1
|
Ranaweera CB, Shiva S, Madesh S, Chauhan D, Ganta RR, Zolkiewski M. Biochemical characterization of ClpB and DnaK from Anaplasma phagocytophilum. Cell Stress Chaperones 2024; 29:540-551. [PMID: 38908470 PMCID: PMC11268196 DOI: 10.1016/j.cstres.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Anaplasma phagocytophilum is an intracellular tick-transmitted bacterial pathogen that infects neutrophils in mammals and causes granulocytic anaplasmosis. In this study, we investigated the molecular chaperones ClpB and DnaK from A. phagocytophilum. In Escherichia coli, ClpB cooperates with DnaK and its co-chaperones DnaJ and GrpE in ATP-dependent reactivation of aggregated proteins. Since ClpB is not produced in metazoans, it is a promising target for developing antimicrobial therapies, which generates interest in studies on that chaperone's role in pathogenic bacteria. We found that ClpB and DnaK are transcriptionally upregulated in A. phagocytophilum 3-5 days after infection of human HL-60 and tick ISE6 cells, which suggests an essential role of the chaperones in supporting the pathogen's intracellular life cycle. Multiple sequence alignments show that A. phagocytophilum ClpB and DnaK contain all structural domains that were identified in their previously studied orthologs from other bacteria. Both A. phagocytophilum ClpB and DnaK display ATPase activity, which is consistent with their participation in the ATP-dependent protein disaggregation system. However, despite a significant sequence similarity between the chaperones from A. phagocytophilum and those from E. coli, the former were not as effective as their E. coli orthologs during reactivation of aggregated proteins in vitro and in supporting the survival of E. coli cells under heat stress. We conclude that the A. phagocytophilum chaperones might have evolved with distinct biochemical properties to maintain the integrity of pathogenic proteins under unique stress conditions of an intracellular environment of host cells.
Collapse
Affiliation(s)
- Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Swetha Madesh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Deepika Chauhan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
2
|
Biba DA, Wolf YI, Koonin EV, Rochman ND. Unicellular life balances asymmetric allocation and repair of somatic damage representing the origin of r/K selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568103. [PMID: 38076808 PMCID: PMC10705550 DOI: 10.1101/2023.11.21.568103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Over the course of multiple divisions, cells accumulate diverse non-genetic, somatic damage including misfolded and aggregated proteins and cell wall defects. If the rate of damage accumulation exceeds the rate of dilution through cell growth, a dedicated mitigation strategy is required to prevent eventual population collapse. Strategies for somatic damage control can be divided into two categories, asymmetric allocation and repair, which are not, in principle, mutually exclusive. Through mathematical modelling, we identify the optimal strategy, maximizing the total cell number, over a wide range of environmental and physiological conditions. The optimal strategy is primarily determined by extrinsic (damage-independent) mortality and the physiological model for damage accumulation that can be either independent (linear) or increasing (exponential) with respect to the prior accumulated damage. Under the linear regime, the optimal strategy is either exclusively repair or asymmetric allocation whereas under the exponential regime, the optimal strategy is mixed. Repair is preferred when extrinsic mortality is low, whereas at high extrinsic mortality, asymmetric damage allocation becomes the strategy of choice. We hypothesize that optimization over somatic damage repair and asymmetric allocation in early cellular life forms gave rise to the r and K selection strategies.
Collapse
Affiliation(s)
- Dmitry A. Biba
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Nash D. Rochman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
- Institute for Implementation Science in Population Health (ISPH), City University of New York (CUNY), New York, NY, USA
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York (CUNY), New York, NY, USA
| |
Collapse
|
3
|
Tiwari S, Fauvet B, Assenza S, De Los Rios P, Goloubinoff P. A fluorescent multi-domain protein reveals the unfolding mechanism of Hsp70. Nat Chem Biol 2023; 19:198-205. [PMID: 36266349 PMCID: PMC9889267 DOI: 10.1038/s41589-022-01162-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023]
Abstract
Detailed understanding of the mechanism by which Hsp70 chaperones protect cells against protein aggregation is hampered by the lack of a comprehensive characterization of the aggregates, which are typically heterogeneous. Here we designed a reporter chaperone substrate, MLucV, composed of a stress-labile luciferase flanked by stress-resistant fluorescent domains, which upon denaturation formed a discrete population of small aggregates. Combining Förster resonance energy transfer and enzymatic activity measurements provided unprecedented details on the aggregated, unfolded, Hsp70-bound and native MLucV conformations. The Hsp70 mechanism first involved ATP-fueled disaggregation and unfolding of the stable pre-aggregated substrate, which stretched MLucV beyond simply unfolded conformations, followed by native refolding. The ATP-fueled unfolding and refolding action of Hsp70 on MLucV aggregates could accumulate native MLucV species under elevated denaturing temperatures highly adverse to the native state. These results unambiguously exclude binding and preventing of aggregation from the non-equilibrium mechanism by which Hsp70 converts stable aggregates into metastable native proteins.
Collapse
Affiliation(s)
- Satyam Tiwari
- grid.9851.50000 0001 2165 4204Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland ,grid.5333.60000000121839049Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
| | - Bruno Fauvet
- grid.5333.60000000121839049Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland
| | - Salvatore Assenza
- grid.5515.40000000119578126Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain ,grid.5515.40000000119578126Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain ,grid.5515.40000000119578126Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland. .,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, Switzerland.
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. .,School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Mecha MF, Hutchinson RB, Lee JH, Cavagnero S. Protein folding in vitro and in the cell: From a solitary journey to a team effort. Biophys Chem 2022; 287:106821. [PMID: 35667131 PMCID: PMC9636488 DOI: 10.1016/j.bpc.2022.106821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
Abstract
Correct protein folding is essential for the health and function of living organisms. Yet, it is not well understood how unfolded proteins reach their native state and avoid aggregation, especially within the cellular milieu. Some proteins, especially small, single-domain and apparent two-state folders, successfully attain their native state upon dilution from denaturant. Yet, many more proteins undergo misfolding and aggregation during this process, in a concentration-dependent fashion. Once formed, native and aggregated states are often kinetically trapped relative to each other. Hence, the early stages of protein life are absolutely critical for proper kinetic channeling to the folded state and for long-term solubility and function. This review summarizes current knowledge on protein folding/aggregation mechanisms in buffered solution and within the bacterial cell, highlighting early stages. Remarkably, teamwork between nascent chain, ribosome, trigger factor and Hsp70 molecular chaperones enables all proteins to overcome aggregation propensities and reach a long-lived bioactive state.
