1
|
Guo JT, Malik F. Single-Stranded DNA Binding Proteins and Their Identification Using Machine Learning-Based Approaches. Biomolecules 2022; 12:biom12091187. [PMID: 36139026 PMCID: PMC9496475 DOI: 10.3390/biom12091187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Single-stranded DNA (ssDNA) binding proteins (SSBs) are critical in maintaining genome stability by protecting the transient existence of ssDNA from damage during essential biological processes, such as DNA replication and gene transcription. The single-stranded region of telomeres also requires protection by ssDNA binding proteins from being attacked in case it is wrongly recognized as an anomaly. In addition to their critical roles in genome stability and integrity, it has been demonstrated that ssDNA and SSB-ssDNA interactions play critical roles in transcriptional regulation in all three domains of life and viruses. In this review, we present our current knowledge of the structure and function of SSBs and the structural features for SSB binding specificity. We then discuss the machine learning-based approaches that have been developed for the prediction of SSBs from double-stranded DNA (dsDNA) binding proteins (DSBs).
Collapse
|
2
|
Lee DS, Law PY, Ln W, Loh HH, Song KY, Choi HS. Differential regulation of mouse and human Mu opioid receptor gene depends on the single stranded DNA structure of its promoter and α-complex protein 1. Biomed Rep 2017; 6:532-538. [PMID: 28529734 DOI: 10.3892/br.2017.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 11/05/2022] Open
Abstract
The Mu opioid receptor (MOR) mediates various functions of opioid-induced analgesia, euphoria and respiratory depression, and is a major target of opioid analgesics. Understanding of MOR gene expression among species is important for understanding its analgesic function in humans. In the current study, the polypyrimidine/polypurine (PPy/u) region, a key element of MOR gene expression, was compared in humans and mice. The mouse PPy/u element is highly homologous to its human element (84%), and the mouse MOR (mMOR) reporter drives luciferase activity 35-fold more effectively than the human MOR (hMOR) reporter. The structural study of reporter plasmids using S1 nuclease indicates that the mouse PPy/u element has a particular conformational structure, namely a single-stranded DNA (ssDNA) region that promotes strong promoter activity. DNA electrophoretic mobility shift assays demonstrated that the recombinant α-complex protein 1 (α-CP1) is capable of binding to a single-stranded mouse PPy/u sequence. Furthermore, plasmid-expressing α-CP1 activated the expression of a luciferase reporter when cotransfected with a single-stranded (p336/306) construct. In addition, the α-CP1 gene induced the mMOR gene in mouse neuronal cells and did not induce the human neuronal MOR gene. The current study demonstrates that α-CP1 functions as a transcriptional activator in the mMOR gene, but does not function in the hMOR gene due to species-specific structural differences. The differences in human and mouse MOR gene expression are based on α-CP1 and the ssDNA structure of the MOR promoter. The MOR gene is species-specifically regulated, as the PPy/u element adopts a unique species-specific conformation and α-CP1 recruitment.
Collapse
Affiliation(s)
- Dong-Sun Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea.,Subtropical/Tropical Organism Gene Bank Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Wei Ln
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kyu Young Song
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Hack Sun Choi
- Department of Biotechnology, College of Applied Life Science, Jeju National University, Jeju 63243, Republic of Korea.,Subtropical/Tropical Organism Gene Bank Institute, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
3
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 680] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
4
|
Kang DH, Song KY, Wei LN, Law PY, Loh HH, Choi HS. Novel function of the poly(c)-binding protein α-CP2 as a transcriptional activator that binds to single-stranded DNA sequences. Int J Mol Med 2013; 32:1187-94. [PMID: 24026233 PMCID: PMC4432725 DOI: 10.3892/ijmm.2013.1488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/29/2013] [Indexed: 11/10/2022] Open
Abstract
α-complex protein 2 (α-CP2) is known as an RNA-binding protein that interacts in a sequence-specific manner with single-stranded polycytosine [poly(C)]. This protein is involved in various post-transcriptional regulations, such as mRNA stabilization and translational regulation. In this study, the full-length mouse α-CP2 gene was expressed in an insoluble form with an N-terminal histidine tag in Escherichia coli and purified for homogeneity using affinity column chromatography. Its identity was confirmed using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Recombinant α-CP2 was expressed and refolded. The protein folding conditions for denatured α-CP2 were optimized. DNA and RNA electrophoretic mobility shift assays demonstrated that the recombinant α-CP2 is capable of binding to both single-stranded DNA and RNA poly(C) sequences. Furthermore, plasmids expressing α-CP2 activated the expression of a luciferase reporter when co-transfected with a single-stranded (pGL-SS) construct containing a poly(C) sequence. To our knowledge, this study demonstrates for the first time that α-CP2 functions as a transcriptional activator by binding to a single-stranded poly(C) sequence.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Medical Research Institute, Ewha Womans University School of Medicine, Yangcheon‑gu, Seoul 158-710, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
Wagley Y, Hwang CK, Lin HY, Kam AFY, Law PY, Loh HH, Wei LN. Inhibition of c-Jun NH2-terminal kinase stimulates mu opioid receptor expression via p38 MAPK-mediated nuclear NF-κB activation in neuronal and non-neuronal cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1476-88. [PMID: 23485395 DOI: 10.1016/j.bbamcr.2013.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/02/2013] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
Despite its potential side effects of addiction, tolerance and withdrawal symptoms, morphine is widely used for reducing moderate and severe pain. Previous studies have shown that the analgesic effect of morphine depends on mu opioid receptor (MOR) expression levels, but the regulatory mechanism of MOR is not yet fully understood. Several in vivo and in vitro studies have shown that the c-Jun NH2-terminal kinase (JNK) pathway is closely associated with neuropathic hyperalgesia, which closely resembles the neuroplastic changes observed with morphine antinociceptive tolerance. In this study, we show that inhibition of JNK by SP600125, its inhibitory peptide, or JNK-1 siRNA induced MOR at both mRNA and protein levels in neuronal cells. This increase in MOR expression was reversed by inhibition of the p38 mitogen-activated protein kinase (MAPK) pathway, but not by inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK) pathway. Further experiments using cell signaling inhibitors showed that MOR upregulation by JNK inhibition involved nuclear factor-kappa B (NF-κB). The p38 MAPK dependent phosphorylation of p65 NF-κB subunit in the nucleus was increased by SP600125 treatment. We also observed by chromatin immunoprecipitation (ChIP) analysis that JNK inhibition led to increased bindings of CBP and histone-3 dimethyl K4, and decreased bindings of HDAC-2, MeCP2, and histone-3 trimethyl K9 to the MOR promoter indicating a transcriptional regulation of MOR by JNK inhibition. All these results suggest a regulatory role of the p38 MAPK and NF-κB pathways in MOR gene expression and aid to our better understanding of the MOR gene regulation.
