1
|
Xu Q, Yao M, Tang C. RGS2 and female common diseases: a guard of women's health. J Transl Med 2023; 21:583. [PMID: 37649067 PMCID: PMC10469436 DOI: 10.1186/s12967-023-04462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Currently, women around the world are still suffering from various female common diseases with the high incidence, such as ovarian cancer, uterine fibroids and preeclampsia (PE), and some diseases are even with the high mortality rate. As a negative feedback regulator in G Protein-Coupled Receptor signaling (GPCR), the Regulator of G-protein Signaling (RGS) protein family participates in regulating kinds of cell biological functions by destabilizing the enzyme-substrate complex through the transformation of hydrolysis of G Guanosine Triphosphate (GTP). Recent work has indicated that, the Regulator of G-protein Signaling 2 (RGS2), a member belonging to the RGS protein family, is closely associated with the occurrence and development of certain female diseases, providing with the evidence that RGS2 functions in sustaining women's health. In this review paper, we summarize the current knowledge of RGS2 in female common diseases, and also tap and discuss its therapeutic potential by targeting multiple mechanisms.
Collapse
Affiliation(s)
- Qiang Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China
| | - Mukun Yao
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China.
| |
Collapse
|
2
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:ijms24076136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
- Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
3
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
4
|
Lymperopoulos A, Suster MS, Borges JI. Cardiovascular GPCR regulation by regulator of G protein signaling proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 193:145-166. [PMID: 36357075 DOI: 10.1016/bs.pmbts.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiovascular homeostasis across all vertebrate species, including humans. In terms of normal cellular function, termination of GPCR signaling via the heterotrimeric G proteins is equally (if not more) important to its stimulation. The Regulator of G protein Signaling (RGS) protein superfamily are indispensable for GPCR signaling cessation at the cell membrane, and thus, for cellular control of GPCR signaling and function. Perturbations in both activation and termination of G protein signaling underlie many examples of cardiovascular dysfunction and heart disease pathogenesis. Despite the plethora of over 30 members comprising the mammalian RGS protein superfamily, each member interacts with a specific set of second messenger pathways and GPCR types/subtypes in a tissue/cell type-specific manner. An increasing number of studies over the past two decades have provided compelling evidence for the involvement of various RGS proteins in physiological regulation of cardiovascular GPCRs and, consequently, also in the pathophysiology of several cardiovascular ailments. This chapter summarizes the current understanding of the functional roles of RGS proteins as they pertain to cardiovascular, i.e., heart, blood vessel, and platelet GPCR function, with a particular focus on their implications for chronic heart failure pathophysiology and therapy.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States.
| | - Malka S Suster
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| | - Jordana I Borges
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, United States
| |
Collapse
|
5
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
6
|
DeHelian D, Gupta S, Wu J, Thorsheim C, Estevez B, Cooper M, Litts K, Lee-Sundlov MM, Hoffmeister KM, Poncz M, Ma P, Brass LF. RGS10 and RGS18 differentially limit platelet activation, promote platelet production, and prolong platelet survival. Blood 2020; 136:1773-1782. [PMID: 32542378 PMCID: PMC7544544 DOI: 10.1182/blood.2019003251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
G protein-coupled receptors are critical mediators of platelet activation whose signaling can be modulated by members of the regulator of G protein signaling (RGS) family. The 2 most abundant RGS proteins in human and mouse platelets are RGS10 and RGS18. While each has been studied individually, critical questions remain about the overall impact of this mode of regulation in platelets. Here, we report that mice missing both proteins show reduced platelet survival and a 40% decrease in platelet count that can be partially reversed with aspirin and a P2Y12 antagonist. Their platelets have increased basal (TREM)-like transcript-1 expression, a leftward shift in the dose/response for a thrombin receptor-activating peptide, an increased maximum response to adenosine 5'-diphosphate and TxA2, and a greatly exaggerated response to penetrating injuries in vivo. Neither of the individual knockouts displays this constellation of findings. RGS10-/- platelets have an enhanced response to agonists in vitro, but platelet count and survival are normal. RGS18-/- mice have a 15% reduction in platelet count that is not affected by antiplatelet agents, nearly normal responses to platelet agonists, and normal platelet survival. Megakaryocyte number and ploidy are normal in all 3 mouse lines, but platelet recovery from severe acute thrombocytopenia is slower in RGS18-/- and RGS10-/-18-/- mice. Collectively, these results show that RGS10 and RGS18 have complementary roles in platelets. Removing both at the same time discloses the extent to which this regulatory mechanism normally controls platelet reactivity in vivo, modulates the hemostatic response to injury, promotes platelet production, and prolongs platelet survival.
Collapse
Affiliation(s)
- Daniel DeHelian
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Shuchi Gupta
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Jie Wu
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Chelsea Thorsheim
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Brian Estevez
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia PA
| | - Matthew Cooper
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Kelly Litts
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Melissa M Lee-Sundlov
- Department of Biochemistry and
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Milwaukee, WI; and
| | - Karin M Hoffmeister
- Department of Biochemistry and
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti Blood Research Institute, Milwaukee, WI; and
| | - Mortimer Poncz
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia PA
| | - Peisong Ma
- Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Lawrence F Brass
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
7
|
Kim JO, Lee KO, Kim HW, Park HS, Kim J, Sung JH, Oh D, Kim OJ, Kim NK. Association between KCNQ2, TCF4 and RGS18 polymorphisms and silent brain infarction based on whole‑exome sequencing. Mol Med Rep 2020; 21:1973-1983. [PMID: 32319632 DOI: 10.3892/mmr.2020.10975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/20/2020] [Indexed: 11/05/2022] Open
Abstract
Silent brain infarction (SBI) is a cerebral infarction identified through brain imaging. In particular, studies have shown that the presence of SBI in elderly patients increases their risk of cognitive dysfunction, impairment and dementia. However, little research has been published on the relevance of SBI to these risks for the Korean population. The association between potassium voltage‑gated channel subfamily Q member 2 (KCNQ2), transcription factor 4 (TCF4) and regulator of G‑protein signaling 18 (RGS18) genotypes and SBI were investigated using whole‑exome sequencing and PCR restriction fragment length polymorphism (RFLP) analysis. The study population included 407 patients with SBI (171 males) and 401 control subjects (172 males). Genotyping was performed using PCR RFLP. Interestingly, TCF4 rs9957668T>C polymorphisms were associated with SBI prevalence [TT vs. CC: adjusted odds ratio (AOR), 1.815, 95% confidence intervals (CI), 1.202‑2.740; TT vs. TC+CC: AOR, 1.492, 95% CI, 1.066‑2.088; TT+TC vs. CC: AOR, 1.454, 95% CI, 1.045‑2.203]. The combination of KCNQ2 rs73146513A>G and TCF4 rs9957668T>C genotypes was associated with increasing SBI prevalence (AG/CC: AOR, 3.719, 95% CI, 1.766‑7.833; AA/CC: AOR, 3.201, 95% CI, 1.387‑7.387). The present study showed that TCF4 rs9957668T>C polymorphisms may be risk factors for SBI. Therefore, the TCF4 rs9957668T>C polymorphism may serve as a biomarker for increased risk of SBI in the Korean population.
Collapse
Affiliation(s)
- Jung Oh Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Kee Ook Lee
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Hyun Woo Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Han Sung Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| | - Jinkwon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Jung Hoon Sung
- Department of Cardiology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Doyeun Oh
- Department of Internal Medicine, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Ok Joon Kim
- Department of Neurology, CHA Bundang Medical Center, School of Medicine, CHA University, Seongnam, Gyeonggi 13496, Republic of Korea
| | - Nam Keun Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
8
|
RGS10 shapes the hemostatic response to injury through its differential effects on intracellular signaling by platelet agonists. Blood Adv 2019; 2:2145-2155. [PMID: 30150297 DOI: 10.1182/bloodadvances.2017008508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/27/2018] [Indexed: 11/20/2022] Open
Abstract
Platelets express ≥2 members of the regulators of G protein signaling (RGS) family. Here, we have focused on the most abundant, RGS10, examining its impact on the hemostatic response in vivo and the mechanisms involved. We have previously shown that the hemostatic thrombi formed in response to penetrating injuries consist of a core of fully activated densely packed platelets overlaid by a shell of less-activated platelets responding to adenosine 5'-diphosphate (ADP) and thromboxane A2 (TxA2). Hemostatic thrombi formed in RGS10-/- mice were larger than in controls, with the increase due to expansion of the shell but not the core. Clot retraction was slower, and average packing density was reduced. Deleting RGS10 had agonist-specific effects on signaling. There was a leftward shift in the dose/response curve for the thrombin receptor (PAR4) agonist peptide AYPGKF but no increase in the maximum response. This contrasted with ADP and TxA2, both of which evoked considerably greater maximum responses in RGS10-/- platelets with enhanced Gq- and Gi-mediated signaling. Shape change, which is G13-mediated, was unaffected. Finally, we found that free RGS10 levels in platelets are actively regulated. In resting platelets, RGS10 was bound to 2 scaffold proteins: spinophilin and 14-3-3γ. Platelet activation caused an increase in free RGS10, as did the endothelium-derived platelet antagonist prostacyclin. Collectively, these observations show that RGS10 serves as an actively regulated node on the platelet signaling network, helping to produce smaller and more densely packed hemostatic thrombi with a greater proportion of fully activated platelets.
