1
|
Žoldák G, Knappe TA, Geitner AJ, Scholz C, Dobbek H, Schmid FX, Jakob RP. Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst-A Structural and Functional Analysis. Molecules 2024; 29:1440. [PMID: 38611720 PMCID: PMC11013033 DOI: 10.3390/molecules29071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be increased by inserting the chaperone domain from the homolog SlyD of E. coli near the prolyl isomerase active site. We inserted two other chaperone domains into human FKBP12: the chaperone domain of SlpA from E. coli, and the chaperone domain of SlyD from Thermococcus sp. Both stabilized FKBP12 and greatly increased its folding activity. The insertion of these chaperone domains had no influence on the FKBP12 and the chaperone domain structure, as revealed by two crystal structures of the chimeric proteins. The relative domain orientations differ in the two crystal structures, presumably representing snapshots of a more open and a more closed conformation. Together with crystal structures from SlyD-like proteins, they suggest a path for how substrate proteins might be transferred from the chaperone domain to the prolyl isomerase domain.
Collapse
Affiliation(s)
- Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Šafárik University in Košice, 040 11 Kosice, Slovakia
| | - Thomas A. Knappe
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Anne-Juliane Geitner
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | | | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
| | - Franz X. Schmid
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Roman P. Jakob
- Departement Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Aslam S, Zulfiqar F, Hameed W, Qureshi S, Zaroon, Bashir H. Fusion proteins development strategies and their role as cancer therapeutic agents. Biotechnol Appl Biochem 2024; 71:81-95. [PMID: 37822167 DOI: 10.1002/bab.2523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Cancer continues to be leading cause of morbidity and mortality despite decades of research and advancement in chemotherapy. Most tumors can be reduced via standard oncology treatments, such as chemotherapy, radiotherapy, and surgical resection, and they frequently recur. Significant progress has been made since targeted cancer therapy inception in creation of medications that exhibit improved tumor-selective action. Particularly in preclinical and clinical investigations, fusion proteins have shown strong activity and improved treatment outcomes for a number of human cancers. Synergistically combining many proteins into one complex allows the creation of synthetic fusion proteins with enhanced characteristics or new capabilities. Signal transduction pathways are important for onset, development, and spread of cancer. As result, signaling molecules are desirable targets for cancer therapies, and significant effort has been made into developing fusion proteins that would act as inhibitors of these pathways. A wide range of biotechnological and medicinal applications are made possible by fusion of protein domains that improves bioactivities or creates new functional combinations. Such proteins may function as immune effectors cell recruiters to tumors or as decoy receptors for various ligands. In this review article, we have outlined the standard methods for creating fusion proteins and covered the applications of fusion proteins in treatment of cancer. This article also highlights the role of fusion proteins in targeting the signaling pathways involved in cancer for effective treatment.
Collapse
Affiliation(s)
- Shakira Aslam
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Warda Hameed
- King Edward Medical University, Lahore, Pakistan
| | - Shahnila Qureshi
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Zaroon
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hamid Bashir
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
3
|
Agam G, Barth A, Lamb DC. Folding pathway of a discontinuous two-domain protein. Nat Commun 2024; 15:690. [PMID: 38263337 PMCID: PMC10805907 DOI: 10.1038/s41467-024-44901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
It is estimated that two-thirds of all proteins in higher organisms are composed of multiple domains, many of them containing discontinuous folds. However, to date, most in vitro protein folding studies have focused on small, single-domain proteins. As a model system for a two-domain discontinuous protein, we study the unfolding/refolding of a slow-folding double mutant of the maltose binding protein (DM-MBP) using single-molecule two- and three-color Förster Resonance Energy Transfer experiments. We observe a dynamic folding intermediate population in the N-terminal domain (NTD), C-terminal domain (CTD), and at the domain interface. The dynamic intermediate fluctuates rapidly between unfolded states and compact states, which have a similar FRET efficiency to the folded conformation. Our data reveals that the delayed folding of the NTD in DM-MBP is imposed by an entropic barrier with subsequent folding of the highly dynamic CTD. Notably, accelerated DM-MBP folding is routed through the same dynamic intermediate within the cavity of the GroEL/ES chaperone system, suggesting that the chaperonin limits the conformational space to overcome the entropic folding barrier. Our study highlights the subtle tuning and co-dependency in the folding of a discontinuous multi-domain protein.
Collapse
Affiliation(s)
- Ganesh Agam
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Anders Barth
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629HZ, Delft, The Netherlands
| | - Don C Lamb
- Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany.
- Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
4
|
Peeß C, Scholz C, Casagolda D, Düfel H, Gerg M, Kowalewsky F, Bocola M, von Proff L, Goller S, Klöppel-Swarlik H, Hoppe A, Schräml M. A novel epitope-presenting thermostable scaffold for the development of highly specific insulin-like growth factor-1/2 antibodies. J Biol Chem 2019; 294:13434-13444. [PMID: 31337703 PMCID: PMC6737233 DOI: 10.1074/jbc.ra119.007654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
High sequence and structural homology between mature human insulin-like growth factors IGF-1 and IGF-2 makes serological discrimination by immunodiagnostic IGF tests a challenging task. There is an urgent need for highly specific IGF-1 and IGF-2 antibodies, yet only a short sequence element, i.e. the IGF loop, provides enough difference in sequence to discriminate between the two molecules. We sought to address this unmet demand by investigating novel chimeric immunogens as carriers for recombinant peptide motif grafting. We found Thermus thermophilus sensitive to lysis D (SlyD) and Thermococcus gammatolerans SlyD FK-506–binding protein (FKBP) domains suitable for presentation of the predefined epitopes, namely the IGF-1 and IGF-2 loops. Chimeric SlyD-IGF proteins allowed for the development of exceptionally specific IGF-1 and IGF-2 monoclonal antibodies. The selected antibodies bound with high affinity to the distinct IGF epitopes displayed on the protein scaffolds, as well as on the mature human IGF isoforms. The respective SlyD scaffolds display favorable engineering properties in that they are small, monomeric, and cysteine-free and can be produced in high yields in a prokaryotic host, such as Escherichia coli. In conclusion, FKBP domains from thermostable SlyD proteins are highly suitable as a generic scaffold platform for epitope grafting.