Collapse
Affiliation(s)
- Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Nahar-Gohad P, Sultan H, Esteban Y, Stabile A, Ko JL. RACK1 identified as the PCBP1-interacting protein with a novel functional role on the regulation of human MOR gene expression. J Neurochem 2012; 124:466-77. [PMID: 23173782 DOI: 10.1111/jnc.12100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/10/2012] [Accepted: 11/14/2012] [Indexed: 12/23/2022]
Abstract
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu-opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co-regulator modifying human MOR gene expression by protein-protein interaction with PCBP1. A human brain cDNA library was screened using the two-hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1-RACK1 interaction was confirmed via in vivo validation using the two-hybrid system, and by co-immunoprecipitation with anti-PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co-immunoprecipitation suggested that RACK1-PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over-expression resulted in a dose-dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock-down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT-PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by (3) H-diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.
Collapse
Affiliation(s)
- Pranjal Nahar-Gohad
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | | | | | | | | |
Collapse
|
7
|
Kang DH, Song KY, Choi HS, Law PY, Wei LN, Loh HH. Novel dual-binding function of a poly (C)-binding protein 3, transcriptional factor which binds the double-strand and single-stranded DNA sequence. Gene 2012; 501:33-8. [PMID: 22521865 DOI: 10.1016/j.gene.2012.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific manner with single-stranded poly(C) sequences. These proteins are mainly involved in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). This study reports a novel dual-binding function for PCBP3, a member of the PCBP family. Recombinant PCBP3 was purified using affinity column chromatography and its identity confirmed by MALDI-TOF mass spectrometry. The protein folding conditions of the purified and renatured PCBP3 were optimized. Electrophoretic mobility shift assays demonstrated that the recombinant PCBP3 is capable of binding to both double- and single-strand poly(C) sequences. Furthermore, plasmids expressing PCBP3 repressed the expression of luciferase reporters when cotransfected with single-strand (pGL-SS) and double-strand (pGL-DS) constructs containing poly(C) sequences in their promoters. This study demonstrates for the first time that PCBP3 can function as a repressor dependent on binding to single-strand and double-stranded poly(C) sequences.
Collapse
Affiliation(s)
- Duk-Hee Kang
- Division of Nephrology Department of Internal Medicine, Ewha Womans University School of Medicine, Seoul 158-710, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
The polypyrimidine/polypurine motif in the mouse mu opioid receptor gene promoter is a supercoiling-regulatory element. Gene 2011; 487:52-61. [PMID: 21839154 DOI: 10.1016/j.gene.2011.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 07/25/2011] [Indexed: 11/21/2022]
Abstract
The mu opioid receptor (MOR) is the principle molecular target of opioid analgesics. The polypyrimidine/polypurine (PPy/u) motif enhances the activity of the MOR gene promoter by adopting a non-B DNA conformation. Here, we report that the PPy/u motif regulates the processivity of torsional stress, which is important for endogenous MOR gene expression. Analysis by topoisomerase assays, S1 nuclease digests, and atomic force microscopy showed that, unlike homologous PPy/u motifs, the position- and orientation-induced structural strains to the mouse PPy/u element affect its ability to perturb the relaxation activity of topoisomerase, resulting in polypurine strand-nicked and catenated DNA conformations. Raman spectrum microscopy confirmed that mouse PPy/u containing-plasmid DNA molecules under the different structural strains have a different configuration of ring bases as well as altered Hoogsteen hydrogen bonds. The mouse MOR PPy/u motif drives reporter gene expression fortyfold more effectively in the sense orientation than in the antisense orientation. Furthermore, mouse neuronal cells activate MOR gene expression in response to the perturbations of topology by topoisomerase inhibitors, whereas human cells do not. These results suggest that, interestingly among homologous PPy/u motifs, the mouse MOR PPy/u motif dynamically responds to torsional stress and consequently regulates MOR gene expression in vivo.
Collapse
|
9
|
Choe CY, Dong J, Law PY, Loh HH. Differential gene expression activity among species-specific polypyrimidine/polypurine motifs in mu opioid receptor gene promoters. Gene 2011; 471:27-36. [PMID: 20946943 PMCID: PMC3009460 DOI: 10.1016/j.gene.2010.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 02/07/2023]
Abstract
The mu opioid receptor (MOR) is the principle molecular target of opioid analgesics. An appropriate understanding of MOR gene expression across species is critical for understanding its analgesic functions in humans. Here, we undertake a cross-species analysis of the polymorphic polypyrimidine/polypurine (PPy/u) motif, a key enhancer of MOR gene expression. The mouse PPy/u motif is highly homologous to those of rat (67%) and human (83%), but drives reporter gene expression tenfold and fivefold more effectively than those of rat and human, respectively. Circular dichroism profiles of PPy/u oligonucleotides from different species showed that they are primarily different in structure. Conformational studies of reporter plasmids using confocal Raman spectra, S1 nuclease and restriction enzymes demonstrated that the structural difference is the result of changes in the phosphodiester backbone. Furthermore, these conformational disparities produce differences in torsional stress, as shown by topoisomerase II relaxation and activation of different levels of gene expression under hypertonic conditions. This study demonstrates that homologous PPy/u motifs adopt unique species-specific conformations with different mechanisms and activities for gene expression. We further discuss how structural aspects of transcription regulatory elements, rather than the sequence itself, are significant when studying functional gene expression regulatory elements.
