1
|
Freije A, Molinuevo R, Ceballos L, Cagigas M, Alonso-Lecue P, Rodriguez R, Menendez P, Aberdam D, De Diego E, Gandarillas A. Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage. Cell Rep 2014; 9:1349-60. [PMID: 25453755 DOI: 10.1016/j.celrep.2014.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/14/2014] [Accepted: 10/03/2014] [Indexed: 11/28/2022] Open
Abstract
Tumor suppressor p53 is a major cellular guardian of genome integrity, and its inactivation is the most frequent genetic alteration in cancer, rising up to 80% in squamous cell carcinoma (SCC). By adapting the small hairpin RNA (shRNA) technology, we inactivated endogenous p53 in primary epithelial cells from the epidermis of human skin. We show that either loss of endogenous p53 or overexpression of a temperature-sensitive dominant-negative conformation triggers a self-protective differentiation response, resulting in cell stratification and expulsion. These effects follow DNA damage and exit from mitosis without cell division. p53 preserves the proliferative potential of the stem cell compartment and limits the power of proto-oncogene MYC to drive cell cycle stress and differentiation. The results provide insight into the role of p53 in self-renewal homeostasis and help explain why p53 mutations do not initiate skin cancer but increase the likelihood that cancer cells will appear.
Collapse
Affiliation(s)
- Ana Freije
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Rut Molinuevo
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Laura Ceballos
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Marta Cagigas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - Pilar Alonso-Lecue
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain
| | - René Rodriguez
- Lab 2-ORL, Instituto Universitario de Oncología de Asturias (IUOPA) Hospital Universitario Central de Asturias (HUCA), Oviedo 33006, Spain
| | - Pablo Menendez
- Josep Carreras Leukaemia Research Institute, School of Medicine, University of Barcelona, Barcelona 08036, Spain; Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Avenida Lluis Companys, Barcelona 08010, Spain
| | - Daniel Aberdam
- INSERM UMR-S976, University Paris Didero, Hôpital Saint-Louis, Equerre Bazin, Paris 75475, France
| | - Ernesto De Diego
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain; Paediatric Surgery, Hospital Universitario Marqués de Valdecilla (HUMV), Santander 39011, Spain
| | - Alberto Gandarillas
- Cell Cycle, Stem Cell Fate and Cancer Laboratory, Fundación Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander 39011, Spain; INSERM, Languedoc-Roussillon, Montpellier 34394, France.
| |
Collapse
|
2
|
Honda A, Valogne Y, Bou Nader M, Bréchot C, Faivre J. An intron-retaining splice variant of human cyclin A2, expressed in adult differentiated tissues, induces a G1/S cell cycle arrest in vitro. PLoS One 2012; 7:e39249. [PMID: 22745723 PMCID: PMC3379989 DOI: 10.1371/journal.pone.0039249] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
Background Human cyclin A2 is a key regulator of S phase progression and entry into mitosis. Alternative splice variants of the G1 and mitotic cyclins have been shown to interfere with full-length cyclin functions to modulate cell cycle progression and are therefore likely to play a role in differentiation or oncogenesis. The alternative splicing of human cyclin A2 has not yet been studied. Methodology/Principal Findings Sequence-specific primers were designed to amplify various exon–intron regions of cyclin A2 mRNA in cell lines and human tissues. Intron retaining PCR products were cloned and sequenced and then overexpressed in HeLa cells. The subcellular localization of the splice variants was studied using confocal and time-lapse microscopy, and their impact on the cell cycle by flow cytometry, immunoblotting and histone H1 kinase activity. We found a splice variant of cyclin A2 mRNA called A2V6 that partly retains Intron 6. The gene expression pattern of A2V6 mRNA in human tissues was noticeably different from that of wild-type cyclin A2 (A2WT) mRNA. It was lower in proliferating fetal tissues and stronger in some differentiated adult tissues, especially, heart. In transfected HeLa cells, A2V6 localized exclusively in the cytoplasm whereas A2WT accumulated in the nucleus. We show that A2V6 induced a clear G1/S cell cycle arrest associated with a p21 and p27 upregulation and an inhibition of retinoblastoma protein phosphorylation. Like A2WT, A2V6 bound CDK2, but the A2V6/CDK2 complex did not phosphorylate histone H1. Conclusion/Significance This study has revealed that some highly differentiated human tissues express an intron-retaining cyclin A2 mRNA that induced a G1/S block in vitro. Contrary to full-length cyclin A2, which regulates cell proliferation, the A2V6 splice variant might play a role in regulating nondividing cell states such as terminal differentiation or senescence.