Collapse
Affiliation(s)
- Miranda F Mecha
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Rachel B Hutchinson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Jung Ho Lee
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, United States of America.
| |
Collapse
|
5
|
Shoup D, Roth A, Puchalla J, Rye HS. The Impact of Hidden Structure on Aggregate Disassembly by Molecular Chaperones. Front Mol Biosci 2022; 9:915307. [PMID: 35874607 PMCID: PMC9302491 DOI: 10.3389/fmolb.2022.915307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Protein aggregation, or the uncontrolled self-assembly of partially folded proteins, is an ever-present danger for living organisms. Unimpeded, protein aggregation can result in severe cellular dysfunction and disease. A group of proteins known as molecular chaperones is responsible for dismantling protein aggregates. However, how protein aggregates are recognized and disassembled remains poorly understood. Here we employ a single particle fluorescence technique known as Burst Analysis Spectroscopy (BAS), in combination with two structurally distinct aggregate types grown from the same starting protein, to examine the mechanism of chaperone-mediated protein disaggregation. Using the core bi-chaperone disaggregase system from Escherichia coli as a model, we demonstrate that, in contrast to prevailing models, the overall size of an aggregate particle has, at most, a minor influence on the progression of aggregate disassembly. Rather, we show that changes in internal structure, which have no observable impact on aggregate particle size or molecular chaperone binding, can dramatically limit the ability of the bi-chaperone system to take aggregates apart. In addition, these structural alterations progress with surprising speed, rendering aggregates resistant to disassembly within minutes. Thus, while protein aggregate structure is generally poorly defined and is often obscured by heterogeneous and complex particle distributions, it can have a determinative impact on the ability of cellular quality control systems to process protein aggregates.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Puchalla
- Department of Physics, Princeton University, Princeton, NJ, United States
| | - Hays S. Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- *Correspondence: Hays S. Rye,
| |
Collapse
|
6
|
Perez FP, Bandeira JP, Perez Chumbiauca CN, Lahiri DK, Morisaki J, Rizkalla M. Multidimensional insights into the repeated electromagnetic field stimulation and biosystems interaction in aging and age-related diseases. J Biomed Sci 2022; 29:39. [PMID: 35698225 PMCID: PMC9190166 DOI: 10.1186/s12929-022-00825-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
We provide a multidimensional sequence of events that describe the electromagnetic field (EMF) stimulation and biological system interaction. We describe this process from the quantum to the molecular, cellular, and organismal levels. We hypothesized that the sequence of events of these interactions starts with the oscillatory effect of the repeated electromagnetic stimulation (REMFS). These oscillations affect the interfacial water of an RNA causing changes at the quantum and molecular levels that release protons by quantum tunneling. Then protonation of RNA produces conformational changes that allow it to bind and activate Heat Shock Transcription Factor 1 (HSF1). Activated HSF1 binds to the DNA expressing chaperones that help regulate autophagy and degradation of abnormal proteins. This action helps to prevent and treat diseases such as Alzheimer's and Parkinson's disease (PD) by increasing clearance of pathologic proteins. This framework is based on multiple mathematical models, computer simulations, biophysical experiments, and cellular and animal studies. Results of the literature review and our research point towards the capacity of REMFS to manipulate various networks altered in aging (Reale et al. PloS one 9, e104973, 2014), including delay of cellular senescence (Perez et al. 2008, Exp Gerontol 43, 307-316) and reduction in levels of amyloid-β peptides (Aβ) (Perez et al. 2021, Sci Rep 11, 621). Results of these experiments using REMFS at low frequencies can be applied to the treatment of patients with age-related diseases. The use of EMF as a non-invasive therapeutic modality for Alzheimer's disease, specifically, holds promise. It is also necessary to consider the complicated and interconnected genetic and epigenetic effects of the REMFS-biological system's interaction while avoiding any possible adverse effects.
Collapse
Affiliation(s)
- Felipe P Perez
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Joseph P Bandeira
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristina N Perez Chumbiauca
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Rheumatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| |
Collapse
|
7
|
Guihur A, Rebeaud ME, Goloubinoff P. How do plants feel the heat and survive? Trends Biochem Sci 2022; 47:824-838. [PMID: 35660289 DOI: 10.1016/j.tibs.2022.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 01/03/2023]
Abstract
Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland; School of Plant Sciences and Food Security, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
8
|
Melanker O, Goloubinoff P, Schreiber G. In vitro evolution of uracil glycosylase towards DnaKJ and GroEL binding evolves different misfolded states. J Mol Biol 2022; 434:167627. [PMID: 35597550 DOI: 10.1016/j.jmb.2022.167627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Natural evolution is driven by random mutations that improve fitness. In vitro evolution mimics this process, however, on a short time-scale and is driven by the given bait. Here, we used directed in vitro evolution of a random mutant library of Uracil glycosylase (eUNG) displayed on yeast surface to select for binding to chaperones GroEL, DnaK+DnaJ+ATP (DnaKJ) or E.coli cell extract (CE), using binding to the eUNG inhibitor Ugi as probe for native fold. The CE selected population was further divided to Ugi binders (+U) or non-binders (-U). The aim here was to evaluate the sequence space and physical state of the evolved protein binding the different baits. We found that GroEL, DnaKJ and CE-U select and enrich for mutations causing eUNG to misfold, with the three being enriched in mutations in buried and conserved positions, with a tendency to increase positive charge. Still, each selection had its own trajectory, with GroEL and CE-U selecting mutants highly sensitive to protease cleavage while DnaKJ selected partially structured misfolded species with a tendency to refold, making them less sensitive to proteases. More general, our results show that GroEL has a higher tendency to purge promiscuous misfolded protein mutants from the system, while DnaKJ binds misfolding-prone mutant species that are, upon chaperone release, more likely to natively refold. CE-U shares some of the properties of GroEL- and DnaKJ-selected populations, while harboring also unique properties that can be explained by the presence of additional chaperones in CE, such as Trigger factor, HtpG and ClpB.
Collapse
Affiliation(s)
- Oran Melanker
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, 1015 Lausanne, Switzerland
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Yusof NA, Masnoddin M, Charles J, Thien YQ, Nasib FN, Wong CMVL, Abdul Murad AM, Mahadi NM, Bharudin I. Can heat shock protein 70 (HSP70) serve as biomarkers in Antarctica for future ocean acidification, warming and salinity stress? Polar Biol 2022. [DOI: 10.1007/s00300-022-03006-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe Antarctic Peninsula is one of the fastest-warming places on Earth. Elevated sea water temperatures cause glacier and sea ice melting. When icebergs melt into the ocean, it “freshens” the saltwater around them, reducing its salinity. The oceans absorb excess anthropogenic carbon dioxide (CO2) causing decline in ocean pH, a process known as ocean acidification. Many marine organisms are specifically affected by ocean warming, freshening and acidification. Due to the sensitivity of Antarctica to global warming, using biomarkers is the best way for scientists to predict more accurately future climate change and provide useful information or ecological risk assessments. The 70-kilodalton (kDa) heat shock protein (HSP70) chaperones have been used as biomarkers of stress in temperate and tropical environments. The induction of the HSP70 genes (Hsp70) that alter intracellular proteins in living organisms is a signal triggered by environmental temperature changes. Induction of Hsp70 has been observed both in eukaryotes and in prokaryotes as response to environmental stressors including increased and decreased temperature, salinity, pH and the combined effects of changes in temperature, acidification and salinity stress. Generally, HSP70s play critical roles in numerous complex processes of metabolism; their synthesis can usually be increased or decreased during stressful conditions. However, there is a question as to whether HSP70s may serve as excellent biomarkers in the Antarctic considering the long residence time of Antarctic organisms in a cold polar environment which appears to have greatly modified the response of heat responding transcriptional systems. This review provides insight into the vital roles of HSP70 that make them ideal candidates as biomarkers for identifying resistance and resilience in response to abiotic stressors associated with climate change, which are the effects of ocean warming, freshening and acidification in Antarctic organisms.