Collapse
Affiliation(s)
- Chung-Youl Choe
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
10
|
Cook RJ, Karch C, Nahar P, Rivera A, Ko JL. Effects of desferoxamine-induced hypoxia on neuronal human mu-opioid receptor gene expression. Biochem Biophys Res Commun 2010; 398:56-61. [PMID: 20558138 DOI: 10.1016/j.bbrc.2010.06.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 06/08/2010] [Indexed: 11/29/2022]
Abstract
The effect of desferoxamine (DFO)-induced hypoxia on neuronal human mu-opioid receptor (hMOR) gene expression was investigated using NMB cells. DFO decreased cell viability and increased cellular glutathione levels in a dose- and time-dependent manner. Confocal analysis using annexin-V-fluorescein and propidium iodide staining revealed that surviving/attached cells under DFO challenge were morphologically similar to control (vehicle-treated) cells. RT-PCR analysis demonstrated that the hypoxia inducible factor-1alpha (HIF-1alpha) mRNA level was augmented in these surviving neurons. DFO treatment for 8h or longer down-regulated the hMOR message, but not that of the delta-opioid receptor. Functional analysis using luciferase reporter assay showed that the hMOR 5'-regulatory region, from -357bp to translational initiation site (+1), contains the active promoter with an inhibitory region located in the -422 to -357bp region. DFO decreased hMOR promoter activity as compared to control. Mutation analysis suggested the existence of both dsDNA and ssDNA elements, located in a CT-rich region of hMOR, mediating the DFO-response. RT-PCR further revealed that DFO exhibited no effect on hMOR mRNA stability. In conclusion, DFO-induced hypoxia specifically affects neuronal hMOR gene expression at the transcriptional, not post-transcriptional, level.
Collapse
Affiliation(s)
- Ryan J Cook
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, United States
| | | | | | | | | |
Collapse
|
11
|
Choi HS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun 2009; 380:431-6. [PMID: 19284986 DOI: 10.1016/j.bbrc.2009.01.136] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Poly(C)-binding proteins (PCBPs) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). They can be divided into two groups: hnRNP K and PCBP1-4. These proteins are involved mainly in various posttranscriptional regulations (e.g., mRNA stabilization or translational activation/silencing). In this review, we summarize and discuss how PCBPs act as transcriptional regulators by binding to specific elements in gene promoters that interact with the RNA polymerase II transcription machinery. Transcriptional regulation of PCBPs might itself be regulated by their localization within the cell. For example, activation by p21-activated kinase 1 induces increased nuclear retention of PCBP1, as well as increased promoter activity. PCBPs can function as a signal-dependent and coordinated regulator of transcription in eukaryotic cells. We address the molecular mechanisms by which PCBPs binding to single- and double-stranded DNA mediates gene expression.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Effects of trichostatin A on neuronal mu-opioid receptor gene expression. Brain Res 2008; 1246:1-10. [PMID: 18950606 DOI: 10.1016/j.brainres.2008.09.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/17/2008] [Accepted: 09/19/2008] [Indexed: 11/21/2022]
Abstract
In this study, we determined the effects of a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), on neuronal mu-opioid receptor (MOR) gene expression using human neuronal NMB cells, endogenously expressing MOR. Recruitment of two classes of HDAC, HDAC1 and HDAC2, to MOR promoter region in situ was detected via chromatin immunoprecipitation (ChIP) analysis with NMB cells. Functional analysis using the luciferase reporter gene system showed that TSA induced an approximately 3-fold increase of the promoter activity as compared to the vehicle treated group. Mutation analysis demonstrated that TSA response was mediated by both dsDNA (Sp1/Sp3 binding site) and ssDNA (PolyC binding protein1, PCBP, binding site) elements located in mouse MOR proximal core promoter region, further suggesting the functional importance of this cis-element, which shows high sequence homology between human and mouse MOR genes. ChIP analysis further suggested that TSA enhanced the recruitment of Sp1/Sp3 and PCBP to the promoter region, whereas no significant changes of total proteins were observed in response to TSA using Western blot analysis. Moreover, confocal images showed TSA-induced nuclear hot spots of endogenous PCBP in neuronal cells, whereas no obvious nuclear PCBP hotspot was observed in vehicle treated cells. Taken together, these results suggested that TSA enhanced neuronal MOR gene expression at the transcriptional level. RT-PCR analysis further revealed that TSA also decreased the steady-state level of MOR mRNA in a time-dependent manner by enhancing its instability. Thus, data suggest that TSA, an epigenetic regulator, affects neuronal MOR gene expression at both transcriptional and post-transcriptional levels.
Collapse
|
13
|
Kim CS, Hwang CK, Song KY, Choi HS, Kim DK, Law PY, Wei LN, Loh HH. Novel function of neuron-restrictive silencer factor (NRSF) for posttranscriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1835-46. [DOI: 10.1016/j.bbamcr.2008.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 06/19/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
|
14
|
Wu Q, Law PY, Wei LN, Loh HH. Post-transcriptional regulation of mouse mu opioid receptor (MOR1) via its 3' untranslated region: a role for microRNA23b. FASEB J 2008; 22:4085-95. [PMID: 18716031 DOI: 10.1096/fj.08-108175] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Expression of the mu opioid receptor (MOR1) protein is regulated temporally and spatially. Although transcription of its gene has been studied extensively, regulation of MOR1 protein production at the level of translation is poorly understood. Using reporter assays, we found that the MOR1 3'-untranslated region (UTR) represses reporter expression at the post-transcriptional level. Suppression by the 3'-UTR of MOR1 is mediated through decreased mRNA association with polysomes, which requires microRNA23b (miRNA23b), a specific miRNA that is expressed in mouse brain and NS20Y mouse neuroblastoma cells. miRNA23b interacts with the MOR1 3'-UTR via a K box motif. By knocking down endogenous miRNA23b in NS20Y cells, we confirmed that miRNA23b inhibits MOR1 protein expression in vivo. This is the first study reporting a translationally repressive role for the MOR1 3'-UTR. We propose a mechanism in which miRNA23b blocks the association of MOR1 mRNA with polysomes, thereby arresting its translation and suppressing the production of MOR1 protein.
