1
|
Villanueva-Cabello TM, Gutiérrez-Valenzuela LD, Salinas-Marín R, López-Guerrero DV, Martínez-Duncker I. Polysialic Acid in the Immune System. Front Immunol 2022; 12:823637. [PMID: 35222358 PMCID: PMC8873093 DOI: 10.3389/fimmu.2021.823637] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/28/2021] [Indexed: 01/01/2023] Open
Abstract
Polysialic acid (polySia) is a highly regulated polymer of sialic acid (Sia) with such potent biophysical characteristics that when expressed drastically influences the interaction properties of cells. Although much of what is known of polySia in mammals has been elucidated from the study of its role in the central nervous system (CNS), polySia is also expressed in other tissues, including the immune system where it presents dynamic changes during differentiation, maturation, and activation of different types of immune cells of the innate and adaptive response, being involved in key regulatory mechanisms. At least six polySia protein carriers (CCR7, ESL-1, NCAM, NRP2, ST8Sia 2, and ST8Sia 4) are expressed in different types of immune cells, but there is still much to be explored in regard not only to the regulatory mechanisms that determine their expression and the structure of polySia chains but also to the identification of the cis- and trans- ligands of polySia that establish signaling networks. This review summarizes the current knowledge on polySia in the immune system, addressing its biosynthesis, its tools for identification and structural characterization, and its functional roles and therapeutic implications.
Collapse
Affiliation(s)
- Tania M. Villanueva-Cabello
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lya D. Gutiérrez-Valenzuela
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Iván Martínez-Duncker,
| |
Collapse
|
2
|
Guo X, Elkashef SM, Loadman PM, Patterson LH, Falconer RA. Recent advances in the analysis of polysialic acid from complex biological systems. Carbohydr Polym 2019; 224:115145. [PMID: 31472857 DOI: 10.1016/j.carbpol.2019.115145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
Polysialic acid (polySia) is a unique, well-characterised carbohydrate polymer highly-expressed on the cell surface of neurons in the early stages of mammalian brain development. Post-embryogenesis, it is also re-expressed in a number of tumours of neuroendocrine origin. It plays important roles in modulating cell-cell, and cell-matrix adhesion and migration, tumour invasion and metastasis. Techniques for structural and quantitative characterisation of polySia from tumours and cancer cells are thus essential in exploring the relationship between polySia expression levels and structural and functional changes associated with cancer progression and metastasis. A variety of techniques have been developed to structurally and quantitatively analyse polySia in clinical tissues and other biological samples. In this review, analytical approaches used for the determination of polySia in biological matrices in the past 20 years are discussed, with a particular focus on chemical approaches, and quantitative analysis.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Sara M Elkashef
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
3
|
Kronewitter SR, Marginean I, Cox JT, Zhao R, Hagler CD, Shukla AK, Carlson TS, Adkins JN, Camp DG, Moore RJ, Rodland KD, Smith RD. Polysialylated N-glycans identified in human serum through combined developments in sample preparation, separations, and electrospray ionization-mass spectrometry. Anal Chem 2014; 86:8700-10. [PMID: 25118826 PMCID: PMC4151788 DOI: 10.1021/ac501839b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The N-glycan diversity of human serum glycoproteins, i.e., the human blood serum N-glycome, is both complex and constrained by the range of glycan structures potentially synthesizable by human glycosylation enzymes. The known glycome, however, has been further limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to include polysialylated N-glycans. Sample preparation improvements included acidified, microwave-accelerated, PNGase F N-glycan release to promote lactonization, and sodium borohydride reduction, that were both optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. Online separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient, providing additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) was utilized. When these improved methods are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described (Kronewitter et al. Anal. Chem. 2014, 86, 6268-6276), we are able to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrated the application of these advances in the context of the human serum glycome, and for which our initial observations included the detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.