Collapse
|
10
|
Fauvet B, Rebeaud ME, Tiwari S, De Los Rios P, Goloubinoff P. Repair or Degrade: the Thermodynamic Dilemma of Cellular Protein Quality-Control. Front Mol Biosci 2021; 8:768888. [PMID: 34778379 PMCID: PMC8578701 DOI: 10.3389/fmolb.2021.768888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022] Open
Abstract
Life is a non-equilibrium phenomenon. Owing to their high free energy content, the macromolecules of life tend to spontaneously react with ambient oxygen and water and turn into more stable inorganic molecules. A similar thermodynamic picture applies to the complex shapes of proteins: While a polypeptide is emerging unfolded from the ribosome, it may spontaneously acquire secondary structures and collapse into its functional native conformation. The spontaneity of this process is evidence that the free energy of the unstructured state is higher than that of the structured native state. Yet, under stress or because of mutations, complex polypeptides may fail to reach their native conformation and form instead thermodynamically stable aggregates devoid of biological activity. Cells have evolved molecular chaperones to actively counteract the misfolding of stress-labile proteins dictated by equilibrium thermodynamics. HSP60, HSP70 and HSP100 can inject energy from ATP hydrolysis into the forceful unfolding of stable misfolded structures in proteins and convert them into unstable intermediates that can collapse into the native state, even under conditions inauspicious for that state. Aggregates and misfolded proteins may also be forcefully unfolded and degraded by chaperone-gated endo-cellular proteases, and in eukaryotes also by chaperone-mediated autophagy, paving the way for their replacement by new, unaltered functional proteins. The greater energy cost of degrading and replacing a polypeptide, with respect to the cost of its chaperone-mediated repair represents a thermodynamic dilemma: some easily repairable proteins are better to be processed by chaperones, while it can be wasteful to uselessly try recover overly compromised molecules, which should instead be degraded and replaced. Evolution has solved this conundrum by creating a host of unfolding chaperones and degradation machines and by tuning their cellular amounts and activity rates.
Collapse
Affiliation(s)
- Bruno Fauvet
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Mathieu E Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne-EPFL, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569021 DOI: 10.1007/978-3-030-78397-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
Collapse
|
12
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2021; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
13
|
Yang Y, Yue Y, Song N, Li C, Yuan Z, Wang Y, Ma Y, Li H, Zhang F, Wang W, Jia H, Li P, Li X, Wang Q, Ding Z, Dong H, Gu L, Li B. The YdiU Domain Modulates Bacterial Stress Signaling through Mn 2+-Dependent UMPylation. Cell Rep 2021; 32:108161. [PMID: 32966796 DOI: 10.1016/j.celrep.2020.108161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Sensing stressful conditions and adjusting the cellular metabolism to adapt to the environment are essential activities for bacteria to survive in variable situations. Here, we describe a stress-related protein, YdiU, and characterize YdiU as an enzyme that catalyzes the covalent attachment of uridine-5'-monophosphate to a protein tyrosine/histidine residue, an unusual modification defined as UMPylation. Mn2+ serves as an essential co-factor for YdiU-mediated UMPylation. UTP and Mn2+ binding converts YdiU to an aggregate-prone state facilitating the recruitment of chaperones. The UMPylation of chaperones prevents them from binding co-factors or clients, thereby impairing their function. Consistent with the recent finding that YdiU acts as an AMPylator, we further demonstrate that the self-AMPylation of YdiU padlocks its chaperone-UMPylation activity. A detailed mechanism is proposed based on the crystal structures of Apo-YdiU and YdiU-AMPNPP-Mn2+ and on molecular dynamics simulation models of YdiU-UTP-Mn2+ and YdiU-UTP-peptide. In vivo data demonstrate that YdiU effectively protects Salmonella from stress-induced ATP depletion through UMPylation.
Collapse
Affiliation(s)
- Yinlong Yang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Cuiling Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yue Ma
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Hui Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Weiwei Wang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Haihong Jia
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Peng Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Xiaobing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Qi Wang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Zhe Ding
- Advanced Medical Research Institute, Translational Medicine Core Facility, Shandong University, Jinan, Shandong 250012, China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China.
| |
Collapse
|
14
|
Iljina M, Mazal H, Goloubinoff P, Riven I, Haran G. Entropic Inhibition: How the Activity of a AAA+ Machine Is Modulated by Its Substrate-Binding Domain. ACS Chem Biol 2021; 16:775-785. [PMID: 33739813 PMCID: PMC8056383 DOI: 10.1021/acschembio.1c00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
ClpB is a tightly regulated AAA+ disaggregation machine. Each ClpB molecule is composed of a flexibly attached N-terminal domain (NTD), an essential middle domain (MD) that activates the machine by tilting, and two nucleotide-binding domains. The NTD is not well-characterized structurally and is commonly considered to serve as a dispensable substrate-binding domain. Here, we use single-molecule FRET spectroscopy to directly monitor the real-time dynamics of ClpB's NTD and reveal its unexpected autoinhibitory function. We find that the NTD fluctuates on the microsecond time scale, and these dynamics result in steric hindrance that limits the conformational space of the MD to restrict its tilting. This leads to significantly inhibited ATPase and disaggregation activities of ClpB, an effect that is alleviated upon binding of a substrate protein or the cochaperone DnaK. This entropic inhibition mechanism, which is mediated by ultrafast motions of the NTD and is not dependent on any strong interactions, might be common in related ATP-dependent proteases and other multidomain proteins to ensure their fast and reversible activation.
Collapse
Affiliation(s)
- Marija Iljina
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Hisham Mazal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Inbal Riven
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
15
|
Fauvet B, Finka A, Castanié-Cornet MP, Cirinesi AM, Genevaux P, Quadroni M, Goloubinoff P. Bacterial Hsp90 Facilitates the Degradation of Aggregation-Prone Hsp70-Hsp40 Substrates. Front Mol Biosci 2021; 8:653073. [PMID: 33937334 PMCID: PMC8082187 DOI: 10.3389/fmolb.2021.653073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/17/2021] [Indexed: 01/27/2023] Open
Abstract
In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.
Collapse
Affiliation(s)
- Bruno Fauvet
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Shoup D, Priola SA. The Size and Stability of Infectious Prion Aggregates Fluctuate Dynamically during Cellular Uptake and Disaggregation. Biochemistry 2021; 60:398-411. [PMID: 33497187 DOI: 10.1021/acs.biochem.0c00923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prion diseases arise when PrPSc, an aggregated, infectious, and insoluble conformer of the normally soluble mammalian prion protein, PrPC, catalyzes the conversion of PrPC into more PrPSc, which then accumulates in the brain leading to disease. PrPSc is the primary, if not sole, component of the infectious prion. Despite the stability and protease insensitivity of PrPSc aggregates, they can be degraded after cellular uptake. However, how cells disassemble and degrade PrPSc is poorly understood. In this work, we analyzed how the protease sensitivity and size distribution of PrPSc aggregates from two different mouse-adapted prion strains, 22L, that can persistently infect cells and 87V, that cannot, changed during cellular uptake. We show that within the first 4 h following uptake large PrPSc aggregates from both prion strains become less resistant to digestion by proteinase K (PK) through a mechanism that is dependent upon the acidic environment of endocytic vesicles. We further show that during disassembly, PrPSc aggregates from both strains become more resistant to PK digestion through the apparent removal of protease-sensitive PrPSc, with PrPSc from the 87V strain disassembled more readily than PrPSc from the 22L strain. Taken together, our data demonstrate that the sizes and stabilities of PrPSc from different prion strains change during cellular uptake and degradation, thereby potentially impacting the ability of prions to infect cells.