Collapse
|
9
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
10
|
Kim K, Lee J, Ghil S. The regulators of G protein signaling
RGS
16 and
RGS
18 inhibit protease‐activated receptor 2/Gi/o signaling through distinct interactions with Gα in live cells. FEBS Lett 2018; 592:3126-3138. [DOI: 10.1002/1873-3468.13220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Kiman Kim
- Department of Life Science Kyonggi University Suwon Korea
| | - Jinyong Lee
- Department of Life Science Kyonggi University Suwon Korea
| | - Sungho Ghil
- Department of Life Science Kyonggi University Suwon Korea
| |
Collapse
|
11
|
Perschbacher KJ, Deng G, Fisher RA, Gibson-Corley KN, Santillan MK, Grobe JL. Regulators of G protein signaling in cardiovascular function during pregnancy. Physiol Genomics 2018; 50:590-604. [PMID: 29702036 PMCID: PMC6139632 DOI: 10.1152/physiolgenomics.00037.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptor signaling mechanisms are implicated in many aspects of cardiovascular control, and dysfunction of such signaling mechanisms is commonly associated with disease states. Investigators have identified a large number of regulator of G protein signaling (RGS) proteins that variously contribute to the modulation of intracellular second-messenger signaling kinetics. These many RGS proteins each interact with a specific set of second-messenger cascades and receptor types and exhibit tissue-specific expression patterns. Increasing evidence supports the contribution of RGS proteins, or their loss, in the pathogenesis of cardiovascular dysfunctions. This review summarizes the current understanding of the functional contributions of RGS proteins, particularly within the B/R4 family, in cardiovascular disorders of pregnancy including gestational hypertension, uterine artery dysfunction, and preeclampsia.
Collapse
Affiliation(s)
| | - Guorui Deng
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Department of Pathology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
| | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, University of Iowa , Iowa City, Iowa
- UIHC Center for Hypertension Research, University of Iowa , Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa , Iowa City, Iowa
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa , Iowa City, Iowa
- Obesity Education & Research Initiative, University of Iowa , Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa , Iowa City, Iowa
| |
Collapse
|
12
|
Kehrl JH. The impact of RGS and other G-protein regulatory proteins on Gαi-mediated signaling in immunity. Biochem Pharmacol 2016; 114:40-52. [PMID: 27071343 DOI: 10.1016/j.bcp.2016.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/08/2016] [Indexed: 01/30/2023]
Abstract
Leukocyte chemoattractant receptors are members of the G-protein coupled receptor (GPCR) family. Signaling downstream of these receptors directs the localization, positioning and homeostatic trafficking of leukocytes; as well as their recruitment to, and their retention at, inflammatory sites. Ligand induced changes in the molecular conformation of chemoattractant receptors results in the engagement of heterotrimeric G-proteins, which promotes α subunits to undergo GTP/GDP exchange. This results in the functional release of βγ subunits from the heterotrimers, thereby activating downstream effector molecules, which initiate leukocyte polarization, gradient sensing, and directional migration. Pertussis toxin ADP ribosylates Gαi subunits and prevents chemoattractant receptors from triggering Gαi nucleotide exchange. The use of pertussis toxin revealed the essential importance of Gαi subunit nucleotide exchange for chemoattractant receptor signaling. More recent studies have identified a range of regulatory mechanisms that target these receptors and their associated heterotrimeric G-proteins, thereby helping to control the magnitude, kinetics, and duration of signaling. A failure in these regulatory pathways can lead to impaired receptor signaling and immunopathology. The analysis of mice with targeted deletions of Gαi isoforms as well as some of these G-protein regulatory proteins is providing insights into their roles in chemoattractant receptor signaling.
Collapse
Affiliation(s)
- John H Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 2089, United States.
| |
Collapse
|
13
|
Xie Z, Chan EC, Druey KM. R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity. AAPS JOURNAL 2015; 18:294-304. [PMID: 26597290 DOI: 10.1208/s12248-015-9847-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/11/2015] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) have important functions in both innate and adaptive immunity, with the capacity to bridge interactions between the two arms of the host responses to pathogens through direct recognition of secreted microbial products or the by-products of host cells damaged by pathogen exposure. In the mid-1990s, a large group of intracellular proteins was discovered, the regulator of G protein signaling (RGS) family, whose main, but not exclusive, function appears to be to constrain the intensity and duration of GPCR signaling. The R4/B subfamily--the focus of this review--includes RGS1-5, 8, 13, 16, 18, and 21, which are the smallest RGS proteins in size, with the exception of RGS3. Prominent roles in the trafficking of B and T lymphocytes and macrophages have been described for RGS1, RGS13, and RGS16, while RGS18 appears to control platelet and osteoclast functions. Additional G protein independent functions of RGS13 have been uncovered in gene expression in B lymphocytes and mast cell-mediated allergic reactions. In this review, we discuss potential physiological roles of this RGS protein subfamily, primarily in leukocytes having central roles in immune and inflammatory responses. We also discuss approaches to target RGS proteins therapeutically, which represents a virtually untapped strategy to combat exaggerated immune responses leading to inflammation.
Collapse
Affiliation(s)
- Zhihui Xie
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Eunice C Chan
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA
| | - Kirk M Druey
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID/NIH, 50 South Drive Room 4154, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
14
|
Sengupta A, Upadhyay G, Sen S, Saleque S. Reciprocal regulation of alternative lineages by Rgs18 and its transcriptional repressor Gfi1b. J Cell Sci 2015; 129:145-54. [PMID: 26567214 DOI: 10.1242/jcs.177519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022] Open
Abstract
Appropriate diversification of cellular lineages from multi-potent progenitors is essential for normal development and homeostasis. The specification of erythroid and megakaryocytic lineages represents an especially vital developmental event whose molecular regulation remains incompletely defined. We now demonstrate the role of Rgs18, a GTPase-activating protein and transcriptional target of the repressor Gfi1b, in regulating these processes in mouse and human cells. Gfi1b stringently represses Rgs18 expression in erythroid cells, whereas, during megakaryocytic differentiation, declining Gfi1b levels facilitate a robust induction of Rgs18. Concordantly, alterations in Rgs18 expression produce disparate outcomes by augmenting megakaryocytic and potently suppressing erythroid differentiation and vice versa. These phenotypes reflect the differential impact of Rgs18 on signaling through p38 MAPK family proteins, and ERK1 and ERK2 (also known as MAPK3 and MAPK1, respectively) in the two lineages, which in turn alter the balance between the mutually antagonistic transcription factors Fli1 and Klf1. Overall, these results identify Rgs18 as a new and crucial effector of Gfi1b that regulates downstream signaling and gene expression programs to orchestrate erythro-megakaryocytic lineage choices. This dual role of Rgs18 in reciprocally regulating divergent lineages could exemplify generic mechanisms characteristic of multiple family members in different contexts.
