1
|
Idiiatullina E, Al-Azab M, Lin M, Hrovat-Schaale K, Liu Z, Li X, Guo C, Chen X, Li Y, Gao S, Cui J, Zhou W, Liu L, Zhang Y, Masters SL. Heterozygous de novo dominant negative mutation of REXO2 results in interferonopathy. Nat Commun 2024; 15:6685. [PMID: 39107301 PMCID: PMC11303720 DOI: 10.1038/s41467-024-50878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.
Collapse
Affiliation(s)
- Elina Idiiatullina
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Department of Therapy and Nursing, Bashkir State Medical University, Ufa, Russia
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, USA
| | - Mahmoud Al-Azab
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- Department of Medical Microbiology, Faculty of Medicine, University of Science and Technology, Aden, Yemen
| | - Meng Lin
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Katja Hrovat-Schaale
- Department of Therapy and Nursing, Bashkir State Medical University, Ufa, Russia
- Department of Medical Microbiology, Faculty of Medicine, University of Science and Technology, Aden, Yemen
| | - Ziyang Liu
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiaotian Li
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Caiqin Guo
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xixi Chen
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Yaoying Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Cui
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenhao Zhou
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
| | - Yuxia Zhang
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
| | - Seth L Masters
- Department of Genetics and Endocrinology, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Zhang T, Zhang R, Zhang Z, Li D, Guo X, Zhang Z, Zhu X, Tan S. REXO2 up-regulation is positively correlated with poor prognosis and tumor immune infiltration in hepatocellular carcinoma. Int Immunopharmacol 2024; 130:111740. [PMID: 38401464 DOI: 10.1016/j.intimp.2024.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND As a homologous counterpart to the prokaryotic oligonuclease found in the cellular cytoplasm and mitochondrion, REXO2 assumes a pivotal role in the maintenance of mitochondrial homeostasis. Nevertheless, the precise functions and mechanisms by which REXO2 operates within the context of hepatocellular carcinoma (HCC) have hitherto remained unexamined. METHODS The expression levels of REXO2 in HCC tissues were evaluated through the utilization of the immunohistochemical (IHC) method, and subsequently, the association between REXO2 expression and the clinicopathological characteristics of HCC patients was scrutinized employing the χ2 test. A battery of experimental assays, encompassing CCK8 viability assessment, cell colony formation, wound healing, and transwell assays, were conducted with the aim of elucidating the biological role of REXO2 within HCC cells. Complementary bioinformatics analyses were undertaken to discern potential correlations between REXO2 and immune infiltration in tumor tissues. RESULTS Our IHC findings have unveiled a notable up-regulation of REXO2 within HCC tissues, and this heightened expression bears the status of an independent prognostic factor, portending an adverse outcome for HCC patients (P < 0.05). Upon the attenuation of REXO2 expression, a discernible reduction in the rates of proliferation, invasion and migration of HCC cells ensued (P < 0.05). Furthermore, transcriptome sequencing analysis has provided insights into the putative influence of REXO2 on the development of HCC through the modulation of TNF and NF-κB signaling pathways. Additionally, our bioinformatics analyses have demonstrated a positive correlation between REXO2 and tumor immune cell infiltration, as well as immune checkpoint CTLA-4. CONCLUSIONS In summation, our results posit an association between the up-regulation of REXO2 and adverse prognostic outcomes, alongside the involvement of immune-related signaling pathways and tumor immune infiltration within the realm of HCC.
Collapse
Affiliation(s)
- Tianmiao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Rongcheng Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zhongqi Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Di Li
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xuefeng Guo
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiaonian Zhu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China.
| | - Shengkui Tan
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Guangxi, China; Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| |
Collapse
|
3
|
Badhwar P, Khan SH, Taneja B. Three-dimensional structure of a mycobacterial oligoribonuclease reveals a unique C-terminal tail that stabilizes the homodimer. J Biol Chem 2022; 298:102595. [PMID: 36244449 PMCID: PMC9676404 DOI: 10.1016/j.jbc.2022.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Oligoribonucleases (Orns) are highly conserved DnaQ-fold 3'-5' exoribonucleases that have been found to carry out the last step of cyclic-di-GMP (c-di-GMP) degradation, that is, pGpG to GMP in several bacteria. Removal of pGpG is critical for c-di-GMP homeostasis, as excess uncleaved pGpG can have feedback inhibition on phosphodiesterases, thereby perturbing cellular signaling pathways regulated by c-di-GMP. Perturbation of c-di-GMP levels not only affects survival under hypoxic, reductive stress, or nutrient-limiting conditions but also affects pathogenicity in infection models as well as antibiotic response in mycobacteria. Here, we have determined the crystal structure of MSMEG_4724, the Orn of Mycobacterium smegmatis (Ms_orn) to 1.87 Å resolution to investigate the function of its extended C-terminal tail that is unique among bacterial Orns. Ms_orn is a homodimer with the canonical RNase-H fold of exoribonucleases and conserved catalytic residues in the active site. Further examination of the substrate-binding site with a modeled pGpG emphasized the role of a phosphate cap and "3'OH cap" in constricting a 2-mer substrate in the active site. The unique C-terminal tail of Ms_orn aids dimerization by forming a handshake-like flap over the second protomer of the dimer. Our thermal and denaturant-induced unfolding experiments suggest that it helps in higher stability of Ms_orn as compared with Escherichia coli Orn or a C-terminal deletion mutant. We also show that the C-terminal tail is required for modulating response to stress agents in vivo. These results will help in further evaluating the role of signaling and regulation by c-di-GMP in mycobacteria.