Collapse
Affiliation(s)
- Qifang Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | | | |
Collapse
|
15
|
Choi HS, Song KY, Hwang CK, Kim CS, Law PY, Wei LN, Loh HH. A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene. Mol Cell Proteomics 2008; 7:1517-29. [PMID: 18453338 PMCID: PMC2494908 DOI: 10.1074/mcp.m800052-mcp200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pharmacological actions of morphine and morphine-like drugs such as heroin are mediated primarily through the μ opioid receptor. Previously a single strand DNA element of the mouse μ opioid receptor gene (Oprm1) proximal promoter was found to be important for regulating Oprm1 in neuronal cells. To identify proteins binding to the single strand DNA element as potential regulators for Oprm1, affinity column chromatography with the single strand DNA element was performed using neuroblastoma NS20Y cells followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. We identified five poly(C)-binding proteins: heterogeneous nuclear ribonucleoprotein (hnRNP) K, α-complex proteins (αCP) αCP1, αCP2, αCP2-KL, and αCP3. Binding of these proteins to the single strand DNA element of Oprm1 was sequence-specific as confirmed by supershift assays. In cotransfection studies, hnRNP K, αCP1, αCP2, and αCP2-KL activated the Oprm1 promoter activity, whereas αCP3 acted as a repressor. Ectopic expression of hnRNP K, αCP1, αCP2, and αCP2-KL also led to activation of the endogenous Oprm1 transcripts, and αCP3 repressed endogenous Oprm1 transcripts. We demonstrate novel roles as transcriptional regulators in Oprm1 regulation for hnRNP K and αCP binding to the single strand DNA element.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Choi HS, Hwang CK, Kim CS, Song KY, Law PY, Loh HH, Wei LN. Transcriptional regulation of mouse mu opioid receptor gene in neuronal cells by poly(ADP-ribose) polymerase-1. J Cell Mol Med 2008; 12:2319-33. [PMID: 18266974 PMCID: PMC4514111 DOI: 10.1111/j.1582-4934.2008.00259.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pharmacological actions of morphine and morphine-like drugs such as heroin mediate primarily through the mu opioid receptor (MOR). It represents the target of the most valuable painkiller in contemporary medicine. Here we report that poly(ADP-ribose) polymerase 1 (PARP-1) binds to the double-stranded poly(C) element essential for the MOR promoter and represses promoter activity at the transcriptional level. We identified PARP-1 by affinity column chromatography using the double-stranded poly(C) element, followed by two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. PARP-1 binding to the poly(C) sequence of the MOR gene was sequence-specific as confirmed by the supershift assay. In cotransfection studies, PARP-1 repressed the MOR promoter only when the poly(C) sequence was intact. When PARP-1 was disrupted in NS20Y cells using siRNA, transcription of the endogenous target MOR gene increased significantly. Chromatin immunoprecipitation assays showed specific binding of PARP-1 to the double-stranded poly(C) element essential for the MOR promoter. Inhibition of PARP-1's catalytic domain with 3-aminobenzamide increased endogenous MOR mRNA levels in cultured NS20Y cells, suggesting that automodification of PARP-1 regulates MOR transcription. Our data suggest that PARP-1 can function as a repressor of MOR transcription dependent on the MOR poly(C) sequence. We demonstrate for the first time a role of PARP-1 as a transcriptional repressor in MOR gene regulation.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Choi HS, Kim CS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Novel function of the poly(C)-binding protein alpha CP3 as a transcriptional repressor of the mu opioid receptor gene. FASEB J 2007; 21:3963-73. [PMID: 17625070 DOI: 10.1096/fj.07-8561com] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The alpha-complex proteins (alphaCP) are generally known as RNA-binding proteins that interact in a sequence-specific fashion with single-stranded poly(C). These proteins are mainly involved in various post-transcriptional regulations (e.g., mRNA stabilization or translational activation/silencing). Here we report a novel function of alphaCP3, a member of the alphaCP family. alphaCP3 bound to the double-stranded poly(C) element essential for the mu opioid receptor (MOR) promoter and repressed the promoter activity at the transcriptional level. We identified alphaCP3 using affinity column chromatography containing the double-stranded poly(C) element and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. AlphaCP3 binding to the poly(C) sequence of the MOR gene was sequence specific, as confirmed by the supershift assay. In cotransfection studies, alphaCP3 repressed the MOR promoter only when the poly(C) sequence was intact. Ectopic expression of alphaCP3 led to repression of the endogenous MOR transcripts in NS20Y cells. When alphaCP3 was disrupted using small interfering RNA (siRNA) in NS20Y cells, the transcription of the endogenous target MOR gene was increased significantly. Our data suggest that alphaCP3 can function as a repressor of MOR transcription dependent on the MOR poly(C) sequence. We demonstrate for the first time a role of alphaCP3 as a transcriptional repressor in MOR gene regulation.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kim CS, Choi HS, Hwang CK, Song KY, Lee BK, Law PY, Wei LN, Loh HH. Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene. Nucleic Acids Res 2006; 34:6392-403. [PMID: 17130167 PMCID: PMC1702488 DOI: 10.1093/nar/gkl724] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Previously, we reported that the neuron-restrictive silencer element (NRSE) of mu opioid receptor (MOR) functions as a critical regulator to repress the MOR transcription in specific neuronal cells, depending on neuron-restriction silence factor (NRSF) expression levels [C.S.Kim, C.K.Hwang, H.S.Choi, K.Y.Song, P.Y.Law, L.N.Wei and H.H.Loh (2004) J. Biol. Chem., 279, 46464–46473]. Herein, we identify a conserved GC sequence next to NRSE region in the mouse MOR gene. The inhibition of Sp family factors binding to this GC box by mithramycin A led to a significant increase in the endogenous MOR transcription. In the co-immunoprecipitation experiment, NRSF interacted with the full-length Sp3 factor, but not with Sp1 or two short Sp3 isoforms. The sequence specific and functional binding by Sp3 at this GC box was confirmed by in vitro gel-shift assays using either in vitro translated proteins or nuclear extract, and by in vivo chromatin immunoprecipitation assays. Transient transfection assays showed that Sp3-binding site of the MOR gene is a functionally synergic repressor element with NRSE in NS20Y cells, but not in the NRSF negative PC12 cells. The results suggest that the synergic interaction between NRSF and Sp3 is required to negatively regulate MOR gene transcription and that transcription of MOR gene would be governed by the context of available transcription factors rather than by a master regulator.