Collapse
Affiliation(s)
- Ananya Sengupta
- Dept. of Biology, The City College of New York and The Graduate Center of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Ghanshyam Upadhyay
- Dept. of Biology, The City College of New York and The Graduate Center of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Sayani Sen
- Dept. of Biology, The City College of New York and The Graduate Center of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | - Shireen Saleque
- Dept. of Biology, The City College of New York and The Graduate Center of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
15
|
Modulating platelet reactivity through control of RGS18 availability. Blood 2015; 126:2611-20. [PMID: 26407691 DOI: 10.1182/blood-2015-04-640037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023] Open
Abstract
Most platelet agonists activate platelets by binding to G-protein-coupled receptors. We have shown previously that a critical node in the G-protein signaling network in platelets is formed by a scaffold protein, spinophilin (SPL), the tyrosine phosphatase, Src homology region 2 domain-containing phosphatase-1 (SHP-1), and the regulator of G-protein signaling family member, RGS18. Here, we asked whether SPL and other RGS18 binding proteins such as 14-3-3γ regulate platelet reactivity by sequestering RGS18 and, if so, how this is accomplished. The results show that, in resting platelets, free RGS18 levels are relatively low, increasing when platelets are activated by thrombin. Free RGS18 levels also rise when platelets are rendered resistant to activation by exposure to prostaglandin I2 (PGI2) or forskolin, both of which increase platelet cyclic adenosine monophosphate (cAMP) levels. However, the mechanism for raising free RGS18 is different in these 2 settings. Whereas thrombin activates SHP-1 and causes dephosphorylation of SPL tyrosine residues, PGI2 and forskolin cause phosphorylation of SPL Ser94 without reducing tyrosine phosphorylation. Substituting alanine for Ser94 blocks cAMP-induced dissociation of the SPL/RGS/SHP-1 complex. Replacing Ser94 with aspartate prevents formation of the complex and produces a loss-of-function phenotype when expressed in mouse platelets. Together with the defect in platelet function we previously observed in SPL(-/-) mice, these data show that (1) regulated sequestration and release of RGS18 by intracellular binding proteins provides a mechanism for coordinating activating and inhibitory signaling networks in platelets, and (2) differential phosphorylation of SPL tyrosine and serine residues provides a key to understanding both.
Collapse
|
16
|
The regulator of G-protein signaling 18 regulates platelet aggregation, hemostasis and thrombosis. Biochem Biophys Res Commun 2015; 462:378-82. [PMID: 25969426 DOI: 10.1016/j.bbrc.2015.04.143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 11/23/2022]
Abstract
Regulators of G protein signaling (RGS) proteins are known to interact with and negatively regulate/turn-off G protein activation. RGS18 is identified as an R4 subfamily member of this family with specific expression in hematopoietic progenitors, myeloerythroid cells, megakaryocytes and platelets. Studies focused on understanding its function in platelet biology have been limited, in part, due to lack of pharmacological inhibitors. Thus, the present study investigated the function of RGS18 in platelets, using the RGS18 knockout mouse model (RGS18(-/-)). We identified phenotypic differences between RGS18(-/-) and wild-type (WT) mice, and show that RGS18 plays a significant role in hemostasis and thrombosis. Hence, RGS18 deficiency markedly shortened bleeding as well as occlusion times (in vivo). Furthermore, RGS18(-/-) platelets displayed hyper-responsiveness with regards to agonist induced aggregation (in vitro). This gain of function phenotype may serve as the mechanism or explain, at least in part, the enhanced hemostasis and thrombosis phenotype observed in the RGS18 deletion mice. Collectively, our findings provide valuable insight and highlight a critical and direct role for RGS18 in modulating platelet function.
Collapse
|
17
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
18
|
Delesque-Touchard N, Pendaries C, Volle-Challier C, Millet L, Salel V, Hervé C, Pflieger AM, Berthou-Soulie L, Prades C, Sorg T, Herbert JM, Savi P, Bono F. Regulator of G-protein signaling 18 controls both platelet generation and function. PLoS One 2014; 9:e113215. [PMID: 25405900 PMCID: PMC4236145 DOI: 10.1371/journal.pone.0113215] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/24/2014] [Indexed: 01/10/2023] Open
Abstract
RGS18 is a myeloerythroid lineage-specific regulator of G-protein signaling, highly expressed in megakaryocytes (MKs) and platelets. In the present study, we describe the first generation of a RGS18 knockout mouse model (RGS18-/-). Interesting phenotypic differences between RGS18-/- and wild-type (WT) mice were identified, and show that RGS18 plays a significant role in both platelet generation and function. RGS18 deficiency produced a gain of function phenotype in platelets. In resting platelets, the level of CD62P expression was increased in RGS18-/- mice. This increase correlated with a higher level of plasmatic serotonin concentration. RGS18-/- platelets displayed a higher sensitivity to activation in vitro. RGS18 deficiency markedly increased thrombus formation in vivo. In addition, RGS18-/- mice presented a mild thrombocytopenia, accompanied with a marked deficit in MK number in the bone marrow. Analysis of MK maturation in vitro and in vivo revealed a defective megakaryopoiesis in RGS18-/- mice, with a lower bone marrow content of only the most committed MK precursors. Finally, RGS18 deficiency was correlated to a defect of platelet recovery in vivo under acute conditions of thrombocytopenia. Thus, we highlight a role for RGS18 in platelet generation and function, and provide additional insights into the physiology of RGS18.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tania Sorg
- Department of Scientific Operations PhenoPro, Mouse Clinical Institute (MCI), Strasbourg, France
| | | | - Pierre Savi
- Early to Candidate (E2C), Sanofi, Toulouse, France
| | | |
Collapse
|
19
|
Keinan D, Yang S, Cohen RE, Yuan X, Liu T, Li YP. Role of regulator of G protein signaling proteins in bone. Front Biosci (Landmark Ed) 2014; 19:634-48. [PMID: 24389209 DOI: 10.2741/4232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Regulators of G protein signaling (RGS) proteins are a family with more than 30 proteins that all contain an RGS domain. In the past decade, increasing evidence has indicated that RGS proteins play crucial roles in the regulation of G protein coupling receptors (GPCR), G proteins, and calcium signaling during cell proliferation, migration, and differentiation in a variety of tissues. In bone, those proteins modulate bone development and remodeling by influencing various signaling pathways such as GPCR-G protein signaling, Wnt, calcium oscillations and PTH. This review summarizes the recent advances in the understanding of the regulation of RGS gene expression, as well as the functions and mechanisms of RGS proteins, especially in regulating GPCR-G protein signaling, Wnt signaling, calcium oscillations signaling and PTH signaling during bone development and remodeling. This review also highlights the regulation of different RGS proteins in osteoblasts, chondrocytes and osteoclasts. The knowledge from the recent advances of RGS study summarized in the review would provide the insights into new therapies for bone diseases.
Collapse
Affiliation(s)
- David Keinan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY 14214
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY 14214
| | - Robert E Cohen
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, The State University of New York, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Xue Yuan
- Department of Oral Biology School of Dental Medicine, University at Buffalo, The State University of New York, B36 Foster Hall, Buffalo, NY 14214
| | - Tongjun Liu
- Department of Oral Biology School of Dental Medicine, University at Buffalo, The State University of New York, B36 Foster Hall, Buffalo, NY 14214
| | - Yi-Ping Li
- Department of Pathology, University of Alabama at Birmingham (UAB), 1825 University Blvd, Birmingham AL 35294, USA
| |
Collapse
|
20
|
Gegenbauer K, Nagy Z, Smolenski A. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets. PLoS One 2013; 8:e80251. [PMID: 24244663 PMCID: PMC3820651 DOI: 10.1371/journal.pone.0080251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/11/2013] [Indexed: 12/12/2022] Open
Abstract
Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.
Collapse
Affiliation(s)
- Kristina Gegenbauer
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- National Children’s Research Centre, Crumlin, Dublin, Ireland
- Institute of Molecular Medicine, Trinity College Dublin, St James’ Hospital, Dublin, Ireland
| | - Zoltan Nagy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Albert Smolenski
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
21
|
Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets. Blood 2012; 119:3799-807. [DOI: 10.1182/blood-2011-11-390369] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract
Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein for the G-α-q and G-α-i subunits of heterotrimeric G-proteins that turns off signaling by G-protein coupled receptors. RGS18 is highly expressed in platelets. In the present study, we show that the 14-3-3γ protein binds to phosphorylated serines 49 and 218 of RGS18. Platelet activation by thrombin, thromboxane A2, or ADP stimulates the association of 14-3-3 and RGS18, probably by increasing the phosphorylation of serine 49. In contrast, treatment of platelets with prostacyclin and nitric oxide, which trigger inhibitory cyclic nucleotide signaling involving cyclic AMP-dependent protein kinase A (PKA) and cyclic GMP-dependent protein kinase I (PKGI), induces the phosphorylation of serine 216 of RGS18 and the detachment of 14-3-3. Serine 216 phosphorylation is able to block 14-3-3 binding to RGS18 even in the presence of thrombin, thromboxane A2, or ADP. 14-3-3–deficient RGS18 is more active compared with 14-3-3–bound RGS18, leading to a more pronounced inhibition of thrombin-induced release of calcium ions from intracellular stores. Therefore, PKA- and PKGI-mediated detachment of 14-3-3 activates RGS18 to block Gq-dependent calcium signaling. These findings indicate cross-talk between platelet activation and inhibition pathways at the level of RGS18 and Gq.
