1
|
Park S, Kim HS, Bang K, Han A, Shin B, Seo M, Kim S, Hwang KY. Structural Insights into the Rrp4 Subunit from the Crystal Structure of the Thermoplasma acidophilum Exosome. Biomolecules 2024; 14:621. [PMID: 38927025 PMCID: PMC11201974 DOI: 10.3390/biom14060621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The exosome multiprotein complex plays a critical role in RNA processing and degradation. This system governs the regulation of mRNA quality, degradation in the cytoplasm, the processing of short noncoding RNA, and the breakdown of RNA fragments. We determined two crystal structures of exosome components from Thermoplasma acidophilum (Taci): one with a resolution of 2.3 Å that reveals the central components (TaciRrp41 and TaciRrp42), and another with a resolution of 3.5 Å that displays the whole exosome (TaciRrp41, TaciRrp42, and TaciRrp4). The fundamental exosome structure revealed the presence of a heterodimeric complex consisting of TaciRrp41 and TaciRrp42. The structure comprises nine subunits, with TaciRrp41 and TaciRrp42 arranged in a circular configuration, while TaciRrp4 is located at the apex. The RNA degradation capabilities of the TaciRrp4:41:42 complex were verified by RNA degradation assays, consistent with prior findings in other archaeal exosomes. The resemblance between archaeal exosomes and bacterial PNPase suggests a common mechanism for RNA degradation. Despite sharing comparable topologies, the surface charge distributions of TaciRrp4 and other archaea structures are surprisingly distinct. Different RNA breakdown substrates may be responsible for this variation. These newfound structural findings enhance our comprehension of RNA processing and degradation in biological systems.
Collapse
Affiliation(s)
- Seonha Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
- Institute of Bioresources, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Sook Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Kyuhyeon Bang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Ahreum Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Byeongmin Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Minjeong Seo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| | - Sulhee Kim
- Korea BioDefense Research Institute, Korea University, Seoul 02841, Republic of Korea;
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea; (S.P.); (H.S.K.); (K.B.); (A.H.); (B.S.); (M.S.)
| |
Collapse
|
2
|
Jeung JH, Han H, Lee CY, Ahn JK. CRISPR/Cas12a Collateral Cleavage Activity for Sensitive 3'-5' Exonuclease Assay. BIOSENSORS 2023; 13:963. [PMID: 37998138 PMCID: PMC10669037 DOI: 10.3390/bios13110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
This study presents a technique for detecting 3'-5' exonuclease activity through the use of CRISPR/Cas12a. These enzymes, including 3'-5' exonuclease (Exo III), perform crucial roles in various cellular processes and are associated with life expectancy. However, imbalances in their expression can increase susceptibility to diseases such as cancer, particularly under prolonged stress. In this study, an activator sequence of CRISPR/Cas12a was constructed on the 5'-end of a hairpin probe (HP), forming a blunt end. When the 3'-end of the HP was hydrolyzed with Exo III activity, the activator sequence of Cas12a was exposed, which led to collateral cleavage of the DNA signal probe and generated a fluorescent signal, allowing sensitive and highly specific Exo III detection. This detection principle relied on the fact that Exo III exclusively cleaves the 3'-end mononucleotide of dsDNA and does not affect ssDNA. Based on this strategy, Exo III activity was successfully assayed at 0.0073 U/mL, demonstrating high sensitivity. In addition, this technique was used to screen candidate inhibitors of Exo III activity.
Collapse
Affiliation(s)
- Jae Hoon Jeung
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (J.H.J.); (H.H.)
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyogu Han
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (J.H.J.); (H.H.)
- Department of Chemistry, Gangneung–Wonju National University, Gangneung 25457, Republic of Korea
| | - Chang Yeol Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak–ro, Yuseong–gu, Daejeon 34141, Republic of Korea
| | - Jun Ki Ahn
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea; (J.H.J.); (H.H.)
| |
Collapse
|
3
|
Lange H, Gagliardi D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. THE PLANT CELL 2022; 34:967-988. [PMID: 34954803 PMCID: PMC8894942 DOI: 10.1093/plcell/koab310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 05/08/2023]
Abstract
RNA exosome complexes provide the main 3'-5'-exoribonuclease activities in eukaryotic cells and contribute to the maturation and degradation of virtually all types of RNA. RNA exosomes consist of a conserved core complex that associates with exoribonucleases and with multimeric cofactors that recruit the enzyme to its RNA targets. Despite an overall high level of structural and functional conservation, the enzymatic activities and compositions of exosome complexes and their cofactor modules differ among eukaryotes. This review highlights unique features of plant exosome complexes, such as the phosphorolytic activity of the core complex, and discusses the exosome cofactors that operate in plants and are dedicated to the maturation of ribosomal RNA, the elimination of spurious, misprocessed, and superfluous transcripts, or the removal of mRNAs cleaved by the RNA-induced silencing complex and other mRNAs prone to undergo silencing.
Collapse
Affiliation(s)
- Heike Lange
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Author for correspondence:
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Cabral LM, Masuda HP, Ballesteros HF, de Almeida-Engler J, Alves-Ferreira M, De Toni KLG, Bizotto FM, Ferreira PCG, Hemerly AS. ABAP1 Plays a Role in the Differentiation of Male and Female Gametes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:642758. [PMID: 33643370 PMCID: PMC7903899 DOI: 10.3389/fpls.2021.642758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 05/07/2023]
Abstract
The correct development of a diploid sporophyte body and a haploid gametophyte relies on a strict coordination between cell divisions in space and time. During plant reproduction, these divisions have to be temporally and spatially coordinated with cell differentiation processes, to ensure a successful fertilization. Armadillo BTB Arabidopsis protein 1 (ABAP1) is a plant exclusive protein that has been previously reported to control proliferative cell divisions during leaf growth in Arabidopsis. Here, we show that ABAP1 binds to different transcription factors that regulate male and female gametophyte differentiation, repressing their target genes expression. During male gametogenesis, the ABAP1-TCP16 complex represses CDT1b transcription, and consequently regulates microspore first asymmetric mitosis. In the female gametogenesis, the ABAP1-ADAP complex represses EDA24-like transcription, regulating polar nuclei fusion to form the central cell. Therefore, besides its function during vegetative development, this work shows that ABAP1 is also involved in differentiation processes during plant reproduction, by having a dual role in regulating both the first asymmetric cell division of male gametophyte and the cell differentiation (or cell fusion) of female gametophyte.
Collapse
Affiliation(s)
- Luiz M. Cabral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Hana P. Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Helkin F. Ballesteros
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Janice de Almeida-Engler
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| | - Márcio Alves-Ferreira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen L. G. De Toni
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda M. Bizotto
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Paulo C. G. Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriana S. Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Adriana S. Hemerly, ;
| |
Collapse
|
5
|
Abstract
The RNA exosome is a ribonucleolytic multiprotein complex that is conserved and essential in all eukaryotes. Although we tend to speak of "the" exosome complex, it should be more correctly viewed as several different subtypes that share a common core. Subtypes of the exosome complex are present in the cytoplasm, the nucleus and the nucleolus of all eukaryotic cells, and carry out the 3'-5' processing and/or degradation of a wide range of RNA substrates.Because the substrate specificity of the exosome complex is determined by cofactors, the system is highly adaptable, and different organisms have adjusted the machinery to their specific needs. Here, we present an overview of exosome complexes and their cofactors that have been described in different eukaryotes.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, Gießen, Germany.
| |
Collapse
|
6
|
Lloret-Llinares M, Jensen TH. Global Identification of Human Exosome Substrates Using RNA Interference and RNA Sequencing. Methods Mol Biol 2020; 2062:127-145. [PMID: 31768975 DOI: 10.1007/978-1-4939-9822-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The RNA exosome is involved in RNA processing and quality control. In humans, it consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by one or two additional components. Moreover, several protein cofactors interact with the exosome to enable and specify its recruitment to a wide range of substrates. A common strategy to identify these substrates has been to deplete an exosome subunit or a cofactor and subsequently interrogate which transcripts become stabilized. Here, we describe an experimental pipeline including siRNA-mediated depletion of the RNA exosome or its cofactors in HeLa cells, confirmation of the knockdown efficiencies, and the manual or high-throughput identification of exosome targets.