Collapse
Affiliation(s)
- Chun Sung Kim
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Characterizing exons 11 and 1 promoters of the mu opioid receptor (Oprm) gene in transgenic mice. BMC Mol Biol 2006; 7:41. [PMID: 17101047 PMCID: PMC1657025 DOI: 10.1186/1471-2199-7-41] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 11/13/2006] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The complexity of the mouse mu opioid receptor (Oprm) gene was demonstrated by the identification of multiple alternatively spliced variants and promoters. Our previous studies have identified a novel promoter, exon 11 (E11) promoter, in the mouse Oprm gene. The E11 promoter is located approximately 10 kb upstream of the exon 1 (E1) promoter. The E11 promoter controls the expression of nine splice variants in the mouse Oprm gene. Distinguished from the TATA-less E1 promoter, the E11 promoter resembles a typical TATA-containing eukaryote class II promoter. The aim of this study is to further characterize the E11 and E1 promoters in vivo using a transgenic mouse model. RESULTS We constructed a approximately 20 kb transgenic construct in which a 3.7 kb E11 promoter region and an 8.9 kb E1 promoter region controlled expression of tau/LacZ and tau/GFP reporters, respectively. The construct was used to establish a transgenic mouse line. The expression of the reporter mRNAs, determined by a RT-PCR approach, in the transgenic mice during embryonic development displayed a temporal pattern similar to that of the endogenous promoters. X-gal staining for tau/LacZ reporter and GFP imaging for tau/GFP reporter showed that the transgenic E11 and E1 promoters were widely expressed in various regions of the central nervous system (CNS). The distribution of tau/GFP reporter in the CNS was similar to that of MOR-1-like immunoreactivity using an exon 4-specific antibody. However, differential expression of both promoters was observed in some CNS regions such as the hippocampus and substantia nigra, suggesting that the E11 and E1 promoters were regulated differently in these regions. CONCLUSION We have generated a transgenic mouse line to study the E11 and E1 promoters in vivo using tau/LacZ and tau/GFP reporters. The reasonable relevance of the transgenic model was demonstrated by the temporal and spatial expression of the transgenes as compared to those of the endogenous transcripts. We believe that these transgenic mice will provide a useful model for further characterizing the E11 and E1 promoter in vivo under different physiological and pathological circumstances such as chronic opioid treatment and chronic pain models.
Collapse
|
20
|
Berry AM, Flock KE, Loh HH, Ko JL. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells. Biochem Biophys Res Commun 2006; 349:1378-86. [PMID: 16979592 PMCID: PMC1618817 DOI: 10.1016/j.bbrc.2006.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/01/2006] [Indexed: 11/26/2022]
Abstract
Poly C binding protein 1 (PCBP) is involved in the transcriptional regulation of neuronal mu-opioid receptor gene. In this study, we examined the molecular basis of PCBP cellular/nuclear localization in neuronal cells using EGFP fusion protein. PCBP, containing three KH domains and a variable domain, distributed in cytoplasm and nucleus with a preferential nuclear expression. Domain-deletional analyses suggested the requirement of variable and KH3 domains for strong PCBP nuclear expression. Within the nucleus, a low nucleolar PCBP expression was observed, and PCBP variable domain contributed to this restricted nucleolar expression. Furthermore, the punctate nuclear pattern of PCBP was correlated to its single-stranded (ss) DNA binding ability, with both requiring cooperativity of at least three sequential domains. Collectively, certain PCBP domains thus govern its nuclear distribution and transcriptional regulatory activity in the nucleus of neurons, whereas the low nucleolar expression implicates the disengagement of PCBP in the ribosomal RNA synthesis.
Collapse
Affiliation(s)
- Andrea M Berry
- Department of Biology, Seton Hall University, 208 McNulty Hall, 400 South Orange Avenue, South Orange, NJ 07079, USA
| | | | | | | |
Collapse
|
21
|
Malik AK, Flock KE, Godavarthi CL, Loh HH, Ko JL. Molecular basis underlying the poly C binding protein 1 as a regulator of the proximal promoter of mouse mu-opioid receptor gene. Brain Res 2006; 1112:33-45. [PMID: 16904079 DOI: 10.1016/j.brainres.2006.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 06/07/2006] [Accepted: 07/05/2006] [Indexed: 11/19/2022]
Abstract
Previous studies showed poly C binding protein 1 (PCBP) participating in the mu-opioid receptor (MOR) gene regulation via binding to a single-stranded (ss) DNA element. In this report, we therefore investigate the molecular basis of PCBP regulating the MOR gene expression. Various truncated PCBPs, including one domain (KH1, KH2, variable or KH3), two- (K12, K2v or Kv3) or three-sequential domains (K12v or K2v3), were constructed. The MOR ssDNA binding abilities of these truncated PCBPs were examined using electrophoretic mobility shift assay (EMSA). KH1 domain possessed a strong MOR ssDNA binding activity. Variable domain displayed no binding, and KH2 or KH3 domain possessed a weak MOR ssDNA binding activity. Binding of two-domain PCBPs indicated an additive effect of two-domain combinations. Interestingly, K2v3, a three-domain PCBP, displayed as strong ssDNA binding as that of K12v, suggesting synergism of KH2, KH3 and variable domains for the binding activity. Functional analysis demonstrated one-domain PCBPs exhibiting no transactivation on the MOR proximal promoter. Two-domain PCBPs displayed approximately 20% activity, while three-domain PCBPs displayed 70%-85% of full-length PCBP activity. Taken together, these results suggested that no single domain possessed sufficient functional activity to serve as an independent transactivation domain, and the combination of three sequential domains was necessary for its optimal activity to activate the MOR proximal promoter. In summary, our data suggested that cooperativity of three sequential domains is essential for PCBP functioning as a MOR gene regulator. Various ways in which this cooperativity could occur are discussed.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carrier Proteins/physiology
- Cell Line, Tumor
- DNA-Binding Proteins
- Electrophoretic Mobility Shift Assay/methods
- Gene Expression Regulation/physiology
- Methionine/metabolism
- Mice
- Neuroblastoma
- Phosphorus Isotopes/metabolism
- Promoter Regions, Genetic/physiology
- Protein Binding/drug effects
- Protein Binding/physiology
- Protein Structure, Tertiary/physiology
- RNA, Messenger/metabolism
- RNA-Binding Proteins
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Regulatory Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Transcription, Genetic
- Transfection/methods
Collapse
Affiliation(s)
- Adnan K Malik
- Department of Biology, Seton Hall University, 208 McNulty Hall, 400 South Orange Ave. South Orange, NJ 07079, USA
| | | | | | | | | |
Collapse
|
22
|
Rivera-Gines A, Cook RJ, Loh HH, Ko JL. Interplay of Sps and poly(C) binding protein 1 on the mu-opioid receptor gene expression. Biochem Biophys Res Commun 2006; 345:530-7. [PMID: 16682008 DOI: 10.1016/j.bbrc.2006.04.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/20/2022]
Abstract
The proximal promoter of mouse mu-opioid receptor (MOR) gene is the dominant promoter for directing MOR-1 gene expression in brain. Sp1/Sp3 (Sps) and poly(C) binding protein 1 (PCBP) bind to a cis-element of MOR proximal promoter. Functional interaction between Sps and PCBP and their individual roles on MOR proximal core promoter were investigated using SL2 cells, devoid of Sps and PCBP. Each factor contributed differentially to the promoter, with a rank order of activity Sp1>Sp3>PCBP. Functional analysis suggested the interplay of Sps and PCBP in an additive manner. The in vivo binding of individual Sps or PCBP to MOR proximal promoter was demonstrated using chromatin immunoprecipitation (ChIP). Re-ChIP assays further suggested simultaneous bindings of Sps and PCBP to the proximal promoter, indicating physiologically relevant communication between Sps and PCBP. Collectively, results documented that a functional coordination between Sps and PCBP contributed to cell-specific MOR gene expression.
