1
|
Zhao Y, Yu B, Wang Y, Tan S, Xu Q, Wang Z, Zhou K, Liu H, Ren Z, Jiang Z. Ang-1 and VEGF: central regulators of angiogenesis. Mol Cell Biochem 2024:10.1007/s11010-024-05010-3. [PMID: 38652215 DOI: 10.1007/s11010-024-05010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-β-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.
Collapse
Affiliation(s)
- Yuanqin Zhao
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Bo Yu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Yanxia Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Shiming Tan
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Qian Xu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhaoyue Wang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Huiting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China
| | - Zhisheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Ma X, Xu L, Gong S, Wu N, Guo J, Feng X, Zhao M, Qiu S, Sun M, Zhang C, Zhang X, Ren Z, Zhang P. hsa_circ_0007919 promotes pancreatic cancer metastasis by modulating Sp1-mediated THBS1 transcription. FASEB J 2024; 38:e23591. [PMID: 38572579 DOI: 10.1096/fj.202302422rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
CircRNAs are abnormally expressed in various cancers and play an important role in the occurrence and development of cancers. However, their biological functions and the underlying molecular mechanisms in pancreatic cancer (PC) metastasis are incompletely understood. Differentially expressed circRNAs were identified by second-generation transcriptome sequencing in three pairs of PC tissues and adjacent tissues. The expression and prognostic significance of hsa_circ_0007919 were evaluated by qRT-PCR and Kaplan-Meier survival curves. Gain- and loss-of-function assays were conducted to detect the role of hsa_circ_0007919 in PC metastasis in vitro. A lung metastasis model and IHC experiments were conducted to confirm the effects of hsa_circ_0007919 on tumor metastasis in vivo. Mechanistically, RNA immunoprecipitation and chromatin immunoprecipitation assays were conducted to explore the interplay among hsa_circ_0007919, Sp1, and the THBS1 promoter. hsa_circ_0007919 was significantly upregulated in PC tissues and cells and was correlated with lymph node metastasis, TNM stage, and poor prognosis. Knockdown of hsa_circ_0007919 significantly suppressed the migration and invasion of PC cells in vitro and inhibited tumor metastasis in vivo. However, overexpression of hsa_circ_0007919 exerted the opposite effects. Mechanistically, hsa_circ_0007919 could recruit the transcription factor Sp1 to inhibit THBS1 transcription, thereby facilitating PC metastasis. hsa_circ_0007919 can promote the metastasis of PC by inhibiting THBS1 expression. hsa_circ_0007919 may be a potential therapeutic target in PC.
Collapse
Affiliation(s)
- Xiao Ma
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Department of General Surgery, Xuzhou First People's Hospital, Xuzhou, China
| | - Lei Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuai Gong
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Nai Wu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiaxuan Guo
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xinyu Feng
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Mengmeng Zhao
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Sancheng Qiu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Ming Sun
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Chong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuzhong Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zeqiang Ren
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Pengbo Zhang
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Shen K, Chen B, Yang L, Gao W. Integrated analysis of single-cell and bulk RNA-sequencing data reveals the prognostic value and molecular function of THSD7A in gastric cancer. Aging (Albany NY) 2023; 15:11940-11969. [PMID: 37905960 PMCID: PMC10683630 DOI: 10.18632/aging.205158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
The biological role and prognostic value of thrombospondin domain-containing 7A (THSD7A) in gastric cancer remain unclear. Our purpose was to determine the molecular mechanisms underlying the functioning of THSD7A and its prognostic value in gastric cancer. Gastric cancer-associated single cell and bulk RNA sequencing data obtained from two databases, were analyzed. We used bulk RNA sequencing to examine the differential expression of THSD7A in gastric cancer and normal gastric tissues and explored the relationship between THSD7A expression and clinicopathological characteristics. Kaplan-Meier survival and Cox analyses revealed the prognostic value of THSD7A. Gene set enrichment and immune infiltration analyses were used to determine the cancer-promoting mechanisms of THSD7A and its effect on the immune microenvironment. We explored the relationship between THSD7A expression and sensitivity of anti-tumor drugs and immune checkpoint levels. Biological functions of THSD7A were validated at single-cell and in vitro levels. THSD7A expression was significantly increased in gastric cancer samples. High THSD7A expression was associated with poor clinical phenotypes and prognoses. Cox analysis showed that THSD7A was an independent risk factor for patients with gastric cancer. Enrichment analysis suggested that epithelial-mesenchymal transition and inflammatory responses may be potential pro-cancer mechanisms of THSD7A. Upregulation of THSD7A promoted infiltration by M2 macrophages and regulatory T cells. High THSD7A expression suppressed the sensitivity of patients with gastric cancer to drugs, such as 5-fluorouracil, bleomycin, and cisplatin, and upregulated immune checkpoints, such as HAVCR2, PDCD1LG2, TIGIT, and CTLA4. At the single cell level, THSD7A was an endothelial cell-associated gene and endothelial cells overexpressing THSD7A showed unique pro-oncogenic effects. In vitro experiments confirmed that THSD7A was overexpressed in gastric cancer samples and cells, and that knocking out THSD7A significantly inhibited gastric cancer cell proliferation and invasion. THSD7A overexpression may be a unique prognostic marker and therapeutic target in gastric cancer. Therefore, our study provides a new perspective on the precise treatment of gastric cancer.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Binyu Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
4
|
Whitehead CA, Morokoff AP, Kaye AH, Drummond KJ, Mantamadiotis T, Stylli SS. Invadopodia associated Thrombospondin-1 contributes to a post-therapy pro-invasive response in glioblastoma cells. Exp Cell Res 2023; 431:113743. [PMID: 37591452 DOI: 10.1016/j.yexcr.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.
Collapse
Affiliation(s)
- Clarissa A Whitehead
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrew H Kaye
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Katharine J Drummond
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Obasanmi G, Zeglinski MR, Hardie E, Wilhelm AC, Turner CT, Hiroyasu S, Boivin WA, Tian Y, Zhao H, To E, Cui JZ, Xi J, Yoo HS, Uppal M, Granville DJ, Matsubara JA. Granzyme B Contributes to Choroidal Neovascularization and Age-Related Macular Degeneration Through Proteolysis of Thrombospondin-1. J Transl Med 2023; 103:100123. [PMID: 36849037 DOI: 10.1016/j.labinv.2023.100123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. The pathology of neovascular age-related macular degeneration (nAMD), also known as wet AMD, is associated with an abnormal blood vessel growth in the eye and involves an imbalance of proangiogenic and antiangiogenic factors. Thrombospondin (TSP)-1 and TSP-2 are endogenous matricellular proteins that inhibit angiogenesis. TSP-1 is significantly diminished in eyes with AMD, although the mechanisms involved in its reduction are unknown. Granzyme B (GzmB) is a serine protease with an increased extracellular activity in the outer retina and choroid of human eyes with nAMD-related choroidal neovascularization (CNV). This study investigated whether TSP-1 and TSP-2 are GzmB substrates using in silico and cell-free cleavage assays and explored the relationship between GzmB and TSP-1 in human eyes with nAMD-related CNV and the effect of GzmB on TSP-1 in retinal pigment epithelial culture and an explant choroid sprouting assay (CSA). In this study, TSP-1 and TSP-2 were identified as GzmB substrates. Cell-free cleavage assays substantiated the GzmB proteolysis of TSP-1 and TSP-2 by showing dose-dependent and time-dependent cleavage products. TSP-1 and TSP-2 proteolysis were hindered by the inhibition of GzmB. In the retinal pigment epithelium and choroid of human eyes with CNV, we observed a significant inverse correlation between TSP-1 and GzmB, as indicated by lower TSP-1 and higher GzmB immunoreactivity. In CSA, the vascular sprouting area increased significantly with GzmB treatment and reduced significantly with TSP-1 treatment. Western blot showed significantly reduced expression of TSP-1 in GzmB-treated retinal pigment epithelial cell culture and CSA supernatant compared with that in controls. Together, our findings suggest that the proteolysis of antiangiogenic factors such as TSP-1 by extracellular GzmB might represent a mechanism through which GzmB may contribute to nAMD-related CNV. Future studies are needed to investigate whether pharmacologic inhibition of extracellular GzmB can mitigate nAMD-related CNV by preserving intact TSP-1.
Collapse
Affiliation(s)
- Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew R Zeglinski
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ella Hardie
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna-Catharina Wilhelm
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher T Turner
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wendy A Boivin
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuan Tian
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeanne Xi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manjosh Uppal
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
6
|
Carminati L, Carlessi E, Longhi E, Taraboletti G. Controlled extracellular proteolysis of thrombospondins. Matrix Biol 2023; 119:82-100. [PMID: 37003348 DOI: 10.1016/j.matbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Limited proteolysis of thrombospondins is a powerful mechanism to ensure dynamic tuning of their activities in the extracellular space. Thrombospondins are multifunctional matricellular proteins composed of multiple domains, each with a specific pattern of interactions with cell receptors, matrix components and soluble factors (growth factors, cytokines and proteases), thus with different effects on cell behavior and responses to changes in the microenvironment. Therefore, the proteolytic degradation of thrombospondins has multiple functional consequences, reflecting the local release of active fragments and isolated domains, exposure or disruption of active sequences, altered protein location, and changes in the composition and function of TSP-based pericellular interaction networks. In this review current data from the literature and databases is employed to provide an overview of cleavage of mammalian thrombospondins by different proteases. The roles of the fragments generated in specific pathological settings, with particular focus on cancer and the tumor microenvironment, are discussed.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy.
| |
Collapse
|
7
|
Alex L, Tuleta I, Hanna A, Frangogiannis NG. Diabetes Induces Cardiac Fibroblast Activation, Promoting a Matrix-Preserving Nonmyofibroblast Phenotype, Without Stimulating Pericyte to Fibroblast Conversion. J Am Heart Assoc 2023; 12:e027463. [PMID: 36892073 PMCID: PMC10111546 DOI: 10.1161/jaha.122.027463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Background Interstitial and perivascular fibrosis may contribute to diabetes-associated heart failure. Pericytes can convert to fibroblasts under conditions of stress and have been implicated in the pathogenesis of fibrotic diseases. We hypothesized that in diabetic hearts, pericytes may convert to fibroblasts, contributing to fibrosis and to the development of diastolic dysfunction. Methods and Results Using pericyte:fibroblast dual reporter (NG2Dsred [neuron-glial antigen 2 red fluorescent protein variant]; PDGFRαEGFP [platelet-derived growth factor receptor alpha enhanced green fluorescent protein]) mice in a type 2 diabetic db/db background, we found that diabetes does not significantly affect pericyte density but reduces the myocardial pericyte:fibroblast ratio. Lineage tracing using the inducible NG2CreER driver, along with reliable labeling of fibroblasts with the PDGFRα reporter system, showed no significant pericyte to fibroblast conversion in lean and db/db hearts. In addition, db/db mouse cardiac fibroblasts did not undergo myofibroblast conversion and had no significant induction of structural collagens but exhibited a matrix-preserving phenotype, associated with increased expression of antiproteases, matricellular genes, matrix cross-linking enzymes, and the fibrogenic transcription factor cMyc. In contrast, db/db mouse cardiac pericytes had increased expression of Timp3, without any changes in expression of other fibrosis-associated genes. The matrix-preserving phenotype of diabetic fibroblasts was associated with induction of genes encoding oxidative (Ptgs2/cycloxygenase-2, and Fmo2) and antioxidant proteins (Hmox1, Sod1). In vitro, high glucose partially recapitulated the in vivo changes in diabetic fibroblasts. Conclusions Diabetic fibrosis is not mediated through pericyte to fibroblast conversion but involves acquisition of a matrix-preserving fibroblast program, which is independent of myofibroblast conversion and is only partially explained by the effects of the hyperglycemic environment.