Collapse
Affiliation(s)
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
7
|
Nakaminami K, Seki M. RNA Regulation in Plant Cold Stress Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1081:23-44. [PMID: 30288702 DOI: 10.1007/978-981-13-1244-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to plants, all organisms react to environmental stimuli via the perception of signals and subsequently respond through alterations of gene expression. However, genes/mRNAs are usually not the functional unit themselves, and instead, resultant protein products with individual functions result in various acquired phenotypes. In order to fully characterize the adaptive responses of plants to environmental stimuli, it is essential to determine the level of proteins, in addition to the regulation of mRNA expression. This regulatory step, which is referred to as "mRNA posttranscriptional regulation," occurs subsequent to mRNA transcription and prior to translation. Although these RNA regulatory mechanisms have been well-studied in many organisms, including plants, it is not fully understood how plants respond to environmental stimuli, such as cold stress, via these RNA regulations.A recent study described several RNA regulatory factors in relation to environmental stress responses, including plant cold stress tolerance. In this chapter, the functions of RNA regulatory factors and comprehensive analyses related to the RNA regulations involved in cold stress response are summarized, such as mRNA maturation, including capping, splicing, polyadenylation of mRNA, and the quality control system of mRNA; mRNA degradation, including the decapping step; and mRNA stabilization. In addition, the putative roles of messenger ribonucleoprotein (mRNP) granules, such as processing bodies (PBs) and stress granules (SGs), which are cytoplasmic particles, are described in relation to RNA regulations under stress conditions. These RNA regulatory systems are important for adjusting or fine-tuning and determining the final levels of mRNAs and proteins in order to adapt or respond to environmental stresses. Collectively, these new areas of study revealed that plants possess precise novel regulatory mechanisms which specifically function in the response to cold stress.
Collapse
Affiliation(s)
- Kentaro Nakaminami
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
- Plant Epigenome Regulation Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology (JST), Kawaguchi, Saitama, Japan
| |
Collapse
|
8
|
Byeon B, Bilichak A, Kovalchuk I. Transgenerational Response to Heat Stress in the Form of Differential Expression of Noncoding RNA Fragments in Brassica rapa Plants. THE PLANT GENOME 2019; 12. [PMID: 30951085 DOI: 10.3835/plantgenome2018.04.0022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Epigenetic regulations in the form of changes in differential expression of noncoding RNAs (ncRNAs) are an essential mechanism of stress response in plants. Previously we showed that heat treatment in L. results in the differential processing and accumulation of ncRNA fragments (ncRFs) stemming from transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs). In this work, we analyzed whether ncRFs are differentially expressed in the progeny of heat-stressed plants. We found significant changes in the size of tRF reads and a significant decrease in the percentage of tRFs mapping to tRNA-Ala, tRNA-Arg, and tRNA-Tyr and an increase in tRFs mapping to tRNA-Asp. The enrichment analysis showed significant differences in processing of tRFs from tRNA, tRNA, tRNA, tRNA, tRNA, and tRNA isoacceptors. Analysis of potential targets of tRFs showed that they regulate brassinosteroid metabolism, the proton pump ATPase activity, the antiporter activity, the mRNA decay activity as well as nucleosome positioning and the epigenetic regulation of transgenerational response. Gene ontology term analysis of potential targets demonstrated a significant enrichment in tRFs that potentially targeted a cellular component endoplasmic reticulum (ER) and in small nucleolar RNA fragments (snoRFs), the molecular function protein binding. To summarize, our work demonstrated that the progeny of heat-stressed plants exhibit changes in the expression of tRFs and snoRFs but not of small nuclear RNA fragments (snRFs) or ribosomal RNA fragments (rRFs) and these changes likely better prepare the progeny of stressed plants to future stress encounters.
Collapse
|
9
|
Sieburth LE, Vincent JN. Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000Res 2018; 7. [PMID: 30613385 PMCID: PMC6305221 DOI: 10.12688/f1000research.16203.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Gene expression is typically quantified as RNA abundance, which is influenced by both synthesis (transcription) and decay. Cytoplasmic decay typically initiates by deadenylation, after which decay can occur through any of three cytoplasmic decay pathways. Recent advances reveal several mechanisms by which RNA decay is regulated to control RNA abundance. mRNA can be post-transcriptionally modified, either indirectly through secondary structure or through direct modifications to the transcript itself, sometimes resulting in subsequent changes in mRNA decay rates. mRNA abundances can also be modified by tapping into pathways normally used for RNA quality control. Regulated mRNA decay can also come about through post-translational modification of decapping complex subunits. Likewise, mRNAs can undergo changes in subcellular localization (for example, the deposition of specific mRNAs into processing bodies, or P-bodies, where stabilization and destabilization occur in a transcript- and context-dependent manner). Additionally, specialized functions of mRNA decay pathways were implicated in a genome-wide mRNA decay analysis in Arabidopsis. Advances made using plants are emphasized in this review, but relevant studies from other model systems that highlight RNA decay mechanisms that may also be conserved in plants are discussed.
Collapse
Affiliation(s)
- Leslie E Sieburth
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jessica N Vincent
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Label-free detection of exonuclease III activity and its inhibition based on DNA hairpin probe. Anal Biochem 2018; 555:55-58. [DOI: 10.1016/j.ab.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/13/2018] [Indexed: 11/21/2022]
|
11
|
Jiang N, Yu S, Yang N, Feng Y, Sang X, Wang Y, Wahlgren M, Chen Q. Characterization of the Catalytic Subunits of the RNA Exosome-like Complex in Plasmodium falciparum. J Eukaryot Microbiol 2018; 65:843-853. [PMID: 29664138 PMCID: PMC6282785 DOI: 10.1111/jeu.12625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The eukaryotic ribonucleic acid (RNA) exosome is a versatile multiribonuclease complex that mediates the processing, surveillance, and degradation of virtually all classes of RNA in both the nucleus and cytoplasm. The complex, composed of 10 to 11 subunits, has been widely described in many organisms. Bioinformatic analyses revealed that there may be also an exosome‐like complex in Plasmodium falciparum, a parasite of great importance in public health, with eight predicted subunits having high sequence similarity to their counterparts in yeast and human. In this work, the putative RNA catalytic components, designated as PfRrp4, PfRrp41, PfDis3, and PfRrp6, were identified and systematically analyzed. Quantitative polymerase chain reaction (QPCR) analyses suggested that all of them were transcribed steadily throughout the asexual stage. The expression of these proteins was determined by Western blot, and their localization narrowed to the cytoplasm of the parasite by indirect immunofluorescence. The recombinant proteins of PfRrp41, PfDis3, and PfRrp6 exhibited catalytic activity for single‐stranded RNA (ssRNA), whereas PfRrp4 showed no processing activity of both ssRNA and dsRNA. The identification of these putative components of the RNA exosome complex opens up new perspectives for a deep understanding of RNA metabolism in the malarial parasite P. falciparum.
Collapse
Affiliation(s)
- Ning Jiang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Shengchao Yu
- Key Laboratory of Zoonosis, Jilin University, 53333 Xi An Da Lu, Changchun, 130062, China
| | - Na Yang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Ying Feng
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Yao Wang
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cellular Biology, Karolinska Institutet, Nobels väg 16, Stockholm, Sweden
| | - Qijun Chen
- Key Laboratory of Zoonosis, Shenyang Agricultural University, 120 Dongling Road, Shenyang, China.,Department of Microbiology, Tumour and Cellular Biology, Karolinska Institutet, Nobels väg 16, Stockholm, Sweden
| |
Collapse
|
12
|
Sikorska N, Zuber H, Gobert A, Lange H, Gagliardi D. RNA degradation by the plant RNA exosome involves both phosphorolytic and hydrolytic activities. Nat Commun 2017; 8:2162. [PMID: 29255150 PMCID: PMC5735172 DOI: 10.1038/s41467-017-02066-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 11/03/2017] [Indexed: 12/21/2022] Open
Abstract
The RNA exosome provides eukaryotic cells with an essential 3'-5' exoribonucleolytic activity, which processes or eliminates many classes of RNAs. Its nine-subunit core (Exo9) is structurally related to prokaryotic phosphorolytic exoribonucleases. Yet, yeast and animal Exo9s have lost the primordial phosphorolytic capacity and rely instead on associated hydrolytic ribonucleases for catalytic activity. Here, we demonstrate that Arabidopsis Exo9 has retained a distributive phosphorolytic activity, which contributes to rRNA maturation processes, the hallmark of exosome function. High-density mapping of 3' extremities of rRNA maturation intermediates reveals the intricate interplay between three exoribonucleolytic activities coordinated by the plant exosome. Interestingly, the analysis of RRP41 protein diversity across eukaryotes suggests that Exo9's intrinsic activity operates throughout the green lineage, and possibly in some earlier-branching non-plant eukaryotes. Our results reveal a remarkable evolutionary variation of this essential RNA degradation machine in eukaryotes.