Collapse
Affiliation(s)
- Pooja Badhwar
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,For correspondence: Bhupesh Taneja
| |
Collapse
|
4
|
Lee VT, Sondermann H, Winkler WC. Nano-RNases: oligo- or dinucleases? FEMS Microbiol Rev 2022; 46:6677394. [PMID: 36026528 PMCID: PMC9779919 DOI: 10.1093/femsre/fuac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 01/07/2023] Open
Abstract
Diribonucleotides arise from two sources: turnover of RNA transcripts (rRNA, tRNA, mRNA, and others) and linearization of cyclic-di-nucleotide signaling molecules. In both cases, there appears to be a requirement for a dedicated set of enzymes that will cleave these diribonucleotides into mononucleotides. The first enzyme discovered to mediate this activity is oligoribonuclease (Orn) from Escherichia coli. In addition to being the enzyme that cleaves dinucleotides and potentially other short oligoribonucleotides, Orn is also the only known exoribonuclease enzyme that is essential for E. coli, suggesting that removal of the shortest RNAs is an essential cellular function. Organisms naturally lacking the orn gene encode other nanoRNases (nrn) that can complement the conditional E. coli orn mutant. This review covers the history and recent advances in our understanding of these enzymes and their substrates. In particular, we focus on (i) the sources of diribonucleotides; (ii) the discovery of exoribonucleases; (iii) the structural features of Orn, NrnA/NrnB, and NrnC; (iv) the enzymatic activity of these enzymes against diribonucleotides versus other substrates; (v) the known physiological consequences of accumulation of linear dinucleotides; and (vi) outstanding biological questions for diribonucleotides and diribonucleases.
Collapse
|
5
|
How RNases Shape Mitochondrial Transcriptomes. Int J Mol Sci 2022; 23:ijms23116141. [PMID: 35682820 PMCID: PMC9181182 DOI: 10.3390/ijms23116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.
Collapse
|
6
|
Zhang J, Sun L, Zhang Q, Bartlam M. Crystal structure of oligoribonuclease from Vibrio cholerae O1 El Tor with bound peptide. Acta Crystallogr F Struct Biol Commun 2021; 77:437-443. [PMID: 34866598 PMCID: PMC8647215 DOI: 10.1107/s2053230x21011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 11/10/2022] Open
Abstract
Oligoribonuclease (Orn), a member of the DEDDh superfamily, can hydrolyse 2-5 nt nanoRNAs to mononucleotides. It is involved in maintaining the intracellular levels of RNA, c-di-GMP signalling and transcription initiation in many bacterial species. Here, the crystal structure of Orn from Vibrio cholerae O1 El Tor (VcOrn) is reported at a resolution of 1.7 Å. VcOrn, which consists of nine α-helices and six β-strands, crystallizes with a single monomer in the asymmetric unit but forms a homodimer via crystallographic twofold symmetry. Electron density is observed in the active pocket that corresponds to an intersubunit N-terminal expression tag with sequence GPLGSHHH. The positively charged N-terminal tag binds in the negatively charged nucleotide-binding pocket with a buried surface area of ∼500 Å2. The N-terminal tag interacts with VcOrn via π-π stacking with two conserved residues involved in nucleotide binding, as well as via salt bridges and hydrogen bonds. The structure reported here reveals that the active pocket can accommodate polypeptides in addition to nucleotides, thus providing an important starting point for investigation into substrate modification and inhibitor design targeting VcOrn.
Collapse
Affiliation(s)
- Jianyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Liyuan Sun
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| |
Collapse
|
7
|
Lormand JD, Kim SK, Walters-Marrah GA, Brownfield BA, Fromme JC, Winkler WC, Goodson JR, Lee VT, Sondermann H. Structural characterization of NrnC identifies unifying features of dinucleotidases. eLife 2021; 10:70146. [PMID: 34533457 PMCID: PMC8492067 DOI: 10.7554/elife.70146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonuclease, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses, we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC and Orn employ similar structural features that distinguish these two classes of dinucleases from other exonucleases, the key determinants for dinuclease activity are realized through distinct structural scaffolds. The structures, together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases, indicate convergent evolution as the mechanism of how dinuclease activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinuclease activity further underlines the important role these analogous proteins play for cell growth.
Collapse
Affiliation(s)
- Justin D Lormand
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | | | - Bryce A Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jonathan R Goodson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, Cornell University, Ithaca, United States.,CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
8
|
Szewczyk M, Malik D, Borowski LS, Czarnomska SD, Kotrys AV, Klosowska-Kosicka K, Nowotny M, Szczesny RJ. Human REXO2 controls short mitochondrial RNAs generated by mtRNA processing and decay machinery to prevent accumulation of double-stranded RNA. Nucleic Acids Res 2020; 48:5572-5590. [PMID: 32365187 PMCID: PMC7261184 DOI: 10.1093/nar/gkaa302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/31/2020] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
RNA decay is a key element of mitochondrial RNA metabolism. To date, the only well-documented machinery that plays a role in mtRNA decay in humans is the complex of polynucleotide phosphorylase (PNPase) and SUV3 helicase, forming the degradosome. REXO2, a homolog of prokaryotic oligoribonucleases present in humans both in mitochondria and the cytoplasm, was earlier shown to be crucial for maintaining mitochondrial homeostasis, but its function in mitochondria has not been fully elucidated. In the present study, we created a cellular model that enables the clear dissection of mitochondrial and non-mitochondrial functions of human REXO2. We identified a novel mitochondrial short RNA, referred to as ncH2, that massively accumulated upon REXO2 silencing. ncH2 degradation occurred independently of the mitochondrial degradosome, strongly supporting the hypothesis that ncH2 is a primary substrate of REXO2. We also investigated the global impact of REXO2 depletion on mtRNA, revealing the importance of the protein for maintaining low steady-state levels of mitochondrial antisense transcripts and double-stranded RNA. Our detailed biochemical and structural studies provide evidence of sequence specificity of the REXO2 oligoribonuclease. We postulate that REXO2 plays dual roles in human mitochondria, ‘scavenging’ nanoRNAs that are produced by the degradosome and clearing short RNAs that are generated by RNA processing.
Collapse
Affiliation(s)
- Maciej Szewczyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Deepshikha Malik
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Sylwia D Czarnomska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Anna V Kotrys
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | | | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
9
|
Abstract
Pheochromocytoma (PCC) is a rare, mostly benign tumour of the adrenal medulla. Hereditary PCC accounts for ~35% of cases and has been associated with germline mutations in several cancer susceptibility genes (e.g., KIF1B, SDHB, VHL, SDHD, RET). We performed whole-exome sequencing in a family with four PCC-affected patients in two consecutive generations and identified a potential novel candidate pathogenic variant in the REXO2 gene that affects splicing (c.531-1G>T (NM 015523.3)), which co-segregated with the phenotype in the family. REXO2 encodes for RNA exonuclease 2 protein and localizes to 11q23, a chromosomal region displaying allelic imbalance in PCC. REXO2 protein has been associated with DNA repair, replication and recombination processes and thus its inactivation may contribute to tumorigenesis. While the study suggests that this novel REXO2 gene variant underlies PCC in this family, additional functional studies are required in order to establish the putative role of the REXO2 gene in PCC predisposition.