Collapse
Affiliation(s)
- Linda Alex
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology), Albert Einstein College of Medicine Bronx NY
| |
Collapse
|
8
|
Gao L, He Z, Wu Y. Advances in Anti-metabolic Disease Treatments Targeting CD47. Curr Pharm Des 2022; 28:3720-3728. [PMID: 36201266 DOI: 10.2174/1381612828666221006123144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 01/28/2023]
Abstract
Metabolic disorders include a cluster of conditions that result from hyperglycemia, hyperlipidemia, insulin resistance, obesity, and hepatic steatosis, which cause the dysfunction of immune cells and innate cells, such as macrophages, natural killer cells, vascular endothelial cells, hepatocytes, and human kidney tubular epithelial cells. Besides targeting the derangements in lipid metabolism, therapeutic modulations to regulate abnormal responses in the immune system and innate cell dysfunctions may prove to be promising strategies in the management of metabolic diseases. In recent years, several targets have been explored for the CD47 molecule (CD47), a glycosylated protein, which was originally reported to transmit an anti-phagocytic signal known as "don't eat me" in the atherosclerotic environment, hindering the efferocytosis of immune cells and promoting arterial plaque accumulation. Subsequently, the role of CD47 has been explored in obesity, fatty liver, and lipotoxic nephropathy, and its utility as a therapeutic target has been investigated using anti-CD47 antibodies or inhibitors of the THBS1/CD47 axis and the CD47/SIRPα signaling pathway. This review summarizes the mechanisms of action of CD47 in different cell types during metabolic diseases and the clinical research progress to date, providing a reference for the comprehensive targeting of CD47 to treat metabolic diseases and the devising of potential improvements to possible side effects.
Collapse
Affiliation(s)
- Li Gao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| | - Zhe He
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yonggui Wu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.,Center for Scientific Research of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
9
|
Lawler J. Counter Regulation of Tumor Angiogenesis by Vascular Endothelial Growth Factor and Thrombospondin-1. Semin Cancer Biol 2022; 86:126-135. [PMID: 36191900 DOI: 10.1016/j.semcancer.2022.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
Considerable progress has been made in our understanding of the process of angiogenesis in the context of normal and tumor tissue over the last fifty years. Angiogenesis, like most physiological processes, is carefully controlled by dynamic and opposing effects of positive factors, such as vascular endothelial growth factor (VEGF), and negative factors, such as thrombospondin-1. In most cases, the progression of a small mass of cancerous cells to a life-threatening tumor depends upon the initiation of angiogenesis and involves the dysregulation of the angiogenic balance. Whereas our newfound appreciation for the role of angiogenesis in cancer has opened up new avenues for treatment, the success of these treatments, which have focused almost exclusively on antagonizing the VEGF pathway, has been limited to date. It is anticipated that this situation will improve as more therapeutics that target other pathways are developed, more strategies for combination therapies are advanced, more detailed stratification of patient populations occurs, and a better understanding of resistance to anti-angiogenic therapy is gained.
Collapse
Affiliation(s)
- Jack Lawler
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, The Center for Vascular Biology Research, 99 Brookline Ave, Boston MA 02215, United States.
| |
Collapse
|
10
|
The endocytic receptor uPARAP is a regulator of extracellular thrombospondin-1. Matrix Biol 2022; 111:307-328. [PMID: 35878760 DOI: 10.1016/j.matbio.2022.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Thrombospondin-1 (TSP-1) is a matricellular protein with a multitude of functions in the pericellular and extracellular environment. We report a novel pathway for the regulation of extracellular TSP-1, governed by the endocytic collagen receptor, uPARAP (urokinase plasminogen activator receptor-associated protein; MRC2 gene product, also designated Endo180, CD280). First, using a novel proteomic approach for unbiased identification of ligands for endocytosis, we identify TSP-1 as a candidate ligand for specific uptake by uPARAP. We then show that uPARAP can efficiently internalize TSP-1 for lysosomal degradation, that this capability is not shared by other, closely related endocytic receptors and that uPARAP serves to regulate the extracellular levels of TSP-1 in vitro. Using wild type and uPARAP null mice, we also demonstrate uPARAP-mediated endocytosis of TSP-1 in dermal fibroblasts in vivo. Unlike other uPARAP ligands, the interaction with TSP-1 is sensitive to heparin and the responsible molecular motifs in uPARAP are overlapping, but not identical with those governing the interaction with collagens. Finally, we show that uPARAP can also mediate the endocytosis of TSP-2, a thrombospondin closely related to TSP-1, but not the more distantly related members of the same protein family, TSP-3, -4 and -5. These findings indicate that the role of uPARAP in ECM remodeling is not limited to the uptake of collagen for degradation but also includes an orchestrator function in the regulation of thrombospondins with numerous downstream effects. This is likely to be an important factor in the physiological and pathological roles of uPARAP in bone biology, fibrosis and cancer. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD031272.
Collapse
|
11
|
Wang W, Chen Y, Yin Y, Wang X, Ye X, Jiang K, Zhang Y, Zhang J, Zhang W, Zhuge Y, Chen L, Peng C, Xiong A, Yang L, Wang Z. A TMT-based shotgun proteomics uncovers overexpression of thrombospondin 1 as a contributor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2022; 96:2003-2019. [PMID: 35357534 PMCID: PMC9151551 DOI: 10.1007/s00204-022-03281-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Hepatic sinusoidal obstruction disease (HSOS) is a rare but life-threatening vascular liver disease. However, its underlying mechanism and molecular changes in HSOS are largely unknown, thus greatly hindering the development of its effective treatment. Hepatic sinusoidal endothelial cells (HSECs) are the primary and essential target for HSOS. A tandem mass tag-based shotgun proteomics study was performed using primary cultured HSECs from mice with HSOS induced by senecionine, a representative toxic pyrrolizidine alkaloid (PA). Dynamic changes in proteome were found at the initial period of damage and the essential role of thrombospondin 1 (TSP1) was highlighted in PA-induced HSOS. TSP1 over-expression was further confirmed in human HSECs and liver samples from patients with PA-induced HSOS. LSKL peptide, a known TSP1 inhibitor, protected mice from senecionine-induced HSOS. In addition, TSP1 was found to be covalently modified by dehydropyrrolizidine alkaloids in human HSECs and mouse livers upon senecionine treatment, thus to form the pyrrole-protein adduct. These findings provide useful information on early changes in HSECs upon PA treatment and uncover TSP1 overexpression as a contributor in PA-induced HSOS.
Collapse
Affiliation(s)
- Weiqian Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xuanling Ye
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yi Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Jiwei Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Li Chen
- Department of Gastroenterology, School of Medicine, Ruijin Hospital, Shanghai JiaoTong University, Shanghai, 201801, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, China.
| | - Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Shanghai R and D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China
| |
Collapse
|
12
|
Feng QL, Gu JJ, Chen JY, Zheng WY, Pan HH, Xu XY, Deng CC, Yang B. TSP1 promotes fibroblast proliferation and extracellular matrix deposition via the IL6/JAK2/STAT3 signalling pathway in keloids. Exp Dermatol 2022; 31:1533-1542. [PMID: 35661430 DOI: 10.1111/exd.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Keloids are benign fibroproliferative diseases with abnormally proliferated bulges beyond the edge of the skin lesions, and they are characterized by uncontrolled fibroblast proliferation and excessive extracellular matrix deposition in the dermis. However, the definite mechanisms that increase fibroblast proliferation and collagen deposition in keloids remain unclear. Thrombospondin 1 (TSP1) has been suggested to play an important role in wound healing and fibrotic disorders, but its role in keloids is unknown. In this study, we aimed to clarify the specific role of TSP1 in keloids and explore the potential mechanism. Our results demonstrated that TSP1 was highly expressed in keloid lesions compared to normal skin. Knockdown of TSP1 in keloid fibroblasts decreased cell proliferation and collagen I deposition. Exogenous TSP1 treatment increased cell proliferation and collagen I deposition in normal fibroblasts. We further investigated the underlying mechanism and found that TSP1 promoted fibroblast proliferation and extracellular matrix deposition by upregulating the IL6/JAK2/STAT3 pathway. Moreover, we verified that TSP1 expression was positively correlated with IL6/STAT3 signalling activity in keloids. Taken together, our findings indicate that TSP1 promotes keloid development via the IL6/JAK2/STAT3 signalling pathway and blocking TSP1 may represent a potential strategy for keloid therapy.