Collapse
Affiliation(s)
- Carmen Peeß
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | | | - David Casagolda
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Hartmut Düfel
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Michael Gerg
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Frank Kowalewsky
- Antibody Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Marco Bocola
- Lehrstuhl für Biotechnologie, RWTH Aachen University, 52074 Aachen, Germany
| | - Leopold von Proff
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Sabine Goller
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Heidi Klöppel-Swarlik
- Endocrinological Diseases III, Centralized and Point of Care, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Alessandra Hoppe
- Endocrinological Diseases III, Centralized and Point of Care, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Michael Schräml
- Enzyme & Protein Technologies, Roche Diagnostics GmbH, 82377 Penzberg, Germany.
| |
Collapse
|
5
|
Ligand-induced conformational switch in an artificial bidomain protein scaffold. Sci Rep 2019; 9:1178. [PMID: 30718544 PMCID: PMC6362204 DOI: 10.1038/s41598-018-37256-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/28/2018] [Indexed: 11/15/2022] Open
Abstract
Artificial proteins binding any predefined “target” protein can now be efficiently generated using combinatorial libraries based on robust protein scaffolds. αRep is such a family of artificial proteins, based on an α-solenoid protein repeat scaffold. The low aggregation propensity of the specific “binders” generated from this library opens new protein engineering opportunities such as the creation of biosensors within multidomain constructions. Here, we have explored the properties of two new types of artificial bidomain proteins based on αRep structures. Their structural and functional properties are characterized in detail using biophysical methods. The results clearly show that both bidomain proteins adopt a closed bivalve shell-like conformation, in the ligand free form. However, the presence of ligands induces a conformational transition, and the proteins adopt an open form in which each domain can bind its cognate protein partner. The open/closed equilibria alter the affinities of each domain and induce new cooperative effects. The binding-induced relative domain motion was monitored by FRET. Crystal structures of the chimeric proteins indicate that the conformation of each constituting domain is conserved but that their mutual interactions explain the emergent properties of these artificial bidomain proteins. The ligand-induced structural transition observed in these bidomain proteins should be transferable to other αRep proteins with different specificity and could provide the basis of a new generic biosensor design.
Collapse
|
6
|
Jimenez-Rosales A, Flores-Merino MV. Tailoring Proteins to Re-Evolve Nature: A Short Review. Mol Biotechnol 2018; 60:946-974. [DOI: 10.1007/s12033-018-0122-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Kumar A, Nokhrin S, Woloschuk RM, Woolley GA. Duplication of a Single Strand in a β-Sheet Can Produce a New Switching Function in a Photosensory Protein. Biochemistry 2018; 57:4093-4104. [PMID: 29897240 DOI: 10.1021/acs.biochem.8b00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Duplication of a single β-strand that forms part of a β-sheet in photoactive yellow protein (PYP) was found to produce two approximately isoenergetic protein conformations, in which either the first or the second copy of the duplicated β-strand participates in the β-sheet. Whereas one conformation (big-loop) is more stable at equilibrium in the dark, the other conformation (long-tail) is populated after recovery from blue light irradiation. By appending a recognition motif (E-helix) to the C-terminus of the protein, we show that β-strand duplication, and the resulting possibility of β-strand slippage, can lead to a new switchable protein-protein interaction. We suggest that β-strand duplication may be a general means of introducing two-state switching activity into protein structures.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Sergiy Nokhrin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - Ryan M Woloschuk
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| | - G Andrew Woolley
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , ON M5S 3H6 , Canada
| |
Collapse
|
8
|
Tyurin AA, Kabardaeva KV, Mustafaev ON, Pavlenko OS, Sadovskaya NS, Fadeev VS, Zvonova EA, Goldenkova-Pavlova IV. Expression of Soluble Active Interferon αA in Escherichia coli Periplasm by Fusion with Thermostable Lichenase Using the Domain Insertion Approach. BIOCHEMISTRY (MOSCOW) 2018; 83:259-269. [DOI: 10.1134/s0006297918030069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Vandevenne M, Dondelinger M, Yunus S, Freischels A, Freischels R, Crasson O, Rhazi N, Bogaerts P, Galleni M, Filée P. The Use of a β-lactamase-based Conductimetric Biosensor Assay to Detect Biomolecular Interactions. J Vis Exp 2018. [PMID: 29443069 DOI: 10.3791/55414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Biosensors are becoming increasingly important and implemented in various fields such as pathogen detection, molecular diagnosis, environmental monitoring, and food safety control. In this context, we used β-lactamases as efficient reporter enzymes in several protein-protein interaction studies. Furthermore, their ability to accept insertions of peptides or structured proteins/domains strongly encourages the use of these enzymes to generate chimeric proteins. In a recent study, we inserted a single-domain antibody fragment into the Bacillus licheniformis BlaP β-lactamase. These small domains, also called nanobodies, are defined as the antigen-binding domains of single chain antibodies from camelids. Like common double chain antibodies, they show high affinities and specificities for their targets. The resulting chimeric protein exhibited a high affinity against its target while retaining the β-lactamase activity. This suggests that the nanobody and β-lactamase moieties remain functional. In the present work, we report a detailed protocol that combines our hybrid β-lactamase system to the biosensor technology. The specific binding of the nanobody to its target can be detected thanks to a conductimetric measurement of the protons released by the catalytic activity of the enzyme.