Collapse
Affiliation(s)
- Arata Honda
- Tokyo Metropolitan Health and Medical Treatment Corporation, Ebara Hospital, Tokyo, Japan
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Yannick Valogne
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Myriam Bou Nader
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Christian Bréchot
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Jamila Faivre
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
- * E-mail:
| |
Collapse
|
3
|
Koroxenidou L, Ohlson LCE, Porsch Hällström I. Long-term 17alpha-ethinyl estradiol treatment decreases cyclin E and cdk2 expression, reduces cdk2 kinase activity and inhibits S phase entry in regenerating rat liver. J Hepatol 2005; 43:478-84. [PMID: 16019103 DOI: 10.1016/j.jhep.2005.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Revised: 02/17/2005] [Accepted: 02/24/2005] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIMS The synthetic estrogen 17alpha-ethinyl estradiol (EE), a potent tumor promoter in rat liver, stimulates growth during short-term treatment but inhibits hepatocyte proliferation upon prolonged treatment. To identify the molecular targets of the mitoinhibitory effect of EE, the expression of proteins regulating G(1)- and S-progression were analyzed during the first cell cycle in EE-treated female Wistar rats. METHODS Long-term (60 days) EE treatment. Immunohistochemical staining for proliferation cell nuclear antigen (PCNA) to detect cells in S phase and quantification of mitosis. Western blot to monitor protein expression. Cdk2 kinase assay to examine histone H1 phosphorylation. RESULTS EE reduced the number of cells in S phase and mitosis by about 70%. Cyclin D1 and D3 were unaffected, while cdk4 was moderately decreased. Cyclin E and cdk2 were markedly decreased with concomitant marked reduction of cdk2 kinase activity. EE also decreased cyclin A and increased G1 levels of p53 and p21. CONCLUSIONS EE causes a cell cycle block before S-phase. The reduction of the cdk2 kinase activity, essential for G1/S-transition, might be involved in the cell cycle block. Also, EE treatment results in p53 activation and upregulation of the cdk inhibitor p21 that might contribute to the G1 arrest.
Collapse
Affiliation(s)
- Lena Koroxenidou
- Department of Natural Science, Södertörns Högskola (University College), Box 4101, S-141 89 Huddinge, Sweden.