Collapse
Affiliation(s)
- Daniel Shoup
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Suzette A Priola
- Rocky Mountain Laboratories, Laboratory of Persistent Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, United States
| |
Collapse
|
17
|
Fauvet B, Finka A, Castanié-Cornet MP, Cirinesi AM, Genevaux P, Quadroni M, Goloubinoff P. Bacterial Hsp90 Facilitates the Degradation of Aggregation-Prone Hsp70-Hsp40 Substrates. Front Mol Biosci 2021. [PMID: 33937334 DOI: 10.1101/451989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
In eukaryotes, the 90-kDa heat shock proteins (Hsp90s) are profusely studied chaperones that, together with 70-kDa heat shock proteins (Hsp70s), control protein homeostasis. In bacteria, however, the function of Hsp90 (HtpG) and its collaboration with Hsp70 (DnaK) remains poorly characterized. To uncover physiological processes that depend on HtpG and DnaK, we performed comparative quantitative proteomic analyses of insoluble and total protein fractions from unstressed wild-type (WT) Escherichia coli and from knockout mutants ΔdnaKdnaJ (ΔKJ), ΔhtpG (ΔG), and ΔdnaKdnaJΔhtpG (ΔKJG). Whereas the ΔG mutant showed no detectable proteomic differences with wild-type, ΔKJ expressed more chaperones, proteases and ribosomes and expressed dramatically less metabolic and respiratory enzymes. Unexpectedly, we found that the triple mutant ΔKJG showed higher levels of metabolic and respiratory enzymes than ΔKJ, suggesting that bacterial Hsp90 mediates the degradation of aggregation-prone Hsp70-Hsp40 substrates. Further in vivo experiments suggest that such Hsp90-mediated degradation possibly occurs through the HslUV protease.
Collapse
Affiliation(s)
- Bruno Fauvet
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| | - Andrija Finka
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Zadar, Croatia
| | - Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Center de Biologie Intégrative, CNRS, Université de Toulouse, Toulouse, France
| | - Manfredo Quadroni
- Protein Analysis Facility, University of Lausanne, Lausanne, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology (DBMV), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Glaza P, Ranaweera CB, Shiva S, Roy A, Geisbrecht BV, Schoenen FJ, Zolkiewski M. Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB-DnaK bichaperone system. J Biol Chem 2021; 296:100079. [PMID: 33187983 PMCID: PMC7948422 DOI: 10.1074/jbc.ra120.015413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
The ClpB-DnaK bichaperone system reactivates aggregated cellular proteins and is essential for survival of bacteria, fungi, protozoa, and plants under stress. AAA+ ATPase ClpB is a promising target for the development of antimicrobials because a loss of its activity is detrimental for survival of many pathogens and no apparent ClpB orthologs are found in metazoans. We investigated ClpB activity in the presence of several compounds that were previously described as inhibitor leads for the human AAA+ ATPase p97, an antitumor target. We discovered that N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), the least potent among the tested p97 inhibitors, binds to ClpB with a Kd∼60 μM and inhibits the casein-activated, but not the basal, ATPase activity of ClpB with an IC50∼5 μM. The remaining p97 ligands, which displayed a higher affinity toward p97, did not affect the ClpB ATPase. DBeQ also interacted with DnaK with a Kd∼100 μM and did not affect the DnaK ATPase but inhibited the DnaK chaperone activity in vitro. DBeQ inhibited the reactivation of aggregated proteins by the ClpB-DnaK bichaperone system in vitro with an IC50∼5 μM and suppressed the growth of cultured Escherichia coli. The DBeQ-induced loss of E. coli proliferation was exacerbated by heat shock but was nearly eliminated in a ClpB-deficient E. coli strain, which demonstrates a significant selectivity of DBeQ toward ClpB in cells. Our results provide chemical validation of ClpB as a target for developing novel antimicrobials. We identified DBeQ as a promising lead compound for structural optimization aimed at selective targeting of ClpB and/or DnaK.
Collapse
Affiliation(s)
- Przemyslaw Glaza
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA; Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Frank J Schoenen
- Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
19
|
Jarmoskaite I, Tijerina P, Russell R. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme. J Biol Chem 2020; 296:100132. [PMID: 33262215 PMCID: PMC7948464 DOI: 10.1074/jbc.ra120.015029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
DEAD-box helicase proteins perform ATP-dependent rearrangements of structured RNAs throughout RNA biology. Short RNA helices are unwound in a single ATPase cycle, but the ATP requirement for more complex RNA structural rearrangements is unknown. Here we measure the amount of ATP used for native refolding of a misfolded group I intron ribozyme by CYT-19, a Neurospora crassa DEAD-box protein that functions as a general chaperone for mitochondrial group I introns. By comparing the rates of ATP hydrolysis and ribozyme refolding, we find that several hundred ATP molecules are hydrolyzed during refolding of each ribozyme molecule. After subtracting nonproductive ATP hydrolysis that occurs in the absence of ribozyme refolding, we find that approximately 100 ATPs are hydrolyzed per refolded RNA as a consequence of interactions specific to the misfolded ribozyme. This value is insensitive to changes in ATP and CYT-19 concentration and decreases with decreasing ribozyme stability. Because of earlier findings that ∼90% of global ribozyme unfolding cycles lead back to the kinetically preferred misfolded conformation and are not observed, we estimate that each global unfolding cycle consumes ∼10 ATPs. Our results indicate that CYT-19 functions as a general RNA chaperone by using a stochastic, energy-intensive mechanism to promote RNA unfolding and refolding, suggesting an evolutionary convergence with protein chaperones.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Pilar Tijerina
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
20
|
Guihur A, Rebeaud ME, Fauvet B, Tiwari S, Weiss YG, Goloubinoff P. Moderate Fever Cycles as a Potential Mechanism to Protect the Respiratory System in COVID-19 Patients. Front Med (Lausanne) 2020; 7:564170. [PMID: 33043037 PMCID: PMC7517715 DOI: 10.3389/fmed.2020.564170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mortality in COVID-19 patients predominantly results from an acute respiratory distress syndrome (ARDS), in which lungs alveolar cells undergo programmed cell death. Mortality in a sepsis-induced ARDS rat model is reduced by adenovirus over-expression of the HSP70 chaperone. A natural rise of body temperature during mild fever can naturally accumulate high cellular levels of HSP70 that can arrest apoptosis and protect alveolar lung cells from inflammatory damages. However, beyond 1-2 h of fever, no HSP70 is being further produced and a decreased in body temperature required to the restore cell's ability to produce more HSP70 in a subsequent fever cycle. We suggest that antipyretics may be beneficial in COVID-19 patients subsequent to several hours of mild (<38.8°C) advantageous fever, allowing lung cells to accumulate protective HSP70 against damages from the inflammatory response to the virus SARS-CoV-2. With age, the ability to develop fever and accumulate HSP70 decreases. This could be ameliorated, when advisable to do so, by thermotherapies and/or physical training.