Collapse
Affiliation(s)
- Scott R Kronewitter
- Biological Sciences Division, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Simon P, Bäumner S, Busch O, Röhrich R, Kaese M, Richterich P, Wehrend A, Müller K, Gerardy-Schahn R, Mühlenhoff M, Geyer H, Geyer R, Middendorff R, Galuska SP. Polysialic acid is present in mammalian semen as a post-translational modification of the neural cell adhesion molecule NCAM and the polysialyltransferase ST8SiaII. J Biol Chem 2013; 288:18825-33. [PMID: 23671285 DOI: 10.1074/jbc.m113.451112] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fertilization in animals is a complex sequence of several biochemical events beginning with the insemination into the female reproductive tract and, finally, leading to embryogenesis. Studies by Kitajima and co-workers (Miyata, S., Sato, C., and Kitajima, K. (2007) Trends Glycosci. Glyc, 19, 85-98) demonstrated the presence of polysialic acid (polySia) on sea urchin sperm. Based on these results, we became interested in the potential involvement of sialic acid polymers in mammalian fertilization. Therefore, we isolated human sperm and performed analyses, including Western blotting and mild 1,2-diamino-4,5-methylenedioxybenzene-HPLC, that revealed the presence α2,8-linked polySia chains. Further analysis by a glyco-proteomics approach led to the identification of two polySia carriers. Interestingly, besides the neural cell adhesion molecule, the polysialyltransferase ST8SiaII has also been found to be a target for polysialylation. Further analysis of testis and epididymis tissue sections demonstrated that only epithelial cells of the caput were polySia-positive. During the epididymal transit, polySia carriers were partially integrated into the sperm membrane of the postacrosomal region. Because polySia is known to counteract histone as well as neutrophil extracellular trap-mediated cytotoxicity against host cells, which plays a role after insemination, we propose that polySia in semen represents a cytoprotective element to increase the number of vital sperm.
Collapse
Affiliation(s)
- Peter Simon
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, 35392 Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Janas T, Janas T. Membrane oligo- and polysialic acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2923-32. [DOI: 10.1016/j.bbamem.2011.08.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
|
6
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. Polysialylation of NCAM. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:95-109. [DOI: 10.1007/978-1-4419-1170-4_6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Rosinha M, Ferrari E, Toledo C. Immunohistochemical distribution of AMPA-type label in the pigeon (C. livia) hippocampus. Neuroscience 2009; 159:438-50. [DOI: 10.1016/j.neuroscience.2009.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 01/22/2023]
|
8
|
Chang LY, Mir AM, Thisse C, Guérardel Y, Delannoy P, Thisse B, Harduin-Lepers A. Molecular cloning and characterization of the expression pattern of the zebrafish alpha2, 8-sialyltransferases (ST8Sia) in the developing nervous system. Glycoconj J 2008; 26:263-75. [PMID: 18642128 DOI: 10.1007/s10719-008-9165-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/16/2008] [Accepted: 06/17/2008] [Indexed: 12/15/2022]
Abstract
Sialyltransferases are Golgi type II transmembrane glycoproteins involved in the biosynthesis of sialylated glycolipids and glycoproteins. These sialylated compounds play fundamental roles in the development of a variety of tissues including the nervous system. In this study, we have molecularly cloned from zebrafish sources, the orthologues of the six human alpha2,8-sialyltransferases (ST8Sia), a family of sialyltransferases implicated in the alpha2-8-mono-, oligo-, and poly-sialylation of glycoproteins and gangliosides and we have analysed their expression pattern in the embryonic zebrafish nervous system, using in situ hybridization. Our results show that all six ST8Sia exhibit distinct and overlapping patterns of expression in the developing zebrafish central nervous system with spatial and temporal regulation of the expression of these genes, which suggests a role for the alpha2-8-sialylated compounds in the developing nervous system.