Collapse
Affiliation(s)
- Qing-Lan Feng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Jing Gu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Yi Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Yue Zheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hui-Hui Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Yan Xu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Cheng-Cheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Masli S, Akpek EK. Reduced Tear Thrombospondin-1/Matrix Metalloproteinase-9 Ratio Can Aid in Detecting Sjögren's Syndrome Etiology in Patients with Dry Eye. Clin Transl Sci 2022; 15:1999-2009. [PMID: 35610740 PMCID: PMC9372415 DOI: 10.1111/cts.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Differentiating patients with Sjögren's syndrome (SS)‐associated dry eye from non‐SS dry eye is critical for monitoring and appropriate management of possible sight‐ or life‐threatening extraglandular complications associated with SS. We tested whether reduced tear levels of immunoregulatory thrombospondin (TSP)‐1, which also inhibits matrix metalloproteinase (MMP)‐9, would reflect SS pathogenesis aiding the identification of patients with SS‐dry eye. Total of 61 participants, including healthy controls (n = 20), patients with non‐SS dry eye (n = 20) and SS‐dry eye (n = 21) were enrolled prospectively. Tear TSP‐1 and MMP‐9 levels were measured using a custom magnetic bead‐based multi‐plex assay in a masked manner. Analyte concentrations were assessed further according to ocular surface and tear film parameters. Relative to median tear TSP‐1 (308 ng/ml) and MMP‐9 (1.9 ng/ml) levels in the control group, significantly higher proportion of patients with SS‐dry eye than non‐SS had lower tear TSP‐1 levels (55% vs. 29%, odds ratio [OR] = 3, 95% confidence interval [CI] = 1.64 to 5.35, p < 0.05) and higher tear MMP‐9 levels (65% vs. 24%, OR = 5.8, 95% CI = 4.46 to 19.81, p < 0.05), respectively. The tear TSP‐1/MMP‐9 ratio was significantly reduced in patients with SS‐dry eye compared to non‐SS (B = −2.36, 95% CI = −3.94 to −0.0.79, p < 0.05), regardless of tear MMP‐9 levels. Patients with a lower ratio were 2.3 times more likely to have SS (OR = 0.28, 95% CI = 0.1 to 0.75, p < 0.05). This ratio showed significant inverse correlations with clinical parameters (conjunctival and corneal staining scores). Our results denote that tear TSP‐1/MMP‐9 ratio can be useful in identifying patients with dry eye with underlying SS and used as a screening test.
Collapse
Affiliation(s)
- Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Esen K Akpek
- Ocular Surface Diseases and Dry Eye Clinic, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Properties and Functions of Fibroblasts and Myofibroblasts in Myocardial Infarction. Cells 2022; 11:cells11091386. [PMID: 35563692 PMCID: PMC9102016 DOI: 10.3390/cells11091386] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/14/2022] Open
Abstract
The adult mammalian heart contains abundant interstitial and perivascular fibroblasts that expand following injury and play a reparative role but also contribute to maladaptive fibrotic remodeling. Following myocardial infarction, cardiac fibroblasts undergo dynamic phenotypic transitions, contributing to the regulation of inflammatory, reparative, and angiogenic responses. This review manuscript discusses the mechanisms of regulation, roles and fate of fibroblasts in the infarcted heart. During the inflammatory phase of infarct healing, the release of alarmins by necrotic cells promotes a pro-inflammatory and matrix-degrading fibroblast phenotype that may contribute to leukocyte recruitment. The clearance of dead cells and matrix debris from the infarct stimulates anti-inflammatory pathways and activates transforming growth factor (TGF)-β cascades, resulting in the conversion of fibroblasts to α-smooth muscle actin (α-SMA)-expressing myofibroblasts. Activated myofibroblasts secrete large amounts of matrix proteins and form a collagen-based scar that protects the infarcted ventricle from catastrophic complications, such as cardiac rupture. Moreover, infarct fibroblasts may also contribute to cardiac repair by stimulating angiogenesis. During scar maturation, fibroblasts disassemble α-SMA+ stress fibers and convert to specialized cells that may serve in scar maintenance. The prolonged activation of fibroblasts and myofibroblasts in the infarct border zone and in the remote remodeling myocardium may contribute to adverse remodeling and to the pathogenesis of heart failure. In addition to their phenotypic plasticity, fibroblasts exhibit remarkable heterogeneity. Subsets with distinct phenotypic profiles may be responsible for the wide range of functions of fibroblast populations in infarcted and remodeling hearts.
Collapse
|
15
|
Ordoñez JFF, Galindez GGST, Gulay KT, Ravago-Gotanco R. Transcriptome analysis of growth variation in early juvenile stage sandfish Holothuria scabra. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100904. [PMID: 34488170 DOI: 10.1016/j.cbd.2021.100904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The sandfish Holothuria scabra is a high-value tropical sea cucumber species representing a major mariculture prospect across the Indo-Pacific. Advancements in culture technology, rearing, and processing present options for augmenting capture production, stock restoration, and sustainable livelihood activities from hatchery-produced sandfish. Further improvements in mariculture production may be gained from the application of genomic technologies to improve performance traits such as growth. In this study, we performed de novo transcriptome assembly and characterization of fast- and slow-growing juvenile H. scabra from three Philippine populations. Analyses revealed 66 unigenes that were consistently differentially regulated in fast-growing sandfish and found to be associated with immune response and metabolism. Further, we identified microsatellite and single nucleotide polymorphism markers potentially associated with fast growth. These findings provide insight on potential genomic determinants underlying growth regulation in early juvenile sandfish which will be useful for further functional studies.
Collapse
Affiliation(s)
- June Feliciano F Ordoñez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Gihanna Gaye S T Galindez
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines; Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Germany.
| | - Karina Therese Gulay
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| | - Rachel Ravago-Gotanco
- The Marine Science Institute, University of the Philippines Diliman, Velasquez St., Diliman, 1100 Quezon City, Philippines.
| |
Collapse
|
16
|
Liao W, Xu L, Pan Y, Wei J, Wang P, Yang X, Chen M, Gao Y. Association of atrial arrhythmias with thrombospondin-1 in patients with acute myocardial infarction. BMC Cardiovasc Disord 2021; 21:507. [PMID: 34670505 PMCID: PMC8527677 DOI: 10.1186/s12872-021-02322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Atrial remodeling is the main developmental cause of atrial arrhythmias (AA), which may induce atrial fibrillation, atrial flutter, atrial tachycardia, and frequent premature atrial beats in acute myocardial infarction (AMI) patients. Thrombospondin-1 (TSP-1) has been shown to play an important role in inflammatory and fibrotic processes, but its role in atrial arrhythmias is not well described. The purpose of this study was to investigate the role of TSP-1 in AMI patients with atrial arrhythmias. METHODS A total of 219 patients with AMI who underwent percutaneous coronary intervention and with no previous arrhythmias were included. TSP-1 were analyzed in plasma samples. Patients were classified into 2 groups, namely, with and without AA during the acute phase of MI. Continuous electrocardiographic monitoring was used for AA diagnosis in hospital. RESULTS Twenty-four patients developed AA. Patients with AA had higher TSP-1 levels (29.01 ± 25.87 μg/mL vs 18.36 ± 10.89 μg/mL, p < 0.001) than those without AA. AA patients also tended to be elderly (65.25 ± 9.98 years vs 57.47 ± 10.78 years, p < 0.001), had higher Hs-CRP (39.74 ± 43.50 mg/L vs 12.22 ± 19.25 mg/L, p < 0.001) and worse heart function. TSP-1 (OR 1.033; 95% CI 1.003-1.065, p = 0.034), Hs-CRP (OR 1.023; 95% CI 1.006-1.041, p = 0.008), age (OR 1.067; 95% CI 1.004-1.135, p = 0.038) and LVDd (OR 1.142; 95% CI 1.018-1.282, p = 0.024) emerged as independent risk factors for AA in AMI patients. CONCLUSION TSP-1 is a potential novel indicator of atrial arrhythmias during AMI.
Collapse
Affiliation(s)
- Wenkai Liao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Li Xu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yuxia Pan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jie Wei
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Peijia Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mulei Chen
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China. .,Department of Cardiology, Chaoyang Hospital, Capital Medical University, 8th Gongtinan Rd, Chaoyang District, Beijing, 100020, China.
| | - Yuanfeng Gao
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China. .,Department of Cardiology, Chaoyang Hospital, Capital Medical University, 8th Gongtinan Rd, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
17
|
Sepúlveda V, Maurelia F, González M, Aguayo J, Caprile T. SCO-spondin, a giant matricellular protein that regulates cerebrospinal fluid activity. Fluids Barriers CNS 2021; 18:45. [PMID: 34600566 PMCID: PMC8487547 DOI: 10.1186/s12987-021-00277-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022] Open
Abstract
Cerebrospinal fluid is a clear fluid that occupies the ventricular and subarachnoid spaces within and around the brain and spinal cord. Cerebrospinal fluid is a dynamic signaling milieu that transports nutrients, waste materials and neuroactive substances that are crucial for the development, homeostasis and functionality of the central nervous system. The mechanisms that enable cerebrospinal fluid to simultaneously exert these homeostatic/dynamic functions are not fully understood. SCO-spondin is a large glycoprotein secreted since the early stages of development into the cerebrospinal fluid. Its domain architecture resembles a combination of a matricellular protein and the ligand-binding region of LDL receptor family. The matricellular proteins are a group of extracellular proteins with the capacity to interact with different molecules, such as growth factors, cytokines and cellular receptors; enabling the integration of information to modulate various physiological and pathological processes. In the same way, the LDL receptor family interacts with many ligands, including β-amyloid peptide and different growth factors. The domains similarity suggests that SCO-spondin is a matricellular protein enabled to bind, modulate, and transport different cerebrospinal fluid molecules. SCO-spondin can be found soluble or polymerized into a dynamic threadlike structure called the Reissner fiber, which extends from the diencephalon to the caudal tip of the spinal cord. Reissner fiber continuously moves caudally as new SCO-spondin molecules are added at the cephalic end and are disaggregated at the caudal end. This movement, like a conveyor belt, allows the transport of the bound molecules, thereby increasing their lifespan and action radius. The binding of SCO-spondin to some relevant molecules has already been reported; however, in this review we suggest more than 30 possible binding partners, including peptide β-amyloid and several growth factors. This new perspective characterizes SCO-spondin as a regulator of cerebrospinal fluid activity, explaining its high evolutionary conservation, its apparent multifunctionality, and the lethality or severe malformations, such as hydrocephalus and curved body axis, of knockout embryos. Understanding the regulation and identifying binding partners of SCO-spondin are crucial for better comprehension of cerebrospinal fluid physiology.