Collapse
|
22
|
Stewart A, Huang J, Fisher RA. RGS Proteins in Heart: Brakes on the Vagus. Front Physiol 2012; 3:95. [PMID: 22685433 PMCID: PMC3368389 DOI: 10.3389/fphys.2012.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/27/2012] [Indexed: 12/14/2022] Open
Abstract
It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh) release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of G(i/o)-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK) channels via Gβγ resulting in membrane hyperpolarization and inhibition of action potential (AP) firing. However, expression of M2R-GIRK signaling components in heterologous systems failed to recapitulate native channel gating kinetics. The missing link was identified with the discovery of regulator of G protein signaling (RGS) proteins, which act as GTPase-activating proteins to accelerate the intrinsic GTPase activity of Gα resulting in termination of Gα- and Gβγ-mediated signaling to downstream effectors. Studies in mice expressing an RGS-insensitive Gα(i2) mutant (G184S) implicated endogenous RGS proteins as key regulators of parasympathetic signaling in heart. Recently, two RGS proteins have been identified as critical regulators of M2R signaling in heart. RGS6 exhibits a uniquely robust expression in heart, especially in sinoatrial (SAN) and atrioventricular nodal regions. Mice lacking RGS6 exhibit increased bradycardia and inhibition of SAN AP firing in response to CCh as well as a loss of rapid activation and deactivation kinetics and current desensitization for ACh-induced GIRK current (I(KACh)). Similar findings were observed in mice lacking RGS4. Thus, dysregulation in RGS protein expression or function may contribute to pathologies involving aberrant electrical activity in cardiac pacemaker cells. Moreover, RGS6 expression was found to be up-regulated in heart under certain pathological conditions, including doxorubicin treatment, which is known to cause life-threatening cardiotoxicity and atrial fibrillation in cancer patients. On the other hand, increased vagal tone may be cardioprotective in heart failure where acetylcholinesterase inhibitors and vagal stimulation have been proposed as potential therapeutics. Together, these studies identify RGS proteins, especially RGS6, as new therapeutic targets for diseases such as sick sinus syndrome or other maladies involving abnormal autonomic control of the heart.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
23
|
Louwette S, Labarque V, Wittevrongel C, Thys C, Metz J, Gijsbers R, Debyser Z, Arnout J, Van Geet C, Freson K. Regulator of G-protein signaling 18 controls megakaryopoiesis and the cilia-mediated vertebrate mechanosensory system. FASEB J 2012; 26:2125-36. [PMID: 22308195 DOI: 10.1096/fj.11-198739] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
RGS18 was originally identified as a R4 subfamily member of regulators of G-protein signaling (RGS) with specific expression in hematopoietic progenitors, myeloerythroid cells, and megakaryocytes, though its physiological role in hematopoiesis remained unknown. Here, we show that lentiviral RGS18 overexpression during differentiation of mouse Sca1(+) hematopoietic stem cells induced a 50% increase of megakaryocyte proliferation. RGS18 depletion in zebrafish results in thrombocytopenia, as 66 to 88% of the embryos lack thrombocytes after injection of an ATG or splice-blocking morpholino, respectively. These embryos have no defects in early hematopoiesis, erythropoiesis, or leukocyte number and migration. In addition, all RGS18 depleted embryos have curly tails and an almost absent response to acoustic stimuli. In situ hybridization in zebrafish, Xenopus, and mouse embryos shows RGS18 expression in thrombocytes and/or hematological tissues but also in brain and otic vesicles. RGS18 interferes with development of cilia in hair cells of the inner ear and neuromast cells. On the basis of literature evidence that RGS-R4 members interact with the G-protein-modulated Wnt/calcium pathway, Wnt5b- but not Wnt5a-depleted embryos phenocopy all RGS18 knockdown effects. In summary, our study is the first to show that RGS18 regulates megakaryopoiesis but also reveals its unexpected role in ciliogenesis, at least in lower vertebrates, via interference with Wnt signaling.
Collapse
Affiliation(s)
- Sophie Louwette
- Center for Molecular and Vascular Biology, KU Leuven, Campus Gasthuisberg, O&N1, Herestraat 49, Box 911, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Coman DJ, Murray DW, Byrne JC, Rudd PM, Bagaglia PM, Doran PD, Treacy EP. Galactosemia, a single gene disorder with epigenetic consequences. Pediatr Res 2010; 67:286-92. [PMID: 19952866 DOI: 10.1203/pdr.0b013e3181cbd542] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Long-term outcomes of classic galactosemia (GAL) remain disappointing. It is unclear if the complications result mainly from prenatal-neonatal toxicity or persistent glycoprotein and glycolipid synthesis abnormalities. We performed gene expression profiling (T transcriptome) to characterize key-altered genes and gene clusters of four patients with GAL with variable outcomes maintained on a galactose-restricted diet, compared with controls. Significant perturbations of multiple cell signaling pathways were observed including mitogen-activated protein kinase (MAPK) signaling, regulation of the actin cytoskeleton, focal adhesion, and ubiquitin mediated proteolysis. A number of genes significantly altered were further investigated in the GAL cohort including SPARC (osteonectin) and S100A8 (S100 calcium-binding protein). The whole serum N-glycan profile and IgG glycosylation status of 10 treated patients with GAL were compared with healthy control serum and IgG using a quantitative high-throughput analytical HPLC platform. Increased levels of agalactosylated and monogalactosylated structures and decreases in certain digalactosylated structures were identified in the patients. The persistent abnormal glycosylation of serum glycoproteins seen with the microarray data indicates persisting metabolic dyshomeostasis and gene dysregulation in "treated" GAL. Strict restriction of dietary galactose is clearly life saving in the neonatal period; long-term severe galactose restriction may contribute to ongoing systemic abnormalities.
Collapse
Affiliation(s)
- David J Coman
- National Centre for Inherited Metabolic Disorders, Children's University Hospital, Dublin 1, Ireland
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
A growing body of evidence indicates that subpopulations of cancer stem cells (CSCs) drive and maintain many types of human malignancies. These findings have important implications for the development and evaluation of oncologic therapies and present opportunities for potential gains in patient outcome. The existence of CSCs mandates careful analysis and comparison of normal tissue stem cells and CSCs to identify differences between the two cell types. The development of CSC-targeted treatments will face a number of potential hurdles, including normal stem cell toxicity and the acquisition of treatment resistance, which must be considered in order to maximize the chance that such therapies will be successful.
Collapse
Affiliation(s)
- Maximilian Diehn
- Department of Radiation Oncology, Stanford University, School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
26
|
McIntyre BAS, Alev C, Tarui H, Jakt LM, Sheng G. Expression profiling of circulating non-red blood cells in embryonic blood. BMC DEVELOPMENTAL BIOLOGY 2008; 8:21. [PMID: 18302797 PMCID: PMC2277405 DOI: 10.1186/1471-213x-8-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 02/27/2008] [Indexed: 01/01/2023]
Abstract
Background In addition to erythrocytes, embryonic blood contains other differentiated cell lineages and potential progenitor or stem cells homed to changing niches as the embryo develops. Using chicken as a model system, we have isolated an enriched pool of circulating non red blood cells (nRBCs) from E4 and E6 embryos; a transition period when definitive hematopoietic lineages are being specified in the peri-aortic region. Results Transcriptome analysis of both nRBC and RBC enriched populations was performed using chicken Affymetrix gene expression arrays. Comparison of transcript profiles of these two populations, with verification by RT-PCR, reveals in nRBCs an expression signature indicative of hematopoietic stem cells (HSCs) and progenitor cells of myeloid and lymphoid lineages, as well as a number of previously undescribed genes possibly involved in progenitor and stem cell maintenance. Conclusion This data indicates that early circulating embryonic blood contains a full array of hematopoietic progenitors and stem cells. Future studies on their heterogeneity and differentiation potentials may provide a useful alternative to ES cells and perinatal blood.