Collapse
Affiliation(s)
| | | | - Sami Yunus
- Institute of Condensed Matter and Nanoscience, Catholic University of Louvain
| | | | | | | | | | - Pierre Bogaerts
- Laboratory of Clinical Microbiology, Catholic University of Louvain
| | | | | |
Collapse
|
10
|
Bland MJ, Ducos-Galand M, Val ME, Mazel D. An att site-based recombination reporter system for genome engineering and synthetic DNA assembly. BMC Biotechnol 2017; 17:62. [PMID: 28705159 PMCID: PMC5512741 DOI: 10.1186/s12896-017-0382-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/09/2017] [Indexed: 11/25/2022] Open
Abstract
Background Direct manipulation of the genome is a widespread technique for genetic studies and synthetic biology applications. The tyrosine and serine site-specific recombination systems of bacteriophages HK022 and ΦC31 are widely used for stable directional exchange and relocation of DNA sequences, making them valuable tools in these contexts. We have developed site-specific recombination tools that allow the direct selection of recombination events by embedding the attB site from each system within the β-lactamase resistance coding sequence (bla). Results The HK and ΦC31 tools were developed by placing the attB sites from each system into the signal peptide cleavage site coding sequence of bla. All possible open reading frames (ORFs) were inserted and tested for recombination efficiency and bla activity. Efficient recombination was observed for all tested ORFs (3 for HK, 6 for ΦC31) as shown through a cointegrate formation assay. The bla gene with the embedded attB site was functional for eight of the nine constructs tested. Conclusions The HK/ΦC31 att-bla system offers a simple way to directly select recombination events, thus enhancing the use of site-specific recombination systems for carrying out precise, large-scale DNA manipulation, and adding useful tools to the genetics toolbox. We further show the power and flexibility of bla to be used as a reporter for recombination.
Collapse
Affiliation(s)
- Michael J Bland
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Magaly Ducos-Galand
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Marie-Eve Val
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France.,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France
| | - Didier Mazel
- Unité Plasticité du Génome Bactérien, Département Génomes et Génétique, Institut Pasteur, 75015, Paris, France. .,UMR3525, Centre National de la Recherche Scientifique, 75015, Paris, France.
| |
Collapse
|
11
|
King IC, Gleixner J, Doyle L, Kuzin A, Hunt JF, Xiao R, Montelione GT, Stoddard BL, DiMaio F, Baker D. Precise assembly of complex beta sheet topologies from de novo designed building blocks. eLife 2015; 4. [PMID: 26650357 PMCID: PMC4737653 DOI: 10.7554/elife.11012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/08/2015] [Indexed: 01/22/2023] Open
Abstract
Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evolution. Here, we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by insertion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand-helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets during natural protein evolution. DOI:http://dx.doi.org/10.7554/eLife.11012.001 A protein is made up of a sequence of amino acids and must fold into a specific three-dimensional structure if it is to work correctly. The structure is formed by segments of the protein adopting specific shapes, the two most common shapes being alpha helices and beta strands. Beta strands commonly interact with each other to form regions called beta sheets. Researchers trying to design proteins with new abilities have managed to create proteins that contain up to five beta strands and four alpha helices. Larger and more complex proteins are more challenging to make because there are many different ways that a protein can fold. It is also difficult to understand how complex structures such as large beta sheets emerged naturally, over the course of evolution. King et al. have now used computer modeling to explore how a large, complex beta sheet might form. In the model, one small, newly designed protein was inserted into another so that their beta sheets merged to form a single extended sheet. The model then stabilized this structure by changing the amino acids found at the points where the two proteins met. King et al. were then able to synthesize these new proteins in bacteria and use a technique called X-ray crystallography to determine the structure of two of them. The structures closely matched the computer models; one protein contained a six-stranded beta sheet, and the other had a seven-stranded beta sheet. The folds of the two designed proteins were then compared with those found in a database that classifies proteins on the basis of their structure. The beta sheets in the designed proteins did not match the protein structures in the database, which suggests that the designed proteins contained new types of folds. In the future, the technique used by King et al. could be used to design other large and complex beta sheet structures. Furthermore, the results suggest that such large structures could have evolved naturally through the combination of smaller, less complex proteins. DOI:http://dx.doi.org/10.7554/eLife.11012.002
Collapse
Affiliation(s)
- Indigo Chris King
- Institute for Protein Design, University of Washington, Seattle, United States
| | - James Gleixner
- Institute for Protein Design, University of Washington, Seattle, United States
| | - Lindsey Doyle
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Alexandre Kuzin
- Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States
| | - John F Hunt
- Biological Sciences, Northeast Structural Genomics Consortium, Columbia University, New York, United States
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Barry L Stoddard
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Frank DiMaio
- Institute for Protein Design, University of Washington, Seattle, United States
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, United States
| |
Collapse
|
12
|
Pierre B, Labonte JW, Xiong T, Aoraha E, Williams A, Shah V, Chau E, Helal KY, Gray JJ, Kim JR. Molecular Determinants for Protein Stabilization by Insertional Fusion to a Thermophilic Host Protein. Chembiochem 2015; 16:2392-402. [DOI: 10.1002/cbic.201500310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Brennal Pierre
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jason W. Labonte
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Tina Xiong
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Edwin Aoraha
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Asher Williams
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Vandan Shah
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Edward Chau
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Kazi Yasin Helal
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Jin Ryoun Kim
- Othmer-Jacobs Department of Chemical and Biomolecular Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
13
|
Crasson O, Rhazi N, Jacquin O, Freichels A, Jérôme C, Ruth N, Galleni M, Filée P, Vandevenne M. Enzymatic functionalization of a nanobody using protein insertion technology. Protein Eng Des Sel 2015; 28:451-60. [PMID: 25852149 DOI: 10.1093/protein/gzv020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/05/2015] [Indexed: 11/14/2022] Open
Abstract
Antibody-based products constitute one of the most attractive biological molecules for diagnostic, medical imagery and therapeutic purposes with very few side effects. Their development has become a major priority of biotech and pharmaceutical industries. Recently, a growing number of modified antibody-based products have emerged including fragments, multi-specific and conjugate antibodies. In this study, using protein engineering, we have functionalized the anti-hen egg-white lysozyme (HEWL) camelid VHH antibody fragment (cAb-Lys3), by insertion into a solvent-exposed loop of the Bacillus licheniformis β-lactamase BlaP. We showed that the generated hybrid protein conserved its enzymatic activity while the displayed nanobody retains its ability to inhibit HEWL with a nanomolar affinity range. Then, we successfully implemented the functionalized cAb-Lys3 in enzyme-linked immunosorbent assay, potentiometric biosensor and drug screening assays. The hybrid protein was also expressed on the surface of phage particles and, in this context, was able to interact specifically with HEWL while the β-lactamase activity was used to monitor phage interactions. Finally, using thrombin-cleavage sites surrounding the permissive insertion site in the β-lactamase, we reported an expression system in which the nanobody can be easily separated from its carrier protein. Altogether, our study shows that insertion into the BlaP β-lactamase constitutes a suitable technology to functionalize nanobodies and allows the creation of versatile tools that can be used in innovative biotechnological assays.