Collapse
Affiliation(s)
- Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
18
|
Bubb K, Holzer T, Nolte JL, Krüger M, Wilson R, Schlötzer-Schrehardt U, Brinckmann J, Altmüller J, Aszodi A, Fleischhauer L, Clausen-Schaumann H, Probst K, Brachvogel B. Mitochondrial respiratory chain function promotes extracellular matrix integrity in cartilage. J Biol Chem 2021; 297:101224. [PMID: 34560099 PMCID: PMC8503590 DOI: 10.1016/j.jbc.2021.101224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Energy metabolism and extracellular matrix (ECM) function together orchestrate and maintain tissue organization, but crosstalk between these processes is poorly understood. Here, we used single-cell RNA-Seq (scRNA-Seq) analysis to uncover the importance of the mitochondrial respiratory chain for ECM homeostasis in mature cartilage. This tissue produces large amounts of a specialized ECM to promote skeletal growth during development and maintain mobility throughout life. A combined approach of high-resolution scRNA-Seq, mass spectrometry/matrisome analysis, and atomic force microscopy was applied to mutant mice with cartilage-specific inactivation of respiratory chain function. This genetic inhibition in cartilage results in the expansion of a central area of 1-month-old mouse femur head cartilage, showing disorganized chondrocytes and increased deposition of ECM material. scRNA-Seq analysis identified a cell cluster-specific decrease in mitochondrial DNA-encoded respiratory chain genes and a unique regulation of ECM-related genes in nonarticular chondrocytes. These changes were associated with alterations in ECM composition, a shift in collagen/noncollagen protein content, and an increase of collagen crosslinking and ECM stiffness. These results demonstrate that mitochondrial respiratory chain dysfunction is a key factor that can promote ECM integrity and mechanostability in cartilage and presumably also in many other tissues.
Collapse
Affiliation(s)
- Kristina Bubb
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janica L Nolte
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, University Hospital Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Brinckmann
- Department of Dermatology, Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany; Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Attila Aszodi
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lutz Fleischhauer
- Department for Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany; Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, Munich, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
19
|
Yamamoto K, Wilkinson D, Bou-Gharios G. Targeting Dysregulation of Metalloproteinase Activity in Osteoarthritis. Calcif Tissue Int 2021; 109:277-290. [PMID: 32772139 PMCID: PMC8403128 DOI: 10.1007/s00223-020-00739-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Metalloproteinases were first identified as collagen cleaving enzymes and are now appreciated to play important roles in a wide variety of biological processes. The aberrant activity and dysregulation of the metalloproteinase family are linked to numerous diseases including cardiovascular and pulmonary diseases, chronic wounds, cancer, fibrosis and arthritis. Osteoarthritis (OA) is the most prevalent age-related joint disorder that causes pain and disability, but there are no disease-modifying drugs available. The hallmark of OA is loss of articular cartilage and elevated activities of matrix-degrading metalloproteinases are responsible. These enzymes do not exist in isolation and their activity is tightly regulated by a number of processes, such as transcription, proteolytic activation, interaction with their inhibitors, cell surface and extracellular matrix molecules, and endocytic clearance from the extracellular milieu. Here, we describe the functions and roles of metalloproteinase family in OA pathogenesis. We highlight recent studies that have illustrated novel mechanisms regulating their extracellular activity and impairment of such regulations that lead to the development of OA. We also discuss how to stop or slow down the degenerative processes by targeting aberrant metalloproteinase activity, which may in future become therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - David Wilkinson
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - George Bou-Gharios
- Institute of Life Course and Medical Sciences, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
20
|
Chen LH, Chiu KL, Hsia TC, Lee YH, Shen TC, Li CH, Shen YC, Chang WS, Tsai CW, Bau DAT. Significant Association of MMP2 Promoter Genotypes to Asthma Susceptibility in Taiwan. In Vivo 2021; 34:3181-3186. [PMID: 33144422 DOI: 10.21873/invivo.12153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Matrix metalloproteinase 2 (MMP2) is reported to be overexpressed in asthma; however, its genotypic contribution to asthma is not well studied. Therefore, we examined the association of MMP2 genotypes with asthma risk among Taiwanese. MATERIALS AND METHODS One hundred and ninety-eight asthma patients and 453 non-asthmatic subjects were determined with respect to their MMP2 -1306 (rs243845) and -735 (rs2285053) genotypes. RESULTS CT and TT at MMP2 rs243845 are 17.7% and 1.5% among asthma cases, whereas their presence in healthy subjects is at 28.1% and 2.4%, respectively (p for trend=0.0118). In detail, the CT genotype in MMP2 rs243845 was associated with a decreased asthma risk [adjusted odds ratio (OR)=0.57, 95% confidence interval (CI)=0.37-0.78, p=0.0040], and the T allele conferred a significantly lower asthma risk compared to the wild-type C allele (adjusted OR=0.55, 95%CI=0.43-0.77, p=0.0042). No significance was found for MMP2 rs2285053. CONCLUSION The genotype of CT in MMP2 rs243845 may serve as a novel biomarker in determining susceptibility to asthma in Taiwan.
Collapse
Affiliation(s)
- Li-Hsiou Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Kuo-Liang Chiu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yen-Hsien Lee
- Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Hsiang Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Cheng Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
21
|
Tomas NM, Mortensen SA, Wilmanns M, Huber TB. Across scales: novel insights into kidney health and disease by structural biology. Kidney Int 2021; 100:281-288. [PMID: 33940110 DOI: 10.1016/j.kint.2021.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
Over the past decades, structural biology methods such as X-ray crystallography and cryo-electron microscopy have been increasingly used to study protein functions, molecular interactions, physiological processes, and disease mechanisms. This review outlines a selection of structural biology methods, highlights recent examples of how structural analyses have contributed to a more profound understanding of the machinery of life, and gives a perspective on how these methods can be applied to investigate functions of kidney molecules and pathogenic mechanisms of renal diseases.
Collapse
Affiliation(s)
- Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Mortensen
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany; University Hamburg Clinical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
22
|
Morandi V, Petrik J, Lawler J. Endothelial Cell Behavior Is Determined by Receptor Clustering Induced by Thrombospondin-1. Front Cell Dev Biol 2021; 9:664696. [PMID: 33869231 PMCID: PMC8044760 DOI: 10.3389/fcell.2021.664696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
The thrombospondins (TSPs) are a family of multimeric extracellular matrix proteins that dynamically regulate cellular behavior and response to stimuli. In so doing, the TSPs directly and indirectly affect biological processes such as embryonic development, wound healing, immune response, angiogenesis, and cancer progression. Many of the direct effects of Thrombospondin 1 (TSP-1) result from the engagement of a wide range of cell surface receptors including syndecans, low density lipoprotein receptor-related protein 1 (LRP1), CD36, integrins, and CD47. Different or even opposing outcomes of TSP-1 actions in certain pathologic contexts may occur, depending on the structural/functional domain involved. To expedite response to external stimuli, these receptors, along with vascular endothelial growth factor receptor 2 (VEGFR2) and Src family kinases, are present in specific membrane microdomains, such as lipid rafts or tetraspanin-enriched microdomains. The molecular organization of these membrane microdomains and their constituents is modulated by TSP-1. In this review, we will describe how the presence of TSP-1 at the plasma membrane affects endothelial cell signal transduction and angiogenesis.
Collapse
Affiliation(s)
| | - Jim Petrik
- University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
23
|
Dolmatov IY. Molecular Aspects of Regeneration Mechanisms in Holothurians. Genes (Basel) 2021; 12:250. [PMID: 33578707 PMCID: PMC7916379 DOI: 10.3390/genes12020250] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Holothurians, or sea cucumbers, belong to the phylum Echinodermata. They show good regenerative abilities. The present review provides an analysis of available data on the molecular aspects of regeneration mechanisms in holothurians. The genes and signaling pathways activated during the asexual reproduction and the formation of the anterior and posterior parts of the body, as well as the molecular mechanisms that provide regeneration of the nervous and digestive systems, are considered here. Damage causes a strong stress response, the signs of which are recorded even at late regeneration stages. In holothurian tissues, the concentrations of reactive oxygen species and antioxidant enzymes increase. Furthermore, the cellular and humoral components of the immune system are activated. Extracellular matrix remodeling and Wnt signaling play a major role in the regeneration in holothurians. All available morphological and molecular data show that the dedifferentiation of specialized cells in the remnant of the organ and the epithelial morphogenesis constitute the basis of regeneration in holothurians. However, depending on the type of damage, the mechanisms of regeneration may differ significantly in the spatial organization of regeneration process, the involvement of different cell types, and the depth of reprogramming of their genome (dedifferentiation or transdifferentiation).
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientifc Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
24
|
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2219-2235. [PMID: 32354387 DOI: 10.1016/j.jacc.2020.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia and infarction, both in the acute and chronic phases, are associated with cardiomyocyte loss and dramatic changes in the cardiac extracellular matrix (ECM). It has long been appreciated that these changes in the cardiac ECM result in altered mechanical properties of ischemic or infarcted myocardial segments. However, a growing body of evidence now clearly demonstrates that these alterations of the ECM not only affect the structural properties of the ischemic and post-infarct heart, but they also play a crucial and sometimes direct role in mediating a range of biological pathways, including the orchestration of inflammatory and reparative processes, as well as the pathogenesis of adverse remodeling. This final part of a 4-part JACC Focus Seminar reviews the evidence on the role of the ECM in relation to the ischemic and infarcted heart, as well as its contribution to cardiac dysfunction and adverse clinical outcomes.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York.
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
25
|
Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res 2020; 202:108363. [PMID: 33221371 DOI: 10.1016/j.exer.2020.108363] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
The optical clarity of the cornea is essential for maintaining good visual acuity. Corneal neovascularization, which is a major cause of vision loss worldwide, leads to corneal opacification and often contributes to a cycle of chronic inflammation. While numerous factors prevent angiogenesis within the cornea, infection, inflammation, hypoxia, trauma, corneal degeneration, and corneal transplantation can all disrupt these homeostatic safeguards to promote neovascularization. Here, we summarize its etiopathogenesis and discuss the molecular biology of angiogenesis within the cornea. We then review the clinical assessment and diagnostic evaluation of corneal neovascularization. Finally, we describe current and emerging therapies.