Collapse
Affiliation(s)
- Brendan A S McIntyre
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | |
Collapse
|
27
|
Bansal G, Druey KM, Xie Z. R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther 2007; 116:473-95. [PMID: 18006065 DOI: 10.1016/j.pharmthera.2007.09.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 09/18/2007] [Indexed: 12/21/2022]
Abstract
The regulators of G-protein signaling (RGS) proteins were initially characterized as inhibitors of signal transduction cascades initiated by G-protein-coupled receptors (GPCR) because of their ability to increase the intrinsic GTPase activity of heterotrimeric G proteins. This GTPase accelerating protein (GAP) activity enhances G protein deactivation and promotes desensitization. However, in addition to this signature trait, emerging data have revealed an expanding network of proteins, lipids, and ions that interact with RGS proteins and confer additional regulatory functions. This review highlights recent advances in our understanding of the physiological functions of one subfamily of RGS proteins with a high degree of homology (B/R4) gleaned from recent studies of knockout mice or cells with reduced RGS expression. We also discuss some of the newly appreciated interactions of RGS proteins with cellular factors that suggest RGS control of several components of G-protein-mediated pathways, as well as a diverse array of non-GPCR-mediated biological responses.
Collapse
Affiliation(s)
- Geetanjali Bansal
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, United States
| | | | | |
Collapse
|
28
|
Iwai K, Koike M, Ohshima S, Miyatake K, Uchiyama Y, Saeki Y, Ishii M. RGS18 acts as a negative regulator of osteoclastogenesis by modulating the acid-sensing OGR1/NFAT signaling pathway. J Bone Miner Res 2007; 22:1612-20. [PMID: 17576169 DOI: 10.1359/jbmr.070612] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED We showed that RGS18, a myeloid lineage-specific RGS protein that is inhibited after activation of the RANK/RANKL system, is a negative regulator of osteoclastogenesis. RGS18 acts through an external acidosis-sensing osteoclastogenic mechanism through the OGR1/NFAT pathway. INTRODUCTION Osteoclasts are bone-resorbing multinuclear giant cells that are differentiated from mononuclear macrophage/monocyte lineage precursors stimulated by the RANK/RANKL system. The regulators of G-protein signaling (RGS) family is a diverse group of proteins that accelerate intrinsic GTP hydrolysis on heterotrimeric G-protein alpha subunits and play crucial roles in physiological regulation of G-protein-mediated cell signaling in various tissues and organs. We examined the expression and function of RGS18, a myeloid lineage-specific RGS protein, during osteoclastogenesis. MATERIALS AND METHODS A macrophage/monocyte lineage cell line, RAW264.7, and primary osteoclast precursor monocytes derived from mouse bone marrow cultured with macrophage-colony stimulating factor (M-CSF) (bone marrow-derived monocytes [BMMs]) were used in this study. Both cell types differentiate into osteoclast-like cells on activation by RANKL. Expression of different RGS proteins, including RGS18, was assessed by gene-specific RT-PCR. The subcellular distribution of RGS18 on native osteoclasts in bone tissues, as well as in RAW264.7 cells, was examined by immunohistochemistry using a specific polyclonal antibody. Short interfering RNA against RGS18 was used to inhibit the function endogenous RGS18 in these cell types. Activation of NFATc1, an osteoclastogenic transcription factor, on external acidosis was assessed by visualizing the nuclear localization of NFATc1 visualized with anti-NFATc1 antibody. RESULTS RAW264.7 and BMM cells both expressed mRNA for 10 different mammalian RGS proteins, including RGS18. Expression of RGS18 is significantly inhibited by RANKL both cell types, and inhibition of RGS18 function using RNA interference prominently enhanced osteoclastogenesis on stimulation with RANKL. The effect of RGS18 inhibition was reversed by blocking of proton-sensing OGR1 signaling, and overexpression of exogenous RGS18 inhibited extracellular acidosis-mediated NFATc1 activation. Immunohistochemical studies of mouse bone tissues revealed expression of RGS18 in osteoclasts in vivo. CONCLUSIONS RGS18 acts as a negative regulator of the acidosis-induced osteoclastogenic OGR1/NFAT signaling pathway, and RANKL stimulates osteoclastogenesis by inhibiting expression of RGS18. Therefore, the results suggest a novel control mechanism of osteoclastogenesis by RGS proteins.
Collapse
Affiliation(s)
- Kaori Iwai
- Department of Clinical Research, National Hospital Organization, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Chen D, Wang P, Lewis RL, Daigh CA, Ho C, Chen X, Thomson JA, Kendziorski C. A microarray analysis of the emergence of embryonic definitive hematopoiesis. Exp Hematol 2007; 35:1344-57. [PMID: 17761287 DOI: 10.1016/j.exphem.2007.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 04/19/2007] [Accepted: 06/06/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Human embryonic stem (ES) cells provide a unique model for studying the development and function of human tissues and have proven utility in a number of areas. However, results from ES cell-based studies have been limited by the paucity of information available about early human hematopoietic development. METHODS To better understand early development of the hematopoietic lineage, we use microarray analysis to examine the temporal patterns of gene expression in embryoid bodies derived from human ES cells, focusing around the time of the emergence of definitive hematopoiesis. We use an empirical Bayes hierarchical modeling approach, called EBarrays, to classify genes into each of the possible temporal patterns of gene expression for five different time points, and correlate those patterns with the emergence of hematopoiesis. RESULTS We find a distinct group of genes previously identified as important in adult hematopoietic self-renewal (such as PIK3R1, ABCB1/MDR-1, RGS18, IRS1, SENP6/SUMO-1, and Wnt5A, etc.) temporally correlates with the emergence of the definitive hematopoiesis. Microarray-based results are further supported via flow cytometry and reverse transcription-polymerase chain reaction studies. CONCLUSION The novel genes demonstrating the same expression pattern as this group could further facilitate the understanding of the molecular mechanisms of embryonic hematopoiesis.
Collapse
Affiliation(s)
- Dong Chen
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Johnson KD, Boyer ME, Kang JA, Wickrema A, Cantor AB, Bresnick EH. Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood 2007; 109:5230-3. [PMID: 17339418 PMCID: PMC1890840 DOI: 10.1182/blood-2007-02-072983] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GATA-1-interacting protein Friend Of GATA-1 (FOG-1) is essential for the proper transcriptional activation and repression of numerous GATA-1 target genes. Although FOG-1-independent activation by GATA-1 has been described, all known examples of GATA-1-mediated repression are FOG-1 dependent. In the GATA-1-null G1E cell line, estrogen receptor ligand binding domain (ER) chimeras of either wild-type GATA-1 or a FOG-1-binding defective mutant of GATA-1 repressed several genes similarly upon activation with beta-estradiol. Repression also occurred in a FOG-1-null cell line expressing ER-GATA-1 and during ex vivo erythropoiesis. At the Lyl1 and Rgs18 loci, we found highly restricted occupancy by GATA-1 and GATA-2, indicating that these genes are direct targets of GATA factor regulation. The identification of genes repressed by GATA-1 independent of FOG-1 defines a novel mode of GATA-1-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Kirby D Johnson
- Department of Pharmacology, University of Wisconsin School of Medicine, Madison, WI, USA
| | | | | | | | | | | |
Collapse
|
31
|
Higman VA, Leidert M, Diehl A, Elkins J, Soundararajan M, Oschkinat H, Ball LJ. NMR assignment of human RGS18. JOURNAL OF BIOMOLECULAR NMR 2006; 36 Suppl 1:72. [PMID: 16964532 DOI: 10.1007/s10858-006-9061-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 07/03/2006] [Indexed: 05/11/2023]
Affiliation(s)
- Victoria A Higman
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle Str. 10, 13125, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Hubbard KB, Hepler JR. Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cell Signal 2005; 18:135-50. [PMID: 16182515 DOI: 10.1016/j.cellsig.2005.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/19/2005] [Indexed: 12/31/2022]
Abstract
Many receptors for neurotransmitters and hormones rely upon members of the Gqalpha family of heterotrimeric G proteins to exert their actions on target cells. Galpha subunits of the Gq class of G proteins (Gqalpha, G11alpha, G14alpha and G15/16alpha) directly link receptors to activation of PLC-beta isoforms which, in turn, stimulate inositol lipid (i.e. calcium/PKC) signalling. Although Gqalpha family members share a capacity to activate PLC-beta, they also differ markedly in their biochemical properties and tissue distribution which predicts functional diversity. Nevertheless, established models suggest that Gqalpha family members are functionally redundant and that their cellular responses are a result of PLC-beta activation and downstream calcium/PKC signalling. Growing evidence, however, indicates that Gqalpha, G11alpha, G14alpha and G15/16alpha are functionally diverse and that many of their cellular actions are independent of inositol lipid signalling. Recent findings show that Gqalpha family members differ with regard to their linked receptors and downstream binding partners. Reported binding partners distinct from PLC-beta include novel candidate effector proteins, various regulatory proteins, and a growing list of scaffolding/adaptor proteins. Downstream of these signalling proteins, Gqalpha family members exhibit unexpected differences in the signalling pathways and the gene expression profiles they regulate. Finally, genetic studies using whole animal models demonstrate the importance of certain Gqalpha family members in cardiac, lung, brain and platelet functions among other physiological processes. Taken together, these findings demonstrate that Gqalpha, G11alpha, G14alpha and G15/16alpha regulate both overlapping and distinct signalling pathways, indicating that they are more functionally diverse than previously thought.