Collapse
Affiliation(s)
- Lan-Yi Chang
- Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille, UMR CNRS 8576, IFR 147, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Hildebrandt H, Mühlenhoff M, Gerardy-Schahn R. WITHDRAWN: Polysialylation of NCAM. Neurochem Res 2008. [PMID: 18461443 DOI: 10.1007/s11064-008-9724-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2008] [Indexed: 12/15/2022]
Affiliation(s)
- Herbert Hildebrandt
- Institute of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | | |
Collapse
|
10
|
Galuska SP, Geyer R, Gerardy-Schahn R, Mühlenhoff M, Geyer H. Enzyme-dependent Variations in the Polysialylation of the Neural Cell Adhesion Molecule (NCAM) in Vivo. J Biol Chem 2008; 283:17-28. [DOI: 10.1074/jbc.m707024200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Polysialic Acid Profiles of Mice Expressing Variant Allelic Combinations of the Polysialyltransferases ST8SiaII and ST8SiaIV. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84074-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Galuska SP, Oltmann-Norden I, Geyer H, Weinhold B, Kuchelmeister K, Hildebrandt H, Gerardy-Schahn R, Geyer R, Mühlenhoff M. Polysialic acid profiles of mice expressing variant allelic combinations of the polysialyltransferases ST8SiaII and ST8SiaIV. J Biol Chem 2006; 281:31605-15. [PMID: 16940046 DOI: 10.1074/jbc.m606516200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The post-translational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) represents a remarkable example of dynamic modulation of homo- and heterophilic cell interactions by glycosylation. The synthesis of this unique carbohydrate polymer depends on the polysialyltransferases ST8SiaII and ST8SiaIV. Aiming to understand in more detail the contributions of ST8SiaII and ST8SiaIV to polySia biosynthesis in vivo, we used mutant mouse lines that differ in the number of functional polysialyltransferase alleles. The 1,2-diamino-4,5-methylenedioxybenzene method was used to qualitatively and quantitatively assess the polySia patterns. Similar to the wild-type genotype, long polySia chains (>50 residues) were detected in all genotypes expressing at least one functional polysialyltransferase allele. However, variant allelic combinations resulted in distinct alterations in the total amount of poly-Sia; the relative abundance of long, medium, and short polymers; and the ratio of polysialylated to non-polysialylated NCAM. In ST8SiaII-null mice, 45% of the brain NCAM was non-polysialylated, whereas a single functional allele of ST8SiaII was sufficient to polysialylate approximately 90% of the NCAM pool. Our data reveal a complex polysialylation pattern and show that, under in vivo conditions, the coordinated action of ST8SiaII and ST8SiaIV is crucial to fine-tune the amount and structure of polySia on NCAM.
Collapse
Affiliation(s)
- Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nakata D, Troy FA. Degree of polymerization (DP) of polysialic acid (polySia) on neural cell adhesion molecules (N-CAMS): development and application of a new strategy to accurately determine the DP of polySia chains on N-CAMS. J Biol Chem 2005; 280:38305-16. [PMID: 16172115 DOI: 10.1074/jbc.m508762200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha2,8-linked polysialic acid (polySia) is a structurally unique antiadhesive glycotope that covalently modifies N-linked glycans on neural cell adhesion molecules (N-CAMs). These sugar chains play a key role in modulating cell-cell interactions, principally during embryonic development, neural plasticity, and tumor metastasis. The degree of polymerization (DP) of polySia chains on N-CAM is postulated to be of critical importance in regulating N-CAM function. There are limitations, however, in the conventional methods to accurately determine the DP of polySia on N-CAM, the most serious being partial acid hydrolysis of internal alpha2,8-ketosidic linkages that occur during fluorescent derivatization, a step necessary to enhance chromatographic detection. To circumvent this problem, we have developed a facile method that combines the use of Endo-beta-galactosidase to first release linear polySia chains from N-CAM, with high resolution high pressure liquid chromatography profiling. This strategy avoids acid hydrolysis prior to chromatographic profiling and thus provides an accurate determination of the DP and distribution of polySia on N-CAM. The potential of this new method was evaluated using a nonpolysialylated construct of N-CAM that was polysialylated in vitro using a soluble construct of ST8Sia II or ST8Sia IV. Whereas most of the oligosialic acid/polySia chains consisted of DPs approximately 50-60 or less, a subpopulation of chains with DPs approximately 150 to approximately 180 and extending to DP approximately 400 were detected. The DP of this subpopulation is considerably greater than reported previously for N-CAM. Endo-beta-galactosidase can also release polySia chains from polysialylated membranes expressed in the neuroblastoma cell line, Neuro2A, and native N-CAM from embryonic chick brains.