Collapse
Affiliation(s)
- O Crasson
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Rhazi
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - O Jacquin
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - A Freichels
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - C Jérôme
- Chimie des Macromolécules et des Matériaux Organiques (CERM), Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - N Ruth
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - M Galleni
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| | - P Filée
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium CER Groupe, Rue de la Science, n°8, Aye B6900, Belgium
| | - M Vandevenne
- Macromolécules Biologiques, Center D'Ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, Liège B4000, Belgium
| |
Collapse
|
14
|
Makhlynets OV, Raymond EA, Korendovych IV. Design of allosterically regulated protein catalysts. Biochemistry 2015; 54:1444-56. [PMID: 25642601 DOI: 10.1021/bi5015248] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activity of allosteric protein catalysts is regulated by an external stimulus, such as protein or small molecule binding, light activation, pH change, etc., at a location away from the active site of the enzyme. Since its original introduction in 1961, the concept of allosteric regulation has undergone substantial expansion, and many, if not most, enzymes have been shown to possess some degree of allosteric regulation. The ability to create new catalysts that can be turned on and off using allosteric interactions would greatly expand the chemical biology toolbox and will allow for detection of environmental pollutants and disease biomarkers and facilitate studies of cellular processes and metal homeostasis. Thus, design of allosterically regulated protein catalysts represents an actively growing area of research. In this paper, we describe various approaches to achieving regulation of catalysis.
Collapse
Affiliation(s)
- Olga V Makhlynets
- Department of Chemistry, Syracuse University , 111 College Place, Syracuse, New York 13244, United States
| | | | | |
Collapse
|
15
|
Yu K, Liu C, Kim BG, Lee DY. Synthetic fusion protein design and applications. Biotechnol Adv 2014; 33:155-164. [PMID: 25450191 DOI: 10.1016/j.biotechadv.2014.11.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/10/2014] [Accepted: 11/11/2014] [Indexed: 11/16/2022]
Abstract
Synthetic fusion proteins can be designed to achieve improved properties or new functionality by synergistically incorporating multiple proteins into one complex. The fusion of two or more protein domains enhances bioactivities or generates novel functional combinations with a wide range of biotechnological and (bio)pharmaceutical applications. In this review, initially, we summarize the commonly used approaches for constructing fusion proteins. For each approach, the design strategy and desired properties are elaborated with examples of recent studies in the areas of biocatalysts, protein switches and bio-therapeutics. Subsequently, the progress in structural prediction of fusion proteins is presented, which can potentially facilitate the structure-based systematic design of fusion proteins toward identifying the best combinations of fusion partners. Finally, the current challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Kai Yu
- Department of Chemical and Biomolecular Engineering, Synthetic Biology Research Consortium, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chengcheng Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore 138668, Singapore
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151742, South Korea
| | - Dong-Yup Lee
- Department of Chemical and Biomolecular Engineering, Synthetic Biology Research Consortium, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore 138668, Singapore.
| |
Collapse
|
16
|
Abstract
Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These biosensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that affect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment without the need for prior structural and functional knowledge.
Collapse
|
17
|
Class A β-lactamases as versatile scaffolds to create hybrid enzymes: applications from basic research to medicine. BIOMED RESEARCH INTERNATIONAL 2013; 2013:827621. [PMID: 24066299 PMCID: PMC3771265 DOI: 10.1155/2013/827621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/04/2013] [Indexed: 01/13/2023]
Abstract
Designing hybrid proteins is a major aspect of protein engineering and covers a very wide range of applications from basic research to medical applications. This review focuses on the use of class A β-lactamases as versatile scaffolds to design hybrid enzymes (referred to as β-lactamase hybrid proteins, BHPs) in which an exogenous peptide, protein or fragment thereof is inserted at various permissive positions. We discuss how BHPs can be specifically designed to create bifunctional proteins, to produce and to characterize proteins that are otherwise difficult to express, to determine the epitope of specific antibodies, to generate antibodies against nonimmunogenic epitopes, and to better understand the structure/function relationship of proteins.
