Institute for Vascular Signalling, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
38
|
Gahmberg CG, Fagerholm SC, Nurmi SM, Chavakis T, Marchesan S, Grönholm M. Regulation of integrin activity and signalling. Biochim Biophys Acta Gen Subj 2009; 1790:431-44. [PMID: 19289150 DOI: 10.1016/j.bbagen.2009.03.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 01/09/2023]
Abstract
The ability of cells to attach to each other and to the extracellular matrix is of pivotal significance for the formation of functional organs and for the distribution of cells in the body. Several molecular families of proteins are involved in adhesion, and recent work has substantially improved our understanding of their structures and functions. Also, these molecules are now being targeted in the fight against disease. However, less is known about how their activity is regulated. It is apparent that among the different classes of adhesion molecules, the integrin family of adhesion receptors is unique in the sense that they constitute a large group of widely distributed receptors, they are unusually complex and most importantly their activities are strictly regulated from the inside of the cell. The activity regulation is achieved by a complex interplay of cytoskeletal proteins, protein kinases, phosphatases, small G proteins and adaptor proteins. Obviously, we are only in the beginning of our understanding of how the integrins function, but already now fascinating details have become apparent. Here, we describe recent progress in the field, concentrating mainly on mechanistical and structural studies of integrin regulation. Due to the large number of articles dealing with integrins, we focus on what we think are the most exciting and rewarding directions of contemporary research on cell adhesion and integrins.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Division of Biochemistry, Faculty of Biosciences, University of Helsinki, Viikinkaari 5, 00014, Finland.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Integrins are cell surface transmembrane receptors that recognize and bind to extracellular matrix proteins and counter receptors. Binding of activated integrins to their ligands induces a vast number of structural and signaling changes within the cell. Large, multimolecular complexes assemble onto the cytoplasmic tails of activated integrins to engage and organize the cytoskeleton, and activate signaling pathways that ultimately lead to changes in gene expression. Additionally, integrin-mediated signaling intersects with growth factor-mediated signaling through various levels of cross-talk. This review discusses recent work that has tremendously broadened our understanding of the complexity of integrin-mediated signaling.
Collapse
|
40
|
Ande SR, Moulik S, Mishra S. Interaction between O-GlcNAc modification and tyrosine phosphorylation of prohibitin: implication for a novel binary switch. PLoS One 2009; 4:e4586. [PMID: 19238206 PMCID: PMC2642629 DOI: 10.1371/journal.pone.0004586] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 01/07/2009] [Indexed: 11/20/2022] Open
Abstract
Prohibitin (PHB or PHB1) is an evolutionarily conserved, multifunctional protein which is present in various cellular compartments including the plasma membrane. However, mechanisms involved in various functions of PHB are not fully explored yet. Here we report for the first time that PHB interacts with O-linked β-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT) and is O-GlcNAc modified; and also undergoes tyrosine phosphorylation in response to insulin. Tyrosine 114 (Tyr114) and tyrosine 259 (Tyr259) in PHB are in the close proximity of potential O-GlcNAc sites serine 121 (Ser121) and threonine 258 (Thr258) respectively. Substitution of Tyr114 and Tyr259 residues in PHB with phenylalanine by site-directed mutagenesis results in reduced tyrosine phosphorylation as well as reduced O-GlcNAc modification of PHB. Surprisingly, this also resulted in enhanced tyrosine phosphorylation and activity of OGT. This is attributed to the presence of similar tyrosine motifs in PHB and OGT. Substitution of Ser121 and Thr258 with alanine and isoleucine respectively resulted in attenuation of O-GlcNAc modification and increased tyrosine phosphorylation of PHB suggesting an association between these two dynamic modifications. Sequence analysis of O-GlcNAc modified proteins having known O-GlcNAc modification site(s) or known tyrosine phosphorylation site(s) revealed a strong potential association between these two posttranslational modifications in various proteins. We speculate that O-GlcNAc modification and tyrosine phosphorylation of PHB play an important role in tyrosine kinase signaling pathways including insulin, growth factors and immune receptors signaling. In addition, we propose that O-GlcNAc modification and tyrosine phosphorylation is a novel previously unidentified binary switch which may provide new mechanistic insights into cell signaling pathways and is open for direct experimental examination.