Collapse
Affiliation(s)
- Matthew P Nicholas
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA
| | - Naveen Mysore
- Flaum Eye Institute, University of Rochester Medical Center, 210 Crittenden Blvd., Rochester, NY, USA.
| |
Collapse
|
26
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
27
|
Carminati L, Taraboletti G. Thrombospondins in bone remodeling and metastatic bone disease. Am J Physiol Cell Physiol 2020; 319:C980-C990. [PMID: 32936697 DOI: 10.1152/ajpcell.00383.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondins (TSPs) are a family of five multimeric matricellular proteins. Through a wide range of interactions, TSPs play pleiotropic roles in embryogenesis and in tissue remodeling in adult physiology as well as in pathological conditions, including cancer development and metastasis. TSPs are active in bone remodeling, the process of bone resorption (osteolysis) and deposition (osteogenesis) that maintains bone homeostasis. TSPs are particularly involved in aberrant bone remodeling, including osteolytic and osteoblastic skeletal cancer metastasis, frequent in advanced cancers such as breast and prostate carcinoma. TSPs are major players in the bone metastasis microenvironment, where they finely tune the cross talk between tumor cells and bone resident cells in the metastatic niche. Each TSP family member has different effects on the differentiation and activity of bone cells-including the bone-degrading osteoclasts and the bone-forming osteoblasts-with different outcomes on the development and growth of osteolytic and osteoblastic metastases. Here, we overview the involvement of TSP family members in the bone tissue microenvironment, focusing on their activity on osteoclasts and osteoblasts in bone remodeling, and present the evidence to date of their roles in bone metastasis establishment and growth.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
28
|
Moore RM, Katri R, Kumar D, Mansour JM, Mercer B, Moore JJ. α-Lipoic acid blocks the GMCSF induced protease/protease inhibitor spectrum associated with fetal membrane weakening in-vitro. Placenta 2020; 97:79-88. [PMID: 32792069 DOI: 10.1016/j.placenta.2020.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
INTRODUCTION We use an in-vitro human fetal membrane (FM) explant-based model to study inflammation-induced FM weakening, a prerequisite for PPROM. In this system, GMCSF is a critical intermediate, both necessary and sufficient for TNFα and thrombin induced FM weakening. α-Lipoic-acid (LA) blocks TNFα and thrombin, as well as GMCSF-induced weakening. Recently, we reported LA concomitantly blocks GMCSF-induction of MMPs 2, 9 and 10 and inhibition of TIMPs 1-3. The aim of this study was to show that LA blocks GMCSF-induced increases in additional proteases and reductions in additional protease inhibitors. METHODS FM fragments were cultured±LA and then±GMCSF. In other experiments, weak versus strong, fresh FM were cultured without additions. Fragments were strength tested and media analyzed by multiplex protein ELISA for proteases and protease inhibitors. RESULTS GMCSF induced FM weakening and concomitantly increased several Proteases (Cathepsin-S, Proteinase-3, Elastase-2) and decreased several protease inhibitors (NGAL, Cystatin-C, HE4 and Thrombospondin1). LA inhibited GMCSF-induced FM weakening and all enzymatic changes. Untreated weaker versus stronger regions of fresh FM showed comparable differences in proteases and protease inhibitor patterns to GMCSF-stimulated versus controls. CONCLUSION LA blocks GMCSF-induced human FM weakening and associated protease increases and inhibitor decreases. The GMCSF-induced spectrum of protease/protease-inhibitor changes is similar to that in the natural weak FM fragments. In concert with previously reported GMCSF-induced changes in MMPs & TIMPs, these other protease and protease-inhibitor changes presumably facilitate FM weakening and rupture. LA blocks these GMCSF effects and therefore may be a useful agent to prevent PPROM.
Collapse
Affiliation(s)
- R M Moore
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - R Katri
- Miami University, MetroHealth Medical Center, 44109, Oxford, OH, USA
| | - D Kumar
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - J M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 100900 Euclid Ave, 44106, Cleveland, OH, USA
| | - B Mercer
- Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA
| | - J J Moore
- Department of Pediatrics, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA; Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, 44109, Cleveland, OH, USA.
| |
Collapse
|
29
|
Duan FM, Fu LJ, Wang YH, Adu-Gyamfi EA, Ruan LL, Xu ZW, Xiao SQ, Chen XM, Wang YX, Liu TH, Ding YB. THBS1 regulates trophoblast fusion through a CD36-dependent inhibition of cAMP, and its upregulation participates in preeclampsia. Genes Dis 2020; 8:353-363. [PMID: 33997182 PMCID: PMC8093648 DOI: 10.1016/j.gendis.2020.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy complication which threatens the survival of mothers and fetuses. It originates from abnormal placentation, especially insufficient fusion of the cytotrophoblast cells to form the syncytiotrophoblast. In this study, we found that THBS1, a matricellular protein that mediates cell-to-cell and cell-to-matrix interactions, is downregulated during the fusion of primary cytotrophoblast and BeWo cells, but upregulated in the placenta of pregnancies complicated by preeclampsia. Also, THBS1 was observed to interact with CD36, a membrane signal receptor and activator of the cAMP signaling pathway, to regulate the fusion of cytotrophoblast cells. Overexpression of THBS1 inhibited the cAMP signaling pathway and reduced the BeWo cells fusion ratio, while the effects of THBS1 were abolished by a CD36-blocking antibody. Our results suggest that THBS1 signals through a CD36-mediated cAMP pathway to regulate syncytialization of the cytotrophoblast cells, and that its upregulation impairs placental formation to cause preeclampsia. Thus, THBS1 can serve as a therapeutic target regarding the mitigation of abnormal syncytialization and preeclampsia.
Collapse
Affiliation(s)
- Fu-Mei Duan
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong-Heng Wang
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ling-Ling Ruan
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zeng-Wei Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Shi-Quan Xiao
- The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China.,Department of Reproductive Medicine, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, PR China
| | - Xue-Mei Chen
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- Department of Bioinformatics, The School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| | - Yu-Bin Ding
- School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.,The Joint International Research Laboratory of Reproduction and Development, Ministry of Education, Chongqing, 400016, PR China
| |
Collapse
|
30
|
Zhang K, Li M, Yin L, Fu G, Liu Z. Role of thrombospondin‑1 and thrombospondin‑2 in cardiovascular diseases (Review). Int J Mol Med 2020; 45:1275-1293. [PMID: 32323748 PMCID: PMC7138268 DOI: 10.3892/ijmm.2020.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombospondin (TSP)-1 and TSP-2 are matricellular proteins in the extracellular matrix (ECM), which serve a significant role in the pathological processes of various cardiovascular diseases (CVDs). The multiple effects of TSP-1 and TSP-2 are due to their ability to interact with various ligands, such as structural components of the ECM, cytokines, cellular receptors, growth factors, proteases and other stromal cell proteins. TSP-1 and TSP-2 regulate the structure and activity of the aforementioned ligands by interacting directly or indirectly with them, thereby regulating the activity of different types of cells in response to environmental stimuli. The pathological processes of numerous CVDs are associated with the degradation and remodeling of ECM components, and with cell migration, dysfunction and apoptosis, which may be regulated by TSP-1 and TSP-2 through different mechanisms. Therefore, investigating the role of TSP-1 and TSP-2 in different CVDs and the potential signaling pathways they are associated with may provide a new perspective on potential therapies for the treatment of CVDs. In the present review, the current understanding of the roles TSP-1 and TSP-2 serve in various CVDs were summarized. In addition, the interacting ligands and the potential pathways associated with these thrombospondins in CVDs are also discussed.
Collapse
Affiliation(s)
- Kaijie Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Miaomiao Li
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
31
|
de Jong JM, Wang P, Oomkens M, Baron W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination (failure). J Neurosci Res 2020; 98:1370-1397. [PMID: 31965607 DOI: 10.1002/jnr.24582] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/29/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) provides protection, rigidity, and structure toward cells. It consists, among others, of a wide variety of glycoproteins and proteoglycans, which act together to produce a complex and dynamic environment, most relevant in transmembrane events. In the brain, the ECM occupies a notable proportion of its volume and maintains the homeostasis of central nervous system (CNS). In addition, remodeling of the ECM, that is transient changes in ECM proteins regulated by matrix metalloproteinases (MMPs), is an important process that modulates cell behavior upon injury, thereby facilitating recovery. Failure of ECM remodeling plays an important role in the pathogenesis of multiple sclerosis (MS), a neurodegenerative demyelinating disease of the CNS with an inflammatory response against protective myelin sheaths that surround axons. Remyelination of denuded axons improves the neuropathological conditions of MS, but this regeneration process fails over time, leading to chronic disease progression. In this review, we uncover abnormal ECM remodeling in MS lesions by discussing ECM remodeling in experimental demyelination models, that is when remyelination is successful, and compare alterations in ECM components to the ECM composition and MMP expression in the parenchyma of demyelinated MS lesions, that is when remyelination fails. Inter- and intralesional differences in ECM remodeling in the distinct white matter MS lesions are discussed in terms of consequences for oligodendrocyte behavior and remyelination (failure). Hence, the review will aid to understand how abnormal ECM remodeling contributes to remyelination failure in MS lesions and assists in developing therapeutic strategies to promote remyelination.
Collapse
Affiliation(s)
- Jody M de Jong
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peng Wang
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Oomkens
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Chen GL, Wang SC, Shen TC, Tsai CW, Chang WS, Li HT, Wu CN, Chao CY, Hsia TC, Bau DT. The association of matrix metalloproteinas-2 promoter polymorphisms with lung cancer susceptibility in Taiwan. CHINESE J PHYSIOL 2019; 62:210-216. [PMID: 31670285 DOI: 10.4103/cjp.cjp_43_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Matrix metalloproteinases-2 (MMP2) has been reported to be overexpressed in various types of cancer. However, the contribution of various genotypes of MMP2 to lung cancer is controversial and not yet been examined in Taiwan. Therefore, in the current study, we investigated the association of MMP2 genotypes with lung cancer risk among Taiwanese. In this hospital-based, case-control study, 358 lung cancer patients and 716 age- and gender-matched healthy controls were recruited, and the genotypic distributions of MMP2-1306 and MMP2- 735 were determined. Then, their association with lung cancer was evaluated, and their interaction with personal smoking status was also examined via stratification analysis. The results showed that the percentages of variant CT and TT at MMP2-1306 were 17.3% and 1.7% among the lung cancer patients, respectively, much lower than those of 28.7% and 2.4%, respectively, among the healthy controls (P for trend = 0.0001). The allelic frequency distribution analysis showed that the variant T allele at MMP2-1306 conferred a statistically significantly lower lung cancer risk than the wild-type C allele (adjusted odds ratio = 0.54, 95% confidence interval = 0.41-0.72, P = 0.0001). There was an obvious effect of MMP2-1306 genotype on lung cancer risk among the subpopulations of ever smokers but not nonsmokers. As for the genotypes of MMP2-735, there was no such differential distribution in the aspects of genotypic or allelic frequencies, or combinative effects with smoking status. The genotypes of MMP2-1306 may act as a biomarker in determining personal susceptibility to lung cancer in Taiwan. The contribution of MMP2 genotypes alone and its joint effects with personal cigarette smoking habit on lung cancer susceptibility should be taken into consideration of the clinical practices for early detection and prediction of lung cancer in Taiwan.
