1
|
Soboleva S, Åkerstrand H, Miharada K. Transcriptomic analysis of functional diversity of human umbilical cord blood hematopoietic stem/progenitor cells in erythroid differentiation. Int J Hematol 2022; 115:481-488. [PMID: 35088351 DOI: 10.1007/s12185-022-03292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSC) give rise to all types of blood lineages, including red blood cells (RBC). Hematopoietic stem/progenitor cells (HSPC) are known to be functionally diverse in terms of their self-renewal potential and lineage output. Consequently, investigation of molecular heterogeneity in the differentiation potential of HSPC is vital to identify novel regulators that affect generation of specific cell types, especially RBC. Here, we compared the erythroid potential of CD34+ hematopoietic stem and progenitor cells from 50 different umbilical cord blood (UCB) donors and discovered that those donors gave rise to diverse frequencies of Glycophorin-A+ erythroid cells after in vitro differentiation, despite having similar frequencies of phenotypic HSC initially. RNA sequencing revealed that genes involved in G protein-coupled receptor (GPCR) signaling were significantly up-regulated in the high-erythroid output donors. When we chemically modified two main signaling elements in this pathway, adenylyl cyclase (AC) and phosphodiesterase (PDE), we observed that inhibition of PDE led to 10 times higher yield of Glycophorin-A+ cells than activation of AC. Our findings suggest that GPCR signaling, and particularly the cAMP-related pathway, contributes to the diversity of erythroid potential among UCB donors.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hugo Åkerstrand
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Pallaki P, Georganta EM, Serafimidis I, Papakonstantinou MP, Papanikolaou V, Koutloglou S, Papadimitriou E, Agalou A, Tserga A, Simeonof A, Thomaidou D, Gaitanou M, Georgoussi Z. A novel regulatory role of RGS4 in STAT5B activation, neurite outgrowth and neuronal differentiation. Neuropharmacology 2017; 117:408-421. [PMID: 28219718 DOI: 10.1016/j.neuropharm.2017.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/01/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
The Regulator of G protein Signalling 4 (RGS4) is a multitask protein that interacts with and negatively modulates opioid receptor signalling. Previously, we showed that the δ-opioid receptor (δ-OR) forms a multiprotein signalling complex consisting of Gi/Go proteins and the Signal Transducer and Activator of Transcription 5B (STAT5B) that leads to neuronal differentiation and neurite outgrowth upon δ-ΟR activation. Here, we investigated whether RGS4 could participate in signalling pathways to regulate neurotropic events. We demonstrate that RGS4 interacts directly with STAT5B independently of δ-ΟR presence both in vitro and in living cells. This interaction involves the N-terminal portion of RGS4 and the DNA-binding SH3 domain of STAT5B. Expression of RGS4 in HEK293 cells expressing δ-OR and/or erythropoietin receptor results in inhibition of [D-Ser2, Leu5, Thr6]-enkephalin (DSLET)-and erythropoietin-dependent STAT5B phosphorylation and subsequent transcriptional activation. DSLET-dependent neurite outgrowth of neuroblastoma cells is also blocked by RGS4 expression, whereas primary cortical cultures of RGS4 knockout mice (RGS4-/-) exhibit enhanced neuronal sprouting after δ-OR activation. Additional studies in adult brain extracts from RGS4-/- mice revealed increased levels of p-STAT5B. Finally, neuronal progenitor cultures from RGS4-/- mice exhibit enhanced proliferation with concomitant increases in the mRNA levels of the anti-apoptotic STAT5B target genes bcl2 and bcl-xl. These observations suggest that RGS4 is implicated in opioid dependent neuronal differentiation and neurite outgrowth via a "non-canonical" signaling pathway regulating STAT5B-directed responses.