Collapse
|
10
|
Noe Gonzalez M, Svejstrup JQ. Watch Out for Those Terrible Twos! Dinucleotide Accumulation Dysregulates Mitochondrial Transcription. Mol Cell 2019; 76:696-698. [PMID: 31809742 DOI: 10.1016/j.molcel.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this issue of Molecular Cell, Nicholls et al. (2019) show that the oligoribonuclease REXO2 degrades mitochondrial RNA dinucleotides to prevent RNA-primed transcription at non-canonical sites in the mitochondrial genome, shedding new light on the importance of complete RNA degradation for transcriptional integrity.
Collapse
Affiliation(s)
- Melvin Noe Gonzalez
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
11
|
Nicholls TJ, Spåhr H, Jiang S, Siira SJ, Koolmeister C, Sharma S, Kauppila JHK, Jiang M, Kaever V, Rackham O, Chabes A, Falkenberg M, Filipovska A, Larsson NG, Gustafsson CM. Dinucleotide Degradation by REXO2 Maintains Promoter Specificity in Mammalian Mitochondria. Mol Cell 2019; 76:784-796.e6. [PMID: 31588022 PMCID: PMC6900737 DOI: 10.1016/j.molcel.2019.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/12/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
Abstract
Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.
Collapse
Affiliation(s)
- Thomas J Nicholls
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Shan Jiang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Stefan J Siira
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Johanna H K Kauppila
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Min Jiang
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, 30625 Hannover, Germany
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden; Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm 17177, Sweden.
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, Gothenburg 405 30, Sweden.
| |
Collapse
|
12
|
Piotrowski Y, Berg K, Klebl DP, Leiros I, Larsen AN. Characterization of an intertidal zone metagenome oligoribonuclease and the role of the intermolecular disulfide bond for homodimer formation and nuclease activity. FEBS Open Bio 2019; 9:1674-1688. [PMID: 31420950 PMCID: PMC6768110 DOI: 10.1002/2211-5463.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/05/2022] Open
Abstract
The gene encoding MG Orn has been identified from a metagenomic library created from the intertidal zone in Svalbard and encodes a protein of 184 amino acid residues. The mg orn gene has been cloned, recombinantly expressed in Escherichia coli, and purified to homogeneity. Biochemical characterization of the enzyme showed that it efficiently degrades short RNA oligonucleotide substrates of 2mer to 10mer of length and has an absolute requirement for divalent cations for optimal activity. The enzyme is more heat‐labile than its counterpart from E. coli and exists as a homodimer in solution. The crystal structure of the enzyme has been determined to a resolution of 3.15 Å, indicating an important role of a disulfide bridge for the homodimer formation and as such for the function of MG Orn. Substitution of the Cys110 residue with either Gly or Ala hampered the dimer formation and severely affected the enzyme's ability to act on RNA. A conserved loop containing His128‐Tyr129‐Arg130 in the neighboring monomer is probably involved in efficient binding and processing of longer RNA substrates than diribonucleotides.
Collapse
Affiliation(s)
- Yvonne Piotrowski
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kristel Berg
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - David Paul Klebl
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Ingar Leiros
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Atle Noralf Larsen
- Department of Chemistry, Faculty of Science and Technology, SIVA Innovation Centre, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Chu LY, Agrawal S, Chen YP, Yang WZ, Yuan HS. Structural insights into nanoRNA degradation by human Rexo2. RNA (NEW YORK, N.Y.) 2019; 25:737-746. [PMID: 30926754 PMCID: PMC6521605 DOI: 10.1261/rna.070557.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Human RNA exoribonuclease 2 (Rexo2) is an evolutionarily conserved 3'-to-5' DEDDh-family exonuclease located primarily in mitochondria. Rexo2 degrades small RNA oligonucleotides of <5 nucleotides (nanoRNA) in a way similar to Escherichia coli Oligoribonuclease (ORN), suggesting that it plays a role in RNA turnover in mitochondria. However, how Rexo2 preferentially binds and degrades nanoRNA remains elusive. Here, we show that Rexo2 binds small RNA and DNA oligonucleotides with the highest affinity, and it is most robust in degrading small nanoRNA into mononucleotides in the presence of magnesium ions. We further determined three crystal structures of Rexo2 in complex with single-stranded RNA or DNA at resolutions of 1.8-2.2 Å. Rexo2 forms a homodimer and interacts mainly with the last two 3'-end nucleobases of substrates by hydrophobic and π-π stacking interactions via Leu53, Trp96, and Tyr164, signifying its preference in binding and degrading short oligonucleotides without sequence specificity. Crystal structure of Rexo2 is highly similar to that of the RNA-degrading enzyme ORN, revealing a two-magnesium-ion-dependent hydrolysis mechanism. This study thus provides the molecular basis for human Rexo2, showing how it binds and degrades nanoRNA into nucleoside monophosphates and plays a crucial role in RNA salvage pathways in mammalian mitochondria.