Collapse
|
18
|
Geitner AJ, Schmid FX. Combination of the Human Prolyl Isomerase FKBP12 with Unrelated Chaperone Domains Leads to Chimeric Folding Enzymes with High Activity. J Mol Biol 2012; 420:335-49. [DOI: 10.1016/j.jmb.2012.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/10/2012] [Accepted: 04/18/2012] [Indexed: 12/11/2022]
|
19
|
Pierre B, Xiong T, Hayles L, Guntaka VR, Kim JR. Stability of a guest protein depends on stability of a host protein in insertional fusion. Biotechnol Bioeng 2011; 108:1011-20. [DOI: 10.1002/bit.23039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/03/2010] [Accepted: 12/06/2010] [Indexed: 11/11/2022]
|
20
|
Edwards WR, Williams AJ, Morris JL, Baldwin AJ, Allemann RK, Jones DD. Regulation of β-Lactamase Activity by Remote Binding of Heme: Functional Coupling of Unrelated Proteins through Domain Insertion. Biochemistry 2010; 49:6541-9. [DOI: 10.1021/bi100793y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Ostermeier M. Designing switchable enzymes. Curr Opin Struct Biol 2009; 19:442-8. [PMID: 19473830 DOI: 10.1016/j.sbi.2009.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/20/2009] [Indexed: 12/01/2022]
Abstract
The modulation of enzyme function is a key regulatory feature of biological systems. The ability to engineer synthetic enzymes that can be controlled by any arbitrary signal would enable a wide array of sensing applications and therapeutics and provide us with powerful tools for the basic study of biology. Here several recent advances in the engineering of switchable enzymes through domain fusion are discussed.
Collapse
Affiliation(s)
- Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Abstract
We report a simple method for identifying foldable viral surface protein fragments in a random but systematic manner. The method involves digestion and reassembly of a target gene to generate a pool of smaller DNA fragments with random ends but controllable lengths, followed by screening for foldable fragments using green fluorescent protein (GFP) as a folding reporter. The surface glycoproteins of SARS-CoV and HIV-1 were used as model proteins. Two foldable fragments for SARS-CoV spike protein were identified, which coincide with various anti-SARS-CoV peptides. A similar treatment of the HIV-1 gp120 yielded a number of fragments that are associated with the critical CD4 binding site, or the partially buried CCR5 binding site of the protein. The random dissection approach described here should be applicable to other viral proteins for isolating soluble viral surface protein fragments, and may provide alternatives to the full-length proteins (subunits) or linear short peptides in search for antigen or vaccine candidates.
Collapse
Affiliation(s)
- Barry W. Hicks
- Department of Chemistry, 2355 Fairchild Drive, US Airforce Academy, CO 80840 USA
| | | | | |
Collapse
|
23
|
Zoldák G, Carstensen L, Scholz C, Schmid FX. Consequences of domain insertion on the stability and folding mechanism of a protein. J Mol Biol 2008; 386:1138-52. [PMID: 19136015 DOI: 10.1016/j.jmb.2008.12.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 12/17/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022]
Abstract
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the "insert-in-flap" (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDDeltaIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.
Collapse
Affiliation(s)
- Gabriel Zoldák
- Laboratorium für Biochemie und Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, D-95440 Bayreuth, Germany
| | | | | | | |
Collapse
|
24
|
Edwards WR, Busse K, Allemann RK, Jones DD. Linking the functions of unrelated proteins using a novel directed evolution domain insertion method. Nucleic Acids Res 2008; 36:e78. [PMID: 18559359 PMCID: PMC2490766 DOI: 10.1093/nar/gkn363] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We have successfully developed a new directed evolution method for generating integral protein fusions comprising of one domain inserted within another. Creating two connections between the insert and accepting parent domain can result in the inter-dependence of the separate protein activities, thus providing a general strategy for constructing molecular switches. Using an engineered transposon termed MuDel, contiguous trinucleotide sequences were removed at random positions from the bla gene encoding TEM-1 β-lactamase. The deleted trinucleotide sequence was then replaced by a DNA cassette encoding cytochrome b562 with differing linking sequences at each terminus and sampling all three reading frames. The result was a variety of chimeric genes encoding novel integral fusion proteins that retained TEM-1 activity. While most of the tolerated insertions were observed in loops, several also occurred close to the termini of α-helices and β-strands. Several variants conferred a switching phenotype on Escherichia coli, with bacterial tolerance to ampicillin being dependent on the presence of haem in the growth medium. The magnitude of the switching phenotype ranged from 4- to 128-fold depending on the insertion position within TEM-1 and the linker sequences that join the two domains.
Collapse
Affiliation(s)
- Wayne R Edwards
- School of Biosciences and School of Chemistry, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|
25
|
Vandevenne M, Filee P, Scarafone N, Cloes B, Gaspard G, Yilmaz N, Dumoulin M, François JM, Frère JM, Galleni M. The Bacillus licheniformis BlaP beta-lactamase as a model protein scaffold to study the insertion of protein fragments. Protein Sci 2007; 16:2260-71. [PMID: 17893363 PMCID: PMC2204133 DOI: 10.1110/ps.072912407] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Using genetic engineering technologies, the chitin-binding domain (ChBD) of the human macrophage chitotriosidase has been inserted into the host protein BlaP, a class A beta-lactamase produced by Bacillus licheniformis. The product of this construction behaved as a soluble chimeric protein that conserves both the capacity to bind chitin and to hydrolyze beta-lactam moiety. Here we describe the biochemical and biophysical properties of this protein (BlaPChBD). This work contributes to a better understanding of the reciprocal structural and functional effects of the insertion on the host protein scaffold and the heterologous structured protein fragments. The use of BlaP as a protein carrier represents an efficient approach to the functional study of heterologous protein fragments.