Collapse
Affiliation(s)
- Katherine B Hubbard
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | | |
Collapse
|
33
|
Shi GX, Harrison K, Han SB, Moratz C, Kehrl JH. Toll-Like Receptor Signaling Alters the Expression of Regulator of G Protein Signaling Proteins in Dendritic Cells: Implications for G Protein-Coupled Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2004; 172:5175-84. [PMID: 15100254 DOI: 10.4049/jimmunol.172.9.5175] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conserved structural motifs on pathogens trigger pattern recognition receptors present on APCs such as dendritic cells (DCs). An important class of such receptors is the Toll-like receptors (TLRs). TLR signaling triggers a cascade of events in DCs that includes modified chemokine and cytokine production, altered chemokine receptor expression, and changes in signaling through G protein-coupled receptors (GPCRs). One mechanism by which TLR signaling could modify GPCR signaling is by altering the expression of regulator of G protein signaling (RGS) proteins. In this study, we show that human monocyte-derived DCs constitutively express significant amounts of RGS2, RGS10, RGS14, RGS18, and RGS19, and much lower levels of RGS3 and RGS13. Engagement of TLR3 or TLR4 on monocyte-derived DCs induces RGS16 and RGS20, markedly increases RGS1 expression, and potently down-regulates RGS18 and RGS14 without modifying other RGS proteins. A similar pattern of Rgs protein expression occurred in immature bone marrow-derived mouse DCs stimulated to mature via TLR4 signaling. The changes in RGS18 and RGS1 expression are likely important for DC function, because both proteins inhibit G alpha(i)- and G alpha(q)-mediated signaling and can reduce CXC chemokine ligand (CXCL)12-, CC chemokine ligand (CCL)19-, or CCL21-induced cell migration. Providing additional evidence, bone marrow-derived DCs from Rgs1(-/-) mice have a heightened migratory response to both CXCL12 and CCL19 when compared with similar DCs prepared from wild-type mice. These results indicate that the level and functional status of RGS proteins in DCs significantly impact their response to GPCR ligands such as chemokines.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- CHO Cells
- COS Cells
- Cells, Cultured
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Cricetinae
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- GTP-Binding Protein alpha Subunits/biosynthesis
- HeLa Cells
- Humans
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Monocytes/immunology
- Monocytes/metabolism
- RGS Proteins/antagonists & inhibitors
- RGS Proteins/biosynthesis
- RGS Proteins/deficiency
- RGS Proteins/genetics
- RGS Proteins/physiology
- Receptors, CCR4
- Receptors, Cell Surface/physiology
- Receptors, Chemokine/metabolism
- Receptors, Chemokine/physiology
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Signal Transduction/immunology
- Toll-Like Receptor 3
- Toll-Like Receptor 4
- Toll-Like Receptors
Collapse
Affiliation(s)
- Geng-Xian Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
34
|
Wilson HL, O'Neill HC. Identification of differentially expressed genes representing dendritic cell precursors and their progeny. Blood 2003; 102:1661-9. [PMID: 12750154 DOI: 10.1182/blood-2002-08-2426] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The development of dendritic cells (DCs) from hematopoietic progenitors is not well understood. Using a spleen-derived long-term culture (LTC) system, it has been possible to continuously generate DCs from progenitors maintained in culture. The nonadherent LTC-DC population is composed of 2 major subsets. These are the small LTC-DC or DC precursors and their progeny, the large LTC-DCs that phenotypically resemble immature DCs. In this study, subtracted cDNA libraries were generated containing sequences differentially expressed in small or large LTC-DCs. Differential screening was then used on plated library clones to select genes expressed in either the small or the large cell population. Real-time polymerase chain reaction (PCR) has been used to verify the selection procedure for several genes of particular interest. Known genes isolated from subtracted libraries were related to stages in DC development and supported previous findings regarding the function of small and large LTC-DCs. Large LTC-DCs expressed a number of immunologically important genes encoding CD86, CCR1, osteopontin, and lysozyme. Small LTC-DCs resembled progenitor DCs expressing genes related to the organization of the cytoskeleton, the regulation of antigen processing, and a number of mitochondrial and ribosomal proteins. Novel transcripts were isolated from small and large LTC-DC-subtracted libraries that could encode novel proteins important in DC development. This study describes changes in gene expression related to the development of CD11c+CD11b+ major histocompatibility complex 2 low (MHC2lo) CD8alpha- DCs from precursors in a stroma-dependent culture system in the absence of exogenous cytokines.
Collapse
Affiliation(s)
- Heather L Wilson
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT, 0200, Australia
| | | |
Collapse
|
35
|
Hiol A, Davey PC, Osterhout JL, Waheed AA, Fischer ER, Chen CK, Milligan G, Druey KM, Jones TLZ. Palmitoylation regulates regulators of G-protein signaling (RGS) 16 function. I. Mutation of amino-terminal cysteine residues on RGS16 prevents its targeting to lipid rafts and palmitoylation of an internal cysteine residue. J Biol Chem 2003; 278:19301-8. [PMID: 12642593 DOI: 10.1074/jbc.m210123200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulators of G-protein signaling (RGS) proteins down-regulate signaling by heterotrimeric G-proteins by accelerating GTP hydrolysis on the G alpha subunits. Palmitoylation, the reversible addition of palmitate to cysteine residues, occurs on several RGS proteins and is critical for their activity. For RGS16, mutation of Cys-2 and Cys-12 blocks its incorporation of [3H]palmitate and ability to turn-off Gi and Gq signaling and significantly inhibited its GTPase activating protein activity toward aG alpha subunit fused to the 5-hydroxytryptamine receptor 1A, but did not reduce its plasma membrane localization based on cell fractionation studies and immunoelectron microscopy. Palmitoylation can target proteins, including many signaling proteins, to membrane microdomains, called lipid rafts. A subpopulation of endogenous RGS16 in rat liver membranes and overexpressed RGS16 in COS cells, but not the nonpalmitoylated cysteine mutant of RGS16, localized to lipid rafts. However, disruption of lipid rafts by treatment with methyl-beta-cyclodextrin did not decrease the GTPase activating protein activity of RGS16. The lipid raft fractions were enriched in protein acyltransferase activity, and RGS16 incorporated [3H]palmitate into a peptide fragment containing Cys-98, a highly conserved cysteine within the RGS box. These results suggest that the amino-terminal palmitoylation of an RGS protein promotes its lipid raft targeting that allows palmitoylation of a poorly accessible cysteine residue that we show in the accompanying article (Osterhout, J. L., Waheed, A. A., Hiol, A., Ward, R. J., Davey, P. C., Nini, L., Wang, J., Milligan, G., Jones, T. L. Z., and Druey, K. M. (2003) J. Biol. Chem. 278, 19309-19316) was critical for RGS16 and RGS4 GAP activity.
Collapse
Affiliation(s)
- Abel Hiol
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:302-5. [PMID: 12714971 DOI: 10.1038/nature01587] [Citation(s) in RCA: 1390] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 03/19/2003] [Indexed: 11/09/2022]
Abstract
A central issue in stem cell biology is to understand the mechanisms that regulate the self-renewal of haematopoietic stem cells (HSCs), which are required for haematopoiesis to persist for the lifetime of the animal. We found that adult and fetal mouse and adult human HSCs express the proto-oncogene Bmi-1. The number of HSCs in the fetal liver of Bmi-1-/- mice was normal. In postnatal Bmi-1-/- mice, the number of HSCs was markedly reduced. Transplanted fetal liver and bone marrow cells obtained from Bmi-1-/- mice were able to contribute only transiently to haematopoiesis. There was no detectable self-renewal of adult HSCs, indicating a cell autonomous defect in Bmi-1-/- mice. A gene expression analysis revealed that the expression of stem cell associated genes, cell survival genes, transcription factors, and genes modulating proliferation including p16Ink4a and p19Arf was altered in bone marrow cells of the Bmi-1-/- mice. Expression of p16Ink4a and p19Arf in normal HSCs resulted in proliferative arrest and p53-dependent cell death, respectively. Our results indicate that Bmi-1 is essential for the generation of self-renewing adult HSCs.