Collapse
MESH Headings
- 14-3-3 Proteins/chemistry
- 14-3-3 Proteins/genetics
- 14-3-3 Proteins/metabolism
- Binding Sites
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cations, Divalent
- Cloning, Molecular
- Crystallography, X-Ray
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Exoribonucleases/chemistry
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Gene Expression
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Hydrolysis
- Hydrophobic and Hydrophilic Interactions
- Magnesium/chemistry
- Magnesium/metabolism
- Mitochondria/chemistry
- Mitochondria/metabolism
- Mitochondrial Proteins/chemistry
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Models, Molecular
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/genetics
- Oligoribonucleotides/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Lee-Ya Chu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu, Taiwan 30013, Republic of China
| | - Sashank Agrawal
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Molecular and Cell Biology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 11490, Republic of China
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| |
Collapse
|
14
|
Lee CW, Park SH, Jeong CS, Cha SS, Park H, Lee JH. Structural basis of small RNA hydrolysis by oligoribonuclease (CpsORN) from Colwellia psychrerythraea strain 34H. Sci Rep 2019; 9:2649. [PMID: 30804410 PMCID: PMC6390093 DOI: 10.1038/s41598-019-39641-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022] Open
Abstract
Cells regulate their intracellular mRNA levels by using specific ribonucleases. Oligoribonuclease (ORN) is a 3'-5' exoribonuclease for small RNA molecules, important in RNA degradation and re-utilisation. However, there is no structural information on the ligand-binding form of ORNs. In this study, the crystal structures of oligoribonuclease from Colwellia psychrerythraea strain 34H (CpsORN) were determined in four different forms: unliganded-structure, thymidine 5'-monophosphate p-nitrophenyl ester (pNP-TMP)-bound, two separated uridine-bound, and two linked uridine (U-U)-bound forms. The crystal structures show that CpsORN is a tight dimer, with two separated active sites and one divalent metal cation ion in each active site. These structures represent several snapshots of the enzymatic reaction process, which allowed us to suggest a possible one-metal-dependent reaction mechanism for CpsORN. Moreover, the biochemical data support our suggested mechanism and identified the key residues responsible for enzymatic catalysis of CpsORN.
Collapse
Affiliation(s)
- Chang Woo Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sun-Ha Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Chang-Sook Jeong
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
15
|
The special existences: nanoRNA and nanoRNase. Microbiol Res 2017; 207:134-139. [PMID: 29458847 DOI: 10.1016/j.micres.2017.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/23/2017] [Accepted: 11/25/2017] [Indexed: 12/21/2022]
Abstract
To adapt to a wide range of nutritional and environmental changes, cells must adjust their gene expression profiles. This process is completed by the frequent transcription and rapid degradation of mRNA. mRNA decay is initiated by a series of endo- and exoribonucleases. These enzymes leave behind 2- to 5-nt-long oligoribonucleotides termed "nanoRNAs" that are degraded by specific nanoRNases; the degradation of nanoRNA is essential because nanoRNA can mediate the priming of transcription initiation that is harmful for the cell via an unknown mechanism. Identified nanoRNases include Orn in E. coli, NrnA and NrnB in B. subtilis, and NrnC in Bartonella. Even though these nanoRNases can degrade nanoRNA specifically into mononucleotides, the biochemical features, structural features and functional mechanisms of these enzymes are different. Sequence analysis has identified homologs of these nanoRNases in different bacteria, including Gammaproteobacteria, Betaproteobacteria, Alphaproteobacteria, Firmicutes and Cyanobacteria. However, there are several bacteria, such as those belonging to the class Thermolithobacteria, that do not have homologs of these nanoRNases. In this paper, the source of nanoRNA, the features of different kinds of nanoRNases and the distribution of these enzymes in prokaryotes are described in detail.
Collapse
|
16
|
Bruni F, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial nucleases. FEBS J 2017; 284:1767-1777. [PMID: 27926991 PMCID: PMC5484287 DOI: 10.1111/febs.13981] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022]
Abstract
Mitochondria are cytosolic organelles that have many essential roles including ATP production via oxidative phosphorylation, apoptosis, iron‐sulfur cluster biogenesis, heme and steroid synthesis, calcium homeostasis, and regulation of cellular redox state. One of the unique features of these organelles is the presence of an extrachromosomal mitochondrial genome (mtDNA), together with all the machinery required to replicate and transcribe mtDNA. The accurate maintenance of mitochondrial gene expression is essential for correct organellar metabolism, and is in part dependent on the levels of mtDNA and mtRNA, which are regulated by balancing synthesis against degradation. It is clear that although a number of mitochondrial nucleases have been identified, not all those responsible for the degradation of DNA or RNA have been characterized. Recent investigations, however, have revealed the contribution that mutations in the genes coding for these enzymes has made to causing pathogenic mitochondrial diseases.
Collapse
Affiliation(s)
- Francesco Bruni
- The Wellcome Trust Centre for Mitochondrial Research, The Medical School, Newcastle University, UK
| | - Robert N Lightowlers
- The Wellcome Trust Centre for Mitochondrial Research, The Medical School, Newcastle University, UK
| | | |
Collapse
|
17
|
Abstract
DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play important cellular roles in DNA repair, genetic recombination and mutation avoidance in all organisms. This article reviews the structure, biochemistry, and biological functions of the 17 exonucleases currently identified in the bacterium Escherichia coli. These include the exonucleases associated with DNA polymerases I (polA), II (polB), and III (dnaQ/mutD); Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG), and X (exoX); the RecBCD, RecJ, and RecE exonucleases; SbcCD endo/exonucleases; the DNA exonuclease activities of RNase T (rnt) and Endonuclease IV (nfo); and TatD. These enzymes are diverse in terms of substrate specificity and biochemical properties and have specialized biological roles. Most of these enzymes fall into structural families with characteristic sequence motifs, and members of many of these families can be found in all domains of life.
Collapse
|
18
|
Waldera-Lupa DM, Kalfalah F, Florea AM, Sass S, Kruse F, Rieder V, Tigges J, Fritsche E, Krutmann J, Busch H, Boerries M, Meyer HE, Boege F, Theis F, Reifenberger G, Stühler K. Proteome-wide analysis reveals an age-associated cellular phenotype of in situ aged human fibroblasts. Aging (Albany NY) 2015; 6:856-78. [PMID: 25411231 PMCID: PMC4247387 DOI: 10.18632/aging.100698] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts’ aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77% of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.