Collapse
Affiliation(s)
- Natalia Sikorska
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Hélène Zuber
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Anthony Gobert
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Heike Lange
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France
| | - Dominique Gagliardi
- IBMP, CNRS, University of Strasbourg, 12 rue du général Zimmer, 67000, Strasbourg, France.
| |
Collapse
|
13
|
Shanmugam T, Abbasi N, Kim HS, Kim HB, Park NI, Park GT, Oh SA, Park SK, Muench DG, Choi Y, Park YI, Choi SB. An Arabidopsis divergent pumilio protein, APUM24, is essential for embryogenesis and required for faithful pre-rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1092-1105. [PMID: 29031033 DOI: 10.1111/tpj.13745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 05/06/2023]
Abstract
Pumilio RNA-binding proteins are largely involved in mRNA degradation and translation repression. However, a few evolutionarily divergent Pumilios are also responsible for proper pre-rRNA processing in human and yeast. Here, we describe an essential Arabidopsis nucleolar Pumilio, APUM24, that is expressed in tissues undergoing rapid proliferation and cell division. A T-DNA insertion for APUM24 did not affect the male and female gametogenesis, but instead resulted in a negative female gametophytic effect on zygotic cell division immediately after fertilization. Additionally, the mutant embryos displayed defects in cell patterning from pro-embryo through globular stages. The mutant embryos were marked by altered auxin maxima, which were substantiated by the mislocalization of PIN1 and PIN7 transporters in the defective embryos. Homozygous apum24 callus accumulates rRNA processing intermediates, including uridylated and adenylated 5.8S and 25S rRNA precursors. An RNA-protein interaction assay showed that the histidine-tagged recombinant APUM24 binds RNAin vitro with no apparent specificity. Overall, our results demonstrated that APUM24 is required for rRNA processing and early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nazia Abbasi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Hyung-Sae Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Ho Bang Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nam-Il Park
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Guen Tae Park
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, South Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| |
Collapse
|
14
|
Bassham DC, MacIntosh GC. Degradation of cytosolic ribosomes by autophagy-related pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:169-174. [PMID: 28716412 DOI: 10.1016/j.plantsci.2017.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/13/2017] [Indexed: 05/08/2023]
Abstract
Ribosomes are essential molecular machines that require a large cellular investment, yet the mechanisms of their turnover are not well understood in any eukaryotic organism. Recent advances in Arabidopsis suggest that plants utilize selective mechanisms to transport rRNA or ribosomes to the vacuole, where rRNA is degraded and the breakdown products recycled to maintain cellular homeostasis. This review focuses on known mechanisms of rRNA turnover and explores unanswered questions on the specificity and pathways of ribosome turnover and the role of this process in maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
15
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
16
|
Tsuzuki M, Motomura K, Kumakura N, Takeda A. Interconnections between mRNA degradation and RDR-dependent siRNA production in mRNA turnover in plants. JOURNAL OF PLANT RESEARCH 2017; 130:211-226. [PMID: 28197782 DOI: 10.1007/s10265-017-0906-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kazuki Motomura
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Naoyoshi Kumakura
- Center for Sustainable Resource Science, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Takeda
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
17
|
Yan X, Yan Z, Han Y. RRP42, a Subunit of Exosome, Plays an Important Role in Female Gametophytes Development and Mesophyll Cell Morphogenesis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:981. [PMID: 28642780 PMCID: PMC5463273 DOI: 10.3389/fpls.2017.00981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The exosome complex plays a central and essential role in RNA metabolism. However, current research on functions of exosome subunit in plants is limited. Here, we used an egg cell-specific promoter-controlled CRISPR/Cas9 system to knock out RRP42 which encodes a core subunit of the Arabidopsis exosome and presented evidence that RRP42 is essential for the development of female gametophytes. Next, we designed three different amiRNAs targeting RRP42. The rrp42 knock-down mutants mainly displayed variegated and serrated leaves, especially in cauline leaves. The internal anatomy of cauline leaves displayed irregularly shaped palisade cells and a reduced density of mesophyll cells. Interestingly, we detected highly accumulated mRNAs that encode xyloglucan endotransglucosylase/hydrolases (XTHs) and expansins (EXPAs) during later growth stages in rrp42 knock-down mutants. The mRNA decay kinetics analysis for XTH19, EXPA10, and EXPA11 revealed that RRP42 had a role in the decay of these mRNAs in the cytoplasm. RRP42 is localized to both the nucleus and cytoplasm, and RRP42 is preferentially expressed in cauline leaves during later growth stages. Altogether, our results demonstrate that RRP42 is essential for the development of female gametophytes and plays an important role in mesophyll cell morphogenesis.
Collapse
|
18
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
19
|
Kawa D, Testerink C. Regulation of mRNA decay in plant responses to salt and osmotic stress. Cell Mol Life Sci 2016; 74:1165-1176. [PMID: 27677492 PMCID: PMC5346435 DOI: 10.1007/s00018-016-2376-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/09/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
Plant acclimation to environmental stresses requires fast signaling to initiate changes in developmental and metabolic responses. Regulation of gene expression by transcription factors and protein kinases acting upstream are important elements of responses to salt and drought. Gene expression can be also controlled at the post-transcriptional level. Recent analyses on mutants in mRNA metabolism factors suggest their contribution to stress signaling. Here we highlight the components of mRNA decay pathways that contribute to responses to osmotic and salt stress. We hypothesize that phosphorylation state of proteins involved in mRNA decapping affect their substrate specificity.
Collapse
Affiliation(s)
- Dorota Kawa
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands
| | - Christa Testerink
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 94215, 1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Wang Z, Jin K, Xia Y. Transcriptional analysis of the conidiation pattern shift of the entomopathogenic fungus Metarhizium acridum in response to different nutrients. BMC Genomics 2016; 17:586. [PMID: 27506833 PMCID: PMC4979188 DOI: 10.1186/s12864-016-2971-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
Background Most fungi, including entomopathogenic fungi, have two different conidiation patterns, normal and microcycle conidiation, under different culture conditions, eg, in media containing different nutrients. However, the mechanisms underlying the conidiation pattern shift are poorly understood. Results In this study, Metarhizium acridum undergoing microcycle conidiation on sucrose yeast extract agar (SYA) medium shifted to normal conidiation when the medium was supplemented with sucrose, nitrate, or phosphate. By linking changes in nutrients with the conidiation pattern shift and transcriptional changes, we obtained conidiation pattern shift libraries by Solexa/Illumina deep-sequencing technology. A comparative analysis demonstrated that the expression of 137 genes was up-regulated during the shift to normal conidiation, while the expression of 436 genes was up-regulated at the microcycle conidiation stage. A comparison of subtractive libraries revealed that 83, 216, and 168 genes were related to sucrose-induced, nitrate-induced, and phosphate-induced conidiation pattern shifts, respectively. The expression of 217 genes whose expression was specific to microcycle conidiation was further analyzed by the gene expression profiling via multigene concatemers method using mRNA isolated from M. acridum grown on SYA and the four normal conidiation media. The expression of 142 genes was confirmed to be up-regulated on standard SYA medium. Of these 142 genes, 101 encode hypothetical proteins or proteins of unknown function, and only 41 genes encode proteins with putative functions. Of these 41 genes, 18 are related to cell growth, 10 are related to cell proliferation, three are related to the cell cycle, three are related to cell differentiation, two are related to cell wall synthesis, two are related to cell division, and seven have other functions. These results indicate that the conidiation pattern shift in M. acridum mainly results from changes in cell growth and proliferation. Conclusions The results indicate that M. acridum shifts conidiation pattern from microcycle conidiation to normal conidiation when there is increased sucrose, nitrate, or phosphate in the medium during microcycle conidiation. The regulation of conidiation patterning is a complex process involving the cell cycle and metabolism of M. acridum. This study provides essential information about the molecular mechanism of the induction of the conidiation pattern shift by single nutrients. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2971-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenglong Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing University, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
21
|
Audin MJC, Wurm JP, Cvetkovic MA, Sprangers R. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res 2016; 44:2962-73. [PMID: 26837575 PMCID: PMC4824110 DOI: 10.1093/nar/gkw062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3′ end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events.