Collapse
Affiliation(s)
- In-kyung Park
- Division of Hematology/Oncology, Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Cho H, Harrison K, Schwartz O, Kehrl JH. The aorta and heart differentially express RGS (regulators of G-protein signalling) proteins that selectively regulate sphingosine 1-phosphate, angiotensin II and endothelin-1 signalling. Biochem J 2003; 371:973-80. [PMID: 12564955 PMCID: PMC1223344 DOI: 10.1042/bj20021769] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Revised: 01/31/2003] [Accepted: 02/03/2003] [Indexed: 11/17/2022]
Abstract
Normal cardiovascular development and physiology depend in part upon signalling through G-protein-coupled receptors (GPCRs), such as the angiotensin II type 1 (AT(1)) receptor, sphingosine 1-phosphate (S1P) receptors and endothelin-1 (ET-1) receptor. Since regulator of G-protein signalling (RGS) proteins function as GTPase-activating proteins for the G alpha subunit of heterotrimeric G-proteins, these proteins undoubtedly have functional roles in the cardiovascular system. In the present paper, we show that human aorta and heart differentially express RGS1, RGS2, RGS3S (short-form), RGS3L (long-form), PDZ-RGS3 (PDZ domain-containing) and RGS4. The aorta prominently expresses mRNAs for all these RGS proteins except PDZ-RGS3. Various stimuli that are critical for both cardiovascular development and function regulate dynamically the mRNA levels of several of these RGS proteins in primary human aortic smooth muscle cells. Both RGS1 and RGS3 inhibit signalling through the S1P(1) (formerly known as EDG-1), S1P(2) (formerly known as EDG-5) and S1P(3) (formerly known as EDG-3) receptors, whereas RGS2 and RGS4 selectively attenuate S1P(2)-and S1P(3)-receptor signalling respectively. All of the tested RGS proteins inhibit AT(1)-receptor signalling, whereas only RGS3 and, to a lesser extent, RGS4 inhibit ET(A)-receptor signalling. The conspicuous expression of RGS proteins in the cardiovascular system and their selective effects on relevant GPCR-signalling pathways provide additional evidence that they have functional roles in cardiovascular development and physiology.
Collapse
Affiliation(s)
- Hyeseon Cho
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, Room 11B-08, Building 10, National Institute of Allergy and Infectious Diseases, 10 Center Drive, MSC 1876, National Institutes of Health, Bethesda, MD 20892-1876, USA
| | | | | | | |
Collapse
|
38
|
Wieland T, Mittmann C. Regulators of G-protein signalling: multifunctional proteins with impact on signalling in the cardiovascular system. Pharmacol Ther 2003; 97:95-115. [PMID: 12559385 DOI: 10.1016/s0163-7258(02)00326-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Regulator of G-protein signalling (RGS) proteins form a superfamily of at least 25 proteins, which are highly diverse in structure, expression patterns, and function. They share a 120 amino acid homology domain (RGS domain), which exhibits GTPase accelerating activity for alpha-subunits of heterotrimeric G-proteins, and thus, are negative regulators of G-protein-mediated signalling. Based on the organisation of the Rgs genes, structural similarities, and differences in functions, they can be divided into at least six subfamilies of RGS proteins and three more families of RGS-like proteins. Many of these proteins regulate signalling processes within cells, not only via interaction with G-protein alpha-subunits, but are G-protein-regulated effectors, Gbetagamma scavenger, or scaffolding proteins in signal transduction complexes as well. The expression of at least 16 different RGS proteins in the mammalian or human myocardium have been described. A subgroup of at least eight was detected in a single atrial myocyte. The exact functions of these proteins remain mostly elusive, but RGS proteins such as RGS4 are involved in the regulation of G(i)-protein betagamma-subunit-gated K(+) channels. An up-regulation of RGS4 expression has been consistently found in human heart failure and some animal models. Evidence is increasing that the enhanced RGS4 expression counter-regulates the G(q/11)-induced signalling caused by hypertrophic stimuli. In the vascular system, RGS5 seems to be an important signalling regulator. It is expressed in vascular endothelial cells, but not in cultured smooth muscle cells. Its down-regulation, both in a model of capillary morphogenesis and in an animal model of stroke, render it a candidate gene, which may be involved in the regulation of capillary growth, angiogenesis, and in the pathophysiology of stroke.
Collapse
Affiliation(s)
- Thomas Wieland
- Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany.
| | | |
Collapse
|
39
|
Gagnon AW, Murray DL, Leadley RJ. Cloning and characterization of a novel regulator of G protein signalling in human platelets. Cell Signal 2002; 14:595-606. [PMID: 11955952 DOI: 10.1016/s0898-6568(02)00012-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In an effort to understand the modulation of G protein-coupled receptor (GPCR)-mediated signalling in platelets, we sought to identify which regulators of G protein signalling proteins (RGSs) are present in human platelets. Using degenerate oligonucleotides, we performed RT-PCR with human platelet and megakaryocytic cell line RNA. In addition to confirming the presence of several known RGS transcripts, we found a novel RGS domain-containing transcript in platelet RNA. Northern blot analysis of multiple human tissues indicates that this transcript is most abundantly expressed in platelets compared to other tissues examined. Full-length cloning of this novel RGS, which we now term RGS18, demonstrates that this transcript is predicted to encode a 235-amino acid protein that is most closely related to RGS5 (46% identity) and that has approximately 30-40% identity to other RGS proteins. RGS18 is expressed in platelet, leukocyte, and megakaryocyte cell lines and binds to endogenous Galphai1, Galphai2, Galphai3, and Galphaq but not Galphaz, Galphas or Galpha12 in vitro.
Collapse
Affiliation(s)
- Alison W Gagnon
- Cardiovascular Drug Discovery, Aventis Pharmaceuticals, 500 Arcola Road, Collegeville, PA 19426, USA
| | | | | |
Collapse
|
40
|
Abstract
The signaling cascades evoked by G protein-coupled receptors are a predominant mechanism of cellular communication. The regulators of G protein signaling (RGS) comprise a family of proteins that attenuate G protein-mediated signal transduction. Here we report the characterization of RGS13, the smallest member of the RGS family, which has been cloned from human lung. RGS13 has been found most abundantly in human tonsil, followed by thymus, lung, lymph node, and spleen. RGS13 is a GTPase-activating protein for Galpha(i) and Galpha(o) but not Galpha(s). RGS13 binds Galpha(q) in the presence of aluminum magnesium fluoride, suggesting that it bears GTPase-activating protein activity toward Galpha(q). RGS13 blocks MAPK activity induced by Galpha(i)- or Galpha(q)-coupled receptors. RGS13 also attenuates GTPase-deficient Galpha(q) (Galpha(q)QL) mediated cAMP response element activation but not transcription evoked by constitutively active Galpha(12) or Galpha(13). Surprisingly, RGS13 inhibits cAMP generation elicited by stimulation of the beta(2)-adrenergic receptor. These data suggest that RGS13 may regulate Galpha(i)-, Galpha(q)-, and Galpha(s)-coupled signaling cascades.
Collapse
Affiliation(s)
- Eric N Johnson
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | |
Collapse
|
41
|
Neubig RR, Siderovski DP. Regulators of G-protein signalling as new central nervous system drug targets. Nat Rev Drug Discov 2002; 1:187-97. [PMID: 12120503 DOI: 10.1038/nrd747] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
G-protein-coupled receptors (GPCRs) are major targets for drug discovery. The regulator of G-protein signalling (RGS)-protein family has important roles in GPCR signal transduction. RGS proteins contain a conserved RGS-box, which is often accompanied by other signalling regulatory elements. RGS proteins accelerate the deactivation of G proteins to reduce GPCR signalling; however, some also have an effector function and transmit signals. Combining GPCR agonists with RGS inhibitors should potentiate responses, and could markedly increase the agonist's regional specificity. The diversity of RGS proteins with highly localized and dynamically regulated distributions in brain makes them attractive targets for pharmacotherapy of central nervous system disorders.