Collapse
Affiliation(s)
- Paschalina Pallaki
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Eirini-Maria Georganta
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Ioannis Serafimidis
- Laboratory of Developmental Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria-Pagona Papakonstantinou
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Vassilis Papanikolaou
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Sofia Koutloglou
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Elsa Papadimitriou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Adamantia Agalou
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Aggeliki Tserga
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Alexandra Simeonof
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece
| | - Dimitra Thomaidou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research «Demokritos», 15310 Athens, Greece.
| |
Collapse
|
3
|
Rebois RV, Hébert TE. Protein Complexes Involved in Heptahelical Receptor-Mediated Signal Transduction. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Marty C, Ye RD. Heterotrimeric G protein signaling outside the realm of seven transmembrane domain receptors. Mol Pharmacol 2010; 78:12-8. [PMID: 20404072 DOI: 10.1124/mol.110.063453] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G proteins, consisting of the guanine nucleotide-binding Galpha subunits with GTPase activity and the closely associated Gbeta and Ggamma subunits, are important signaling components for receptors with seven transmembrane domains (7TMRs). These receptors, also termed G protein-coupled receptors (GPCRs), act as guanine nucleotide exchange factors upon agonist stimulation. There is now accumulating evidence for noncanonical functions of heterotrimeric G proteins independent of 7TMR coupling. Galpha proteins belonging to all 4 subfamilies, including G(s), G(i), G(q), and G(12) are found to play important roles in receptor tyrosine kinase signaling, regulation of oxidant production, development, and cell migration, through physical and functional interaction with proteins other than 7TMRs. Association of Galpha with non-7TMR proteins also facilitates presentation of these G proteins to specific cellular microdomains. This Minireview aims to summarize our current understanding of the noncanonical roles of Galpha proteins in cell signaling and to discuss unresolved issues including regulation of Galpha activation by proteins other than the 7TMRs.
Collapse
Affiliation(s)
- Caroline Marty
- Institut National de la Santé et de la Recherche Médicale, Université Paris XI, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
5
|
Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ. The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 2008; 67:39-61. [PMID: 18434185 DOI: 10.1016/j.critrevonc.2008.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/25/2008] [Accepted: 03/19/2008] [Indexed: 01/27/2023] Open
Abstract
The hormone erythropoietin (EPO) is essential for the survival, proliferation and differentiation of the erythrocytic progenitors. The EPO receptor (EPO-R) of erythrocytic cells belongs to the cytokine class I receptor family and signals through various protein kinases and STAT transcription factors. The EPO-R is also expressed in many organs outside the bone marrow, suggesting that EPO is a pleiotropic anti-apoptotic factor. The controversial issue as to whether the EPO-R is functional in tumor tissue is critically reviewed. Importantly, most studies of EPO-R detection in tumor tissue have provided falsely positive results because of the lack of EPO-R specific antibodies. However, endogenous EPO appears to be necessary to maintain the viability of endothelial cells and to promote tumor angiogenesis. Although there is no clinical proof that the administration of erythropoiesis stimulating agents (ESAs) promotes tumor growth and mortality, present recommendations are that (i) ESAs should be administered at the lowest dose sufficient to avoid the need for red blood cell transfusions, (ii) ESAs should not be used in patients with active malignant disease not receiving chemotherapy or radiotherapy, (iii) ESAs should be discontinued following the completion of a chemotherapy course, (iv) the target Hb should be 12 g/dL and not higher and (v) the risks of shortened survival and tumor progression have not been excluded when ESAs are dosed to target Hb <12 g/dL.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | |
Collapse
|
6
|
Bailey L, Kuroyanagi Y, Franco-Penteado CF, Conran N, Costa FF, Ausenda S, Cappellini MD, Ikuta T. Expression of the gamma-globin gene is sustained by the cAMP-dependent pathway in beta-thalassaemia. Br J Haematol 2007; 138:382-95. [PMID: 17614826 DOI: 10.1111/j.1365-2141.2007.06673.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study found that the cyclic adenosine monophosphate (cAMP)-dependent pathway efficiently induced gamma-globin expression in adult erythroblasts, and this pathway plays a role in gamma-globin gene (HBG) expression in beta-thalassaemia. Expression of HBG mRNA increased to about 46% of non-HBA mRNA in adult erythroblasts treated with forskolin, while a cyclic guanosine monophosphate (cGMP) analogue induced HBG mRNA to levels <20% of non-HBA mRNA. In patients with beta-thalassaemia intermedia, cAMP levels were elevated in both red blood cells and nucleated erythroblasts but no consistent elevation was found with cGMP levels. The transcription factor cAMP response element binding protein (CREB) was phosphorylated in nucleated erythroblasts and its phosphorylation levels correlated with HBG mRNA levels of the patients. Other signalling molecules, such as mitogen-activated protein kinases and signal transducers and activators of transcription proteins, were phosphorylated at variable levels and showed no correlations with the HBG mRNA levels. Plasma levels of cytokines, such as erythropoietin, stem cell factor and transforming growth factor-beta were increased in patients, and these cytokines induced both HBG mRNA expression and CREB phosphorylation. These results demonstrate that the cAMP-dependent pathway, the activity of which is augmented by multiple cytokines, plays a role in regulating HBG expression in beta-thalassaemia.