Collapse
Affiliation(s)
- Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mathieu E. Rebeaud
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Satyam Tiwari
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Yoram G. Weiss
- Department of Anesthesiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
Extraction and Refolding Determinants of Chaperone-Driven Aggregated Protein Reactivation. J Mol Biol 2020; 432:3239-3250. [PMID: 32147456 DOI: 10.1016/j.jmb.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 03/02/2020] [Indexed: 11/20/2022]
Abstract
Reactivation of protein aggregates plays a fundamental role in numerous situations, including essential cellular processes, hematological and neurological disorders, and biotechnological applications. The molecular details of the chaperone systems involved are known to a great extent but how the overall reactivation process is achieved has remained unclear. Here, we quantified reactivation over time through a predictive mechanistic model and identified the key parameters that control the overall dynamics. We performed new targeted experiments and analyzed classical data, covering multiple types of non-ordered aggregates, chaperone combinations, and experimental conditions. We found that, irrespective of the behavior observed, the balance of surface disaggregation and refolding in solution universally determines the reactivation dynamics, which is broadly described by two characteristic times. This characterization makes it possible to use activity measurements to accurately infer the underlying loss of aggregated protein and to quantify, for the first time, the refolding rates of the soluble intermediates.
Collapse
|
22
|
Varela AE, England KA, Cavagnero S. Kinetic trapping in protein folding. Protein Eng Des Sel 2020; 32:103-108. [PMID: 31390019 DOI: 10.1093/protein/gzz018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
The founding principles of protein folding introduced by Christian Anfinsen, together with the numerous mechanistic investigations that followed, assume that protein folding is a thermodynamically controlled process. On the other hand, this review underscores the fact that thermodynamic control is far from being the norm in protein folding, as long as one considers an extended chemical-potential landscape encompassing aggregates, in addition to native, unfolded and intermediate states. Here, we highlight the key role of kinetic trapping of the protein native state relative to unfolded, intermediate and, most importantly, aggregated states. We propose that kinetic trapping serves an important role in biology by protecting the bioactive states of a large number of proteins from deleterious aggregation. In the event that undesired aggregates were somehow formed, specialized intracellular disaggregation machines have evolved to convert any aberrant populations back to the native state, thus restoring a fully bioactive and aggregation-protected protein cohort.
Collapse
Affiliation(s)
- Angela E Varela
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin A England
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
23
|
Katikaridis P, Meins L, Kamal SM, Römling U, Mogk A. ClpG Provides Increased Heat Resistance by Acting as Superior Disaggregase. Biomolecules 2019; 9:biom9120815. [PMID: 31810333 PMCID: PMC6995612 DOI: 10.3390/biom9120815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
Elevation of temperature within and above the physiological limit causes the unfolding and aggregation of cellular proteins, which can ultimately lead to cell death. Bacteria are therefore equipped with Hsp100 disaggregation machines that revert the aggregation process and reactivate proteins otherwise lost by aggregation. In Gram-negative bacteria, two disaggregation systems have been described: the widespread ClpB disaggregase, which requires cooperation with an Hsp70 chaperone, and the standalone ClpG disaggregase. ClpG co-exists with ClpB in selected bacteria and provides superior heat resistance. Here, we compared the activities of both disaggregases towards diverse model substrates aggregated in vitro and in vivo at different temperatures. We show that ClpG exhibits robust activity towards all disordered aggregates, whereas ClpB acts poorly on the protein aggregates formed at very high temperatures. Extreme temperatures are expected not only to cause extended protein unfolding, but also to result in an accelerated formation of protein aggregates with potentially altered chemical and physical parameters, including increased stability. We show that ClpG exerts higher threading forces as compared to ClpB, likely enabling ClpG to process “tight” aggregates formed during severe heat stress. This defines ClpG as a more powerful disaggregase and mechanistically explains how ClpG provides increased heat resistance.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (P.K.); (L.M.)
| | - Lena Meins
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (P.K.); (L.M.)
| | - Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden; (S.M.K.); (U.R.)
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden; (S.M.K.); (U.R.)
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; (P.K.); (L.M.)
- Correspondence: ; Tel.: +49-6221-546-863
| |
Collapse
|
24
|
Abstract
Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.
Collapse
|
25
|
Bui LM, Geraldi A, Nguyen TT, Lee JH, Lee JY, Cho BK, Kim SC. mRNA Engineering for the Efficient Chaperone-Mediated Co-Translational Folding of Recombinant Proteins in Escherichia coli. Int J Mol Sci 2019; 20:ijms20133163. [PMID: 31261687 PMCID: PMC6651523 DOI: 10.3390/ijms20133163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/22/2022] Open
Abstract
The production of soluble, functional recombinant proteins by engineered bacterial hosts is challenging. Natural molecular chaperone systems have been used to solubilize various recombinant proteins with limited success. Here, we attempted to facilitate chaperone-mediated folding by directing the molecular chaperones to their protein substrates before the co-translational folding process completed. To achieve this, we either anchored the bacterial chaperone DnaJ to the 3ʹ untranslated region of a target mRNA by fusing with an RNA-binding domain in the chaperone-recruiting mRNA scaffold (CRAS) system, or coupled the expression of DnaJ and a target recombinant protein using the overlapping stop-start codons 5ʹ-TAATG-3ʹ between the two genes in a chaperone-substrate co-localized expression (CLEX) system. By engineering the untranslated and intergenic sequences of the mRNA transcript, bacterial molecular chaperones are spatially constrained to the location of protein translation, expressing selected aggregation-prone proteins in their functionally active, soluble form. Our mRNA engineering methods surpassed the in-vivo solubilization efficiency of the simple DnaJ chaperone co-overexpression method, thus providing more effective tools for producing soluble therapeutic proteins and enzymes.
Collapse
Affiliation(s)
- Le Minh Bui
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- NTT Hi-Tech Institute, Nguyen Tat Thanh University (NTTU), Ho Chi Minh City 700000, Vietnam
| | - Almando Geraldi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Biology Department, Science and Technology Faculty, Universitas Airlangga Mulyorejo, Surabaya 60115, Indonesia
| | - Thi Thuy Nguyen
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jun Hyoung Lee
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Korea
| | - Byung-Kwan Cho
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Sun Chang Kim
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
26
|
Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochem J 2019; 476:1653-1677. [PMID: 31201219 DOI: 10.1042/bcj20170380] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.
Collapse
|
27
|
Lee HM, Kwon SB, Son A, Kim DH, Kim KH, Lim J, Kwon YG, Kang JS, Lee BK, Byun YH, Seong BL. Stabilization of Intrinsically Disordered DKK2 Protein by Fusion to RNA-Binding Domain. Int J Mol Sci 2019; 20:ijms20112847. [PMID: 31212691 PMCID: PMC6600415 DOI: 10.3390/ijms20112847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.
Collapse
Affiliation(s)
- Hye Min Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Soon Bin Kwon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Ahyun Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Doo Hyun Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Kyun-Hwan Kim
- Department of Pharmacology, and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05030, Korea.
| | - Jonghyo Lim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Jin Sun Kang
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Byung Kyu Lee
- ProCell R&D Institute, ProCell Therapeutics, Inc., Ace-Twin Tower II, Guro3-dong, Guro-gu, Seoul 08381, Korea.
| | - Young Ho Byun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| | - Baik L Seong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea.
- Vaccine Translational Research Center, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
28
|
Tunable microsecond dynamics of an allosteric switch regulate the activity of a AAA+ disaggregation machine. Nat Commun 2019; 10:1438. [PMID: 30926805 PMCID: PMC6440998 DOI: 10.1038/s41467-019-09474-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022] Open
Abstract
Large protein machines are tightly regulated through allosteric communication channels. Here we demonstrate the involvement of ultrafast conformational dynamics in allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins. Each subunit of ClpB contains a unique coiled-coil structure, the middle domain (M domain), proposed as a control element that binds the co-chaperone DnaK. Using single-molecule FRET spectroscopy, we probe the M domain during the chaperone cycle and find it to jump on the microsecond time scale between two states, whose structures are determined. The M-domain jumps are much faster than the overall activity of ClpB, making it an effectively continuous, tunable switch. Indeed, a series of allosteric interactions are found to modulate the dynamics, including binding of nucleotides, DnaK and protein substrates. This mode of dynamic control enables fast cellular adaptation and may be a general mechanism for the regulation of cellular machineries. Large protein machines are tightly regulated through allosteric communication channels. Here authors use single-molecule FRET and demonstrate the involvement of ultrafast conformational dynamics in the allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins.