Collapse
Affiliation(s)
- Maxime J C Audin
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Jan Philip Wurm
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Milos A Cvetkovic
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
23
|
Shin JH, Chekanova JA. Arabidopsis RRP6L1 and RRP6L2 function in FLOWERING LOCUS C silencing via regulation of antisense RNA synthesis. PLoS Genet 2014; 10:e1004612. [PMID: 25211139 PMCID: PMC4161302 DOI: 10.1371/journal.pgen.1004612] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/18/2014] [Indexed: 01/24/2023] Open
Abstract
The exosome complex functions in RNA metabolism and transcriptional gene silencing. Here, we report that mutations of two Arabidopsis genes encoding nuclear exosome components AtRRP6L1 and AtRRP6L2, cause de-repression of the main flowering repressor FLOWERING LOCUS C (FLC) and thus delay flowering in early-flowering Arabidopsis ecotypes. AtRRP6L mutations affect the expression of known FLC regulatory antisense (AS) RNAs AS I and II, and cause an increase in Histone3 K4 trimethylation (H3K4me3) at FLC. AtRRP6L1 and AtRRP6L2 function redundantly in regulation of FLC and also act independently of the exosome core complex. Moreover, we discovered a novel, long non-coding, non-polyadenylated antisense transcript (ASL, for Antisense Long) originating from the FLC locus in wild type plants. The AtRRP6L proteins function as the main regulators of ASL synthesis, as these mutants show little or no ASL transcript. Unlike ASI/II, ASL associates with H3K27me3 regions of FLC, suggesting that it could function in the maintenance of H3K27 trimethylation during vegetative growth. AtRRP6L mutations also affect H3K27me3 levels and nucleosome density at the FLC locus. Furthermore, AtRRP6L1 physically associates with the ASL transcript and directly interacts with the FLC locus. We propose that AtRRP6L proteins participate in the maintenance of H3K27me3 at FLC via regulating ASL. Furthermore, AtRRP6Ls might participate in multiple FLC silencing pathways by regulating diverse antisense RNAs derived from the FLC locus.
Collapse
Affiliation(s)
- Jun-Hye Shin
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
| | - Julia A. Chekanova
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ebersberger I, Simm S, Leisegang MS, Schmitzberger P, Mirus O, von Haeseler A, Bohnsack MT, Schleiff E. The evolution of the ribosome biogenesis pathway from a yeast perspective. Nucleic Acids Res 2013; 42:1509-23. [PMID: 24234440 PMCID: PMC3919561 DOI: 10.1093/nar/gkt1137] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ribosome biogenesis is fundamental for cellular life, but surprisingly little is known about the underlying pathway. In eukaryotes a comprehensive collection of experimentally verified ribosome biogenesis factors (RBFs) exists only for Saccharomyces cerevisiae. Far less is known for other fungi, animals or plants, and insights are even more limited for archaea. Starting from 255 yeast RBFs, we integrated ortholog searches, domain architecture comparisons and, in part, manual curation to investigate the inventories of RBF candidates in 261 eukaryotes, 26 archaea and 57 bacteria. The resulting phylogenetic profiles reveal the evolutionary ancestry of the yeast pathway. The oldest core comprising 20 RBF lineages dates back to the last universal common ancestor, while the youngest 20 factors are confined to the Saccharomycotina. On this basis, we outline similarities and differences of ribosome biogenesis across contemporary species. Archaea, so far a rather uncharted domain, possess 38 well-supported RBF candidates of which some are known to form functional sub-complexes in yeast. This provides initial evidence that ribosome biogenesis in eukaryotes and archaea follows similar principles. Within eukaryotes, RBF repertoires vary considerably. A comparison of yeast and human reveals that lineage-specific adaptation via RBF exclusion and addition characterizes the evolution of this ancient pathway.
Collapse
Affiliation(s)
- Ingo Ebersberger
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt 60438, Germany, Center for Integrative Bioinformatics, Max F Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna 1030, Austria, Institute for Molecular Biosciences, Goethe University, Frankfurt 60438, Germany, Faculty of Computer Science, University of Vienna, Vienna 1030, Austria, Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt 60438, Germany, Department of Biochemistry I, Universitätsmedizin Göttingen, Göttingen 37073, Germany and Center of Membrane Proteomics, Goethe University, Frankfurt 60438, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kumakura N, Otsuki H, Tsuzuki M, Takeda A, Watanabe Y. Arabidopsis AtRRP44A is the functional homolog of Rrp44/Dis3, an exosome component, is essential for viability and is required for RNA processing and degradation. PLoS One 2013; 8:e79219. [PMID: 24244451 PMCID: PMC3820695 DOI: 10.1371/journal.pone.0079219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/26/2013] [Indexed: 11/25/2022] Open
Abstract
The RNA exosome is a multi-subunit complex that is responsible for 3ʹ to 5ʹ degradation and processing of cellular RNA. Rrp44/Dis3 is the catalytic center of the exosome in yeast and humans. However, the role of Rrp44/Dis3 homologs in plants is still unidentified. Here, we show that Arabidopsis AtRRP44A is the functional homolog of Rrp44/Dis3, is essential for plant viability and is required for RNA processing and degradation. We characterized AtRRP44A and AtRRP44B/SOV, two predicted Arabidopsis Rrp44/Dis3 homologs. AtRRP44A could functionally replace S. cerevisiae Rrp44/Dis3, but AtRRP44B/SOV could not. rrp44a knock-down mutants showed typical phenotypes of exosome function deficiency, 5.8S rRNA 3ʹ extension and rRNA maturation by-product over-accumulation, but rrp44b mutants did not. Conversely, AtRRP44B/SOV mutants showed elevated levels of a selected mRNA, on which rrp44a did not have detectable effects. Although T-DNA insertion mutants of AtRRP44B/SOV had no obvious phenotype, those of AtRRP44A showed defects in female gametophyte development and early embryogenesis. These results indicate that AtRRP44A and AtRRP44B/SOV have independent roles for RNA turnover in plants.
Collapse
Affiliation(s)
- Naoyoshi Kumakura
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Su X, Zhang C, Zhu X, Fang S, Weng R, Xiao X, Zhao M. Simultaneous fluorescence imaging of the activities of DNases and 3' exonucleases in living cells with chimeric oligonucleotide probes. Anal Chem 2013; 85:9939-46. [PMID: 24016314 DOI: 10.1021/ac402615c] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Real-time fluorescence imaging of the activity of nucleases in living cells has been a difficult issue because of unintended degradation of the natural oligonucleotides by nontarget nucleases or interactions with other proteins. In this work, we demonstrate two types of highly selective, sensitive, and robust oligonucleotide probes for simultaneous imaging of the activities of two different nucleases in living cells. The probes consist of the desired substrate structure of the target nuclease and partially phosphorothioate modified backbone labeled with fluorophore and quencher for protection from undesired degradation by other nucleases and signal transduction. Upon reaction with the target nuclease, the initially fluorescence quenched probe was cleaved and the fluorophore was separated from the quencher, giving out strong fluorescence signals. Two nucleases, DNase I and Exonuclease III, were employed as model enzymes to demonstrate the concept. In vitro studies proved that the two probes could discriminate their respective target nucleases in serum with high resistance to other coexisting enzymes. The lower limits of detection for DNase I and Exonuclease III were observed to be 40 U/L and 2.0 U/L, respectively. By labeling the two probes with different fluorophores and quenchers, simultaneous visualization of the activities of DNases and 3' exonucleases was achieved in both HeLa cells and the suspension cells of Arabidopsis thaliana. The developed approaches may greatly facilitate the studies on the intracellular functions of the two nucleases and other related biological processes. The probe design concept may also be further adapted to the detection of many other nucleases.