Collapse
Affiliation(s)
- Lakiea Bailey
- Department of Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Körbel S, Büchse T, Prietzsch H, Sasse T, Schümann M, Krause E, Brock J, Bittorf T. Phosphoprotein profiling of erythropoietin receptor- dependent pathways using different proteomic strategies. Proteomics 2005; 5:91-100. [PMID: 15672454 DOI: 10.1002/pmic.200400883] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteomic techniques provide new tools for the global analysis of protein profiles but also for the investigation of specific protein functions. The analysis of signaling cascades has traditionally been performed by the determination of enzymatic or transcription factor activities representing a certain pathway. Functional proteomics now allows more comprehensive approaches to study cellular responses induced during ligand/receptor interactions. In this study we evaluated proteomic strategies for the investigation of structure-function relationships in the erythropoietin receptor signalling complex. After expression of epidermal growth factor/erythropoietin receptor mutant molecules in an identical cellular background we characterized their potential to induce cellular activities. Using this system we focused our efforts on post-translational modifications of signalling proteins reflecting a substantial part of receptor-dependent signaling events. Although tyrosine phosphorylated proteins were enriched by immunoprecipitation the analysis using the classical approach combining two-dimensional gel electrophoresis and identification by matrix assisted laser desorption/ionization-time of flight-mass spectrometry revealed that low expressed signaling proteins cannot be detected by this technique. An alternative strategy using one-dimensional gel separation of phosphoproteins and liquid chromatography-tandem mass spectrometry, however, allowed us to identify multiple proteins involved in intracellular signalling representing already established pathways but also proteins which have not been linked to EPO-induced signaling so far. This approach offers the potential to extend functional proteomic studies to complex signaling processes.
Collapse
Affiliation(s)
- Sandra Körbel
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, D-18057 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Waters C, Pyne S, Pyne NJ. The role of G-protein coupled receptors and associated proteins in receptor tyrosine kinase signal transduction. Semin Cell Dev Biol 2004; 15:309-23. [PMID: 15125894 DOI: 10.1016/j.semcdb.2003.12.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that stimulation of G-protein coupled receptors (GPCRs) can activate signalling from receptor tyrosine kinases by a process termed transactivation. Indeed, in recent years, it has become apparent that transactivation is a general phenomenon that has been demonstrated for many unrelated GPCRs and receptor tyrosine kinases. In this case the GPCR/G-protein participation is up-stream of the receptor tyrosine kinase. Substantial research has addressed these findings but meanwhile another mechanism of cross talk has been slowly emerging. For over a decade, a growing body of evidence has demonstrated that numerous growth factors use G-proteins and attendant signalling molecules such as beta-arrestins that participate down-stream of the receptor tyrosine kinase to signal to effectors, such as p42/p44 MAPK. This review highlights this novel mechanism of cross talk between receptor tyrosine kinases and GPCRs, which is distinct from growth factor receptor transactivation by GPCRs.