Collapse
Affiliation(s)
- Daniel M Waldera-Lupa
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Faiza Kalfalah
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Ana-Maria Florea
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Sass
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Fabian Kruse
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Vera Rieder
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Tigges
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Jean Krutmann
- Leibniz Research Institute for Environmental Medicine (IUF), Düsseldorf, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Helmut E Meyer
- Department of Biomedical Research, Leibniz-Institute for Analytical Science - ISAS, Dortmund, Germany
| | - Fritz Boege
- Institute of Clinical Chemistry and Laboratory Diagnostics, Heinrich-Heine-University, Med. Faculty, Düsseldorf, Germany
| | - Fabian Theis
- Department of Mathematics, Technical University Munich, Garching, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Heinrich-Heine-University, Düsseldorf, Germany. Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
19
|
D'Apice MR, Novelli A, di Masi A, Biancolella M, Antoccia A, Gullotta F, Licata N, Minella D, Testa B, Nardone AM, Palmieri G, Calabrese E, Biancone L, Tanzarella C, Frontali M, Sangiuolo F, Novelli G, Pallone F. Deletion of REXO1L1 locus in a patient with malabsorption syndrome, growth retardation, and dysmorphic features: a novel recognizable microdeletion syndrome? BMC MEDICAL GENETICS 2015; 16:20. [PMID: 25927938 PMCID: PMC4422118 DOI: 10.1186/s12881-015-0164-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
Background Copy number variations (CNVs) can contribute to genetic variation among individuals and/or have a significant influence in causing diseases. Many studies consider new CNVs’ effects on protein family evolution giving rise to gene duplicates or losses. “Unsuccessful” duplicates that remain in the genome as pseudogenes often exhibit functional roles. So, changes in gene and pseudogene number may contribute to development or act as susceptibility alleles of diseases. Case presentation We report a de novo heterozygous 271 Kb microdeletion at 8q21.2 region which includes the family of REXO1L genes and pseudogenes in a young man affected by global development delay, progeroid signs, and gastrointestinal anomalies. Molecular and cellular analysis showed that the REXO1L1 gene hemizygosity in a patient’s fibroblasts induces genetic instability and increased apoptosis after treatment with different DNA damage-induced agents. Conclusions The present results support the hypothesis that low copy gene number within REXO1L1 cluster could play a significant role in this complex clinical and cellular phenotype.
Collapse
Affiliation(s)
| | - Antonio Novelli
- Mendel Institute, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | | | - Michela Biancolella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | | | - Francesca Gullotta
- Department of Biology, "Roma Tre" University, Rome, Italy. .,Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | - Norma Licata
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy. .,Department of Neuroscience, Psychiatry and Anaesthesiology, University of Messina, Messina, Italy.
| | - Daniela Minella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | - Barbara Testa
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | | | | | - Emma Calabrese
- Department of Internal Medicine, Gastrointestinal Unit, Tor Vergata University of Rome, Rome, Italy.
| | - Livia Biancone
- Department of Internal Medicine, Gastrointestinal Unit, Tor Vergata University of Rome, Rome, Italy.
| | | | | | - Federica Sangiuolo
- Fondazione Policlinico Tor Vergata, Rome, Italy. .,Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | - Giuseppe Novelli
- Fondazione Policlinico Tor Vergata, Rome, Italy. .,Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy. .,San Pietro Fatebenefratelli Hospital, Rome, Italy.
| | - Francesco Pallone
- Department of Internal Medicine, Gastrointestinal Unit, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
20
|
Abstract
The Escherichia coli oligoribonuclease, ORN, has a 3′ to 5′ exonuclease activity specific for small oligomers that is essential for cell viability. The human homologue, REXO2, has hitherto been incompletely characterized, with only its in vitro ability to degrade small single-stranded RNA and DNA fragments documented. Here we show that the human enzyme has clear dual cellular localization being present both in cytosolic and mitochondrial fractions. Interestingly, the mitochondrial form localizes to both the intermembrane space and the matrix. Depletion of REXO2 by RNA interference causes a strong morphological phenotype in human cells, which show a disorganized network of punctate and granular mitochondria. Lack of REXO2 protein also causes a substantial decrease of mitochondrial nucleic acid content and impaired de novo mitochondrial protein synthesis. Our data constitute the first in vivo evidence for an oligoribonuclease activity in human mitochondria.
Collapse
|
21
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
22
|
Xie Z. PROG BIOCHEM BIOPHYS 2013; 39:1174-1177. [DOI: 10.3724/sp.j.1206.2012.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
Abstract
The central dogma states that DNA is transcribed to generate RNA and that the mRNA components are then translated to generate proteins; a simple statement that completely belies the complexities of gene expression. Post-transcriptional regulation alone has many points of control, including changes in the stability, translatability or susceptibility to degradation of RNA species, where both cis- and trans-acting elements will play a role in the outcome. The present review concentrates on just one aspect of this complicated process, which ultimately regulates the protein production in cells, or more specifically what governs RNA catabolism in a particular subcompartment of human cells: the mitochondrion.
Collapse
|
24
|
Abstract
Mammalian mitochondria contain their own genome that encodes mRNAs for thirteen essential subunits of the complexes performing oxidative phosphorylation as well as the RNA components (two rRNAs and 22 tRNAs) needed for their translation in mitochondria. All RNA species are produced from single polycistronic precursor RNAs, yet the relative concentrations of various RNAs differ significantly. This underscores the essential role of post-transcriptional mechanisms that control the maturation, stability and translation of mitochondrial RNAs. The present review provides a detailed summary on the role of RNA maturation in the regulation of mitochondrial gene expression, focusing mainly on messenger RNA polyadenylation and stability control. Furthermore, the role of mitochondrial ribosomal RNA stability, processing and modifications in the biogenesis of the mitochondrial ribosome is discussed.
Collapse
|
25
|
Structure and Degradation Mechanisms of 3′ to 5′ Exoribonucleases. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2011. [DOI: 10.1007/978-3-642-21078-5_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Sadikovic B, Wang J, El-Hattab AW, Landsverk M, Douglas G, Brundage EK, Craigen WJ, Schmitt ES, Wong LJC. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes. PLoS One 2010; 5:e15687. [PMID: 21187929 PMCID: PMC3004954 DOI: 10.1371/journal.pone.0015687] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/22/2010] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old) showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (<6 years old) carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.