Collapse
Affiliation(s)
- Marylène Vandevenne
- Macromolécules Biologiques, Centre d'Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cutler TA, Loh SN. Thermodynamic analysis of an antagonistic folding-unfolding equilibrium between two protein domains. J Mol Biol 2007; 371:308-16. [PMID: 17572441 PMCID: PMC2041865 DOI: 10.1016/j.jmb.2007.05.077] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/23/2007] [Accepted: 05/25/2007] [Indexed: 11/20/2022]
Abstract
A simple model is formulated for analyzing the coupled folding-unfolding equilibrium present in a unique class of molecular switch proteins. We previously fused two single-domain proteins, barnase and ubiquitin, such that the free energy stored in the folded structure of one subunit is used to drive unfolding of the other. Here, we present a thermodynamic test of that mechanism. The antagonistic interaction is represented by a coupling free energy term DeltaGX. DeltaGX is the penalty imposed on folding of one domain by the native structure of the other. If DeltaGX=0, then neither domain senses the other and they fold and unfold independently. If DeltaGX>0, then destabilizing one domain will stabilize the other, and vice versa. In the limit where DeltaGX is greater than the intrinsic stability of either protein, then only one domain can be folded at any given time. We estimate DeltaGX by measuring stability parameters for a series of mutants that destabilize either the barnase or ubiquitin domains. Fitting the data to the model leads to a DeltaGX value of approximately 4 kcal mol(-1). DeltaGX is proposed to depend on both the length of the linker peptides used to join the two proteins, and on the inherent structural plasticity of each domain. We predict that shortening the linkers from their current lengths of two and three amino acid residues will increase structural and thermodynamic coupling.
Collapse
Affiliation(s)
- Thomas A Cutler
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
27
|
Abstract
Domain insertion is proving to be an effective way to construct hybrid proteins exhibiting switch-like behavior. In this strategy, two existing domains, the first exhibiting a signal recognition function and the second containing the function to be modulated, are fused such that the recognition of the signal by the first domain is transmitted to the second domain, thereby modulating its activity. Recent directed evolution experiments indicate that the structural space comprised of the recombination of unrelated protein domains may be rich in switching behavior, particularly when the circular permutation of domains is also employed. This bodes well for potential basic science, sensing and therapeutic applications of molecular switches.
Collapse
Affiliation(s)
- Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
28
|
Tada H, Onizuka M, Muraki K, Masuzawa W, Futami J, Kosaka M, Seno M, Yamada H. Insertional-fusion of basic fibroblast growth factor endowed ribonuclease 1 with enhanced cytotoxicity by steric blockade of inhibitor interaction. FEBS Lett 2004; 568:39-43. [PMID: 15196917 DOI: 10.1016/j.febslet.2004.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/30/2004] [Accepted: 05/06/2004] [Indexed: 11/26/2022]
Abstract
Basic fibroblast growth factor (bFGF) was inserted in the middle of human ribonuclease 1 (RNase1) sequence at an RNase inhibitor (RI)-binding site (Gly89) by a new gene fusion technique, insertional-fusion. The resultant insertional-fusion protein (CL-RFN89) was active both as bFGF and as RNase. Furthermore, it acquired an additional ability of evading RI through steric blockade of RI-binding caused by fused bFGF domain. As a result, CL-RFN89 showed stronger growth inhibition on B16/BL6 melanoma cells than an RI-sensitive tandem fusion protein. Thus, the insertional-fusion technique increases accessible positions for gene fusion on RNase, resulting in construction of a potent cytotoxic RNase.
Collapse
Affiliation(s)
- Hiroko Tada
- Department of Bioscience and Biotechnology, Faculty of Engineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Aroul-Selvam R, Hubbard T, Sasidharan R. Domain insertions in protein structures. J Mol Biol 2004; 338:633-41. [PMID: 15099733 PMCID: PMC2665287 DOI: 10.1016/j.jmb.2004.03.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/07/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
Domains are the structural, functional or evolutionary units of proteins. Proteins can comprise a single domain or a combination of domains. In multi-domain proteins, the domains almost always occur end-to-end, i.e., one domain follows the C-terminal end of another domain. However, there are exceptions to this common pattern, where multi-domain proteins are formed by insertion of one domain (insert) into another domain (parent). Here, we provide a quantitative description of known insertions in the Protein Data Bank (PDB). We found that 9% of domain combinations observed in non-redundant PDB are insertions. Although 90% of all insertions involve only one insert, proteins can clearly have multiple (nested, two-domain and three-domain) inserts. We also observed correlations between the structure and function of a domain and its tendency to be found as a parent or an insert. There is a bias in insert position towards the C terminus of parents. We observed that the atomic distance between the N and C terminus of an insert is significantly smaller when compared to the N-to-C distance in a parent context or a single domain context. Insertions are found always to occur in loop regions of parent domains. Our observations regarding the relationship between domain insertions and the structure, function and evolution of proteins have implications for protein engineering.
Collapse
Affiliation(s)
- R. Aroul-Selvam
- The Wellcome Trust Sanger Institute, Genome Campus Hinxton, Cambridge CB10 1SA UK
| | - Tim Hubbard
- The Wellcome Trust Sanger Institute, Genome Campus Hinxton, Cambridge CB10 1SA UK
| | - Rajkumar Sasidharan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
- Corresponding author E-mail address of the corresponding author:
| |
Collapse
|
30
|
Abstract
Understanding the sequence determinants of protein structure, stability and folding is critical for understanding how natural proteins have evolved and how proteins can be engineered to perform novel functions. The complexity of the protein folding problem requires the ability to search large volumes of sequence space for proteins with specific structural or functional characteristics. Here we describe our efforts to identify novel proteins using a phage-display selection strategy from a 'mini-exon' shuffling library generated from the yeast genome and from completely random sequence libraries, and compare the results to recent successes in generating novel proteins using in silico protein design.
