1
|
Bergman MR, Hernandez SA, Deffler C, Yeo J, Deravi LF. Design and Characterization of Model Systems that Promote and Disrupt Transparency of Vertebrate Crystallins In Vitro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303279. [PMID: 37897315 PMCID: PMC10724405 DOI: 10.1002/advs.202303279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Indexed: 10/30/2023]
Abstract
Positioned within the eye, the lens supports vision by transmitting and focusing light onto the retina. As an adaptive glassy material, the lens is constituted primarily by densely-packed, polydisperse crystallin proteins that organize to resist aggregation and crystallization at high volume fractions, yet the details of how crystallins coordinate with one another to template and maintain this transparent microstructure remain unclear. The role of individual crystallin subtypes (α, β, and γ) and paired subtype compositions, including how they experience and resist crowding-induced turbidity in solution, is explored using combinations of spectrophotometry, hard-sphere simulations, and surface pressure measurements. After assaying crystallin combinations, β-crystallins emerged as a principal component in all mixtures that enabled dense fluid-like packing and short-range order necessary for transparency. These findings helped inform the design of lens-like hydrogel systems, which are used to monitor and manipulate the loss of transparency under different crowding conditions. When taken together, the findings illustrate the design and characterization of adaptive materials made from lens proteins that can be used to better understand mechanisms regulating transparency.
Collapse
Affiliation(s)
- Michael R. Bergman
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Sophia A. Hernandez
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Caitlin Deffler
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace EngineeringCornell University413 Upson Hall, 124 Hoy RdIthacaNY14850USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern University360 Huntington AveBostonMA02115USA
| |
Collapse
|
2
|
Nucleosomal association and altered interactome underlie the mechanism of cataract caused by the R54C mutation of αA-crystallin. Biochim Biophys Acta Gen Subj 2021; 1865:129846. [PMID: 33444727 DOI: 10.1016/j.bbagen.2021.129846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND αA-crystallin plays an important role in eye lens development. Its N-terminal domain is implicated in several important biological functions. Mutations in certain conserved arginine residues in the N-terminal region of αA-crystallin lead to cataract with characteristic cytoplasmic/nuclear aggregation of the mutant protein. In this study, we attempt to gain mechanistic insights into the congenital cataract caused by the R54C mutation in human αA-crystallin. METHODS We used several spectroscopic techniques to investigate the structure and function of the wild-type and R54CαA-crystallin. Immunoprecipitation, chromatin-enrichment followed by western blotting, immunofluorescence and cell-viability assay were performed to study the interaction partners, chromatin-association, stress-like response and cell-death caused by the mutant. RESULTS Although R54CαA-crystallin exhibited slight changes in quaternary structure, its chaperone-like activity was comparable to that of wild-type. When expressed in lens epithelial cells, R54CαA-crystallin exhibited a speckled appearance in the nucleus rather than cytoplasmic localization. R54CαA-crystallin triggered a stress-like response, resulting in nuclear translocation of αB-crystallin, disassembly of cytoskeletal elements and activation of caspase 3, leading to apoptosis. Analysis of the "interactome" revealed an increase in interaction of the mutant protein with nucleosomal histones, and its association with chromatin. CONCLUSIONS The study shows that alteration of "interactome" and nucleosomal association, rather than loss of chaperone-like activity, is the molecular basis of cataract caused by the R54C mutation in αA-crystallin. GENERAL SIGNIFICANCE The study provides a novel mechanism of cataract caused by a mutant of αA-crystallin, and sheds light on the possible mechanism of stress and cell death caused by such nuclear inclusions.
Collapse
|
3
|
Muranov KO, Poliansky NB, Chebotareva NA, Kleimenov SY, Bugrova AE, Indeykina MI, Kononikhin AS, Nikolaev EN, Ostrovsky MA. The mechanism of the interaction of α-crystallin and UV-damaged β L-crystallin. Int J Biol Macromol 2019; 140:736-748. [PMID: 31445149 DOI: 10.1016/j.ijbiomac.2019.08.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
α-Crystallin maintains the transparency of the lens by preventing the aggregation of damaged proteins. The aim of our work was to study the chaperone-like activity of native α-crystallin in near physiological conditions (temperature, ionic power, pH) using UV-damaged βL-crystallin as the target protein. α-Crystallin in concentration depended manner inhibits the aggregation of UV-damaged βL-crystallin. DSC investigation has shown that refolding of denatured UV-damaged βL-crystallin was not observed under incubation with α-crystallin. α-Crystallin and UV-damaged βL-crystallin form dynamic complexes with masses from 75 to several thousand kDa. The content of UV-damaged βL-crystallin in such complexes increases with the mass of the complex. Complexes containing >10% of UV-damaged βL-crystallin are prone to precipitation whereas those containing <10% of the target protein are relatively stable. Formation of a stable 75 kDa complex is indicative of α-crystallin dissociation. We suppose that α-crystallin dissociation is the result of an interaction of comparable amounts of the chaperone-like protein and the target protein. In the lens simultaneous damage of such amounts of protein, mainly β and gamma-crystallins, is impossible. The authors suggest that in the lens rare molecules of the damaged protein interact with undissociated oligomers of α-crystallin, and thus preventing aggregation.