Collapse
Affiliation(s)
- Xin Su
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing, 100871, China
| | | | | | | | | | | | | |
Collapse
|
27
|
The RNA exosome and proteasome: common principles of degradation control. Nat Rev Mol Cell Biol 2013; 14:654-60. [PMID: 23989960 DOI: 10.1038/nrm3657] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Defective RNAs and proteins are swiftly degraded by cellular quality control mechanisms. A large fraction of their degradation is mediated by the exosome and the proteasome. These complexes have a similar architectural framework based on cylindrical, hollow structures that are conserved from bacteria and archaea to eukaryotes. Mechanistic similarities have also been identified for how RNAs and proteins are channelled into these structures and prepared for degradation. Insights gained from studies of the proteasome should now set the stage for elucidating the regulation, assembly and small-molecule inhibition of the exosome.
Collapse
|
28
|
Sandler I, Medalia O, Aharoni A. Experimental analysis of co-evolution within protein complexes: the yeast exosome as a model. Proteins 2013; 81:1997-2006. [PMID: 23852635 DOI: 10.1002/prot.24360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 11/07/2022]
Abstract
Extensive bioinformatics analysis suggests that the stability and function of protein complexes are maintained throughout evolution by coordinated changes (co-evolution) of complex subunits. Yet, relatively little is known regarding the actual dynamics of such processes and the functional implications of co-evolution within protein complexes, since most of the bioinformatics predictions were not analyzed experimentally. Here, we describe a systematic experimental approach that allows a step-by-step observation of the co-evolution process in protein complexes. The exosome complex, an essential complex exhibiting a 3'→5' RNA degradation activity, served as a model system. In this study, we show that exosome subunits diverged very early during fungal evolution. Interestingly, we found that despite significant differences in conservation between Rrp41 and Mtr3 both subunits exhibit similar divergence pattern and co-evolutionary behavior through fungi evolution. Activity analysis of mutated exosomes exposes another layer of co-evolution between the core subunits and RNA substrates. Overall, our approach allows the experimental analysis of co-evolution within protein complexes and together with bioinformatics analysis can significantly deepen our understanding of the evolution of these complexes.
Collapse
Affiliation(s)
- Inga Sandler
- Departments of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 84105, Israel
| | | | | |
Collapse
|
29
|
Intracellular ribonucleases involved in transcript processing and decay: precision tools for RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:491-513. [PMID: 23545199 DOI: 10.1016/j.bbagrm.2013.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 12/15/2022]
Abstract
In order to adapt to changing environmental conditions and regulate intracellular events such as division, cells are constantly producing new RNAs while discarding old or defective transcripts. These functions require the coordination of numerous ribonucleases that precisely cleave and trim newly made transcripts to produce functional molecules, and rapidly destroy unnecessary cellular RNAs. In recent years our knowledge of the nature, functions and structures of these enzymes in bacteria, archaea and eukaryotes has dramatically expanded. We present here a synthetic overview of the recent development in this dynamic area which has seen the identification of many new endoribonucleases and exoribonucleases. Moreover, the increasing pace at which the structures of these enzymes, or of their catalytic domains, have been solved has provided atomic level detail into their mechanisms of action. Based on sequence conservation and structural data, these proteins have been grouped into families, some of which contain only ribonuclease members, others including a variety of nucleolytic enzymes that act upon DNA and/or RNA. At the other extreme some ribonucleases belong to families of proteins involved in a wide variety of enzymatic reactions. Functional characterization of these fascinating enzymes has provided evidence for the extreme diversity of their biological functions that include, for example, removal of poly(A) tails (deadenylation) or poly(U) tails from eukaryotic RNAs, processing of tRNA and mRNA 3' ends, maturation of rRNAs and destruction of unnecessary mRNAs. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
30
|
Shin JH, Wang HLV, Lee J, Dinwiddie BL, Belostotsky DA, Chekanova JA. The role of the Arabidopsis Exosome in siRNA-independent silencing of heterochromatic loci. PLoS Genet 2013; 9:e1003411. [PMID: 23555312 PMCID: PMC3610620 DOI: 10.1371/journal.pgen.1003411] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
The exosome functions throughout eukaryotic RNA metabolism and has a prominent role in gene silencing in yeast. In Arabidopsis, exosome regulates expression of a "hidden" transcriptome layer from centromeric, pericentromeric, and other heterochromatic loci that are also controlled by small (sm)RNA-based de novo DNA methylation (RdDM). However, the relationship between exosome and smRNAs in gene silencing in Arabidopsis remains unexplored. To investigate whether exosome interacts with RdDM, we profiled Arabidopsis smRNAs by deep sequencing in exosome and RdDM mutants and also analyzed RdDM-controlled loci. We found that exosome loss had a very minor effect on global smRNA populations, suggesting that, in contrast to fission yeast, in Arabidopsis the exosome does not control the spurious entry of RNAs into smRNA pathways. Exosome defects resulted in decreased histone H3K9 dimethylation at RdDM-controlled loci, without affecting smRNAs or DNA methylation. Exosome also exhibits a strong genetic interaction with RNA Pol V, but not Pol IV, and physically associates with transcripts produced from the scaffold RNAs generating region. We also show that two Arabidopsis rrp6 homologues act in gene silencing. Our data suggest that Arabidopsis exosome may act in parallel with RdDM in gene silencing, by epigenetic effects on chromatin structure, not through siRNAs or DNA methylation.
Collapse
Affiliation(s)
- Jun-Hye Shin
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Hsiao-Lin V. Wang
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Jinwon Lee
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Brandon L. Dinwiddie
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Dmitry A. Belostotsky
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Julia A. Chekanova
- School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Moreno AB, Martínez de Alba AE, Bardou F, Crespi MD, Vaucheret H, Maizel A, Mallory AC. Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Res 2013; 41:4699-708. [PMID: 23482394 PMCID: PMC3632135 DOI: 10.1093/nar/gkt152] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates. Here, we show that impairing nonsense-mediated decay, deadenylation or exosome activity enhanced S-PTGS, which requires host RNA-dependent RNA polymerase 6 (RDR6/SGS2/SDE1) and SUPPRESSOR OF GENE SILENCING 3 (SGS3) for the transformation of single-stranded RNA into dsRNA to trigger PTGS. However, these RQC mutations had no effect on inverted-repeat-PTGS, which directly produces hairpin dsRNA through transcription. Moreover, we show that these RQC factors are nuclear and cytoplasmic and are found in two RNA degradation foci in the cytoplasm: siRNA-bodies and processing-bodies. We propose a model of single-stranded RNA tug-of-war between RQC and S-PTGS that ensures the correct partitioning of RNA substrates among these RNA degradation pathways.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Institut des Sciences du Végétal, CNRS UPR 2355, SPS Saclay Plant Sciences, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Chiba Y, Mineta K, Hirai MY, Suzuki Y, Kanaya S, Takahashi H, Onouchi H, Yamaguchi J, Naito S. Changes in mRNA stability associated with cold stress in Arabidopsis cells. PLANT & CELL PHYSIOLOGY 2013; 54:180-94. [PMID: 23220693 DOI: 10.1093/pcp/pcs164] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Control of mRNA half-life is a powerful strategy to adjust individual mRNA levels to various stress conditions, because the mRNA degradation rate controls not only the steady-state mRNA level but also the transition speed of mRNA levels. Here, we analyzed mRNA half-life changes in response to cold stress in Arabidopsis cells using genome-wide analysis, in which mRNA half-life measurements and transcriptome analysis were combined. Half-lives of average transcripts were determined to be elongated under cold conditions. Taking this general shift into account, we identified more than a thousand transcripts that were classified as relatively stabilized or relatively destabilized. The relatively stabilized class was predominantly observed in functional categories that included various regulators involved in transcriptional, post-transcriptional and post-translational processes. On the other hand, the relatively destabilized class was enriched in categories related to stress and hormonal response proteins, supporting the idea that rapid decay of mRNA is advantageous for swift responses to stress. In addition, pentatricopeptide repeat, cyclin-like F-box and Myb transcription factor protein families were significantly over-represented in the relatively destabilized class. The global analysis presented here demonstrates not only the importance of mRNA turnover control in the cold stress response but also several structural characteristics that might be important in the control of mRNA stability.