Collapse
|
29
|
A novel variant of the human mitochondrial DnaJ protein, Tid1, associates with a human disease exhibiting developmental delay and polyneuropathy. Eur J Hum Genet 2019; 27:1072-1080. [PMID: 30770860 DOI: 10.1038/s41431-019-0358-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we describe a single patient from a consanguineous family, who suffers from developmental delay, intellectual disability, hypermetropia, moderate alternating esotropia, unsteady gait, and peripheral polyneuropathy. Brain MRI revealed basal ganglia disease. Exome analysis disclosed a homozygous variant, c.452G>C (p.(Arg151Thr)), in TID1, encoding a mitochondrial J-protein chaperone that is known for its function in assisting the Hsp70 chaperone, mortalin, in mediating the refolding of denatured protein and dissolving protein aggregates. Results from in vitro import assays showed that both wild type and c.452G>C (p.(Arg151Thr)) are efficiently imported into isolated mitochondria. However, the import rate of the c.452G>C (p.(Arg151Thr)) variant was less than that of the wild-type protein. In the second part of this study, we demonstrated, in vitro, that the disaggregation function of the mortalin/Tid1 team is compromised in the TID1 c.452G>C (p.(Arg151Thr)) variant, as its chaperone activity has a level similar to that of the non-functional H→Q HPD domain variant. The results shed light on the essential function played by Tid1 during neuronal development.
Collapse
|
30
|
Cellular Handling of Protein Aggregates by Disaggregation Machines. Mol Cell 2019; 69:214-226. [PMID: 29351843 DOI: 10.1016/j.molcel.2018.01.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/15/2017] [Accepted: 01/02/2018] [Indexed: 11/20/2022]
Abstract
Both acute proteotoxic stresses that unfold proteins and expression of disease-causing mutant proteins that expose aggregation-prone regions can promote protein aggregation. Protein aggregates can interfere with cellular processes and deplete factors crucial for protein homeostasis. To cope with these challenges, cells are equipped with diverse folding and degradation activities to rescue or eliminate aggregated proteins. Here, we review the different chaperone disaggregation machines and their mechanisms of action. In all these machines, the coating of protein aggregates by Hsp70 chaperones represents the conserved, initializing step. In bacteria, fungi, and plants, Hsp70 recruits and activates Hsp100 disaggregases to extract aggregated proteins. In the cytosol of metazoa, Hsp70 is empowered by a specific cast of J-protein and Hsp110 co-chaperones allowing for standalone disaggregation activity. Both types of disaggregation machines are supported by small Hsps that sequester misfolded proteins.
Collapse
|
31
|
Regulation of Human Hsc70 ATPase and Chaperone Activities by Apg2: Role of the Acidic Subdomain. J Mol Biol 2018; 431:444-461. [PMID: 30521813 DOI: 10.1016/j.jmb.2018.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/30/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022]
Abstract
Protein aggregate reactivation in metazoans is accomplished by the combined activity of Hsp70, Hsp40 and Hsp110 chaperones. Hsp110s support the refolding of aggregated polypeptides acting as specialized nucleotide exchange factors of Hsp70. We have studied how Apg2, one of the three human Hsp110s, regulates the activity of Hsc70 (HspA8), the constitutive Hsp70 in our cells. Apg2 shows a biphasic behavior: at low concentration, it stimulates the ATPase cycle of Hsc70, binding of the chaperone to protein aggregates and the refolding activity of the system, while it inhibits these three processes at high concentration. When the acidic subdomain of Apg2, a characteristic sequence present in the substrate binding domain of all Hsp110s, is deleted, the detrimental effects occur at lower concentration and are more pronounced, which concurs with an increase in the affinity of the Apg2 mutant for Hsc70. Our data support a mechanism in which Apg2 arrests the chaperone cycle through an interaction with Hsc70(ATP) that might lead to premature ATP dissociation before hydrolysis. In this line, the acidic subdomain might serve as a conformational switch to support dissociation of the Hsc70:Apg2 complex.
Collapse
|
32
|
Cochaperones enable Hsp70 to use ATP energy to stabilize native proteins out of the folding equilibrium. Sci Rep 2018; 8:13213. [PMID: 30181618 PMCID: PMC6123477 DOI: 10.1038/s41598-018-31641-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
The heat shock protein 70 (Hsp70) chaperones, vital to the proper folding of proteins inside cells, consume ATP and require cochaperones in assisting protein folding. It is unclear whether Hsp70 can utilize the free energy from ATP hydrolysis to fold a protein into a native state that is thermodynamically unstable in the chaperone-free equilibrium. Here I present a model of Hsp70-mediated protein folding, which predicts that Hsp70, as a result of differential stimulation of ATP hydrolysis by its Hsp40 cochaperone, dissociates faster from a substrate in fold-competent conformations than from one in misfolding-prone conformations, thus elevating the native concentration above and suppressing the misfolded concentration below their respective equilibrium values. Previous models would not make or imply these predictions, which are experimentally testable. My model quantitatively reproduces experimental refolding kinetics, predicts how modulations of the Hsp70/Hsp40 chaperone system affect protein folding, and suggests new approaches to regulating cellular protein quality.
Collapse
|
33
|
Uchida T, Kanemori M. Two J domains ensure high cochaperone activity of DnaJ, Escherichia coli heat shock protein 40. J Biochem 2018; 164:153-163. [PMID: 29635480 DOI: 10.1093/jb/mvy038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 70 (Hsp70) chaperone systems consist of Hsp70, Hsp40 and a nucleotide-exchange factor and function to help unfolded proteins achieve their native conformations. Typical Hsp40s assume a homodimeric structure and have both chaperone and cochaperone activity. The dimeric structure is critical for chaperone function, whereas the relationship between the dimeric structure and cochaperone function is hardly known. Here, we examined whether two intact protomers are required for cochaperone activity of Hsp40 using an Escherichia coli Hsp70 chaperone system consisting of DnaK, DnaJ and GrpE. The expression systems were generated and two heterodimeric DnaJs that included a mutated protomer lacking cochaperone activity were purified. Normal chaperone activity was demonstrated by assessing aggregation prevention activity using urea-denatured luciferase. The heterodimeric DnaJs were investigated for cochaperone activity by measuring DnaK ATPase activity and the heat-denatured glucose-6-phosphate dehydrogenase refolding activity of the DnaK chaperone system, and they showed reduced cochaperone activity. These results indicate that two intact protomers are required for high cochaperone activity of DnaJ, suggesting that one homodimeric DnaJ molecule promotes the simultaneous binding of multiple DnaK molecules to one substrate molecule, and that this binding mode is required for the efficient folding of denatured proteins.
Collapse
Affiliation(s)
- Tomoya Uchida
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masaaki Kanemori
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
34
|
Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate. Sci Rep 2018; 8:5796. [PMID: 29643454 PMCID: PMC5895705 DOI: 10.1038/s41598-018-24140-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.