Collapse
Affiliation(s)
- K O Muranov
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia.
| | - N B Poliansky
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - N A Chebotareva
- Bach Institute of Biochemistry, Federal State Institution "Federal Research Centre "Fundamentals of Biotechnology"of the Russian Academy of Sciences", Moscow, Russia
| | - S Yu Kleimenov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Russia
| | - A E Bugrova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| | - M I Indeykina
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia; Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, Russia
| | - A S Kononikhin
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - E N Nikolaev
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Center of Chemical Physic, Russian Academy of Sciences, Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - M A Ostrovsky
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
3D structure of the native α-crystallin from bovine eye lens. Int J Biol Macromol 2018; 117:1289-1298. [PMID: 29870813 DOI: 10.1016/j.ijbiomac.2018.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022]
Abstract
α-Crystallin is the major eye lens protein that has been shown to support lens transparency by preventing the aggregation of lens proteins. The 3D structure of α-crystallin is largely unknown. Electron microscopy, single-particle 3D reconstruction, size exclusion chromatography, dynamic light scattering, and analytical ultracentrifugation were used to study the structure of the native α-crystallin. Native α-crystallin has a wide distribution in size. The shape of mass distribution is temperature-dependent, but the oligomers with a sedimentation coefficient of ~22 S (750-830 kDa) strongly prevailed at all temperatures used. A 3D model of native α-crystallin with resolution of ~2 nm was created. The model is asymmetrical, has an elongated bean-like shape 13 × 19 nm with a dense core and filamentous "kernel". It does not contain a central cavity. The majority of α-crystallin particles regardless of experimental conditions are 13 × 19 nm, which corresponds to 22S sedimentation coefficient, hydrodynamic diameter 20 nm and mass of 750-830 kD. These particles are in dynamic equilibrium with particles of smaller and larger sizes.
Collapse
|
5
|
Parambath J, Valsala G, Menon K, Sugathan S. In vitro Chaperone Activity Assay Using α-Amylase as Target Protein. Bio Protoc 2018. [DOI: 10.21769/bioprotoc.2878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
7
|
Moschini R, Gini F, Cappiello M, Balestri F, Falcone G, Boldrini E, Mura U, Del-Corso A. Interaction of arabinogalactan with mucins. Int J Biol Macromol 2014; 67:446-51. [DOI: 10.1016/j.ijbiomac.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/30/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022]
|
8
|
Kumar A, Singh S. Interaction of chaperone α-crystallin with unfolded state of α-amylase: Implications for reconstitution of the active enzyme. Int J Biol Macromol 2009; 45:493-8. [DOI: 10.1016/j.ijbiomac.2009.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/06/2009] [Accepted: 09/18/2009] [Indexed: 11/28/2022]
|
9
|
Markossian KA, Golub NV, Kleymenov SY, Muranov KO, Sholukh MV, Kurganov BI. Effect of α-crystallin on thermostability of mitochondrial aspartate aminotransferase. Int J Biol Macromol 2009; 44:441-6. [DOI: 10.1016/j.ijbiomac.2009.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 10/21/2022]
|
10
|
Markossian KA, Yudin IK, Kurganov BI. Mechanism of suppression of protein aggregation by α-crystallin. Int J Mol Sci 2009; 10:1314-1345. [PMID: 19399251 PMCID: PMC2672032 DOI: 10.3390/ijms10031314] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/13/2009] [Accepted: 03/18/2009] [Indexed: 11/30/2022] Open
Abstract
This review summarizes experimental data illuminating the mechanism of suppression of heat-induced protein aggregation by alpha-crystallin, one of the small heat shock proteins. The dynamic light scattering data show that the initial stage of thermal aggregation of proteins is the formation of the initial aggregates involving hundreds of molecules of the denatured protein. Further sticking of the starting aggregates proceeds in a regime of diffusion-limited cluster-cluster aggregation. The protective effect of alpha-crystallin is due to transition of the aggregation process to the regime of reaction-limited cluster-cluster aggregation, wherein the sticking probability for the colliding particles becomes lower than unity.