Collapse
Affiliation(s)
- Sudharsana R Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
41
|
Abstract
Cell migration is essential for many biological processes in animals and is a complex highly co-ordinated process that involves cell polarization, actin-driven protrusion and formation and turnover of cell adhesions. The PI3K (phosphoinositide 3-kinase) family of lipid kinases regulate cell migration in many different cell types, both through direct binding of proteins to their lipid products and indirectly through crosstalk with other pathways, such as Rho GTPase signalling. Emerging evidence suggests that the involvement of PI3Ks at different stages of migration varies even within one cell type, and is dependent on the combination of external stimuli, as well as on the signalling status of the cell. In addition, it appears that different PI3K isoforms have distinct roles in cell polarization and migration. This review describes how PI3K signalling is regulated by pro-migratory stimuli, and the diverse ways in which PI3K-mediated signal transduction contributes to different aspects of cell migration.
Collapse
|
42
|
Hu B, Kong LL, Matthews RT, Viapiano MS. The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 2008; 283:24848-59. [PMID: 18611854 DOI: 10.1074/jbc.m801433200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The adult neural parenchyma contains a distinctive extracellular matrix that acts as a barrier to cell and neurite motility. Nonneural tumors that metastasize to the central nervous system almost never infiltrate it and instead displace the neural tissue as they grow. In contrast, invasive gliomas disrupt the extracellular matrix and disperse within the neural tissue. A major inhibitory component of the neural matrix is the lectican family of chondroitin sulfate proteoglycans, of which brevican is the most abundant member in the adult brain. Interestingly, brevican is also highly up-regulated in gliomas and promotes glioma dispersion by unknown mechanisms. Here we show that brevican secreted by glioma cells enhances cell adhesion and motility only after proteolytic cleavage. At the molecular level, brevican promotes epidermal growth factor receptor activation, increases the expression of cell adhesion molecules, and promotes the secretion of fibronectin and accumulation of fibronectin microfibrils on the cell surface. Moreover, the N-terminal cleavage product of brevican, but not the full-length protein, associates with fibronectin in cultured cells and in surgical samples of glioma. Taken together, our results provide the first evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of brevican in primary brain tumors. In addition, these results underscore the important functional implications of brevican processing in glioma progression.
Collapse
Affiliation(s)
- Bin Hu
- Center for Molecular Neurobiology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
43
|
RGT, a synthetic peptide corresponding to the integrin beta 3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin alpha IIb beta 3 with Src kinase. Blood 2008; 112:592-602. [PMID: 18398066 DOI: 10.1182/blood-2007-09-110437] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutational analysis has established that the cytoplasmic tail of the integrin beta 3 subunit binds c-Src (termed as Src in this study) and is critical for bidirectional integrin signaling. Here we show in washed human platelets that a cell-permeable, myristoylated RGT peptide (myr-RGT) corresponding to the integrin beta 3 C-terminal sequence dose-dependently inhibited stable platelet adhesion and spreading on immobilized fibrinogen, and fibrin clot retraction as well. Myr-RGT also inhibited the aggregation-dependent platelet secretion and secretion-dependent second wave of platelet aggregation induced by adenosine diphosphate, ristocetin, or thrombin. Thus, myr-RGT inhibited integrin outside-in signaling. In contrast, myr-RGT had no inhibitory effect on adenosine diphosphate-induced soluble fibrinogen binding to platelets that is dependent on integrin inside-out signaling. Furthermore, the RGT peptide induced dissociation of Src from integrin beta 3 and dose-dependently inhibited the purified recombinant beta 3 cytoplasmic domain binding to Src-SH3. In addition, phosphorylation of the beta 3 cytoplasmic tyrosines, Y(747) and Y(759), was inhibited by myr-RGT. These data indicate an important role for beta 3-Src interaction in outside-in signaling. Thus, in intact human platelets, disruption of the association of Src with beta 3 and selective blockade of integrin alpha IIb beta 3 outside-in signaling by myr-RGT suggest a potential new antithrombotic strategy.
Collapse
|
44
|
Roehm PC, Xu N, Woodson EA, Green SH, Hansen MR. Membrane depolarization inhibits spiral ganglion neurite growth via activation of multiple types of voltage sensitive calcium channels and calpain. Mol Cell Neurosci 2007; 37:376-87. [PMID: 18055215 DOI: 10.1016/j.mcn.2007.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/17/2007] [Accepted: 10/25/2007] [Indexed: 12/23/2022] Open
Abstract
The effect of membrane electrical activity on spiral ganglion neuron (SGN) neurite growth remains unknown despite its relevance to cochlear implant technology. We demonstrate that membrane depolarization delays the initial formation and inhibits the subsequent extension of cultured SGN neurites. This inhibition depends directly on the level of depolarization with higher levels of depolarization causing retraction of existing neurites. Cultured SGNs express subunits for L-type, N-type, and P/Q type voltage-gated calcium channels (VGCCs) and removal of extracellular Ca(2+) or treatment with a combination of L-type, N-type, and P/Q-type VGCC antagonists rescues SGN neurite growth under depolarizing conditions. By measuring the fluorescence intensity of SGNs loaded with the fluorogenic calpain substrate t-butoxy carbonyl-Leu-Met-chloromethylaminocoumarin (20 microM), we demonstrate that depolarization activates calpains. Calpeptin (15 microM), a calpain inhibitor, prevents calpain activation by depolarization and rescues neurite growth in depolarized SGNs suggesting that calpain activation contributes to the inhibition of neurite growth by depolarization.