| | | | | |
Collapse
|
4
|
Wang HC, Chang WT, Chang WW, Wu HC, Huang W, Lei HY, Lai MD, Fausto N, Su IJ. Hepatitis B virus pre-S2 mutant upregulates cyclin A expression and induces nodular proliferation of hepatocytes. Hepatology 2005; 41:761-70. [PMID: 15726643 DOI: 10.1002/hep.20615] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Naturally occurring mutants with a deletion in the pre-S2 region of the large surface protein (Delta S2-LHBs) are prevalent in serum and livers of patients with chronic hepatitis B virus (HBV) infection associated with cirrhosis. The Delta S2-LHBs protein is retained in the endoplasmic reticulum (ER) and may induce ER stress. One interesting observation is the consistently clustered distribution of hepatocytes expressing Delta S2-LHBs. In this study, complementary DNA microarray analysis identified cyclin A and several groups of genes as being significantly upregulated by Delta S2-LHBs in the HuH-7 cell line. This observation was confirmed in liver tissues. The induction of cyclin A expression may occur via the specific transactivator function of Delta S2-LHBs independent of ER stress. In the presence of Delta S2-LHBs, hepatocytes sustained cyclin A expression and cell cycle progression under ER stress and displayed increased BrdU incorporation with multinuclear formation. Furthermore, Delta S2-LHBs could enhance anchorage-independent cell growth in a nontransformed human hepatocyte line and induced nodular proliferation of hepatocytes in transgenic mice. In conclusion, these in vitro and in vivo data support a role for Delta S2-LHBs in the hepatocyte hyperplasia and a likely role in the process of HBV-related tumorigenesis.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Division of Clinical Research, National Health Research Institutes, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Drdová B, Vachtenheim J. A role for p21 (WAF1) in the cAMP-dependent differentiation of F9 teratocarcinoma cells into parietal endoderm. Exp Cell Res 2004; 304:293-304. [PMID: 15707594 DOI: 10.1016/j.yexcr.2004.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Revised: 10/12/2004] [Accepted: 10/30/2004] [Indexed: 11/24/2022]
Abstract
Combined treatment of teratocarcinoma F9 cells with retinoic acid and dibutyryl-cAMP induces the differentiation into cells with a phenotype resembling parietal endoderm. We show that the levels of cyclin-dependent kinase inhibitor p21/WAF1/Cip1 (p21) protein and mRNA are dramatically elevated at the end of this differentiation, concomitantly with the appearance of p21 in the immunoprecipitated CDK2-cyclin E complex. The induction of differentiation markers could not be achieved by expression of ectopic p21 alone and still required treatment with differentiation agents. Clones of F9 cells transfected with sense or antisense p21 cDNA constructs revealed, upon differentiation, upregulated levels of mRNA for thrombomodulin, a parietal endoderm-specific marker, or increased fraction of cells in sub-G1 phase of the cell cycle, respectively. Consistent with this observation, whereas p21 was strictly nuclear in undifferentiated cells, a large proportion of differentiated cells had p21 localized also in the cytoplasm, a site associated with the antiapoptotic function of p21. Furthermore, p21 activated the thrombomodulin promoter in transient reporter assays and the p21 mutant defective in binding to cyclin E was equally efficient in activation. The promoter activity in differentiated cells was reduced by cotransfection of p21-specific siRNA or antisense cDNA. Coexpression of p21 increased the activity of the GAL-p300(1-1303) fusion protein on the GAL sites-containing TM promoter. This implies that p21 might act through a derepression of the p300 N-terminal-residing repression domain, thereby enhancing the p300 coactivator function. As differentiation of F9 cells into parietal endoderm-like cells requires the cAMP signaling, the results together suggest that the cyclin-dependent kinase inhibitor p21 may promote specifically this pathway in F9 cells.
Collapse
Affiliation(s)
- Blanka Drdová
- Laboratory of Molecular Biology, University Hospital, Clinic of Pneumology, 3rd Faculty of Medicine, Budinova 2, 18000 Prague 8-Bulovka, Czech Republic
| | | |
Collapse
|
6
|
Anger M, Bryja V, Jirmanova L, Hampl A, Carrington M, Motlik J, Dvorak P, Kubelka M. The appearance of truncated cyclin A2 correlates with differentiation of mouse embryonic stem cells. Biochem Biophys Res Commun 2003; 302:825-30. [PMID: 12646244 DOI: 10.1016/s0006-291x(03)00270-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence of a form of cyclin A2 with an N-terminal truncation has recently been reported in various murine cell lines and tissues. The truncated cyclin A2 binds to and activates the cyclin-dependent kinase 2 (CDK2). However, CDK2 bound by the truncated cyclin A2 is located in the cytoplasm in contrast to CDK2 bound to full-length cyclin A2, which is in the nucleus. Here, we show that proliferating mouse embryonic stem cells (ES cells) contain very little truncated cyclin A2 but as the cells are induced to differentiate the amount of truncated cyclin A2 increases. The expression pattern of truncated cyclin A2 was the same in p27(Kip1) -/- differentiating ES cells as in the differentiating wild-type cells. We conclude that p27(Kip1) is not necessary for the proteolytic cleavage that gives rise to the truncated form of cyclin A2 in differentiating ES cells and that this post-translational modification is not a function of the cell density but is correlated with differentiation.