Collapse
Affiliation(s)
- Guan-Liang Chen
- Graduate Institute of Biomedical Sciences, China Medical University; Taichung Armed Forces General Hospital, Taichung; National Defense Medical Center, Taipei, Taiwan
| | - Shou-Cheng Wang
- Taichung Armed Forces General Hospital, Taichung; National Defense Medical Center, Taipei, Taiwan
| | - Te-Chun Shen
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Wen Tsai
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Shin Chang
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Ting Li
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Che-Yi Chao
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University; Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
33
|
Deguchi T, Hashizume H, Nakajima M, Teraguchi M, Akune T, Yamada H, Tanaka S, Yoshimura N, Nojima M, Yoshida M, Ikegawa S. A population-based study identifies an association of THBS2 with intervertebral disc degeneration. Osteoarthritis Cartilage 2019; 27:1501-1507. [PMID: 31233787 DOI: 10.1016/j.joca.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/26/2019] [Accepted: 06/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To clarify the genetic mechanisms underlying intervertebral disc degeneration (IDD), we examined the associations between single-nucleotide polymorphisms (SNPs) and indicated as coefficient of interaction term (IDD) in a general population in Japan. METHODS This was a cross-sectional study. In 1,605 participants, C2-3 to L5/S1 in the total spine magnetic resonance imaging (MRI) were evaluated using the Pfirrmann's scoring system. Disc scores of 4 and 5 were defined as IDD. Eight SNPs in eight genes associated with IDD were examined at each disc level, considering the non-genetic risk factors of age, sex, and body mass index (BMI). RESULTS The highest odds ratio was found for rs9406328 in the THBS2 gene at disc level T12-L1 (OR 1.27, 95%CI 1.05 to 1.53), and this association was strengthened after adjustment for age using logistic regression (OR 1.37, 95%CI 1.12 to 1.67). Among participants aged <50 years and 50-59, the average IDD score in those with 2 risk alleles of rs9406328 was markedly higher than in those with 0 or 1 risk allele, and the difference is much wider than the elderly participants. It indicates the genetic effect of rs9406328 is stronger in the younger age groups. Finally, multiple linear regression analyses of the association between rs9406328 and IDD, adjusted for age, sex, and BMI at each disc level, showed a statistical interaction between age and the number of risk alleles at C7-T1, T3-4 and T4-T5 as well as T12-L1. CONCLUSION CONCLUSION: The association between rs9406328 in THBS2 and IDD was replicated. The contributions of genetic and environmental factors to IDD differed by disc level.
Collapse
Affiliation(s)
- T Deguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - H Hashizume
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan.
| | - M Nakajima
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan
| | - M Teraguchi
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - T Akune
- Rehabilitation Services Bureau, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - H Yamada
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - S Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - N Yoshimura
- Department of Preventive Medicine for Locomotive Organ Disorders, 22nd Century Medical & Research Center, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - M Nojima
- Biostatistics & Data Management, Center for Translational Research, The Institute of Medical Science Hospital, The University of Tokyo, Tokyo, Japan
| | - M Yoshida
- Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, Japan
| | - S Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrative Medical Sciences, RIKEN, Tokyo, Japan.
| |
Collapse
|
34
|
The Non-Fibrillar Side of Fibrosis: Contribution of the Basement Membrane, Proteoglycans, and Glycoproteins to Myocardial Fibrosis. J Cardiovasc Dev Dis 2019; 6:jcdd6040035. [PMID: 31547598 PMCID: PMC6956278 DOI: 10.3390/jcdd6040035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) provides structural support and a microenvironmentfor soluble extracellular molecules. ECM is comprised of numerous proteins which can be broadly classified as fibrillar (collagen types I and III) and non-fibrillar (basement membrane, proteoglycans, and glycoproteins). The basement membrane provides an interface between the cardiomyocytes and the fibrillar ECM, while proteoglycans sequester soluble growth factors and cytokines. Myocardial fibrosis was originally only linked to accumulation of fibrillar collagens, but is now recognized as the expansion of the ECM including the non-fibrillar ECM proteins. Myocardial fibrosis can be reparative to replace the lost myocardium (e.g., ischemic injury or myocardial infarction), or can be reactive resulting from pathological activity of fibroblasts (e.g., dilated or hypertrophic cardiomyopathy). Contribution of fibrillar collagens to fibrosis is well studied, but the role of the non-fibrillar ECM proteins has remained less explored. In this article, we provide an overview of the contribution of the non-fibrillar components of the extracellular space of the heart to highlight the potential significance of these molecules in fibrosis, with direct evidence for some, although not all of these molecules in their direct contribution to fibrosis.
Collapse
|
35
|
Foulsham W, Dohlman TH, Mittal SK, Taketani Y, Singh RB, Masli S, Dana R. Thrombospondin-1 in ocular surface health and disease. Ocul Surf 2019; 17:374-383. [PMID: 31173926 DOI: 10.1016/j.jtos.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022]
Abstract
Thrombospondin 1 (TSP-1) is an extracellular matrix protein that interacts with a wide array of ligands including cell receptors, growth factors, cytokines and proteases to regulate various physiological and pathological processes. Constitutively expressed by certain ocular surface tissues (e.g. corneal and conjunctival epithelium), TSP-1 expression is modulated during ocular surface inflammation. TSP-1 is an important activator of latent TGF-β, serving to promote the immunomodulatory and wound healing functions of TGF-β. Mounting research has deepened our understanding of how TSP-1 expression (and lack thereof) contributes to ocular surface homeostasis and disease. Here, we review current knowledge of the function of TSP-1 in dry eye disease, ocular allergy, angiogenesis/lymphangiogenesis, corneal transplantation, corneal wound healing and infectious keratitis.
Collapse
Affiliation(s)
- William Foulsham
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA; Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| | - Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yukako Taketani
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Rohan Bir Singh
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
36
|
Herwig J, Skuza S, Sachs W, Sachs M, Failla AV, Rune G, Meyer TN, Fester L, Meyer-Schwesinger C. Thrombospondin Type 1 Domain-Containing 7A Localizes to the Slit Diaphragm and Stabilizes Membrane Dynamics of Fully Differentiated Podocytes. J Am Soc Nephrol 2019; 30:824-839. [PMID: 30971456 DOI: 10.1681/asn.2018090941] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND About 3%-5% of adults with membranous nephropathy have autoantibodies directed against thrombospondin type 1 domain-containing 7A (THSD7A), a podocyte-expressed transmembrane protein. However, the temporal and spatial expression of THSD7A and its biologic function for podocytes are unknown, information that is needed to understand the effects of THSD7A autoantibodies in this disease. METHODS Using a variety of microscopic techniques, we analyzed THSD7A localization in postnatal, adult, and autoantibody-injected mice as well as in human podocytes. We also analyzed THSD7A function in human podocytes using confocal microscopy; Western blotting; and adhesion and migration assays. RESULTS We found that THSD7A expression begins on glomerular vascularization with slit diaphragm formation in development. THSD7A localizes to the basal aspect of foot processes, closely following the meanders of the slit diaphragm in human and mice. Autoantibodies binding to THSD7A localize to the slit diaphragm. In human podocytes, THSD7A expression is accentuated at filopodia and thin arborized protrusions, an expression pattern associated with decreased membrane activity of cytoskeletal regulators. We also found that, phenotypically, THSD7A expression in human podocytes is associated not only with increases in cell size, enhanced adhesion, and reduced detachment from collagen type IV-coated plates but also, with decreased ability to migrate. CONCLUSIONS Our findings suggest that THSD7A functions as a foot process protein involved in the stabilization of the slit diaphragm of mature podocytes and that autoantibodies to THSD7A, on the basis of their localization, might structurally and functionally alter the slit diaphragm's permeability to protein.
Collapse
Affiliation(s)
| | - Sinah Skuza
- Institutes of Cellular and Integrative Physiology and
| | - Wiebke Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Marlies Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Antonio Virgilio Failla
- University Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | | | - Tobias N Meyer
- Department of Internal Medicine, Nephrology, Asklepios Klinikum Barmbek, Hamburg, Germany
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Tomoko Nakao
- Department of Clinical Laboratory, The University of Tokyo Hospital
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, The University of Tokyo Hospital
| |
Collapse
|
38
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
39
|
Calabro NE, Barrett A, Chamorro-Jorganes A, Tam S, Kristofik NJ, Xing H, Loye AM, Sessa WC, Hansen K, Kyriakides TR. Thrombospondin-2 regulates extracellular matrix production, LOX levels, and cross-linking via downregulation of miR-29. Matrix Biol 2019; 82:71-85. [PMID: 30876926 DOI: 10.1016/j.matbio.2019.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/13/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
Collagen fibrillogenesis and crosslinking have long been implicated in extracellular matrix (ECM)-dependent processes such as fibrosis and scarring. However, the extent to which matricellular proteins influence ECM protein production and fibrillar collagen crosslinking has yet to be determined. Here we show that thrombospondin 2 (TSP2), an anti-angiogenic matricellular protein, is an important modulator of ECM homeostasis. Specifically, through a fractionated quantitative proteomics approach, we show that loss of TSP2 leads to a unique ECM phenotype characterized by a significant decrease in fibrillar collagen, matricellular, and structural ECM protein production in the skin of TSP2 KO mice. Additionally, TSP2 KO skin displays decreased lysyl oxidase (LOX), which manifests as an increase in fibrillar collagen solubility and decreased levels of LOX-mediated fibrillar collagen crosslinking. We show that these changes are indirectly mediated by miR-29, a major regulator of ECM proteins and LOX, as miR-29 expression is increased in the TSP2 KO. Altogether, these findings indicate that TSP2 contributes to ECM production and assembly by regulating miR-29 and LOX.