Collapse
Affiliation(s)
- Aida Rivera-Gines
- Department of Biology, Seton Hall University, South Orange, NJ 07079, USA
| | | | | | | |
Collapse
|
23
|
Pan YX. Diversity and Complexity of the Mu Opioid Receptor Gene: Alternative Pre-mRNA Splicing and Promoters. DNA Cell Biol 2005; 24:736-50. [PMID: 16274294 DOI: 10.1089/dna.2005.24.736] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mu opioid receptors play an important role in mediating the actions of a class of opioids including morphine and heroin. Binding and pharmacological studies have proposed several mu opioid receptor subtypes: mu(1), mu(2), and morphine-6beta-glucuronide (M6G). The cloning of a mu opioid receptor, MOR-1, has provided an invaluable tool to explore pharmacological and physiological functions of mu opioid receptors at the molecular level. However, only one mu opioid receptor (Oprm) gene has been isolated. Alternative pre-mRNA splicing has been proposed as a molecular explanation for the existence of pharmacologically identified subtypes. In recent years, we have extensively investigated alternative splicing of the Oprm gene, particularly of the mouse Oprm gene. So far we have identified 25 splice variants from the mouse Oprm gene, which are controlled by two diverse promoters, eight splice variants from the rat Oprm gene, and 11 splice variants from the human Oprm gene. Diversity and complexity of the Oprm gene was further demonstrated by functional differences in agonist-induced G protein activation, adenylyl cyclase activity, and receptor internalization among carboxyl terminal variants. This review summarizes these recent results and provides a new perspective on understanding and exploring complex opioid actions in animals and humans.
Collapse
Affiliation(s)
- Ying-Xian Pan
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
24
|
Ko JL, Loh HH. Poly C binding protein, a single-stranded DNA binding protein, regulates mouse mu-opioid receptor gene expression. J Neurochem 2005; 93:749-61. [PMID: 15836633 DOI: 10.1111/j.1471-4159.2005.03089.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, a single-stranded (ss) DNA element, polypyrimidine (PPy) element, was found to be important for the proximal promoter activity of mouse micro-opioid receptor (MOR) gene in a neuronal cell model. In this study, we identified the presence of unknown ssDNA binding proteins specifically bound to MOR ssPPy element in the mouse brain, implicating the physiological significance of these proteins. To identify the ssDNA binding proteins, yeast one-hybrid system with PPy element as the bait was used to screen a mouse brain cDNA library. The clone encoding poly C binding protein (PCBP) was obtained. Its full-length cDNA sequence and protein with molecular weight approximately 38 kDa were confirmed. Electrophoretic mobility shift analysis (EMSA) revealed that PCBP bound to ssPPy element, but not doubled-stranded, in a sequence-specific manner. EMSA with anti-PCBP antibody demonstrated the involvement of PCBP in MOR ssPPy/proteins complexes of mouse brain and MOR expressing neuroblastoma NMB cells. Functional analysis showed that PCBP trans-activated MOR promoter as well as a heterologous promoter containing MOR PPy element. Importantly, ectopic expression of PCBP in NMB cells up-regulated the expression level of endogenous MOR gene in vivo in a dose-dependent manner. Collectively, above results suggest that PCBP participates in neuronal MOR gene expression.
Collapse
Affiliation(s)
- Jane L Ko
- Department of Biology, Seton Hall University, South Orange, New Jersey 07079, USA.
| | | |
Collapse
|
25
|
Kim SS, Pandey KK, Choi HS, Kim SY, Law PY, Wei LN, Loh HH. Poly(C) binding protein family is a transcription factor in mu-opioid receptor gene expression. Mol Pharmacol 2005; 68:729-36. [PMID: 15933215 DOI: 10.1124/mol.105.012245] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mouse mu-opioid receptor (MOR) gene has two promoters, referred to as distal and proximal promoter. Previously, our colleagues reported that a 26-base pair (bp) cis-acting element of the mouse MOR gene activates MOR gene expression. Here, we report the cloning of four members of the poly(C) binding protein (PCBP) family and show that the 26-bp polypyrimidine stretch in MOR proximal promoter interacts with these PCBPs and activates MOR transcription. The PCBPs bind not only to single-stranded but also to double-stranded DNA. The nuclear run-off assay and semiquantitative RT-PCR shows that PCBPs enhance the transcription rate of MOR gene. Furthermore, we performed refined mapping to elucidate the core region (-317/-304) involved in mediating the PCBP-induced MOR promoter activity. Decoy oligonucleotides against the polypyrimidine stretch inhibit the PCBP-induced MOR promoter activity, thereby reconfirming the role of this element in regulating MOR promoter activity. Chromatin immunoprecipitation assay confirmed the interaction of PCBPs with MOR promoter in vivo. In conclusion, we demonstrate that PCBPs act as a transcription factor and positively regulate MOR gene expression in NMB cells.