Collapse
|
35
|
Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol 2017; 217:51-63. [PMID: 29127110 PMCID: PMC5748993 DOI: 10.1083/jcb.201709072] [Citation(s) in RCA: 502] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
Ensuring cellular protein homeostasis, or proteostasis, requires precise control of protein synthesis, folding, conformational maintenance, and degradation. A complex and adaptive proteostasis network coordinates these processes with molecular chaperones of different classes and their regulators functioning as major players. This network serves to ensure that cells have the proteins they need while minimizing misfolding or aggregation events that are hallmarks of age-associated proteinopathies, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. It is now clear that the capacity of cells to maintain proteostasis undergoes a decline during aging, rendering the organism susceptible to these pathologies. Here we discuss the major proteostasis pathways in light of recent research suggesting that their age-dependent failure can both contribute to and result from disease. We consider different strategies to modulate proteostasis capacity, which may help develop urgently needed therapies for neurodegeneration and other age-dependent pathologies.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
36
|
Fusion protein analysis reveals the precise regulation between Hsp70 and Hsp100 during protein disaggregation. Sci Rep 2017; 7:8648. [PMID: 28819163 PMCID: PMC5561102 DOI: 10.1038/s41598-017-08917-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
ClpB, a bacterial Hsp100, is a ring-shaped AAA+ chaperone that can reactivate aggregated proteins in cooperation with DnaK, a bacterial Hsp70, and its co-factors. ClpB subunits comprise two AAA+ modules with an interstitial rod-shaped M-domain. The M-domain regulates ClpB ATPase activity and interacts directly with the DnaK nucleotide-binding domain (NBD). Here, to clarify how these functions contribute to the disaggregation process, we constructed ClpB, DnaK, and aggregated YFP fusion proteins in various combinations. Notably, i) DnaK activates ClpB only when the DnaK substrate-binding domain (SBD) is in the closed conformation, affording high DnaK-peptide affinity; ii) although NBD alone can activate ClpB, SBD is required for disaggregation; and iii) tethering aggregated proteins to the activated ClpB obviates SBD requirements. These results indicate that DnaK activates ClpB only when the SBD tightly holds aggregated proteins adjacent to ClpB for effective disaggregation.
Collapse
|
37
|
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett 2017; 591:2648-2660. [PMID: 28696498 DOI: 10.1002/1873-3468.12751] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Proteostasis, the controlled balance of protein synthesis, folding, assembly, trafficking and degradation, is a paramount necessity for cell homeostasis. Impaired proteostasis is a hallmark of ageing and of many human diseases. Molecular chaperones are essential for proteostasis in eukaryotic cells, and their function has traditionally been linked to protein folding, assembly and disaggregation. More recent findings suggest that chaperones also contribute to key steps in protein degradation. In particular, Hsp70 has an essential role in substrate degradation through the ubiquitin-proteasome system, as well as through different autophagy pathways. Accumulated knowledge suggests that the fate of an Hsp70 substrate is dictated by the combination of partners (cochaperones and other chaperones) that interact with Hsp70 in a given cell context.
Collapse
Affiliation(s)
| | - Marcos Gragera
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Krajewska J, Modrak-Wójcik A, Arent ZJ, Więckowski D, Zolkiewski M, Bzowska A, Kędzierska-Mieszkowska S. Characterization of the molecular chaperone ClpB from the pathogenic spirochaete Leptospira interrogans. PLoS One 2017; 12:e0181118. [PMID: 28700685 PMCID: PMC5507356 DOI: 10.1371/journal.pone.0181118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Leptospira interrogans is a spirochaete responsible for leptospirosis in mammals. The molecular mechanisms of the Leptospira virulence remain mostly unknown. Recently, it has been demonstrated that an AAA+ chaperone ClpB (a member of the Hsp100 family) from L. interrogans (ClpBLi) is not only essential for survival of Leptospira under the thermal and oxidative stresses, but also during infection of a host. The aim of this study was to provide further insight into the role of ClpB in the pathogenic spirochaetes and explore its biochemical properties. We found that a non-hydrolysable ATP analogue, ATPγS, but not AMP-PNP induces the formation of ClpBLi hexamers and stabilizes the associated form of the chaperone. ADP also induces structural changes in ClpBLi and promotes its self-assembly, but does not produce full association into the hexamers. We also demonstrated that ClpBLi exhibits a weak ATPase activity that is stimulated by κ-casein and poly-lysine, and may mediate protein disaggregation independently from the DnaK chaperone system. Unexpectedly, the presence of E. coli DnaK/DnaJ/GrpE did not significantly affect the disaggregation activity of ClpBLi and ClpBLi did not substitute for the ClpBEc function in the clpB-null E. coli strain. This result underscores the species-specificity of the ClpB cooperation with the co-chaperones and is most likely due to a loss of interactions between the ClpBLi middle domain and the E. coli DnaK. We also found that ClpBLi interacts more efficiently with the aggregated G6PDH in the presence of ATPγS rather than ATP. Our results indicate that ClpB's importance during infection might be due to its role as a molecular chaperone involved in reactivation of protein aggregates.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Anna Modrak-Wójcik
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Zbigniew J. Arent
- University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Daniel Więckowski
- Department of General and Medical Biochemistry, University of Gdańsk, Faculty of Biology, Gdańsk, Poland
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
39
|
Chaperone families and interactions in metazoa. Essays Biochem 2017; 60:237-253. [PMID: 27744339 DOI: 10.1042/ebc20160004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/04/2016] [Indexed: 01/31/2023]
Abstract
Quality control is an essential aspect of cellular function, with protein folding quality control being carried out by molecular chaperones, a diverse group of highly conserved proteins that specifically identify misfolded conformations. Molecular chaperones are thus required to support proteins affected by expressed polymorphisms, mutations, intrinsic errors in gene expression, chronic insult or the acute effects of the environment, all of which contribute to a flux of metastable proteins. In this article, we review the four main chaperone families in metazoans, namely Hsp60 (where Hsp is heat-shock protein), Hsp70, Hsp90 and sHsps (small heat-shock proteins), as well as their co-chaperones. Specifically, we consider the structural and functional characteristics of each family and discuss current models that attempt to explain how chaperones recognize and act together to protect or recover aberrant proteins.
Collapse
|
40
|
Harding T, Roger AJ, Simpson AGB. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers. Front Microbiol 2017; 8:944. [PMID: 28611746 PMCID: PMC5447177 DOI: 10.3389/fmicb.2017.00944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane fluidity.
Collapse
Affiliation(s)
- Tommy Harding
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| |
Collapse
|
41
|
Fernández-Fernández MR, Sot B, Valpuesta JM. Molecular chaperones: functional mechanisms and nanotechnological applications. NANOTECHNOLOGY 2016; 27:324004. [PMID: 27363314 DOI: 10.1088/0957-4484/27/32/324004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.
Collapse
Affiliation(s)
- M Rosario Fernández-Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
42
|
Celaya G, Fernández-Higuero JA, Martin I, Rivas G, Moro F, Muga A. Crowding Modulates the Conformation, Affinity, and Activity of the Components of the Bacterial Disaggregase Machinery. J Mol Biol 2016; 428:2474-2487. [DOI: 10.1016/j.jmb.2016.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
|
43
|
Finka A, Mattoo RUH, Goloubinoff P. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes. Annu Rev Biochem 2016; 85:715-42. [PMID: 27050154 DOI: 10.1146/annurev-biochem-060815-014124] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.