Collapse
Affiliation(s)
- N E Calabro
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - A Barrett
- Department of Biochemistry and Molecular Genetics, Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, CO 80045, USA
| | - A Chamorro-Jorganes
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - S Tam
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - N J Kristofik
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Hao Xing
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Ayomiposi M Loye
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - W C Sessa
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - K Hansen
- Department of Biochemistry and Molecular Genetics, Biological Mass Spectrometry Facility, University of Colorado Denver, Aurora, CO 80045, USA
| | - T R Kyriakides
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
40
|
Atanasova VS, Russell RJ, Webster TG, Cao Q, Agarwal P, Lim YZ, Krishnan S, Fuentes I, Guttmann-Gruber C, McGrath JA, Salas-Alanis JC, Fertala A, South AP. Thrombospondin-1 Is a Major Activator of TGF-β Signaling in Recessive Dystrophic Epidermolysis Bullosa Fibroblasts. J Invest Dermatol 2019; 139:1497-1505.e5. [PMID: 30684555 DOI: 10.1016/j.jid.2019.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022]
Abstract
Mutations in the gene encoding collagen VII cause the devastating blistering disease recessive dystrophic epidermolysis bullosa (RDEB). RDEB is characterized by severe skin fragility and nonhealing wounds aggravated by scarring and fibrosis. We previously showed that TSP1 is increased in RDEB fibroblasts. Because transforming growth factor-β (TGF-β) signaling is also increased in RDEB, and TSP1 is known to activate TGF-β, we investigated the role of TSP1 in TGF-β signaling in RDEB patient cells. Knockdown of TSP1 reduced phosphorylation of smad3 (a downstream target of TGF-β signaling) in RDEB primary fibroblasts, whereas overexpression of collagen VII reduced phosphorylation of smad3. Furthermore, inhibition of TSP1 binding to the LAP/TGF-β complex decreased fibrosis in engineered extracellular matrix formed by RDEB fibroblasts, as evaluated by picrosirius red staining and analyses of birefringent collagen fibrillar deposits. We show that collagen VII binds TSP1, which could potentially limit TSP1-LAP association and subsequent TGF-β activation. Our study suggests a previously unreported mechanism for increased TGF-β signaling in the absence of collagen VII in RDEB patient skin. Moreover, these data identify TSP1 as a possible target for reducing fibrosis in the tumor-promoting dermal microenvironment of RDEB patients.
Collapse
Affiliation(s)
- Velina S Atanasova
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rebecca J Russell
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Timothy G Webster
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qingqing Cao
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Yok Zuan Lim
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Ignacia Fuentes
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Fundación DEBRA Chile, Santiago, Chile
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for the Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - John A McGrath
- St. John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | | | - Andrzej Fertala
- Department of Orthopedics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
41
|
Binsker U, Kohler TP, Hammerschmidt S. Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. J Innate Immun 2019; 11:303-315. [PMID: 30814475 PMCID: PMC6738282 DOI: 10.1159/000496033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia. Human platelets secrete thrombospondin-1, which is then acquired by invading pathogens to facilitate colonization and immune evasion. Gram-positive bacteria express a broad spectrum of surface-exposed proteins, some of which also recognize thrombospondin-1. This review highlights the importance of thrombospondin-1 as an adhesion substrate to facilitate colonization, and we summarize the variety of thrombospondin-1-binding proteins of S. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Ulrike Binsker
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
- Department of Microbiology, NYU Langone Health, Alexandria Center for the Life Sciences, New York City, New York, USA
| | - Thomas P Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany,
| |
Collapse
|
42
|
Gao X, Petricoin EF, Ward KR, Goldberg SR, Duane TM, Bonchev D, Arodz T, Diegelmann RF. Network proteomics of human dermal wound healing. Physiol Meas 2018; 39:124002. [PMID: 30524050 DOI: 10.1088/1361-6579/aaee19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The healing of wounds is critical in protecting the human body against environmental factors. The mechanisms involving protein expression during this complex physiological process have not been fully elucidated. APPROACH Here, we use reverse-phase protein microarrays (RPPA) involving 94 phosphoproteins to study tissue samples from tubes implanted in healing dermal wounds in seven human subjects tracked over two weeks. We compare the proteomic profiles to proteomes of controls obtained from skin biopsies from the same subjects. MAIN RESULTS Compared to previous proteomic studies of wound healing, our approach focuses on wound tissue instead of wound fluid, and has the sensitivity to go beyond measuring only highly abundant proteins. To study the temporal dynamics of networks involved in wound healing, we applied two network analysis methods that integrate the experimental results with prior knowledge about protein-protein physical and regulatory interactions, as well as higher-level biological processes and associated pathways. SIGNIFICANCE We uncovered densely connected networks of proteins that are up- or down-regulated during human wound healing, as well as their relationships to microRNAs and to proteins outside of our set of targets that we measured with proteomic microarrays.
Collapse
Affiliation(s)
- Xi Gao
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Vascular remodeling defines cancer growth and aggressiveness. Although cancer cells produce pro-angiogenic signals, the fate of angiogenesis critically depends on the cancer microenvironment. Composition of the extracellular matrix (ECM) and tumor inflammation determine whether a cancer will remain dormant, will be recognized by the immune system and eliminated, or whether the tumor will develop and lead to the spread and metastasis of cancer cells. Thrombospondins (TSPs), a family of ECM proteins that has long been associated with the regulation of angiogenesis and cancer, regulate multiple physiological processes that determine cancer growth and spreading, from angiogenesis to inflammation, metabolic changes, and properties of ECM. Here, we sought to review publications that describe various functions of TSPs that link these proteins to regulation of cancer growth by modulating multiple physiological and pathological events that prevent or support tumor development. In addition to its direct effects on angiogenesis, TSPs have important roles in regulation of inflammation, immunity, ECM properties and composition, and glucose and insulin metabolism. Furthermore, TSPs have distinct roles as regulators of remodeling in tissues and tumors, such that the pathways activated by a single TSP can interact and influence each other. The complex nature of TSP interactions and functions, including their different cell- and tissue-specific effects, may lead to confusing results and controversial conclusions when taken out of the context of interdisciplinary and holistic approaches. However, studies of TSP functions and roles in different systems of the organism offer an integrative view of tumor remodeling and a potential for finding therapeutic targets that would modulate multiple complementary processes associated with cancer growth.
Collapse
Affiliation(s)
| | - Santoshi Muppala
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, 44195, USA
| | - Jasmine Gajeton
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, 44195, USA
| |
Collapse
|
44
|
Chen CY, Melo E, Jakob P, Friedlein A, Elsässer B, Goettig P, Kueppers V, Delobel F, Stucki C, Dunkley T, Fauser S, Schilling O, Iacone R. N-Terminomics identifies HtrA1 cleavage of thrombospondin-1 with generation of a proangiogenic fragment in the polarized retinal pigment epithelial cell model of age-related macular degeneration. Matrix Biol 2018; 70:84-101. [PMID: 29572155 DOI: 10.1016/j.matbio.2018.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population. Variants in the HTRA1-ARMS2 locus have been linked to increased AMD risk. In the present study we investigated the impact of elevated HtrA1 levels on the retina pigment epithelial (RPE) secretome using a polarized culture system. Upregulation of HtrA1 alters the abundance of key proteins involved in angiogenesis and extracellular matrix remodeling. Thrombospondin-1, an angiogenesis modulator, was identified as a substrate for HtrA1 using terminal amine isotope labeling of substrates in conjunction with HtrA1 specificity profiling. HtrA1 cleavage of thrombospondin-1 was further corroborated by in vitro cleavage assays and targeted proteomics together with small molecule inhibition of HtrA1. While thrombospondin-1 is anti-angiogenic, the proteolytically released N-terminal fragment promotes the formation of tube-like structure by endothelial cells. Taken together, our findings suggest a mechanism by which increased levels of HtrA1 may contribute to AMD pathogenesis. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier. For quantitative secretome analysis, project accession: PXD007691, username: reviewer45093@ebi.ac.uk, password: 1FUpS6Yq. For TAILS analysis, project accession: PXD007139, username: reviewer76731@ebi.ac.uk, password: sNbMp7xK.
Collapse
Affiliation(s)
- Chia-Yi Chen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Esther Melo
- Roche Pharma Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Peter Jakob
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arno Friedlein
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Brigitta Elsässer
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Verena Kueppers
- Roche Pharma Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Frederic Delobel
- Roche Pharma Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Corinne Stucki
- Roche Pharma Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tom Dunkley
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sascha Fauser
- Roche Pharma Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Roberto Iacone
- Roche Pharma Research and Early Development, Neuroscience Ophthalmology and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
45
|
Human notochordal cell transcriptome unveils potential regulators of cell function in the developing intervertebral disc. Sci Rep 2018; 8:12866. [PMID: 30150762 PMCID: PMC6110784 DOI: 10.1038/s41598-018-31172-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/01/2018] [Indexed: 11/08/2022] Open
Abstract
The adult nucleus pulposus originates from the embryonic notochord, but loss of notochordal cells with skeletal maturity in humans is thought to contribute to the onset of intervertebral disc degeneration. Thus, defining the phenotype of human embryonic/fetal notochordal cells is essential for understanding their roles and for development of novel therapies. However, a detailed transcriptomic profiling of human notochordal cells has never been achieved. In this study, the notochord-specific marker CD24 was used to specifically label and isolate (using FACS) notochordal cells from human embryonic and fetal spines (7.5–14 weeks post-conception). Microarray analysis and qPCR validation identified CD24, STMN2, RTN1, PRPH, CXCL12, IGF1, MAP1B, ISL1, CLDN1 and THBS2 as notochord-specific markers. Expression of these markers was confirmed in nucleus pulposus cells from aged and degenerate discs. Ingenuity pathway analysis revealed molecules involved in inhibition of vascularisation (WISP2, Noggin and EDN2) and inflammation (IL1-RN) to be master regulators of notochordal genes. Importantly, this study has, for the first time, defined the human notochordal cell transcriptome and suggests inhibition of inflammation and vascularisation may be key roles for notochordal cells during intervertebral disc development. The molecules and pathways identified in this study have potential for use in developing strategies to retard/prevent disc degeneration, or regenerate tissue.