Collapse
Affiliation(s)
- Bekim Sadikovic
- Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wakamatsu T, Kim K, Uemura Y, Nakagawa N, Kuramitsu S, Masui R. Role of RecJ-like protein with 5'-3' exonuclease activity in oligo(deoxy)nucleotide degradation. J Biol Chem 2010; 286:2807-16. [PMID: 21087930 DOI: 10.1074/jbc.m110.161596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecJ-like proteins belonging to the DHH family have been proposed to function as oligoribonucleases and 3'-phosphoadenosine 5'-phosphate (pAp) phosphatases in bacteria and archaea, which do not have Orn (oligoribonuclease) and CysQ (pAp phosphatase) homologs. In this study, we analyzed the biochemical and physiological characterization of the RecJ-like protein TTHA0118 from Thermus thermophilus HB8. TTHA0118 had high enzymatic activity as an oligodeoxyribonucleotide- and oligoribonucleotide-specific exonuclease and as pAp phosphatase. The polarity of degradation was 5' to 3', in contrast to previous reports about Bacillus subtilis NrnA, a RecJ-like protein. TTHA0118 preferentially hydrolyzed short oligodeoxyribonucleotides and oligoribonucleotides, whereas the RecJ exonuclease from T. thermophilus HB8 showed no such length dependence on oligodeoxyribonucleotide substrates. An insertion mutation of the ttha0118 gene led to growth reduction in minimum essential medium. Added 5'-mononucleotides, nucleosides, and cysteine increased growth of the ttha0118 mutant in minimum essential medium. The RecJ-like protein Mpn140 from Mycoplasma pneumoniae M129, which cannot synthesize nucleic acid precursors de novo, showed similar biochemical features to TTHA0118. Furthermore, B. subtilis NrnA also hydrolyzed oligo(deoxy)ribonucleotides in a 5'-3' direction. These results suggested that these RecJ-like proteins act in recycling short oligonucleotides to mononucleotides and in controlling pAp concentrations in vivo.
Collapse
Affiliation(s)
- Taisuke Wakamatsu
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
28
|
DMR1 (CCM1/YGR150C) of Saccharomyces cerevisiae encodes an RNA-binding protein from the pentatricopeptide repeat family required for the maintenance of the mitochondrial 15S ribosomal RNA. Genetics 2010; 184:959-73. [PMID: 20124025 DOI: 10.1534/genetics.110.113969] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins form the largest known RNA-binding protein family and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly in mitochondria and chloroplasts, where they modulate organellar genome expression on the post-transcriptional level. The Saccharomyces cerevisiae DMR1 (CCM1, YGR150C) encodes a PPR protein that localizes to mitochondria. Deletion of DMR1 results in a complete and irreversible loss of respiratory capacity and loss of wild-type mtDNA by conversion to rho(-)/rho(0) petites, regardless of the presence of introns in mtDNA. The phenotype of the dmr1Delta mitochondria is characterized by fragmentation of the small subunit mitochondrial rRNA (15S rRNA), that can be reversed by wild-type Dmr1p. Other mitochondrial transcripts, including the large subunit mitochondrial rRNA (21S rRNA), are not affected by the lack of Dmr1p. The purified Dmr1 protein specifically binds to different regions of 15S rRNA in vitro, consistent with the deletion phenotype. Dmr1p is therefore the first yeast PPR protein, which has an rRNA target and is probably involved in the biogenesis of mitochondrial ribosomes and translation.
Collapse
|
29
|
Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM. The role of 3'-5' exoribonucleases in RNA degradation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:187-229. [PMID: 19215773 DOI: 10.1016/s0079-6603(08)00805-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA degradation is a major process controlling RNA levels and plays a central role in cell metabolism. From the labile messenger RNA to the more stable noncoding RNAs (mostly rRNA and tRNA, but also the expanding class of small regulatory RNAs) all molecules are eventually degraded. Elimination of superfluous transcripts includes RNAs whose expression is no longer required, but also the removal of defective RNAs. Consequently, RNA degradation is an inherent step in RNA quality control mechanisms. Furthermore, it contributes to the recycling of the nucleotide pool in the cell. Escherichia coli has eight 3'-5' exoribonucleases, which are involved in multiple RNA metabolic pathways. However, only four exoribonucleases appear to accomplish all RNA degradative activities: polynucleotide phosphorylase (PNPase), ribonuclease II (RNase II), RNase R, and oligoribonuclease. Here, we summarize the available information on the role of bacterial 3'-5' exoribonucleases in the degradation of different substrates, highlighting the most recent data that have contributed to the understanding of the diverse modes of operation of these degradative enzymes.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Qeiras, Portugal
| | | | | | | | | |
Collapse
|
30
|
Piwowarski J, Dziembowski A, Dmochowska A, Minczuk M, Tomecki R, Gewartowski K, Stepien PP. RNA Degradation in Yeast and Human Mitochondria. Toxicol Mech Methods 2008; 14:53-7. [DOI: 10.1080/15376520490257473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Abstract
Mitochondrial DNA (mtDNA) deletions are a primary cause of mitochondrial disease and are likely to have a central role in the aging of postmitotic tissues. Understanding the mechanism of the formation and subsequent clonal expansion of these mtDNA deletions is an essential first step in trying to prevent their occurrence. We review the previous literature and recent results from our own laboratories, and conclude that mtDNA deletions are most likely to occur during repair of damaged mtDNA rather than during replication. This conclusion has important implications for prevention of mtDNA disease and, potentially, for our understanding of the aging process.