Collapse
Affiliation(s)
- Richard R Neubig
- Departments of Pharmacology and Internal Medicine (Hypertension Division), University of Michigan, Ann Arbor, Massachusetts 48109-0632, USA.
| | | |
Collapse
|
42
|
Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, Xie T, Schummer M, Sun Y, Goldsmith A, Clarke MF, Weissman IL, Hood L, Li L. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002; 99:488-98. [PMID: 11781229 DOI: 10.1182/blood.v99.2.488] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.
Collapse
Affiliation(s)
- In-Kyung Park
- University of Michigan, Department of Internal Medicine, Ann Arbor, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Doupnik CA, Xu T, Shinaman JM. Profile of RGS expression in single rat atrial myocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:97-107. [PMID: 11750060 DOI: 10.1016/s0167-4781(01)00342-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
'Regulators of G protein signaling' (RGS proteins) are members of a large family of GTPase-activating proteins that are differentially expressed in various cell types and accelerate the termination of heterotrimeric G protein signaling. To identify RGS proteins that may affect autonomic regulation of atrial excitability, we screened the expression of nineteen RGS genes (RGS subfamilies A, B, C, and D) in single spontaneously beating rat atrial myocytes maintained in primary culture. Expression profiling by single-cell reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that seven distinct RGS genes are endogenously expressed in atrial myocytes which were also identified in poly(A)(+) mRNA from rat atria (RGS2, RGS3, RGS4, RGS6, RGS10, GAIP, and RGSZ2). Other RGS transcripts were detected in atrial poly(A)(+) mRNA but not single atrial myocytes (RGS5, RGS12, RGS16, and RGS18), and therefore are likely to originate from non-myocyte sources in atrial tissue. The single-cell RT-PCR experiments also led to the identification of putative splice variants for RGS6 and GAIP. Immunocytochemistry using RGS-specific antibodies confirmed the presence of selected RGS proteins in the cultured atrial myocytes. These results demonstrate a rich diversity of RGS expression in atrial myocytes whose specific role in G-protein signaling is yet to be determined. The identification of endogenous RGS proteins in atrial myocytes will facilitate targeted suppression and/or deletion studies to determine how each RGS protein may affect atrial excitability and its short-term and long-term regulation by G-protein signaling events.
Collapse
Affiliation(s)
- C A Doupnik
- Department of Physiology and Biophysics and Neuroscience Program, University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard, Tampa, FL 33612-4799, USA.
| | | | | |
Collapse
|
44
|
Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM, Jordan CT. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 2001; 98:2301-7. [PMID: 11588023 DOI: 10.1182/blood.v98.8.2301] [Citation(s) in RCA: 569] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human acute myelogenous leukemia (AML) is thought to arise from a rare population of malignant stem cells. Cells of this nature, herein referred to as leukemic stem cells (LSCs), have been documented for nearly all AML subtypes and appear to fulfill the criteria for stem cells in that they are self-renewing and give rise to the cells found in many leukemic populations. Because these cells are likely to be critical for the genesis and perpetuation of leukemic disease, the present studies sought to characterize unique molecular properties of the LSC population, with particular emphasis on the transcription factor, nuclear factor-kappaB (NF-kappaB). Previous experiments have shown that unstimulated human CD34(+) progenitor cells do not express NF-kappaB. In contrast, primary AML CD34(+) cells display readily detectable NF-kappaB activity as assessed by electrophoretic mobility shift assay and gene expression studies. Furthermore, detailed analyses of enriched AML stem cells (CD34(+)/CD38(-)/CD123(+)) indicate that NF-kappaB is also active in the LSC population. Given the expression of NF-kappaB in leukemic, but not normal primitive cells, the hypothesis that inhibition of NF-kappaB might induce leukemia-specific apoptosis was tested by treating primary cells with the proteasome inhibitor MG-132, a well-known inhibitor of NF-kappaB. Leukemic CD34(+)/CD38(-) cells displayed a rapid induction of cell death in response to MG-132, whereas normal CD34(+)/CD38(-) cells showed little if any effect. Taken together, these data indicate that primitive AML cells aberrantly express NF-kappaB and that the presence of this factor may provide unique opportunities to preferentially ablate LSCs.
Collapse
Affiliation(s)
- M L Guzman
- Blood and Marrow Transplant Program, Markey Cancer Center, Division of Hematology/Oncology, University of Kentucky Medical Center, Lexington 40536-0093, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yowe D, Weich N, Prabhudas M, Poisson L, Errada P, Kapeller R, Yu K, Faron L, Shen M, Cleary J, Wilkie TM, Gutierrez-Ramos C, Hodge MR. RGS18 is a myeloerythroid lineage-specific regulator of G-protein-signalling molecule highly expressed in megakaryocytes. Biochem J 2001; 359:109-18. [PMID: 11563974 PMCID: PMC1222126 DOI: 10.1042/0264-6021:3590109] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myelopoiesis and lymphopoiesis are controlled by haematopoietic growth factors, including cytokines, and chemokines that bind to G-protein-coupled receptors (GPCRs). Regulators of G-protein signalling (RGSs) are a protein family that can act as GTPase-activating proteins for G(alphai)- and G(alphaq)-class proteins. We have identified a new member of the R4 subfamily of RGS proteins, RGS18. RGS18 contains clusters of hydrophobic and basic residues, which are characteristic of an amphipathic helix within its first 33 amino acids. RGS18 mRNA was most highly abundant in megakaryocytes, and was also detected specifically in haematopoietic progenitor and myeloerythroid lineage cells. RGS18 mRNA was not detected in cells of the lymphoid lineage. RGS18 was also highly expressed in mouse embryonic 15-day livers, livers being the principal organ for haematopoiesis at this stage of fetal development. RGS1, RGS2 and RGS16, other members of the R4 subfamily, were expressed in distinct progenitor and mature myeloerythroid and lymphoid lineage blood cells. RGS18 was shown to interact specifically with the G(alphai-3) subunit in membranes from K562 cells. Furthermore, overexpression of RGS18 inhibited mitogen-activated-protein kinase activation in HEK-293/chemokine receptor 2 cells treated with monocyte chemotactic protein-1. In yeast cells, RGS18 overexpression complemented a pheromone-sensitive phenotype caused by mutations in the endogeneous yeast RGS gene, SST2. These data demonstrated that RGS18 was expressed most highly in megakaryocytes, and can modulate GPCR pathways in both mammalian and yeast cells in vitro. Hence RGS18 might have an important role in the regulation of megakaryocyte differentiation and chemotaxis.
Collapse
Affiliation(s)
- D Yowe
- Millennium Pharmaceuticals, 75 Sidney Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nagata Y, Oda M, Nakata H, Shozaki Y, Kozasa T, Todokoro K. A novel regulator of G-protein signaling bearing GAP activity for Galphai and Galphaq in megakaryocytes. Blood 2001; 97:3051-60. [PMID: 11342430 DOI: 10.1182/blood.v97.10.3051] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulator of G-protein signaling (RGS) negatively regulates the alpha subunit of G proteins by accelerating their intrinsic guanosine triphosphatase (GTPase) activity. Here are reported the isolation and characterization of a novel mouse RGS, termed RGS18, which is a new member of RGS subfamily B. Northern blot analysis showed that RGS18 messenger RNA was detected predominantly in spleen and hematopoietic cells, and immunohistochemical studies demonstrated that RGS18 was expressed in megakaryocytes, platelets, granulocytes/monocytes, and, weakly, in hematopoietic stem cells, but not in lymphocytes or erythrocytes. Although various subcellular localizations of RGS have been reported, RGS18 was found to be localized in cytoplasm in megakaryocytes. In vitro binding assays of RGS18 with megakaryocyte cell lysates with or without AlF(4)(-) treatment demonstrated that RGS18 specifically binds to 2 alpha subunits of the G protein, Galphai and Galphaq. Furthermore, RGS18 clearly exhibited GTPase-activating protein (GAP) activity for Galphai and Galphaq but not for Galphas or Galpha12. In addition, chemokine stromal-derived factor 1 (SDF-1), which has been reported to stimulate megakaryocyte colony formation in the presence of thrombopoietin, affected the binding of RGS18 to Galphai but not to Galphaq. Therefore, the newly isolated RGS18 turned out to be a new member of the RGS family bearing GAP activity for Galphai, which might be stimulated by SDF-1 in megakaryocytes, as well as for Galphaq. Thus, RGS18 may play an important role in proliferation, differentiation, and/or migration of megakaryocytes.
Collapse
Affiliation(s)
- Y Nagata
- Tsukuba Life Science Center, The Institute of Physical and Chemical Research, Japan.
| | | | | | | | | | | |
Collapse
|