Collapse
Affiliation(s)
- Alexander L Watters
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
31
|
Zhang M, MacDonald AI, Hoyt MA, Coffino P. Proteasomes Begin Ornithine Decarboxylase Digestion at the C Terminus. J Biol Chem 2004; 279:20959-65. [PMID: 15016805 DOI: 10.1074/jbc.m314043200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteasomes denature folded protein substrates and thread them through a narrow pore that leads to the sequestered sites of proteolysis. Whether a protein substrate initiates insertion from its N or C terminus or in a random orientation has not been determined for any natural substrate. We used the labile enzyme ornithine decarboxylase (ODC), which is recognized by the proteasome via a 37-residue C-terminal tag, to answer this question. Three independent approaches were used to assess orientation as follows. 1) The 461-residue ODC protein chain was interrupted at position 305. The C-terminal fragment was degraded by purified proteasomes, but because processivity requires continuity of the polypeptide chain, the N-terminal fragment was spared. 2) A proteasome-inhibitory viral sequence prevented degradation when introduced near the C terminus but not when inserted elsewhere in ODC. 3) A bulky tightly folded protein obstructed in vivo degradation most effectively when positioned near the C terminus. These data demonstrate that the proteasome initiates degradation of this native substrate at the C terminus. The co-localization of entry site and degradation tag to the ODC C terminus suggests that recognition tags determine the site for initiating entry. Flexibility of a polypeptide terminus may promote the initiation of degradation.
Collapse
Affiliation(s)
- Mingsheng Zhang
- Department of Microbiology and Immunology, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Two allosteric enzymes have been created by the covalent linkage of non-interacting, monomeric proteins with the prerequisite effector-binding and catalytic functionalities, respectively. This was achieved through a combinatorial process called random domain insertion. The fragment of the TEM-1 beta-lactamase gene coding for the mature protein lacking its signal sequence was randomly inserted into the Escherichia coli maltose-binding protein (MBP) gene to create a domain insertion library. This library's diversity derived both from the site of insertion and from a distribution of tandem duplications or deletions of a portion of the MBP gene at the insertion site. From a library of approximately 2 x 10(4) in-frame fusions, approximately 800 library members conferred a phenotype to E.coli cells that was consistent with the presence of bifunctional fusions that could hydrolyze ampicillin and transport maltose in E.coli. Partial screening of this bifunctional sublibrary resulted in the identification of two enzymes in which the presence of maltose modulated the rate of nitrocefin hydrolysis. For one of these enzymes, the presence of maltose increased k(cat) by 70% and k(cat)/K(m) by 80% and resulted in kinetic parameters that were almost identical to TEM-1 beta-lactamase. Such an increase in activity was only observed with maltooligosaccharides whose binding to MBP is known to induce a conformational change. Modulation of the rate of nitrocefin hydrolysis could be detected at maltose concentrations less than 1 microM. Intrinsic protein fluorescence studies were consistent with a conformational change being responsible for the modulation of activity.
Collapse
Affiliation(s)
- Gurkan Guntas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | | |
Collapse
|
33
|
Abstract
Calcineurin (CN) is a Ca(2+)/calmodulin(CaM)-dependent serine/threonine protein phosphatase which is a heterodimer composed of a 61 kDa catalytic subunit (CNA) and a 19 kDa regulatory subunit (CNB). The enzyme is critical for several important intracellular signal-transducing pathways, including T-cell activation. Its crystal structure reveals that the C-terminal of CNB lies in close vicinity of the N-terminal of CNA and each end has a long arm not involved in the active site. After fusing two subunits, it was determined that folding and function of the protein were not affected by the fusion. We amplified a fused gene of A and B subunits using a pair of linker primers including six codons of glycine. A single chain calcineurin was constructed and purified to near-homogeneity. The recombinant enzyme was fully soluble, displayed high specific activity with substrate, and exhibited biochemical properties and kinetic parameters similar to those of the native enzyme from the bovine brain. It was still activated by Ca(2+)/calmodulin but was not regulated by extra CNB and was still strongly stimulated by Mn(2+) and Ni(2+) divalent metal ions. The solution conformations of both recombinant enzyme and bovine calcineurin were assayed under the same conditions using intrinsic fluorescence spectroscopy and circular dichroism spectropolarimetry, and results showed their graphs are approximately identical. Our findings suggested that the fusion of A and B subunits of calcineurin does not affect their folding pathways and structural changes involved in their function, furthermore, they are bound to the correct binding site.
Collapse
Affiliation(s)
- Yun-Long Qin
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Beijing 100875, PR China
| | | | | |
Collapse
|
34
|
Abstract
Long insertions into a loop of a folded host protein are expected to have destabilizing effects because of the entropic cost associated with loop closure unless the inserted sequence adopts a folded structure with amino- and carboxy-termini in close proximity. A loop entropy reduction screen based on this concept was used in an attempt to retrieve folded sequences from random sequence libraries. A library of long random sequences was inserted into a loop of the SH2 domain, displayed on the surface of M13 phage, and the inserted sequences that did not disrupt SH2 function were retrieved by panning using beads coated with a phosphotyrosine containing SH2 peptide ligand. Two sequences of a library of 2 x 10(8) sequences were isolated after multiple rounds of panning, and were found to have recovery levels similar to the wild-type SH2 domain and to be relatively intolerant to further mutation in PCR mutagenesis experiments. Surprisingly, although these inserted sequences exhibited little nonrandom structure, they do not significantly destabilize the host SH2 domain. Additional insertion variants recovered at lower levels in the panning experiments were also found to have a minimal effect on the stability and peptide-binding function of the SH2 domain. The additional level of selection present in the panning experiments is likely to involve in vivo folding and assembly, as there was a rough correlation between recovery levels in the phage-panning experiments and protein solubility. The finding that loop insertions of 60-80 amino acids have minimal effects on SH2 domain stability suggests that the free energy cost of inserting long loops may be considerably less than polymer theory estimates based on the entropic cost of loop closure, and, hence, that loop insertion may have provided an evolutionary route to multidomain protein structures.