Collapse
Affiliation(s)
- Daisuke Nakata
- Department of Biochemistry and Molecular Medicine, University of California School of Medicine, Davis, California 95616
| | | |
Collapse
|
14
|
Lee YC. Letter to the Glyco-Forum: A Green Thumb and a Broad Back: A Tribute to the late Dr. Yasuo Inoue (1934–2005). Glycobiology 2005; 15:9G-11G. [PMID: 15892189 DOI: 10.1093/glycob/cwi056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Inoue S, Inoue Y. Ultrasensitive analysis of sialic acids and oligo/polysialic acids by fluorometric high-performance liquid chromatography. Methods Enzymol 2003; 362:543-60. [PMID: 12968387 DOI: 10.1016/s0076-6879(03)01036-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sadako Inoue
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
16
|
Inoue S, Poongodi GL, Suresh N, Jennings HJ, Inoue Y. Discovery of an alpha 2,9-PolyNeu5Ac glycoprotein in C-1300 murine neuroblastoma (clone NB41A3). J Biol Chem 2003; 278:8541-6. [PMID: 12493750 DOI: 10.1074/jbc.m212799200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha2,8-PolyNeu5Ac is expressed on neural cell adhesion molecules during embryogenesis and also re-expressed on certain tumors. PolyNeu5Ac is therefore an oncodevelopmental antigen, has important regulatory effects on the adhesive and migratory behavior of neural cells, and is thus crucial to synaptic plasticity. Until now, alpha2,9-polyNeu5Ac, a linkage isomer of alpha2,8-polyNeu5Ac, has long been thought to occur only in capsules of neuroinvasive Neisseria meningitidis group C bacteria. Here we report the unexpected discovery of alpha2,9-polyNeu5Ac in a new cell adhesion-related glycoprotein on the membrane of C-1300 murine neuroblastoma cells (clone NB41A3). We also report the expression of alpha2,9-polyNeu5Ac was affected by cell growth and retinoic acid-induced differentiation. Occurrence of the linkage isomer of alpha2,8-polyNeu5Ac has been left unrecognized by conventional methods using biological diagnostic probes for alpha2,8-polyNeu5Ac. Thus, our discovery may change contemporary views of biology and pathology of polysialic acid and open new avenues for the development of anti-neural tumor drugs.