Collapse
Affiliation(s)
- Sung-Su Kim
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wu Q, Hwang CK, Yao S, Law PY, Loh HH, Wei LN. A Major Species of Mouse μ-opioid Receptor mRNA and Its Promoter-Dependent Functional Polyadenylation Signal. Mol Pharmacol 2005; 68:279-85. [PMID: 15879516 DOI: 10.1124/mol.105.012567] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pharmacological effects of opioid drugs are mediated mainly by the mu-opioid receptor (MOR), which is encoded by an mRNA transcript named MOR1. Although several MOR mRNA splice variants have been reported, their biological relevance has been debated. In this study, we found that probes of regions essential for the production of functional MOR, as well as that of the 3'-downstream region of the MOR gene coding region, detected by Northern blot analyses, a major species of mature transcript MOR1 from mouse brain of approximately 11.5 kilobases (kb). Although exon 3 probe detected an additional 3.7-kb transcript, this transcript was not detected by other probes, ruling out its ability to produce functional MOR. The 3'-untranslated region (UTR) of MOR1 is contiguously extended from the end of the coding region, and uses a single polyadenylation [poly (A)] signal (located 10,179 bp downstream of the MOR1 stop codon). The poly (A) signal (AAUAAA) is located 26 bp upstream of the poly (A) site. Transient transfection using luciferase reporters verified the functionality of this poly (A) signal, in particular on a reporter driven by the MOR promoter. This poly (A) is much less effective for a heterologous promoter, such as simian virus 40, indicating a functional coupling of MOR promoter and its own poly (A). This report verifies MOR1 as the major mature MOR gene transcript that has the full capacity to produce functional MOR protein, identifies the 3'-UTR of MOR1 transcript, and uncovers functional coupling of the MOR gene promoter and its polyadenylation signal.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA 3' Polyadenylation Signals/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Qifang Wu
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Choi HS, Hwang CK, Kim CS, Song KY, Law PY, Wei LN, Loh HH. Transcriptional regulation of mouse mu opioid receptor gene: Sp3 isoforms (M1, M2) function as repressors in neuronal cells to regulate the mu opioid receptor gene. Mol Pharmacol 2005; 67:1674-83. [PMID: 15703380 DOI: 10.1124/mol.104.008284] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 5'-flanking region of the mouse mu opioid receptor (MOR) gene has two promoters, referred to as distal and proximal. MOR mRNA is predominantly initiated by the proximal promoter. Previously, several important cis-elements and trans-factors have been shown to play a functional role in the proximal promoter of the MOR gene. In this study, we defined another functional, negative regulatory element located in the -219- to -189-base pair (translational start site designed as +1) region of the proximal promoter. It is designated as the Sp binding sequence for its sequence homology to the consensus Sp binding element. Mutation of the Sp binding element led to a 100% increase of MOR promoter activity in MOR-positive cells (NMB cells), confirming the negative role of the Sp binding sequence. Surprisingly, electrophoretic mobility shift analysis and chromatin immunoprecipitation assays revealed that Sp3 and its isoforms (M1 and M2) were specifically bound to the Sp binding sequence. In cotransfection assays of Drosophila melanogaster SL2 cells using cDNA encoding Sp1, Sp3, and the M1 and M2 isoforms of Sp3, the M1 and M2 isoforms trans-repressed the MOR promoter, whereas Sp1 and Sp3 trans-activated the MOR promoter. Significantly, ectopic expression of the M1 and M2 isoforms of Sp3 led to repression of the endogenous MOR gene transcripts in NMB cells. These results suggest that the binding of the M1 and M2 isoforms of the Sp3 transcription factor to the Sp binding sequence may play a role in mouse MOR gene expression.
Collapse
Affiliation(s)
- Hack Sun Choi
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Law PY, Loh HH, Wei LN. Insights into the receptor transcription and signaling: implications in opioid tolerance and dependence. Neuropharmacology 2004; 47 Suppl 1:300-11. [PMID: 15464146 DOI: 10.1016/j.neuropharm.2004.07.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 06/02/2004] [Accepted: 06/30/2004] [Indexed: 12/20/2022]
Abstract
Drug addiction has great social and economical implications. In order to resolve this problem, the molecular and cellular basis for drug addiction must be elucidated. For the past three decades, our research has focused on elucidating the molecular mechanisms behind morphine tolerance and dependence. Although there are many working hypotheses, it is our premise that cellular modulation of the receptor signaling, either via transcriptional or post-translational control of the receptor, is the basis for morphine tolerance and dependence. Thus, in the current review, we will summarize our recent work on the transcriptional and post-translational control of the opioid receptor, with special emphasis on the mu-opioid receptor, which is demonstrated to mediate the in vivo functions of morphine.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455-0217, USA
| | | | | |
Collapse
|
29
|
Kim CS, Hwang CK, Choi HS, Song KY, Law PY, Wei LN, Loh HH. Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. J Biol Chem 2004; 279:46464-73. [PMID: 15322094 DOI: 10.1074/jbc.m403633200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mu opioid receptor (MOR) is expressed in the central nervous system and specific cell lines with varying expression levels perhaps playing important roles. One of the neuronal-specific transcription regulators, neuron-restrictive silencer factor (NRSF), has been shown to repress the expression of neuron-specific genes in non-neuronal cells. However, we showed here that the neuron-restrictive silencer element (NRSE) of MOR functions as a critical regulator to repress the MOR gene expression in specific neuronal cells depending on NRSF expression level. Using co-transfection studies, we showed that the NRSE of the MOR promoter is functional in NRSF-positive cells (NS20Y and HeLa) but not in NRSF-negative cells (PC12). NRSF binds to the NRSE of the MOR gene in a sequence-specific manner confirmed by supershift and chromatin immunoprecipitation assays, respectively. The suppression of NRSF activity with either trichostatin A or a dominant-negative NRSF induced MOR promoter activity and transcription of the MOR gene. When the NRSF was disrupted in NS20Y and HeLa cells using small interfering RNA, the transcription of the endogenous target MOR gene increased significantly. This provides direct evidence the role of NRSF in the cells and also indicates that NRSF expression is regulated by post-translational modification in neuronal NMB cells. Our data suggested that NRSF can function as a repressor of MOR transcription in specific cells, via a mechanism dependent on the MOR NRSE.