Collapse
Affiliation(s)
- Andrija Finka
- Laboratory of Biophysical Statistics, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rayees U H Mattoo
- Department of Structural Biology, Stanford University, Stanford, California 94305;
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland;
| |
Collapse
|
44
|
Zolkiewski M, Chesnokova LS, Witt SN. Reactivation of Aggregated Proteins by the ClpB/DnaK Bi-Chaperone System. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2016; 83:28.10.1-28.10.18. [PMID: 26836408 DOI: 10.1002/0471140864.ps2810s83] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Protein aggregation is a common problem in protein biochemistry and is linked to many cellular pathologies and human diseases. The molecular chaperone ClpB can resolubilize and reactivate aggregated proteins. This unit describes the procedure for following reactivation of an aggregated enzyme glucose-6-phosphate dehydrogenase mediated by ClpB from Escherichia coli in cooperation with another molecular chaperone, DnaK. The procedures for purification of these chaperones are also described.
Collapse
Affiliation(s)
- Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas
| | - Liudmila S Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Stephan N Witt
- Department of Biochemistry and Molecular Biology and Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| |
Collapse
|
45
|
Nillegoda NB, Bukau B. Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2015; 2:57. [PMID: 26501065 PMCID: PMC4598581 DOI: 10.3389/fmolb.2015.00057] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/22/2015] [Indexed: 11/13/2022] Open
Abstract
Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis, allowing misfolded proteins to form aggregates, which dedicated molecular machines have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation involves an Hsp70•J-protein chaperone system, which loads and activates a powerful AAA+ ATPase (Hsp100) disaggregase onto protein aggregate substrates. Metazoans lack cytosolic and nuclear Hsp100 disaggregases but still eliminate protein aggregates. This longstanding puzzle of protein quality control is now resolved. Robust protein disaggregation activity recently shown for the metazoan Hsp70-based disaggregases relies instead on a crucial cooperation between two J-protein classes and interaction with the Hsp110 co-chaperone. An expanding multiplicity of Hsp70 and J-protein family members in metazoan cells facilitates different configurations of this Hsp70-based disaggregase allowing unprecedented versatility and specificity in protein disaggregation. Here we review the architecture, operation, and adaptability of the emerging metazoan disaggregation system and discuss how this evolved.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|
46
|
Nillegoda NB, Bukau B. Metazoan Hsp70-based protein disaggregases: emergence and mechanisms. Front Mol Biosci 2015; 2:57. [PMID: 26501065 DOI: 10.3389/fmolb.2015.00057/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/22/2015] [Indexed: 05/25/2023] Open
Abstract
Proteotoxic stresses and aging cause breakdown of cellular protein homeostasis, allowing misfolded proteins to form aggregates, which dedicated molecular machines have evolved to solubilize. In bacteria, fungi, protozoa and plants protein disaggregation involves an Hsp70•J-protein chaperone system, which loads and activates a powerful AAA+ ATPase (Hsp100) disaggregase onto protein aggregate substrates. Metazoans lack cytosolic and nuclear Hsp100 disaggregases but still eliminate protein aggregates. This longstanding puzzle of protein quality control is now resolved. Robust protein disaggregation activity recently shown for the metazoan Hsp70-based disaggregases relies instead on a crucial cooperation between two J-protein classes and interaction with the Hsp110 co-chaperone. An expanding multiplicity of Hsp70 and J-protein family members in metazoan cells facilitates different configurations of this Hsp70-based disaggregase allowing unprecedented versatility and specificity in protein disaggregation. Here we review the architecture, operation, and adaptability of the emerging metazoan disaggregation system and discuss how this evolved.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology (ZMBH) of the University of Heidelberg and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|
47
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
48
|
Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Arch Biochem Biophys 2015; 580:121-34. [PMID: 26159839 DOI: 10.1016/j.abb.2015.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/02/2015] [Accepted: 07/04/2015] [Indexed: 12/15/2022]
Abstract
The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed.
Collapse
|
49
|
Escherichia coli ClpB is a non-processive polypeptide translocase. Biochem J 2015; 470:39-52. [PMID: 26251445 PMCID: PMC4692069 DOI: 10.1042/bj20141457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/05/2015] [Indexed: 11/17/2022]
Abstract
Escherichia coli caseinolytic protease (Clp)B is a hexameric AAA+ [expanded superfamily of AAA (ATPase associated with various cellular activities)] enzyme that has the unique ability to catalyse protein disaggregation. Such enzymes are essential for proteome maintenance. Based on structural comparisons to homologous enzymes involved in ATP-dependent proteolysis and clever protein engineering strategies, it has been reported that ClpB translocates polypeptide through its axial channel. Using single-turnover fluorescence and anisotropy experiments we show that ClpB is a non-processive polypeptide translocase that catalyses disaggregation by taking one or two translocation steps followed by rapid dissociation. Using single-turnover FRET experiments we show that ClpB containing the IGL loop from ClpA does not translocate substrate through its axial channel and into ClpP for proteolytic degradation. Rather, ClpB containing the IGL loop dysregulates ClpP leading to non-specific proteolysis reminiscent of ADEP (acyldepsipeptide) dysregulation. Our results support a molecular mechanism where ClpB catalyses protein disaggregation by tugging and releasing exposed tails or loops.
Collapse
|
50
|
Finka A, Sharma SK, Goloubinoff P. Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Front Mol Biosci 2015; 2:29. [PMID: 26097841 PMCID: PMC4456865 DOI: 10.3389/fmolb.2015.00029] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
Members of the HSP70/HSP110 family (HSP70s) form a central hub of the chaperone network controlling all aspects of proteostasis in bacteria and the ATP-containing compartments of eukaryotic cells. The heat-inducible form HSP70 (HSPA1A) and its major cognates, cytosolic HSC70 (HSPA8), endoplasmic reticulum BIP (HSPA5), mitochondrial mHSP70 (HSPA9) and related HSP110s (HSPHs), contribute about 3% of the total protein mass of human cells. The HSP70s carry out a plethora of housekeeping cellular functions, such as assisting proper de novo folding, assembly and disassembly of protein complexes, pulling polypeptides out of the ribosome and across membrane pores, activating and inactivating signaling proteins and controlling their degradation. The HSP70s can induce structural changes in alternatively folded protein conformers, such as clathrin cages, hormone receptors and transcription factors, thereby regulating vesicular trafficking, hormone signaling and cell differentiation in development and cancer. To carry so diverse cellular housekeeping and stress-related functions, the HSP70s act as ATP-fuelled unfolding nanomachines capable of switching polypeptides between different folded states. During stress, the HSP70s can bind (hold) and prevent the aggregation of misfolding proteins and thereafter act alone or in collaboration with other unfolding chaperones to solubilize protein aggregates. Here, we discuss the common ATP-dependent mechanisms of holding, unfolding-by-clamping and unfolding-by-entropic pulling, by which the HSP70s can apparently convert various alternatively folded and misfolded polypeptides into differently active conformers. Understanding how HSP70s can prevent the formation of cytotoxic protein aggregates, pull, unfold, and solubilize them into harmless species is central to the design of therapies against protein conformational diseases.
Collapse
Affiliation(s)
- Andrija Finka
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland ; Laboratoire de Biophysique Statistique, School of Basic Sciences, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne Lausanne, Switzerland
| |
Collapse
|