Collapse
Affiliation(s)
- Sadako Inoue
- Institute of Biological Chemistry, Academia Sinica, Taipei 115-29, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Poongodi GL, Suresh N, Gopinath SCB, Chang T, Inoue S, Inoue Y. Dynamic change of neural cell adhesion molecule polysialylation on human neuroblastoma (IMR-32) and rat pheochromocytoma (PC-12) cells during growth and differentiation. J Biol Chem 2002; 277:28200-11. [PMID: 12023285 DOI: 10.1074/jbc.m202731200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polysialic acid (PSA) is a regulatory epitope of neural cell adhesion molecule (NCAM) in homophilic adhesion of neural cells mediated by NCAM, is also known to be re-expressed in several human tumors, thus serves as an oncodevelopmental antigen. In this study, using a recently developed ultrasensitive chemical method in addition to immunochemical methods, growth stage-dependent and retinoic acid (RA)-induced differentiation-dependent changes of PSA expression in human neuroblastoma (IMR-32) and rat pheochromocytoma (PC-12) cells were analyzed both qualitatively and quantitatively. Both IMR-32 and PC-12 cells expressed PSA on NCAM, and the level of PSA expressed per unit weight of cells increased with post-inoculation incubation time. The most prominent feature was seen at the full confluence stage. RA induced neuronal differentiation in both IMR-32 and CP-12 cells that paralleled the change in the PSA level. Chemical analysis revealed the presence of NCAM glycoforms differing in the degree of polymerization (DP) of oligo/polysialyl chains, whose DP was smaller than 40. DP distribution of PSA was different between the cell lines and was changed by the growth stage and the RA treatment. Thus DP analysis of PSA is important in understanding both mechanism and biological significance of its regulated expression.
Collapse
Affiliation(s)
- Geetha L Poongodi
- Institute of Biological Chemistry, Academia Sinica, Taipei 115-29, Taiwan
| | | | | | | | | | | |
Collapse
|
18
|
Mühlenhoff M, Manegold A, Windfuhr M, Gotza B, Gerardy-Schahn R. The impact of N-glycosylation on the functions of polysialyltransferases. J Biol Chem 2001; 276:34066-73. [PMID: 11418591 DOI: 10.1074/jbc.m101022200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly-alpha-2,8-sialic acid (polysialic acid) is a post-translational modification of the neural cell adhesion molecule (NCAM) and an important regulator of neuronal cell-cell interactions. The synthesis of polysialic acid depends on the two polysialyltransferases ST8SiaII and ST8SiaIV. Understanding the catalytic mechanisms of the polysialyltransferases is critical toward the aim of influencing physiological and pathophysiological functions mediated by polysialic acid. We recently demonstrated that polysialyltransferases are bifunctional enzymes exhibiting auto- and NCAM polysialylation activity. Autopolysialylation occurs on N-glycans of the enzymes, and glycosylation variants lacking sialic acid and galactose were found to be inactive for both auto- and NCAM polysialylation. In the present study, we have analyzed the number and functional importance of N-linked oligosaccharides present on polysialyltransferases. We demonstrate that autopolysialylation depends on specific N-glycans attached to Asn(74) in ST8SiaIV and Asn(89) and Asn(219) in ST8SiaII. Deletion of polysialic acid acceptor sites by site-directed mutagenesis rendered the polysialyltransferases inactive in vitro and in vivo. The inactivity of autopolysialylation-negative polysialyltransferases in vivo was not caused by the absence or default targeting of the enzymes. The data presented in this study clearly show that active polysialyltransferases are competent to perform autopolysialylation and provide strong evidence for a tight functional link between the two catalytic functions.
Collapse
Affiliation(s)
- M Mühlenhoff
- Institut für Physiologische Chemie, Proteinstruktur, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
19
|
Inoue S, Lin SL, Lee YC, Inoue Y. An ultrasensitive chemical method for polysialic acid analysis. Glycobiology 2001; 11:759-67. [PMID: 11555620 DOI: 10.1093/glycob/11.9.759] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An ultrasensitive method for analysis of polysialic acid (polySia) chains, using fluorescence-assisted high-performance liquid chromatography was developed. The new method is a substantial improvement of our earlier method in which the reducing terminal Sia residues of a homologous series of oligo/polySia hydrolytically released during derivatization reaction were simultaneously labeled with a fluorogenic reagent, 1,2-diamino-4,5-methylenedioxybenzene (DMB) in situ. We first studied extensively the stability of oligo/polySia in the acid (0.02 M trifluoracetic acid) used for 1,2-diamino-4,5-methylenedioxybenzene derivatization under various conditions of reaction time and temperature, analyzing the hydrolytic products by high-performance anion exchange chromatography with pulsed electrochemical detection (HPAEC-PED). Then we optimized the reaction conditions to minimize degradation of the parent polySia while maintaining high derivatization rate. Using a DNAPac PA-100 column rather than a MonoQ column, baseline resolution of polySia peaks up to DP 90 with a detection threshold of 1.4 femtomol per resolved peak was achieved. The new method was used to analyze the degree of polymerization of a polySia-containing glycopeptide fraction derived from embryonic chicken brain, and the results were compared with those obtained by HPAEC-PED.