Collapse
|
32
|
Hydrolysis of the 5'-p-nitrophenyl ester of TMP by oligoribonucleases (ORN) from Escherichia coli, Mycobacterium smegmatis, and human. Protein Expr Purif 2007; 57:180-7. [PMID: 18023590 DOI: 10.1016/j.pep.2007.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/20/2007] [Accepted: 10/06/2007] [Indexed: 11/22/2022]
Abstract
Escherichia coli oligoribonuclease (EcoORN), encoded by the orn gene, is a 3'-5' exonuclease that degrades short single-stranded oligoribonucleotides to rNMPs in the final step of RNA degradation. The orn gene is essential in E. coli, but not in higher organisms, and close homologues are present in other genomes from the beta and gamma subdivisions of the Protobacteriaceae, including many pathogenic species. We report here the expression in E. coli of orn and homologues from Mycobacterium smegmatis and human, and large-scale purification of the three enzymes. All three were found to promote the hydrolysis of the 5'-p-nitrophenyl ester of TMP (pNP-TMP) with similar values of Michaelis-Menten parameters (k(cat)=100-650 min(-1), K(M)=0.4-2.0 mM, at pH 8.00 and 25 degrees C, with 1 mM Mn(2+)). Hydrolysis by pNP-TMP by all three enzymes depended on a divalent metal ion, with Mn(2+) being preferred over Mg(2+) as cofactor, and was inhibited by Ni(2+). The concentration dependency of Mn(2+) was examined, giving K(Mn) values of 0.2-0.6 mM. The availability of large amounts of the purified enzymes and a simple spectrophotometric assay for ORN activity should facilitate large-scale screening for new inhibitors of bacterial oligoribonucleases.
Collapse
|
33
|
Ito S, Kita K, Zhal L, Wano C, Suzuki T, Yamaura A, Suzuki N. Involvement of Human Small Fragment Nuclease in the Resistance of Human Cells to UV-C-induced Cell Death¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2004.tb00084.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Gene function in early mouse embryonic stem cell differentiation. BMC Genomics 2007; 8:85. [PMID: 17394647 PMCID: PMC1851713 DOI: 10.1186/1471-2164-8-85] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 03/29/2007] [Indexed: 12/20/2022] Open
Abstract
Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database.
Collapse
|
35
|
Vallée M, Robert C, Méthot S, Palin MF, Sirard MA. Cross-species hybridizations on a multi-species cDNA microarray to identify evolutionarily conserved genes expressed in oocytes. BMC Genomics 2006; 7:113. [PMID: 16686947 PMCID: PMC1475851 DOI: 10.1186/1471-2164-7-113] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 05/10/2006] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Comparative genomic analysis using cDNA microarray is a new approach and a useful tool to identify important genetic sequences or genes that are conserved throughout evolution. Identification of these conserved sequences will help elucidate important molecular mechanisms or pathways common to many species. For example, the stockpiled transcripts in the oocyte necessary for successful fertilization and early embryonic development still remain relatively unknown. The objective of this study was to identify genes expressed in oocytes and conserved in three evolutionarily distant species. RESULTS In this study we report the construction of a multi-species cDNA microarray containing 3,456 transcripts from three distinct oocyte-libraries from bovine, mouse and Xenopus laevis. Following the cross-species hybridizations, data analysis revealed that 1,541 positive hybridization signals were generated by oocytes of all three species, and 268 of these are preferentially expressed in the oocyte. Data reproducibility analyses comparing same-species to cross-species hybridization indicates that cross-species hybridizations are highly reproducible, thus increasing the confidence level in their specificity. A validation by RT-PCR using gene- and species-specific primers confirmed that cross-species hybridization allows the production of specific and reliable data. Finally, a second validation step through gene-specific microarray hybridizations further supported the validity of our cross-species microarray results. Results from these cross-species hybridizations on our multi-species cDNA microarray revealed that SMFN (Small fragment nuclease), Spin (Spindlin), and PRMT1 (Protein arginine methyltransferase 1) are transcripts present in oocytes and conserved in three evolutionarily distant species. CONCLUSION Cross-species hybridization using a multi-species cDNA microarray is a powerful tool for the discovery of genes involved in evolutionarily conserved molecular mechanisms. The present study identified conserved genes in the oocytes of three distant species that will help understand the unique role of maternal transcripts in early embryonic development.
Collapse
Affiliation(s)
- Maud Vallée
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, G1K 7P4, Canada
| | - Claude Robert
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, G1K 7P4, Canada
| | - Steve Méthot
- Dairy and Swine Research and Development Center, Agriculture and Agri-Food Canada, Lennoxville, Québec, J1M 1Z3, Canada
| | - Marie-France Palin
- Dairy and Swine Research and Development Center, Agriculture and Agri-Food Canada, Lennoxville, Québec, J1M 1Z3, Canada
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, G1K 7P4, Canada
| |
Collapse
|
36
|
Mechold U, Ogryzko V, Ngo S, Danchin A. Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Res 2006; 34:2364-73. [PMID: 16682444 PMCID: PMC1458514 DOI: 10.1093/nar/gkl247] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified Oligoribonuclease (Orn), an essential Escherichia coli protein and the only exonuclease degrading small ribonucleotides (5mer to 2mer) and its human homologue, small fragment nuclease (Sfn), in a screen for proteins that are potentially regulated by 3′-phosphoadenosine 5′-phosphate (pAp). We show that both enzymes are sensitive to micromolar amounts of pAp in vitro. We also demonstrate that Orn can degrade short DNA oligos in addition to its activity on RNA oligos, similar to what was documented for Sfn. pAp was shown to accumulate as a result of inhibition of the pAp-degrading enzyme by lithium, widely used to treat bipolar disorder, thus its regulatory targets are of significant medical interest. CysQ, the E.coli pAp-phosphatase is strongly inhibited by lithium and calcium in vitro and is a main target of lithium toxicity in vivo. Our findings point to remarkable conservation of the connection between sulfur- and RNA metabolism between E.coli and humans.
Collapse
Affiliation(s)
- Undine Mechold
- Institut Pasteur, URA 2171, Unite de Génétique des Génomes Bactériens, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
37
|
Rogowska AT, Puchta O, Czarnecka AM, Kaniak A, Stepien PP, Golik P. Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation. Mol Biol Cell 2005; 17:1184-93. [PMID: 16371505 PMCID: PMC1382308 DOI: 10.1091/mbc.e05-08-0796] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae SUV3 gene encodes the helicase component of the mitochondrial degradosome (mtEXO), the principal 3'-to-5' exoribonuclease of yeast mitochondria responsible for RNA turnover and surveillance. Inactivation of SUV3 (suv3Delta) causes multiple defects related to overaccumulation of aberrant transcripts and precursors, leading to a disruption of mitochondrial gene expression and loss of respiratory function. We isolated spontaneous suppressors that partially restore mitochondrial function in suv3Delta strains devoid of mitochondrial introns and found that they correspond to partial loss-of-function mutations in genes encoding the two subunits of the mitochondrial RNA polymerase (Rpo41p and Mtf1p) that severely reduce the transcription rate in mitochondria. These results show that reducing the transcription rate rescues defects in RNA turnover and demonstrates directly the vital importance of maintaining the balance between RNA synthesis and degradation.