Collapse
Affiliation(s)
- Pamela C Roehm
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
45
|
Flevaris P, Stojanovic A, Gong H, Chishti A, Welch E, Du X. A molecular switch that controls cell spreading and retraction. ACTA ACUST UNITED AC 2007; 179:553-65. [PMID: 17967945 PMCID: PMC2064799 DOI: 10.1083/jcb.200703185] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrin-dependent cell spreading and retraction are required for cell adhesion, migration, and proliferation, and thus are important in thrombosis, wound repair, immunity, and cancer development. It remains unknown how integrin outside-in signaling induces and controls these two opposite processes. This study reveals that calpain cleavage of integrin β3 at Tyr759 switches the functional outcome of integrin signaling from cell spreading to retraction. Expression of a calpain cleavage–resistant β3 mutant in Chinese hamster ovary cells causes defective clot retraction and RhoA-mediated retraction signaling but enhances cell spreading. Conversely, a calpain-cleaved form of β3 fails to mediate cell spreading, but inhibition of the RhoA signaling pathway corrects this defect. Importantly, the calpain-cleaved β3 fails to bind c-Src, which is required for integrin-induced cell spreading, and this requirement of β3-associated c-Src results from its inhibition of RhoA-dependent contractile signals. Thus, calpain cleavage of β3 at Tyr759 relieves c-Src–mediated RhoA inhibition, activating the RhoA pathway that confines cell spreading and causes cell retraction.
Collapse
Affiliation(s)
- Panagiotis Flevaris
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Integrin alpha(IIb)beta(3) plays a critical role in platelet aggregation, a central response in hemostasis and thrombosis. This function of alpha(IIb)beta(3) depends upon a transition from a resting to an activated state such that it acquires the capacity to bind soluble ligands. Diverse platelet agonists alter the cytoplasmic domain of alpha(IIb)beta(3) and initiate a conformational change that traverses the transmembrane region and ultimately triggers rearrangements in the extracellular domain to permit ligand binding. The membrane-proximal regions of alpha(IIb) and beta(3) cytoplasmic tails, together with the transmembrane segments of the subunits, contact each other to form a complex which restrains the integrin in the resting state. It is unclasping of this complex that induces integrin activation. This clasping/unclasping process is influenced by multiple cytoplasmic tail binding partners. Among them, talin appears to be a critical trigger of alpha(IIb)beta(3) activation, but other binding partners, which function as activators or suppressors, are likely to act as co-regulators of integrin activation.
Collapse
Affiliation(s)
- Y-Q Ma
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW There is considerable interest in understanding the function and mechanism of calpains in platelet aggregation, spreading, and granular secretion pathways. Recent insights from the calpain-1 knockout platelets suggest a pivotal role of these cysteine proteases in the regulation of outside-in signaling, aggregation, and clot retraction. RECENT FINDINGS The calpain-1 knockout mouse provided direct evidence for the role of calpain-1 in platelet aggregation and clot retraction. Reduced tyrosine phosphorylation of platelet proteins correlated with reduced platelet aggregation and clot retraction. Future investigations of the mechanism of platelet defects in calpain-1 null mice may unveil the physiological functions of this important and elusive protease in mammalian cells. SUMMARY This review focuses on the role of calpains in platelets with a particular emphasis on recent findings in calpain-1 null platelets. Previous studies used synthetic inhibitors to study the role of calpains in platelet function yielding useful information about the identification of calpain substrates. The development of calpain-1 null mice demonstrated that calpain-1 plays an important function in the regulation of platelet aggregation and clot retraction. Since the combined deletion of calpain-1 and calpain-2 genes results in embryonic lethality, the calpain-1 null mouse remains the only experimental model available to study the physiological role of calpains in mammalian cells.
Collapse
Affiliation(s)
- Shafi M Kuchay
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|