Collapse
Affiliation(s)
- S Inoue
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC
| | | | | | | |
Collapse
|
20
|
Inoue S, Inoue Y. Developmental Profile of Neural Cell Adhesion Molecule Glycoforms with a Varying Degree of Polymerization of Polysialic Acid Chains. J Biol Chem 2001; 276:31863-70. [PMID: 11371567 DOI: 10.1074/jbc.m103336200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
More precise information on the degree of polymerization (DP) of polysialic acid (polySia) chains expressed on neural cell adhesion molecule (NCAM) and its developmental stage-dependent variation are considered important in understanding the mechanism of regulated polysialylation and fine-tuning of NCAM-mediated cell adhesion by polySia. In this paper, first we performed a kinetic study of acid-catalyzed hydrolysis of polySia and report our findings that (a) in (-->8Neu5Ac alpha 2-->)(n)-->8Neu5Ac alpha 2-->3Gal beta 1-->R, the proximal Neu5Ac residue alpha 2-->3 linked to Gal is cleaved about 2.5-4 times faster than the alpha 2-->8 linkages and (b) in contrary to general belief that alpha 2-->8 linkages in polySia are extremely labile, the kinetic consideration showed that they are not so unstable, and every ketosidic bond is hydrolyzed at the same rate. These findings are the basis of our strategy for DP analysis of polySia on NCAM. Second, using the recently developed method that provides base-line resolution of oligo/polySia from DP 2 to >80 with detection thresholds of 1.4 fmol per resolved peak, we have determined the DP of polySia chains expressed in embryonic chicken brains at different developmental stages. Our results support the presence of numerous NCAM glycoforms differing in DPs of oligo/polySia chains and a delicate change in their distribution during development.
Collapse
Affiliation(s)
- S Inoue
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | | |
Collapse
|
21
|
Inoue S, Inoue Y. A challenge to the ultrasensitive chemical method for the analysis of oligo- and polysialic acids at a nanogram level of colominic acid and a milligram level of brain tissues. Biochimie 2001; 83:605-13. [PMID: 11522389 DOI: 10.1016/s0300-9084(01)01307-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Polysialic acid (polySia) is a functional epitope and is known: 1) to regulate normal fertilization of lower vertebrates and invertebrates; 2) to be expressed on neural cell adhesion molecule (NCAM) when the formation or re-arrangement of nervous tissues takes place during embryonic stages as well as in adults of higher vertebrates; and 3) to be re-expressed in several human tumors. Thus, polySia serves as oncodevelopmental antigen. To date sensitive biochemical diagnostic probes (antibodies and endo-N-acylneuraminidase) to detect polySia are known. However, these reagents are not commercially available yet and they are only reactive to specific types of polySia structure. Moreover, precise information not only on diversity but also on the length or degree of polymerization (DP) of extended polySia chains is considered important in understanding the molecular mechanism of biosynthesis of polySia chains and fine-tuning of NCAM-NCAM adhesive interaction by polySia chain but cannot be obtained with these biochemical probes. We have been continuously making efforts to develop and improve the sensitivity of chemical methods for polySia analysis toward these challenging problems. This article presents our most recently developed chemical method for polySia analysis and its use in obtaining new information on DP of colominic acid samples and polySia chains present in rat brain tissues with the highest sensitivity that has ever been attained.
Collapse
Affiliation(s)
- S Inoue
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | | |
Collapse
|