Collapse
Affiliation(s)
- Chun Sung Kim
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N. A “Whirly” Transcription Factor Is Required for Salicylic Acid-Dependent Disease Resistance in Arabidopsis. Dev Cell 2004; 6:229-40. [PMID: 14960277 DOI: 10.1016/s1534-5807(04)00028-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 09/16/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
Transcriptional reprogramming is critical for plant disease resistance responses; its global control is not well understood. Salicylic acid (SA) can induce plant defense gene expression and a long-lasting disease resistance state called systemic acquired resistance (SAR). Plant-specific "Whirly" DNA binding proteins were previously implicated in defense gene regulation. We demonstrate that the potato StWhy1 protein is a transcriptional activator of genes containing the PBF2 binding PB promoter element. DNA binding activity of AtWhy1, the Arabidopsis StWhy1 ortholog, is induced by SA and is required for both SA-dependent disease resistance and SA-induced expression of an SAR response gene. AtWhy1 is required for both full basal and specific disease resistance responses. The transcription factor-associated protein NPR1 is also required for SAR. Surprisingly, AtWhy1 activation by SA is NPR1 independent, suggesting that AtWhy1 works in conjunction with NPR1 to transduce the SA signal. Our analysis of AtWhy1 adds a critical component to the SA-dependent plant disease resistance response.
Collapse
Affiliation(s)
- Darrell Desveaux
- Department of Biochemistry, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ko JL, Liu HC, Loh HH. Role of an AP-2-like element in transcriptional regulation of mouse mu-opioid receptor gene. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 112:153-62. [PMID: 12670713 DOI: 10.1016/s0169-328x(03)00086-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previously, several important cis-elements and trans-factors have been shown to play a functional role in the proximal promoter of mouse mu-opioid receptor (MOR) gene. In this study, we defined another functional element located the in -450 to -400 bp (translational start site designated as +1) region of the proximal promoter, which is also essential for the full promoter activity. It is designated as the morAP-2-like element for its sequence homologous to the consensus AP-2 element. Surprisingly, electrophoretic mobility shift analysis (EMSA) revealed that Sp1 and Sp3, but not AP-2 proteins, were specifically bound to the morAP-2-like element. Mutation of the morAP-2-like element, resulting in a loss of Sp binding, led to an approximately 35% decrease in activity, further confirming the positive role of the morAP-2-like element in MOR gene expression. Dephosphorylation of Sp proteins with alkaline phosphatase also decreased Sp binding to the morAP-2-like element in EMSA, suggesting phosphorylation of Sp is essential for its binding to this element. However, direct or indirect activation of PKA, a classical G-protein coupled signaling pathway, resulted in no significant change of Sp binding to the morAP-2-like element, nor of the promoter activity the SH-SY5Y cells, MOR expressing cells, suggesting that phosphorylation of Sp does not involve PKA. These results suggest that the binding of different phosphorylated forms of Sp proteins to the morAP-2-like element may contribute to the fine tuning of MOR expression in different cells.
Collapse
Affiliation(s)
- Jane L Ko
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
32
|
Ko JL, Chen HC, Loh HH. Differential promoter usage of mouse mu-opioid receptor gene during development. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:184-93. [PMID: 12225873 DOI: 10.1016/s0169-328x(02)00357-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Previously, we demonstrated that mouse mu-opioid receptor (MOR) gene expression is regulated by both distal and proximal promoters, with the latter playing a major role in controlling MOR transcription in the adult mouse brain. Here, we report studies of the relative usages of the mouse MOR dual promoters during murine development. We used the reverse transcription-polymerase chain reaction (RT-PCR) method, which gave results similar to those using binding assays or in situ hybridization. However, due to the greater sensitivity of RT-PCR method, we were able to detect the emergence of MOR as early as at embryonic day 8.5 (E8.5). We found that both proximal and distal promoters were active at E8.5. The proximal promoter initiated approximately two-thirds of total MOR transcripts at E8.5, with the distal promoter directing transcription of the remaining one-third. This is the greatest relative contribution of the distal promoter to MOR transcription we have observed during any time in development. Thereafter, the percentage of transcripts directed by the distal promoter gradually declined, and remained at a low but detectable level (approximately 5% of total MOR transcripts) throughout development and adulthood. Conversely, a progressive increase of the contribution of the proximal promoter to MOR transcription was observed during development, reaching its maximum in the adult. In summary, our results demonstrated the pivotal role of the proximal promoter in directing MOR transcription during murine development.
Collapse
Affiliation(s)
- Jane L Ko
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
33
|
Abstract
The major binding site for morphine is the mu opioid receptor (MOR), which mediates morphine's analgesic and euphoric effects. The MOR gene is highly regulated at the level of transcription. The present study examined DNA-protein interactions in the human MOR (hMOR) -500 to -292 promoter region, and tested whether chronic opioid drug treatment could modulate these DNA-protein interactions. 5'-deletion and transient transfection assays in SK-N-SH cells revealed four regions that activated hMOR gene transcription. A 60 bp sequence (-351 to -292) upstream of the proximal transcription initiation site (-252) contained cis-elements required for basal promoter activity. Sp1 and Sp3 bound to this 60 bp region, which was confirmed by electromobility shift assays using a Sp1 consensus oligo as competitor and specific antibodies against Sp1 and Sp3. Methylation interference analysis localized the Sp1 binding site to the sequence CCCTCCTCCC (-310 to -301) and also suggested that additional transcription factors, other than Sp1-related proteins, contacted the -321 to -301 sequence. Moreover, the binding of Sp1/Sp3 to the hMOR promoter was significantly enhanced by chronic exposure to [D-Ala(2), N-Me-Phe(4), Gly(5)-ol] enkephalin (DAMGO), a selective MOR agonist, and this effect was attenuated specifically by pretreatment with a MOR antagonist, naloxone. Taken together, the present studies demonstrated, for the first time, that the binding of Sp1/Sp3 to the hMOR proximal promoter could be modulated by chronic DAMGO treatment. Such enhanced binding of Sp1/Sp3 to the promoter may lead to a functional change in hMOR gene transcription.
Collapse
Affiliation(s)
- Y Xu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 4602-5121, USA
| | | |
Collapse
|