Collapse
Affiliation(s)
- Catherine Waters
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, Scotland, UK
| | | | | |
Collapse
|
9
|
PI3 kinase is important for Ras, MEK and Erk activation of Epo-stimulated human erythroid progenitors. BMC Biol 2004; 2:7. [PMID: 15149544 PMCID: PMC419721 DOI: 10.1186/1741-7007-2-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 05/18/2004] [Indexed: 12/31/2022] Open
Abstract
Background Erythropoietin is a multifunctional cytokine which regulates the number of erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs) with erythropoietin (Epo) leads to the activation of the mitogenic kinases (MEKs and Erks). How this is accomplished mechanistically remained unclear. Results Biochemical studies with human cord blood-derived PEPs now show that Ras and the class Ib enzyme of the phosphatidylinositol-3 kinase (PI3K) family, PI3K gamma, are activated in response to minimal Epo concentrations. Surprisingly, three structurally different PI3K inhibitors block Ras, MEK and Erk activation in PEPs by Epo. Furthermore, Erk activation in PEPs is insensitive to the inhibition of Raf kinases but suppressed upon PKC inhibition. In contrast, Erk activation induced by stem cell factor, which activates c-Kit in the same cells, is sensitive to Raf inhibition and insensitive to PI3K and PKC inhibitors. Conclusions These unexpected findings contrast with previous results in human primary cells using Epo at supraphysiological concentrations and open new doors to eventually understanding how low Epo concentrations mediate the moderate proliferation of erythroid progenitors under homeostatic blood oxygen levels. They indicate that the basal activation of MEKs and Erks in PEPs by minimal concentrations of Epo does not occur through the classical cascade Shc/Grb2/Sos/Ras/Raf/MEK/Erk. Instead, MEKs and Erks are signal mediators of PI3K, probably the recently described PI3K gamma, through a Raf-independent signaling pathway which requires PKC activity. It is likely that higher concentrations of Epo that are induced by hypoxia, for example, following blood loss, lead to additional mitogenic signals which greatly accelerate erythroid progenitor proliferation.
Collapse
|
10
|
Abstract
The role of cyclic AMP (cAMP) as second messenger in erythropoiesis has been suggested in the early 1980s. However, careful analysis showed that cAMP is not generated in direct response to the main erythropoiesis-controlling cytokines such as erythropoietin (Epo). As a result, cAMP disappeared from the central stage in research of erythropoiesis. Instead, other signal transduction pathways, including the Ras/extracellular regulated kinase (ERK)-pathway, the phosphatidylinositol 3-kinase (P13K) and the signal transducer and activator of transcription (STAT5)-pathways, have been found and explored. In concert, these signaling pathways control the transcriptional machinery of erythroid cells. Although cAMP is not directly generated in response to Epo stimulation, it has recently been demonstrated that increased cAMP-levels and in particular the cAMP-dependent protein kinase A (PKA) can modulate erythroid signal transduction pathways. In some cases, like the ERK-signaling pathway, PKA affects signal transduction by regulating the balance between specific phosphatases and kinases. In other cases, such as the STAT5 pathway, PKA enhances Epo signaling by inducing recruitment of additional co-regulators of transcription. In addition to STAT5, PKA also activates other transcription factors that are required for erythroid gene expression. This review discusses the impact of cAMP/PKA on Epo-mediated signaling pathways and summarizes the role of cAMP in malignant erythropoiesis.