Collapse
Affiliation(s)
- Martin Anger
- Department of Biology, University of Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Metabolic engineering of mammalian cells for higher protein yield. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-7306(03)38027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
8
|
Welm AL, Timchenko NA, Ono Y, Sorimachi H, Radomska HS, Tenen DG, Lekstrom-Himes J, Darlington GJ. C/EBPalpha is required for proteolytic cleavage of cyclin A by calpain 3 in myeloid precursor cells. J Biol Chem 2002; 277:33848-56. [PMID: 12105198 DOI: 10.1074/jbc.m204096200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this report, we present novel findings that implicate CCAAT/enhancer-binding protein (C/EBPalpha) in regulating the expression and activity of calpain 3 in vivo and data showing a new physiological substrate for calpain 3, cyclin A. Our results demonstrate that cleavage of cyclin A by calpain 3 occurs in mouse and human myeloid precursor cells. Calpain 3 cleaves cyclin A in vitro and in vivo, resulting in the production of a truncated product that lacks the N-terminal destruction box required for its degradation at the end of mitosis. The cleaved form of cyclin A retains the cyclin-dependent kinase (cdk) binding domain and forms active complexes with cdk2. Calpain 3-mediated cleavage of cyclin A is lacking in C/EBPalpha-/- mice, which are not able to produce mature granulocytes. Our data support a model in which calpain 3-mediated cleavage of cyclin A in dividing myeloid progenitor cells is important for the onset of differentiation. Deficits in this pathway in C/EBPalpha-/- mice might contribute to the failure of these mice to produce mature granulocytes. These data reveal a new pathway involving tightly controlled post-translational processing of cyclin A during differentiation of granulocytes.
Collapse
Affiliation(s)
- Alana L Welm
- Department of Pathology and Huffington Center on Aging, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Faivre J, Frank-Vaillant M, Poulhe R, Mouly H, Jessus C, Bréchot C, Sobczak-Thépot J. Centrosome overduplication, increased ploidy and transformation in cells expressing endoplasmic reticulum-associated cyclin A2. Oncogene 2002; 21:1493-500. [PMID: 11896577 DOI: 10.1038/sj.onc.1205215] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2001] [Revised: 11/21/2001] [Accepted: 11/28/2001] [Indexed: 11/09/2022]
Abstract
Cyclin A2 is predominantly, but not exclusively, localized in the nucleus from G1/S transition onwards. It is degraded when cells enter mitosis after nuclear envelope breakdown. We previously showed that a fusion protein (S2A) between the hepatitis B virus (HBV) surface antigen protein and a non-degradable fragment of human cyclin A2 (Delta152) resides in the endoplasmic reticulum membranes, escapes degradation and transforms normal rat fibroblasts. The present study investigates whether cytoplasmic cyclin A2 may play a role in oncogenesis. We show that the sequestration of non-degradable cyclin A2-Delta152 by a cellular ER targeting domain (PRL-A2) leads to cell transformation when coexpressed with activated Ha-ras. REF52 cells constitutively expressing PRL-A2 are found to have a high incidence of multinucleate giant cells, polyploidy and abnormal centrosome numbers, giving rise to the nucleation of multipolar spindles. Injection of these cells into athymic nude mice causes tumors, even in the absence of a cooperating Ha-ras oncogene. These results demonstrate that, independently of any viral context, an intracellular redistribution of non-degradable cyclin A2 is capable of deregulating the normal cell cycle to the point where it promotes aneuploidy and cancer.
Collapse
Affiliation(s)
- Jamila Faivre
- INSERM U370, Institut Pasteur/Necker, Faculté de Médecine Necker, 75015 Paris, France.
| | | | | | | | | | | | | |
Collapse
|