Collapse
Affiliation(s)
- Agata T Rogowska
- Department of Genetics, Warsaw University, 02-106 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Zuo Y, Wang Y, Malhotra A. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Structure 2005; 13:973-84. [PMID: 16004870 DOI: 10.1016/j.str.2005.04.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 04/23/2005] [Accepted: 04/23/2005] [Indexed: 11/29/2022]
Abstract
RNase D (RND) is one of seven exoribonucleases identified in Escherichia coli. RNase D has homologs in many eubacteria and eukaryotes, and has been shown to contribute to the 3' maturation of several stable RNAs. Here, we report the 1.6 A resolution crystal structure of E. coli RNase D. The conserved DEDD residues of RNase D fold into an arrangement very similar to the Klenow fragment exonuclease domain. Besides the catalytic domain, RNase D also contains two structurally similar alpha-helical domains with no discernible sequence homology between them. These closely resemble the HRDC domain previously seen in RecQ-family helicases and several other proteins acting on nucleic acids. More interestingly, the DEDD catalytic domain and the two helical domains come together to form a ring-shaped structure. The ring-shaped architecture of E. coli RNase D and the HRDC domains likely play a major role in determining the substrate specificity of this exoribonuclease.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101, USA
| | | | | |
Collapse
|
39
|
Zhang XX, Lilley AK, Bailey MJ, Rainey PB. Functional and phylogenetic analysis of a plant-inducible oligoribonuclease (orn) gene from an indigenous Pseudomonas plasmid. Microbiology (Reading) 2004; 150:2889-2898. [PMID: 15347748 DOI: 10.1099/mic.0.27250-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Application of a promoter-trapping strategy to identify plant-inducible genes carried on an indigenousPseudomonasplasmid, pQBR103, revealed the presence of a putative oligoribonuclease (orn) gene that encodes a highly conserved 3′ to 5′ exoribonuclease specific for small oligoribonucleotides. The deduced amino acid sequence of the plasmid-derivedorn(ornpl) showed three conserved motifs characteristic of Orn from both prokaryotes and eukaryotes. Deletion ofornplgenerated no observable phenotype, but inactivation of the chromosomal copy caused slow growth inPseudomonas putidaKT2440. This defect was fully restored by complementation withornfromEscherichia coli(ornE.coli). Plasmid-derivedornplwas capable of partially complementing theP. putida ornmutant, demonstrating functionality ofornpl. Phylogenetic analysis showed that plasmid-encoded Orn was distinct from Orn encoded by the chromosome of proteobacteria. A survey ofornplfrom relatedPseudomonasplasmids showed a sporadic distribution but no sequence diversity. These data suggest that theornplwas acquired by pQBR103 in a single gene-transfer event: the donor is unknown, but is unlikely to be a member of theProteobacteria.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- Centre for Ecology and Hydrology NERC, Mansfield Road, Oxford OX1 3SR, UK
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Andrew K Lilley
- Centre for Ecology and Hydrology NERC, Mansfield Road, Oxford OX1 3SR, UK
| | - Mark J Bailey
- Centre for Ecology and Hydrology NERC, Mansfield Road, Oxford OX1 3SR, UK
| | - Paul B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
40
|
Mueller JC, Andreoli C, Prokisch H, Meitinger T. Mechanisms for multiple intracellular localization of human mitochondrial proteins. Mitochondrion 2004; 3:315-25. [PMID: 16120363 DOI: 10.1016/j.mito.2004.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 09/13/2003] [Accepted: 02/05/2004] [Indexed: 11/25/2022]
Abstract
There is an increasing number of reports that some single gene products function in more than one cellular compartment. This review lists and categorizes the targeting mechanisms of 31 human mitochondrial proteins that have multiple localizations. Further, genetic disorders based on mislocalization are described, and prediction algorithms for multi-localized proteins are proposed. A high diversity of experimentally verified targeting mechanisms ranging from single protein to multi-protein mechanisms exists, with a combination of multiple transcription starting points and alternative splicing being the most frequent. This observation stresses the individuality of the evolutionary histories of such mechanisms. We did not find specific localization strategies to cluster with certain protein functions. There was also no bias with respect to the evolutionary origin of the multi-compartmentalized mitochondrial proteins. Both, genes of bacterial and eukaryotic origin show multiple localization, which does not corroborate the hypothesis that the development of multiple targeting is coupled predominantly with the recruitment of nuclear eukaryotic genes for novel mitochondrial functions.
Collapse
Affiliation(s)
- Jakob Christian Mueller
- Institute of Human Genetics, GSF--National Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | | | | | |
Collapse
|
41
|
Ito S, Kita K, Zhai L, Wano C, Suzuki T, Yamaura A, Suzuki N. Involvement of Human Small Fragment Nuclease in the Resistance of Human Cells to UV-C–induced Cell Death¶. Photochem Photobiol 2004. [DOI: 10.1562/2004-01-21-ra-051.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
42
|
Zuo Y, Deutscher MP. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 2001; 29:1017-26. [PMID: 11222749 PMCID: PMC56904 DOI: 10.1093/nar/29.5.1017] [Citation(s) in RCA: 397] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exoribonucleases play an important role in all aspects of RNA metabolism. Biochemical and genetic analyses in recent years have identified many new RNases and it is now clear that a single cell can contain multiple enzymes of this class. Here, we analyze the structure and phylogenetic distribution of the known exoribonucleases. Based on extensive sequence analysis and on their catalytic properties, all of the exoribonucleases and their homologs have been grouped into six superfamilies and various subfamilies. We identify common motifs that can be used to characterize newly-discovered exoribonucleases, and based on these motifs we correct some previously misassigned proteins. This analysis may serve as a useful first step for developing a nomenclature for this group of enzymes.
Collapse
Affiliation(s)
- Y Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, PO Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|