Collapse
Affiliation(s)
- Arjen-Kars Boer
- Division of Hematology, Department of Medicine, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | |
Collapse
|
11
|
Orr AW, Pedraza CE, Pallero MA, Elzie CA, Goicoechea S, Strickland DK, Murphy-Ullrich JE. Low density lipoprotein receptor-related protein is a calreticulin coreceptor that signals focal adhesion disassembly. J Cell Biol 2003; 161:1179-89. [PMID: 12821648 PMCID: PMC2172996 DOI: 10.1083/jcb.200302069] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombospondin (TSP) signals focal adhesion disassembly (the intermediate adhesive state) through interactions with cell surface calreticulin (CRT). TSP or a peptide (hep I) of the active site induces focal adhesion disassembly through binding to CRT, which activates phosphoinositide 3-kinase (PI3K) and extracellular signal-related kinase (ERK) through Galphai2 proteins. Because CRT is not a transmembrane protein, it is likely that CRT signals as part of a coreceptor complex. We now show that low density lipoprotein receptor-related protein (LRP) mediates focal adhesion disassembly initiated by TSP binding to CRT. LRP antagonists (antibodies, receptor-associated protein) block hep I/TSP-induced focal adhesion disassembly. LRP is necessary for TSP/hep I signaling because TSP/hep I is unable to stimulate focal adhesion disassembly or ERK or PI3K signaling in fibroblasts deficient in LRP. LRP is important in TSP-CRT signaling, as shown by the ability of hep I to stimulate association of Galphai2 with LRP. The isolated proteins LRP and CRT interact, and LRP and CRT are associated with hep I in molecular complexes extracted from cells. These data establish a mechanism of cell surface CRT signaling through its coreceptor, LRP, and suggest a novel function for LRP in regulating cell adhesion.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Division of Molecular and Cellular Pathology and The Cell Adhesion and Matrix Research Center, University of Alabama at Birmingham, VH 668 1530, 3rd Ave. South, Birmingham, AL 35294-0019, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Brand E, Wang JG, Herrmann SM, Staessen JA. An epidemiological study of blood pressure and metabolic phenotypes in relation to the Gbeta3 C825T polymorphism. J Hypertens 2003; 21:729-37. [PMID: 12658019 DOI: 10.1097/00004872-200304000-00016] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The 825T allele of the G-protein beta(3)-subunit gene is associated with increased intracellular signalling and adipogenesis in experimental studies. We studied the C825T polymorphism in relation to blood pressure, obesity and intermediate phenotypes in a Caucasian population. METHODS We genotyped 737 men and 775 women (participation rate, 64.3%) enrolled in a Belgian population study. Dichotomous phenotypes were tested for association with the C825T polymorphism by Fisher's exact test and multiple logistic regression. For continuous traits, we used analysis of covariance and generalized estimating equations. RESULTS The T allele (39.7 versus 29.1%) and TT genotype (16.1 versus 7.7%) were more prevalent in obese men than in non-obese men (P < or = 0.01). TT homozygous men, compared with C allele carriers, had higher daytime ambulatory blood pressure (mean systolic/diastolic differences, 3.6/2.5 mmHg; P < or = 0.02), higher body weight (2.7 kg, P = 0.04), greater risk of obesity (risk ratio, 1.90; P = 0.005), increased triceps skinfold thickness (2.3 mm, P = 0.007), higher serum insulin concentration (4.1 mU/l, P = 0.006), more insulin resistance (P = 0.01), and increased erythrocyte count (0.11 x 1012 cells/l, P = 0.04) and haematocrit (0.9%, P = 0.02). In women, haematocrit and erythrocyte count were also higher (P < or = 0.03) in T allele carriers, but other phenotypes were not correlated with the C825T polymorphism. CONCLUSION Male and female carriers of the T allele at position 825 of the G-protein beta(3)-subunit gene have a slightly higher haematocrit and erythrocyte count. Male TT homozygotes have a higher blood pressure and are more obese and insulin-resistant than C allele carriers. We speculate that the higher blood pressure in TT homozygous men might arise via a metabolic pathway characterized by obesity and insulin resistance as well as via increased peripheral resistance secondary to the higher haematocrit.