Collapse
MESH Headings
- Adaptation, Physiological
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cells, Cultured
- Cold Temperature
- Deoxyadenosines/pharmacology
- Gene Expression Regulation, Plant
- Half-Life
- Plant Cells/drug effects
- Plant Cells/metabolism
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Protein Structure, Tertiary
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stress, Physiological
- Time Factors
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Yukako Chiba
- Creative Research Institution, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chlebowski A, Lubas M, Jensen TH, Dziembowski A. RNA decay machines: the exosome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:552-60. [PMID: 23352926 DOI: 10.1016/j.bbagrm.2013.01.006] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The multisubunit RNA exosome complex is a major ribonuclease of eukaryotic cells that participates in the processing, quality control and degradation of virtually all classes of RNA in Eukaryota. All this is achieved by about a dozen proteins with only three ribonuclease activities between them. At first glance, the versatility of the pathways involving the exosome and the sheer multitude of its substrates are astounding. However, after fifteen years of research we have some understanding of how exosome activity is controlled and applied inside the cell. The catalytic properties of the eukaryotic exosome are fairly well described and attention is now drawn to how the interplay between these activities impacts cell physiology. Also, it has become evident that exosome function relies on many auxiliary factors, which are intensely studied themselves. In this way, the focus of exosome research is slowly leaving the test tube and moving back into the cell. The exosome also has an interesting evolutionary history, which is evident within the eukaryotic lineage but only fully appreciated when considering similar protein complexes found in Bacteria and Archaea. Thus, while we keep this review focused on the most comprehensively described yeast and human exosomes, we shall point out similarities or dissimilarities to prokaryotic complexes and proteins where appropriate. The article is divided into three parts. In Part One we describe how the exosome is built and how it manifests in cells of different organisms. In Part Two we detail the enzymatic properties of the exosome, especially recent data obtained for holocomplexes. Finally, Part Three presents an overview of the RNA metabolism pathways that involve the exosome. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
34
|
Buschmann J, Moritz B, Jeske M, Lilie H, Schierhorn A, Wahle E. Identification of Drosophila and human 7-methyl GMP-specific nucleotidases. J Biol Chem 2012; 288:2441-51. [PMID: 23223233 DOI: 10.1074/jbc.m112.426700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Turnover of mRNA releases, in addition to the four regular nucleoside monophosphates, the methylated cap nucleotide in the form of 7-methylguanosine monophosphate (m(7)GMP) or diphosphate (m(7)GDP). The existence of pathways to eliminate the modified nucleotide seems likely, as its incorporation into nucleic acids is undesirable. Here we describe a novel 5' nucleotidase from Drosophila that cleaves m(7)GMP to 7-methylguanosine and inorganic phosphate. The enzyme, encoded by the predicted gene CG3362, also efficiently dephosphorylates CMP, although with lower apparent affinity; UMP and the purine nucleotides are poor substrates. The enzyme is inhibited by elevated concentrations of AMP and also cleaves m(7)GDP to the nucleoside and two inorganic phosphates, albeit less efficiently. CG3362 has equivalent sequence similarity to two human enzymes, cytosolic nucleotidase III (cNIII) and the previously uncharacterized cytosolic nucleotidase III-like (cNIII-like). We show that cNIII-like also displays 5' nucleotidase activity with a high affinity for m(7)GMP. CMP is a slightly better substrate but again with a higher K(m). The activity of cNIII-like is stimulated by phosphate. In contrast to cNIII-like, cNIII and human cytosolic nucleotidase II do not accept m(7)GMP as a substrate. We suggest that the m(7)G-specific nucleotidases protect cells against undesired salvage of m(7)GMP and its incorporation into nucleic acids.
Collapse
Affiliation(s)
- Juliane Buschmann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Freire MA. The Zea mays glycine-rich RNA-binding protein MA16 is bound to a ribonucleotide(s) by a stable linkage. JOURNAL OF PLANT RESEARCH 2012; 125:653-660. [PMID: 22270696 DOI: 10.1007/s10265-012-0476-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Expression of the gene encoding the maize glycine-rich RNA-binding protein MA16 is developmentally regulated and it is involved in environmental stress responses. The MA16 protein shows a wide spectrum of RNA-binding activities. On the basis of in vivo labelling, where a [³²P]phosphate label was linked to the MA16 protein, Freire and Pages (Plant Mol Biol 29:797-807, 1995) suggested that the protein may be post-translationally modified by phosphorylation. However, further analysis showed that the [³²P]phosphate label was sensitive to different treatments, suggesting that modification distinct from protein phosphorylation might occur in the MA16 protein. Biochemical analysis revealed that this [³²P]phosphate labelling was resistant to phenol extraction and denaturing SDS-PAGE but sensitive to micrococcal nuclease, RNase A and RNase T1 treatments. The mobility of [³⁵S] labelled MA16 protein on SDS-PAGE did not significantly changed after the nuclease treatments suggesting that the [³²P]phosphate label associated to MA16 protein could be a ribonucleotide or a very short ribonucleotide chain. In addition, immunoprecipitation of labelled extracts showed that the ribonucleotide(s) linked to the MA16 protein was removed by phosphorolytic activity. This activity could be catalysed by a phosphate-dependent ribonuclease. The C-terminus of MA16 protein harbouring a glycine-rich domain was predicted to be an intrinsically disordered region.
Collapse
Affiliation(s)
- Miguel Angel Freire
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto Multidisciplinario de Biología Vegetal, CONICET, Universidad Nacional de Córdoba, Edificio de Investigaciones Biológicas y Tecnológicas, 5000 Córdoba, Argentina.
| |
Collapse
|
36
|
Su X, Zhu X, Zhang C, Xiao X, Zhao M. In situ, real-time monitoring of the 3' to 5' exonucleases secreted by living cells. Anal Chem 2012; 84:5059-65. [PMID: 22559334 DOI: 10.1021/ac300745f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzymes containing 3'-5' exonuclease activities play vital roles in maintaining genome stability. Though a wide variety of methods have been developed for detection of these enzymes, few of them can be directly applied for in situ and real-time monitoring of the secretion of these active substances by living cells. Taking advantages of the free 3'-end of stacked guanine-quenched photoinduced electron transfer fluorescent probes, here we demonstrate a novel assay capable of in situ and real-time monitoring of the 3'-5' exonucleases secreted by living cells. The detection limit of the new method achieved as low as 0.04 U/mL, allowing direct monitoring of the target enzymes in an extracellular environment without preconcentration steps. False positive signals caused by other nonspecific enzymes were easily ruled out by the use of a control probe with the 3'-end modified with exonuclease-resistant phosphorothioate guanines. Using Alexa Fluor 488 as the fluorophore, the probe is adaptable to a wide range of pH conditions. The approach was successfully applied for in situ, real-time monitoring of the 3'-5' exonucleases secreted by suspension cells of Arabidopsis thaliana. It also holds great potential for in situ and real-time detection of many other DNA end-processing enzymes produced by other types of cells.
Collapse
Affiliation(s)
- Xin Su
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
37
|
Stoppel R, Meurer J. The cutting crew - ribonucleases are key players in the control of plastid gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1663-73. [PMID: 22140236 DOI: 10.1093/jxb/err401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast biogenesis requires constant adjustment of RNA homeostasis under conditions of on-going developmental and environmental change and its regulation is achieved mainly by post-transcriptional control mechanisms mediated by various nucleus-encoded ribonucleases. More than 180 ribonucleases are annotated in Arabidopsis, but only 17 are predicted to localize to the chloroplast. Although different ribonucleases act at different RNA target sites in vivo, most nucleases that attack RNA are thought to lack intrinsic cleavage specificity and show non-specific activity in vitro. In vivo, specificity is thought to be imposed by auxiliary RNA-binding proteins, including members of the huge pentatricopeptide repeat family, which protect RNAs from non-specific nucleolytic attack by masking otherwise vulnerable sites. RNA stability is also influenced by secondary structure, polyadenylation, and ribosome binding. Ribonucleases may cleave at internal sites (endonucleases) or digest successively from the 5' or 3' end of the polynucleotide chain (exonucleases). In bacteria, RNases act in the maturation of rRNA and tRNA precursors, as well as in initiating the degradation of mRNAs and small non-coding RNAs. Many ribonucleases in the chloroplasts of higher plants possess homologies to their bacterial counterparts, but their precise functions have rarely been described. However, many ribonucleases present in the chloroplast process polycistronic rRNAs, tRNAs, and mRNAs. The resulting production of monocistronic, translationally competent mRNAs may represent an adaptation to the eukaryotic cellular environment. This review provides a basic overview of the current knowledge of RNases in plastids and highlights gaps to stimulate future studies.