Collapse
|
46
|
Rogers NM, Ghimire K, Calzada MJ, Isenberg JS. Matricellular protein thrombospondin-1 in pulmonary hypertension: multiple pathways to disease. Cardiovasc Res 2018; 113:858-868. [PMID: 28472457 DOI: 10.1093/cvr/cvx094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022] Open
Abstract
Matricellular proteins are secreted molecules that have affinities for both extracellular matrix and cell surface receptors. Through interaction with structural proteins and the cells that maintain the matrix these proteins can alter matrix strength. Matricellular proteins exert control on cell activity primarily through engagement of membrane receptors that mediate outside-in signaling. An example of this group is thrombospondin-1 (TSP1), first identified as a component of the secreted product of activated platelets. As a result, TSP1 was initially studied in relation to coagulation, growth factor signaling and angiogenesis. More recently, TSP1 has been found to alter the effects of the gaseous transmitter nitric oxide (NO). This latter capacity has provided motivation to study TSP1 in diseases associated with loss of NO signaling as observed in cardiovascular disease and pulmonary hypertension (PH). PH is characterized by progressive changes in the pulmonary vasculature leading to increased resistance to blood flow and subsequent right heart failure. Studies have linked TSP1 to pre-clinical animal models of PH and more recently to clinical PH. This review will provide analysis of the vascular and non-vascular effects of TSP1 that contribute to PH, the experimental and translational studies that support a role for TSP1 in disease promotion and frame the relevance of these findings to therapeutic strategies.
Collapse
Affiliation(s)
- Natasha M Rogers
- Medicine, Westmead Clinical School, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Kedar Ghimire
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Maria J Calzada
- Department of Medicine, Universidad Autónoma of Madrid, Diego de León, Hospital Universitario of the Princesa, 62?28006 Madrid, Spain
| | - Jeffrey S Isenberg
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
47
|
Dolmatov IY, Afanasyev SV, Boyko AV. Molecular mechanisms of fission in echinoderms: Transcriptome analysis. PLoS One 2018; 13:e0195836. [PMID: 29649336 PMCID: PMC5897022 DOI: 10.1371/journal.pone.0195836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/01/2018] [Indexed: 12/11/2022] Open
Abstract
Echinoderms are capable of asexual reproduction by fission. An individual divides into parts due to changes in the strength of connective tissue of the body wall. The structure of connective tissue and the mechanisms of variations in its strength in echinoderms remain poorly studied. An analysis of transcriptomes of individuals during the process of fission provides a new opportunity to understand the mechanisms of connective tissue mutability. In the holothurian Cladolabes schmeltzii, we have found a rather complex organization of connective tissue. Transcripts of genes encoding a wide range of structural proteins of extracellular matrix, as well as various proteases and their inhibitors, have been discovered. All these molecules may constitute a part of the mechanism of connective tissue mutability. According to our data, the extracellular matrix of echinoderms is substantially distinguished from that of vertebrates by the lack of elastin, fibronectins, and tenascins. In case of fission, a large number of genes of transcription factors and components of different signaling pathways are expressed. Products of these genes are probably involved in regulation of asexual reproduction, connective tissue mutability, and preparation of tissues for subsequent regeneration. It has been shown that holothurian tensilins are a special group of tissue inhibitors of metalloproteinases, which has formed within the class Holothuroidea and is absent from other echinoderms. Our data can serve a basis for the further study of the mechanisms of extracellular matrix mutability, as well as the mechanisms responsible for asexual reproduction in echinoderms.
Collapse
Affiliation(s)
- Igor Yu. Dolmatov
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
- * E-mail:
| | - Sergey V. Afanasyev
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Saint Petersburg, Russia
| | - Alexey V. Boyko
- A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
48
|
Seifert L, Hoxha E, Eichhoff AM, Zahner G, Dehde S, Reinhard L, Koch-Nolte F, Stahl RAK, Tomas NM. The Most N-Terminal Region of THSD7A Is the Predominant Target for Autoimmunity in THSD7A-Associated Membranous Nephropathy. J Am Soc Nephrol 2018; 29:1536-1548. [PMID: 29555830 DOI: 10.1681/asn.2017070805] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/09/2018] [Indexed: 01/22/2023] Open
Abstract
Background Thrombospondin type 1 domain-containing 7A (THSD7A) has been identified as a pathogenic autoantigen in membranous nephropathy (MN). However, the THSD7A epitopes targeted by patient autoantibodies are unknown.Methods We performed an in silico analysis of the THSD7A multidomain structure, expressed the folded domains in HEK293 cells, and tested for domain reactivity with 31 serum samples from patients with THSD7A-associated MN using Western and native blotting. Immunogenicity of the antigen domains was further investigated by cDNA immunization of rabbits and mice.Results We characterized the extracellular topology of THSD7A as a tandem string of 21 thrombospondin type 1 domains. Overall, 28 serum samples (90%) recognized multiple epitope domains along the molecule. Detailed epitope mapping revealed that the complex consisting of the first and second N-terminal domains (amino acids 48-192) was recognized by 27 of 31 patient serum samples (87%). Serum recognizing one or two epitope domains showed lower anti-THSD7A antibody levels than serum recognizing three or more epitope domains. During follow-up, a loss of epitope recognition was observed in seven of 16 patients, and it was accompanied by decreasing antibody levels and remission of proteinuria. In four of 16 patients, epitope recognition patterns changed during follow-up. Notably, immunization experiments in rabbits and mice revealed that induced antibodies, like patient autoantibodies, preferentially bound to the most N-terminal domains of THSD7A.Conclusions Our data show that the immune response in THSD7A-associated MN is polyreactive and that autoantibodies predominantly target the most N-terminal part of THSD7A.
Collapse
Affiliation(s)
| | | | - Anna M Eichhoff
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
49
|
Qu Y, Olonisakin T, Bain W, Zupetic J, Brown R, Hulver M, Xiong Z, Tejero J, Shanks RM, Bomberger JM, Cooper VS, Zegans ME, Ryu H, Han J, Pilewski J, Ray A, Cheng Z, Ray P, Lee JS. Thrombospondin-1 protects against pathogen-induced lung injury by limiting extracellular matrix proteolysis. JCI Insight 2018; 3:96914. [PMID: 29415890 PMCID: PMC5821195 DOI: 10.1172/jci.insight.96914] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/27/2017] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury is characterized by excessive extracellular matrix proteolysis and neutrophilic inflammation. A major risk factor for lung injury is bacterial pneumonia. However, host factors that protect against pathogen-induced and host-sustained proteolytic injury following infection are poorly understood. Pseudomonas aeruginosa (PA) is a major cause of nosocomial pneumonia and secretes proteases to amplify tissue injury. We show that thrombospondin-1 (TSP-1), a matricellular glycoprotein released during inflammation, dose-dependently inhibits PA metalloendoprotease LasB, a virulence factor. TSP-1-deficient (Thbs1-/-) mice show reduced survival, impaired host defense, and increased lung permeability with exaggerated neutrophil activation following acute intrapulmonary PA infection. Administration of TSP-1 from platelets corrects the impaired host defense and aberrant injury in Thbs1-/- mice. Although TSP-1 is cleaved into 2 fragments by PA, TSP-1 substantially inhibits Pseudomonas elastolytic activity. Administration of LasB inhibitor, genetic disabling of the PA type II secretion system, or functional deletion of LasB improves host defense and neutrophilic inflammation in mice. Moreover, TSP-1 provides an additional line of defense by directly subduing host-derived proteolysis, with dose-dependent inhibition of neutrophil elastase from airway neutrophils of mechanically ventilated critically ill patients. Thus, a host matricellular protein provides dual levels of protection against pathogen-initiated and host-sustained proteolytic injury following microbial trigger.
Collapse
Affiliation(s)
- Yanyan Qu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Tolani Olonisakin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - William Bain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jill Zupetic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Rebecca Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Mei Hulver
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Jesus Tejero
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert M.Q. Shanks
- Department of Ophthalmology, and
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael E. Zegans
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, USA
| | | | - Jongyoon Han
- Research Laboratory of Electronics
- Department of Electrical Engineering and Computer Science, and
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Joseph Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
| | - Janet S. Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
50
|
Li H, Venkatraman L, Narmada BC, White JK, Yu H, Tucker-Kellogg L. Computational analysis reveals the coupling between bistability and the sign of a feedback loop in a TGF-β1 activation model. BMC SYSTEMS BIOLOGY 2017; 11:136. [PMID: 29322934 PMCID: PMC5763301 DOI: 10.1186/s12918-017-0508-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Bistable behaviors are prevalent in cell signaling and can be modeled by ordinary differential equations (ODEs) with kinetic parameters. A bistable switch has recently been found to regulate the activation of transforming growth factor-β1 (TGF-β1) in the context of liver fibrosis, and an ordinary differential equation (ODE) model was published showing that the net activation of TGF-β1 depends on the balance between two antagonistic sub-pathways. RESULTS Through modeling the effects of perturbations that affect both sub-pathways, we revealed that bistability is coupled with the signs of feedback loops in the model. We extended the model to include calcium and Krüppel-like factor 2 (KLF2), both regulators of Thrombospondin-1 (TSP1) and Plasmin (PLS). Increased levels of extracellular calcium, which alters the TSP1-PLS balance, would cause high levels of TGF-β1, resembling a fibrotic state. KLF2, which suppresses production of TSP1 and plasminogen activator inhibitor-1 (PAI1), would eradicate bistability and preclude the fibrotic steady-state. Finally, the loop PLS - TGF-β1 - PAI1 had previously been reported as negative feedback, but the model suggested a stronger indirect effect of PLS down-regulating PAI1 to produce positive (double-negative) feedback in a fibrotic state. Further simulations showed that activation of KLF2 was able to restore negative feedback in the PLS - TGF-β1 - PAI1 loop. CONCLUSIONS Using the TGF-β1 activation model as a case study, we showed that external factors such as calcium or KLF2 can induce or eradicate bistability, accompanied by a switch in the sign of a feedback loop (PLS - TGF-β1 - PAI1) in the model. The coupling between bistability and positive/negative feedback suggests an alternative way of characterizing a dynamical system and its biological implications.
Collapse
Affiliation(s)
- Huipeng Li
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
| | - Lakshmi Venkatraman
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
| | - Balakrishnan Chakrapani Narmada
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669 Singapore
| | - Jacob K. White
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Hanry Yu
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411 Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456 Singapore
- Department of Physiology, National University of Singapore, Singapore, 117597 Singapore
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, 138602 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, Singapore, 138669 Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Lisa Tucker-Kellogg
- Computational and Systems Biology Program, Singapore-MIT Alliance, Singapore, 117576 Singapore
- Center for Computational Biology, Duke-NUS Medical School, Singapore, 169857 Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857 Singapore
| |
Collapse
|