Collapse
Affiliation(s)
- Michelle Scalley-Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
35
|
Chenal A, Nizard P, Forge V, Pugnière M, Roy MO, Mani JC, Guillain F, Gillet D. Does fusion of domains from unrelated proteins affect their folding pathways and the structural changes involved in their function? A case study with the diphtheria toxin T domain. Protein Eng Des Sel 2002; 15:383-91. [PMID: 12034858 DOI: 10.1093/protein/15.5.383] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated whether the structural and functional behaviors of two unrelated protein domains were modified when fused. The IgG-binding protein ZZ derived from staphylococcal protein A was fused to the N- and/or C-terminus of the diphtheria toxin transmembrane domain (T). T undergoes a conformational change from a soluble native state at neutral pH to a molten globule-like state at acidic pH, leading to its interaction with membranes. We found that this molten globule state was not connected to the GdnHCl-induced unfolding pathway of T. The pH-induced transition of T, and also the unfolding of T and ZZ at neutral and acidic pH, were unchanged whether the domains were isolated or fused. The position of ZZ, however, influenced the solubility of T near its pK(i). SPR measurements revealed that T has a high affinity for membranes, isolated or within the fusion proteins (K(D)< 10(-11) M). This work shows that in the case of T and ZZ, the fusion of protein domains with different stabilities does not alter the structural changes involved in folding and function. This supports the use of T as a soluble membrane anchor.
Collapse
Affiliation(s)
- Alexandre Chenal
- Département d'Ingénierie et d'Etudes des Protéines, CEA-Saclay, 91191 Gif sur Yvette cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Abstract
We describe a biosensor that reports the binding of small-molecule ligands to proteins as changes in growth of temperature-sensitive yeast. The yeast strains lack dihydrofolate reductase (DHFR) and are complemented by mouse DHFR containing a ligand-binding domain inserted in a flexible loop. Yeast strains expressing two ligand-binding domain fusions, FKBP12-DHFR and estrogen receptor-alpha (ERalpha)-DHFR, show increased growth in the presence of their corresponding ligands. We used this sensor to identify mutations in residues of ERalpha important for ligand binding, as well as mutations generally affecting protein activity or expression. We also tested the sensor against a chemical array to identify ligands that bind to FKBP12 or ERalpha. The ERalpha sensor was able to discriminate among estrogen analogs, showing different degrees of growth for the analogs that correlated with their relative binding affinities (RBAs). This growth assay provides a simple and inexpensive method to select novel ligands and ligand-binding domains.
Collapse
Affiliation(s)
- C L Tucker
- Departments of Genetics and Medicine, University of Washington, Box 357360, Seattle, WA 98195, USA
| | | |
Collapse
|
38
|
Collinet B, Garcia P, Minard P, Desmadril M. Role of loops in the folding and stability of yeast phosphoglycerate kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5107-18. [PMID: 11589702 DOI: 10.1046/j.0014-2956.2001.02439.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast phosphoglycerate kinase (yPGK) is a monomeric two domain protein used as folding model representative of large proteins. We inserted short unstructured sequences (four Gly or four Thr) into the connections between secondary structure elements and studied the consequences of these insertions on the folding process and stability of yPGK. All the mutated proteins can refold efficiently. The effect per residue on stability is larger for the first inserted residue. Insertion in two long betaalpha loops (at residue positions 71 and 129) is more destabilizing than an insertion in a short alphabeta loop (at residue position 89) located on the opposite side of the N-terminal domain. The effect on stability is mainly due to a large increase of the unfolding rate rather than a decrease of the folding rate. This suggests that these connections between secondary structure elements do not play an active role in directing the folding process. Insertion into the short alphabeta loop (position 89) has limited effects on stability and results in the detection of a kinetic phase not previously seen with the wild-type protein, suggesting that insertions in this particular loop do qualitatively affect the folding process without a large effect on folding efficiency. For the two long betaalpha loops (positions 71 and 129) located in the inner surface of the N-terminal domain, the effects on stability are possibly associated with decoupling of the two domains as observed by differential scanning calorimetry during thermal unfolding.
Collapse
Affiliation(s)
- B Collinet
- Laboratoire de Modélisation et d'Ingénierie des Protéines-UMR 8619, Université de Paris-Sud, Bât430, F-91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
39
|
Minard P, Scalley-Kim M, Watters A, Baker D. A "loop entropy reduction" phage-display selection for folded amino acid sequences. Protein Sci 2001; 10:129-34. [PMID: 11266601 PMCID: PMC2249851 DOI: 10.1110/ps.32401] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
As a step toward selecting folded proteins from libraries of randomized sequences, we have designed a 'loop entropy reduction'-based phage-display method. The basic premise is that insertion of a long disordered sequence into a loop of a host protein will substantially destabilize the host because of the entropic cost of closing a loop in a disordered chain. If the inserted sequence spontaneously folds into a stable structure with the N and C termini close in space, however, this entropic cost is diminished. The host protein function can, therefore, be used to select folded inserted sequences without relying on specific properties of the inserted sequence. This principle is tested using the IgG binding domain of protein L and the lck SH2 domain as host proteins. The results indicate that the loop entropy reduction screen is capable of discriminating folded from unfolded sequences when the proper host protein and insertion point are chosen.
Collapse
Affiliation(s)
- P Minard
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|