Collapse
Affiliation(s)
- Rhea Stoppel
- Biozentrum der Ludwig-Maximilians-Universität, Plant Molecular Biology/Botany, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
38
|
Plant Exosomes and Cofactors. EUKARYOTIC RNASES AND THEIR PARTNERS IN RNA DEGRADATION AND BIOGENESIS, PART A 2012; 31:31-52. [DOI: 10.1016/b978-0-12-404740-2.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Williams CW, Elmendorf HG. Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach. BMC Genomics 2011; 12:586. [PMID: 22126454 PMCID: PMC3282835 DOI: 10.1186/1471-2164-12-586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND RNA degradation is critical to the survival of all cells. With increasing evidence for pervasive transcription in cells, RNA degradation has gained recognition as a means of regulating gene expression. Yet, RNA degradation machinery has been studied extensively in only a few eukaryotic organisms, including Saccharomyces cerevisiae and humans. Giardia lamblia is a parasitic protist with unusual genomic traits: it is binucleated and tetraploid, has a very compact genome, displays a theme of genomic minimalism with cellular machinery commonly comprised of a reduced number of protein components, and has a remarkably large population of long, stable, noncoding, antisense RNAs. RESULTS Here we use in silico approaches to investigate the major RNA degradation machinery in Giardia lamblia and compare it to a broad array of other parasitic protists. We have found key constituents of the deadenylation and decapping machinery and of the 5'-3' RNA degradation pathway. We have similarly found that all of the major 3'-5' RNA degradation pathways are present in Giardia, including both exosome-dependent and exosome-independent machinery. However, we observe significant loss of RNA degradation machinery genes that will result in important differences in the protein composition, and potentially functionality, of the various RNA degradation pathways. This is most apparent in the exosome, the central mediator of 3'-5' degradation, which apparently contains an altered core configuration in both Giardia and Plasmodium, with only four, instead of the canonical six, distinct subunits. Additionally the exosome in Giardia is missing both the Rrp6, Nab3, and Nrd1 proteins, known to be key regulators of noncoding transcript stability in other cells. CONCLUSIONS These findings suggest that although the full complement of the major RNA degradation mechanisms were present - and likely functional - early in eukaryotic evolution, the composition and function of the complexes is more variable than previously appreciated. We suggest that the missing components of the exosome complex provide an explanation for the stable abundance of sterile RNA species in Giardia.
Collapse
Affiliation(s)
| | - Heidi G Elmendorf
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
40
|
Januszyk K, Liu Q, Lima CD. Activities of human RRP6 and structure of the human RRP6 catalytic domain. RNA (NEW YORK, N.Y.) 2011; 17:1566-77. [PMID: 21705430 PMCID: PMC3153979 DOI: 10.1261/rna.2763111] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/19/2011] [Indexed: 05/24/2023]
Abstract
The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.
Collapse
Affiliation(s)
- Kurt Januszyk
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Quansheng Liu
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Christopher D. Lima
- Structural Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
41
|
Burger A, Whiteley C, Boshoff A. Current perspectives of the Escherichia coli RNA degradosome. Biotechnol Lett 2011; 33:2337-50. [DOI: 10.1007/s10529-011-0713-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/20/2011] [Indexed: 11/29/2022]
|
42
|
Kiss DL, Andrulis ED. The exozyme model: a continuum of functionally distinct complexes. RNA (NEW YORK, N.Y.) 2011; 17:1-13. [PMID: 21068185 PMCID: PMC3004051 DOI: 10.1261/rna.2364811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Exosome complexes are composed of 10 to 11 subunits and are involved in multiple facets of 3' → 5' RNA processing and turnover. The current paradigm stipulates that a uniform, stoichiometric core exosome, composed of single copies of each subunit, carries out all RNA metabolic functions in vivo. While core composition is well established in vitro, available genetic, cell biological, proteomic, and transcriptomic data raise questions about whether individual subunits contribute to RNA metabolic functions exclusively within the complex. Here, we recount the current understanding of the core exosome model and show predictions of the core model that are not satisfied by the available evidence. To resolve this discrepancy, we propose the exozyme hypothesis, a novel model stipulating that while exosome subunits can and do carry out certain functions within the core, subsets of exosome subunits and cofactors also assemble into a continuum of compositionally distinct complexes--exozymes--with different RNA specificities. The exozyme model is consistent with all published data and provides a new framework for understanding the general mechanisms and regulation of RNA processing and turnover.
Collapse
Affiliation(s)
- Daniel L Kiss
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
43
|
Yang CC, Wang YT, Hsiao YY, Doudeva LG, Kuo PH, Chow SY, Yuan HS. Structural and biochemical characterization of CRN-5 and Rrp46: an exosome component participating in apoptotic DNA degradation. RNA (NEW YORK, N.Y.) 2010; 16:1748-59. [PMID: 20660080 PMCID: PMC2924534 DOI: 10.1261/rna.2180810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/10/2010] [Indexed: 05/24/2023]
Abstract
Rrp46 was first identified as a protein component of the eukaryotic exosome, a protein complex involved in 3' processing of RNA during RNA turnover and surveillance. The Rrp46 homolog, CRN-5, was subsequently characterized as a cell death-related nuclease, participating in DNA fragmentation during apoptosis in Caenorhabditis elegans. Here we report the crystal structures of CRN-5 and rice Rrp46 (oRrp46) at a resolution of 3.9 A and 2.0 A, respectively. We found that recombinant human Rrp46 (hRrp46), oRrp46, and CRN-5 are homodimers, and that endogenous hRrp46 and oRrp46 also form homodimers in a cellular environment, in addition to their association with a protein complex. Dimeric oRrp46 had both phosphorolytic RNase and hydrolytic DNase activities, whereas hRrp46 and CRN-5 bound to DNA without detectable nuclease activity. Site-directed mutagenesis in oRrp46 abolished either its DNase (E160Q) or RNase (K75E/Q76E) activities, confirming the critical importance of these residues in catalysis or substrate binding. Moreover, CRN-5 directly interacted with the apoptotic nuclease CRN-4 and enhanced the DNase activity of CRN-4, suggesting that CRN-5 cooperates with CRN-4 in apoptotic DNA degradation. Taken together all these results strongly suggest that Rrp46 forms a homodimer separately from exosome complexes and, depending on species, is either a structural or catalytic component of the machinery that cleaves DNA during apoptosis.
Collapse
Affiliation(s)
- Che-Chuan Yang
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, 10617 Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Staals RHJ, Bronkhorst AW, Schilders G, Slomovic S, Schuster G, Heck AJR, Raijmakers R, Pruijn GJM. Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 2010; 29:2358-67. [PMID: 20531389 DOI: 10.1038/emboj.2010.122] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/18/2010] [Indexed: 11/09/2022] Open
Abstract
The exosome is an exoribonuclease complex involved in the degradation and maturation of a wide variety of RNAs. The nine-subunit core of the eukaryotic exosome is catalytically inactive and may have an architectural function and mediate substrate binding. In Saccharomyces cerevisiae, the associated Dis3 and Rrp6 provide the exoribonucleolytic activity. The human exosome-associated Rrp6 counterpart contributes to its activity, whereas the human Dis3 protein is not detectably associated with the exosome. Here, a proteomic analysis of immunoaffinity-purified human exosome complexes identified a novel exosome-associated exoribonuclease, human Dis3-like exonuclease 1 (hDis3L1), which was confirmed to associate with the exosome core by co-immunoprecipitation. In contrast to the nuclear localization of Dis3, hDis3L1 exclusively localized to the cytoplasm. The hDis3L1 isolated from transfected cells degraded RNA in an exoribonucleolytic manner, and its RNB domain seemed to mediate this activity. The siRNA-mediated knockdown of hDis3L1 in HeLa cells resulted in elevated levels of poly(A)-tailed 28S rRNA degradation intermediates, indicating the involvement of hDis3L1 in cytoplasmic RNA decay. Taken together, these data indicate that hDis3L1 is a novel exosome-associated exoribonuclease in the cytoplasm of human cells.