Collapse
Affiliation(s)
- Eva Brand
- Department of Endocrinology and Nephrology, Benjamin Franklin Medical Centre, Freie Universität Berlin, Germany
| | | | | | | |
Collapse
|
13
|
Guillard C, Chrétien S, Pelus AS, Porteu F, Muller O, Mayeux P, Duprez V. Activation of the mitogen-activated protein kinases Erk1/2 by erythropoietin receptor via a G(i )protein beta gamma-subunit-initiated pathway. J Biol Chem 2003; 278:11050-6. [PMID: 12538595 DOI: 10.1074/jbc.m208834200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown that a heterotrimeric G(i) protein is coupled to the erythropoietin (Epo) receptor. The G(i) protein constitutively associates in its heterotrimeric form with the intracellular domain of Epo receptor (EpoR). After Epo stimulation G(i) is released from the receptor and activated. In the present study we have investigated the functional role of the heterotrimeric G(i) protein bound to EpoR. In Chinese hamster ovary cells expressing EpoR, the G(i) inhibitor pertussis toxin blocked mitogen-activated protein kinase (MAPK) Erk1/2 activation induced by Epo. Epo-dependent MAPK activation was also sensitive to the G beta gamma competitive inhibitor beta ARK1-ct (C-terminal fragment of the beta-adrenergic receptor kinase), to the Ras dominant negative mutant RasN17, and to the phosphoinositide 3-kinase (PI3K) inhibitor LY 294002. A region of 7 amino acids (469-475) in the C-terminal end of EpoR was shown to be required for G(i) binding to EpoR in vivo. Deletion of this region in EpoR abolished both MAPK and PI3K activation in response to Epo. We conclude that in Chinese hamster ovary cells, Epo activates MAPK via a novel pathway dependent on G(i) association to EpoR, G beta gamma subunit, Ras, and PI3K. The tyrosine kinase Jak2 also contributes to this new pathway, more likely downstream of beta gamma and upstream of Ras and PI3K. This pathway is similar to the best characterized pathway used by seven transmembrane receptors coupled to G(i) to activate MAPK and may cooperate with other described Epo-dependent MAPK activation pathways in hematopoietic cells.
Collapse
Affiliation(s)
- Christine Guillard
- Department of Hematology, Institut Cochin, INSERM U567, CNRS UMR 8104, Université René Descartes, 27 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Talbot P, Shur BD, Myles DG. Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion. Biol Reprod 2003; 68:1-9. [PMID: 12493688 DOI: 10.1095/biolreprod.102.007856] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Fertilization in mammals requires the successful completion of many steps, starting with the transport of gametes in the reproductive tract and ending with sperm-egg membrane fusion. In this minireview, we focus on three adhesion steps in this multistep process. The first is oocyte "pick-up," in which the degree of adhesion between the extracellular matrix of the cumulus cells and oviductal epithelial cells controls the successful pick-up of the oocyte-cumulus complex and its subsequent transfer into the oviduct. The second part of this review is concerned with the interaction between the sperm and the zona pellucida of the egg. Evidence is discussed that a plasma membrane form of galactosyltransferase on the surface of mouse sperm binds to ZP3 in the zona pellucida and initiates an acrosome reaction. Additional evidence raises the possibility that initial sperm binding to the zona pellucida is independent of ZP3. Last, we address the relationship between sperm adhesion to the egg plasma membrane and membrane fusion, especially the role of ADAM family proteins on the sperm surface and egg integrins.
Collapse
Affiliation(s)
- Prudence Talbot
- Department of Neuroscience, University of California-Riverside, Riverside, California 92521, USA
| | | | | |
Collapse
|
15
|
Meunier C, Bordereaux D, Porteu F, Gisselbrecht S, Chrétien S, Courtois G. Cloning and characterization of a family of proteins associated with Mpl. J Biol Chem 2002; 277:9139-47. [PMID: 11784712 DOI: 10.1074/jbc.m105970200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells via activation of the c-Mpl receptor and multiple downstream signal transduction pathways. We used two-hybrid screening to identify new proteins that interacted with the cytoplasmic domain of Mpl, and we found a new family of proteins designated A2D (for Ataxin-2 Domain protein). The A2D are 130-kDa proteins that have three regions similar to those of Ataxin-2, the gene product causing familial type 2 spinocerebellar ataxia. A2D has several isoforms with different C-terminal domains, all produced from a single gene by alternative splicing. Northern blotting indicated that the A2D gene is widely expressed in immortalized cell lines and hematopoietic and fetal tissues. A2D proteins were constitutively associated with Mpl in vivo in human hematopoietic UT7 cells. TPO also caused the release of A2D from the activated receptor, and the phosphorylation of A2D on tyrosines residues was dependent on the Mpl C-terminal domain. Finally, A2D bound to the unstimulated erythropoietin receptor, whereas erythropoietin caused dissociation from the erythropoietin receptor, suggesting that A2D proteins are new components of the cytokine signaling system.
Collapse
Affiliation(s)
- Caroline Meunier
- INSERM U363, ICGM, 27 Rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|