Collapse
Affiliation(s)
- Raymond H J Staals
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tomecki R, Kristiansen MS, Lykke-Andersen S, Chlebowski A, Larsen KM, Szczesny RJ, Drazkowska K, Pastula A, Andersen JS, Stepien PP, Dziembowski A, Jensen TH. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 2010; 29:2342-57. [PMID: 20531386 DOI: 10.1038/emboj.2010.121] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/18/2010] [Indexed: 11/09/2022] Open
Abstract
The eukaryotic RNA exosome is a ribonucleolytic complex involved in RNA processing and turnover. It consists of a nine-subunit catalytically inert core that serves a structural function and participates in substrate recognition. Best defined in Saccharomyces cerevisiae, enzymatic activity comes from the associated subunits Dis3p (Rrp44p) and Rrp6p. The former is a nuclear and cytoplasmic RNase II/R-like enzyme, which possesses both processive exo- and endonuclease activities, whereas the latter is a distributive RNase D-like nuclear exonuclease. Although the exosome core is highly conserved, identity and arrangements of its catalytic subunits in different vertebrates remain elusive. Here, we demonstrate the association of two different Dis3p homologs--hDIS3 and hDIS3L--with the human exosome core. Interestingly, these factors display markedly different intracellular localizations: hDIS3 is mainly nuclear, whereas hDIS3L is strictly cytoplasmic. This compartmental distribution reflects the substrate preferences of the complex in vivo. Both hDIS3 and hDIS3L are active exonucleases; however, only hDIS3 has retained endonucleolytic activity. Our data suggest that three different ribonucleases can serve as catalytic subunits for the exosome in human cells.
Collapse
Affiliation(s)
- Rafal Tomecki
- Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ng CL, Waterman DG, Antson AA, Ortiz-Lombardía M. Structure of the Methanothermobacter thermautotrophicus exosome RNase PH ring. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:522-8. [PMID: 20445227 DOI: 10.1107/s0907444910002908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 01/23/2010] [Indexed: 08/30/2023]
Abstract
The core of the exosome, a versatile multisubunit RNA-processing enzyme found in archaea and eukaryotes, includes a ring of six RNase PH subunits. This basic architecture is homologous to those of the bacterial and archaeal RNase PHs and the bacterial polynucleotide phosphorylase (PNPase). While all six RNase PH monomers are catalytically active in the homohexameric RNase PH, only half of them are functional in the bacterial PNPase and in the archaeal exosome core and none are functional in the yeast and human exosome cores. Here, the crystal structure of the RNase PH ring from the exosome of the anaerobic methanogenic archaeon Methanothermobacter thermautotrophicus is described at 2.65 A resolution. Free phosphate anions were found for the first time in the active sites of the RNase PH subunits of an exosome structure and provide structural snapshots of a critical intermediate in the phosphorolytic degradation of RNA by the exosome. Furthermore, the present structure highlights the plasticity of the surfaces delineating the polar regions of the RNase PH ring of the exosome, a feature that can facilitate both interaction with the many cofactors involved in exosome function and the processive activity of this enzyme.
Collapse
Affiliation(s)
- C Leong Ng
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5YW, England.
| | | | | | | |
Collapse
|
47
|
The Exosome and 3′–5′ RNA Degradation in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:50-62. [DOI: 10.1007/978-1-4419-7841-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Clayton C, Estevez A. The exosomes of trypanosomes and other protists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:39-49. [PMID: 21713676 DOI: 10.1007/978-1-4419-7841-7_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The archaeal exosome contains three heterodimeric RNase PH subunits, forming a hexamer with RNase activity; on top sits a trimer of two different SI domain proteins. In animals and yeast, six different, but related subunits form the RNase PH-like core, but these lack enzyme activity; there are three different Si-domain proteins and enzyme activity is provided by the endo/exonuc lease Rrp44 or-mainly in the nuclear exosome-the Rnase D enzyme Rrp6. Trypanosomes diverged from yeast and mammals very early in eukaryotic evolution. The trypanosome exosome is similar in subunit composition to the human exosome, but instead of being an optional component, trypanosome RRP6 is present in the nucleus and cytoplasm and is required for exosome stability. As in human cells and yeast, the trypanosome exosome has been shown to be required for processing and quality control of rRNA and to be involved in mRNA degradation. Electron microscopy results for a Leishmania exosome suggest that RRP6 is located on the side of the RnasePH ring, interacting with several exosome core proteins. Results of a search for exosome subunits in the genomes of widely diverged protists revealed varied exosome complexity; the Giardia exosome may be as simple as that of Archaea.
Collapse
Affiliation(s)
- Christine Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany,
| | | |
Collapse
|
49
|
Catalytic Properties of the Eukaryotic Exosome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:63-78. [DOI: 10.1007/978-1-4419-7841-7_6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Xi L, Moscou MJ, Meng Y, Xu W, Caldo RA, Shaver M, Nettleton D, Wise RP. Transcript-based cloning of RRP46, a regulator of rRNA processing and R gene-independent cell death in barley-powdery mildew interactions. THE PLANT CELL 2009; 21:3280-95. [PMID: 19861556 PMCID: PMC2782283 DOI: 10.1105/tpc.109.066167] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Programmed cell death (PCD) plays a pivotal role in plant development and defense. To investigate the interaction between PCD and R gene-mediated defense, we used the 22K Barley1 GeneChip to compare and contrast time-course expression profiles of Blumeria graminis f. sp hordei (Bgh) challenged barley (Hordeum vulgare) cultivar C.I. 16151 (harboring the Mla6 powdery mildew resistance allele) and its fast neutron-derived Bgh-induced tip cell death1 mutant, bcd1. Mixed linear model analysis identified genes associated with the cell death phenotype as opposed to R gene-mediated resistance. One-hundred fifty genes were found at the threshold P value < 0.0001 and a false discovery rate <0.6%. Of these, 124 were constitutively overexpressed in the bcd1 mutant. Gene Ontology and rice (Oryza sativa) alignment-based annotation indicated that 68 of the 124 overexpressed genes encode ribosomal proteins. A deletion harboring six genes on chromosome 5H cosegregates with bcd1-specified cell death and is associated with misprocessing of rRNAs but segregates independent of R gene-mediated resistance. Barley stripe mosaic virus-induced gene silencing of one of the six deleted genes, RRP46 (rRNA-processing protein 46), phenocopied bcd1-mediated tip cell death. These findings suggest that RRP46, a critical component of the exosome core, mediates RNA processing and degradation involved in cell death initiation as a result of attempted penetration by Bgh during the barley-powdery mildew interaction but is independent of gene-for-gene resistance.
Collapse
Affiliation(s)
- Liu Xi
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Matthew J. Moscou
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3260
| | - Yan Meng
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Weihui Xu
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Rico A. Caldo
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
| | - Miranda Shaver
- National Institutes of Health–National Science Foundation Bioinformatics and Computational Systems Biology Summer Institute, Ames, Iowa 50011-1020
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, Iowa 50011-1210
| | - Roger P. Wise
- Department of Plant Pathology and Center for Plant Responses to Environmental Stresses, Iowa State University, Ames, Iowa 50011-1020
- Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa 50011-3260
- National Institutes of Health–National Science Foundation Bioinformatics and Computational Systems Biology Summer Institute, Ames, Iowa 50011-1020
- Corn Insects and Crop Genetics Research, U.S. Department of Agriculture–Agricultural Research Service, Iowa State University, Ames, Iowa 50011-1020
- Address correspondence to
| |
Collapse
|