Collapse
Affiliation(s)
- Kira A. Markossian
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071, Moscow, Russia
- Author to whom correspondence should be addressed; E-Mail:
; Fax: +7 495 954 2732
| | - Igor K. Yudin
- Oil and Gas Research Institute, Russian Academy of Sciences, Gubkina st. 3, 117971, Moscow, Russia
| | - Boris I. Kurganov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky pr. 33, 119071, Moscow, Russia
| |
Collapse
|
11
|
Singh D, Raman B, Ramakrishna T, Rao CM. Mixed Oligomer Formation between Human αA-Crystallin and its Cataract-causing G98R Mutant: Structural, Stability and Functional Differences. J Mol Biol 2007; 373:1293-304. [PMID: 17900621 DOI: 10.1016/j.jmb.2007.08.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 08/27/2007] [Accepted: 08/29/2007] [Indexed: 11/16/2022]
Abstract
Mutation of the glycine 98 residue to arginine in alphaA-crystallin has been shown to cause presenile cataract in an Indian family. Our earlier study showed that the mutant protein exhibits folding defects that lead to aggregation and inclusion body formation in Escherichia coli. Despite the presence of a normal copy, the pathology is seen in the heterozygous individuals. Formation of mixed oligomers between wild-type and the mutant subunits might be crucial for manifestation of such dominant negative character. We have investigated the role of G98R mutation in alphaA-crystallin in its structural stability and subunit exchange. G98R alphaA-crystallin unfolds at lower concentrations of urea compared to wild-type alphaA-crystallin. The mutant protein is more susceptible to proteolysis than the wild-type protein and transiently populates fragments that are prone to aggregation. Subunit exchange studies using fluorescence resonance energy transfer show that the mutant protein forms mixed oligomers with the wild-type protein. The mutant protein is more susceptible to thermal aggregation, whereas mixed oligomer formation leads to a decreased propensity to aggregate. Co-expression of wild-type alphaA-crystallin with G98R alphaA-crystallin in E. coli rescues the mutant alphaA-crystallin from formation of inclusion bodies. These observations may underlie the molecular basis for the presenile onset, not congenital cataract, in spite of severe folding defect and aggregation of the mutant. Our study shows that the mixed oligomers of wild-type and G98R alphaA-crystallin exhibit properties dominated by those of the mutant protein in structural aspects, oligomeric size, urea-induced unfolding and, more importantly, the chaperone activity, which may provide the molecular basis for presenile cataract formation in affected individuals.
Collapse
Affiliation(s)
- Devendra Singh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | |
Collapse
|
12
|
Random exchanges of non-conserved amino acid residues among four parental termite cellulases by family shuffling improved thermostability. Protein Eng Des Sel 2007; 20:535-42. [DOI: 10.1093/protein/gzm052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
13
|
Coi A, Bianucci AM, Bonomi F, Rasmussen P, Mura GM, Ganadu ML. Structural perturbation of alphaB-crystallin by zinc and temperature related to its chaperone-like activity. Int J Biol Macromol 2007; 42:229-34. [PMID: 18048095 DOI: 10.1016/j.ijbiomac.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/14/2007] [Accepted: 10/12/2007] [Indexed: 11/18/2022]
Abstract
alphaB-crystallin is a small heat shock protein that shows chaperone-like activity, as it protects the aggregation of denatured proteins. In this work, the possible relationships between structural characteristics and the biological activity of alphaB-crystallin were investigated on the native protein and on the protein undergoing the separate effects of metal ligation and temperature. The chaperone-like activity of alphaB-crystallin increased in the presence of zinc and when temperature was increased. By using fluorescent probes to monitor hydrophobic surfaces on alphaB-crystallin, it was found that exposed hydrophobic patches on the protein surface increased significantly both in the presence of zinc and when the temperature was raised from 25 to 37 degrees C. The zinc-induced increased exposure of lipophilic residues is in agreement with theoretical calculations performed on 3D-models of monomeric alphaB-crystallin, and may be significant to its increased biological activity.
Collapse
Affiliation(s)
- Alessio Coi
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Moschini R, Marini I, Malerba M, Cappiello M, Del Corso A, Mura U. Chaperone-like activity of alpha-crystallin toward aldose reductase oxidatively stressed by copper ion. Arch Biochem Biophys 2006; 453:13-7. [PMID: 16615933 DOI: 10.1016/j.abb.2006.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 03/08/2006] [Indexed: 11/17/2022]
Abstract
The protective action of alpha-crystallin against copper-induced protein stress is studied using bovine lens aldose reductase (ALR2) as protein model. The oxidative inactivation of ALR2 induced by CuCl2 at the stoichiometric Cu2+/ALR2 ratio of 2/1 [I. Cecconi, M. Moroni, P.G. Vilardo, M. Dal Monte, P. Borella, G. Rastelli, L. Costantino, D. Garland, D. Carper, J.M. Petrash, A. Del Corso, U. Mura, Biochemistry 37 (1998) 14167-14174] is accompanied by protein aggregation phenomena when the metal ion concentration is increased (Cu2+/ALR2>3). Protein oxidation precedes protein precipitation. Both inactivation and precipitation of ALR2 are prevented by alpha-crystallin in a concentration-dependent manner. The rationale for the stabilization of ALR2 exerted by alpha-crystallin at low metal concentration is given on the basis of the ability of alpha-crystallin to chelate copper. However, the overall protective action exerted by alpha-crystallin at higher copper concentration may be explained invoking the contribution of the special features of alpha-crystallin to easily interact with target proteins undergoing structural rearrangement.
Collapse
Affiliation(s)
- Roberta Moschini
- Department of Biology, Section of Biochemistry, University of Pisa, via S. Zeno, 51, 56126 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Kumar M, Reddy P, Sreedhar B, Reddy G. Alphab-crystallin-assisted reactivation of glucose-6-phosphate dehydrogenase upon refolding. Biochem J 2006; 391:335-41. [PMID: 15952936 PMCID: PMC1276932 DOI: 10.1042/bj20050506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alphab-crystallin, a small heat-shock protein has been shown to prevent the aggregation of other proteins under various stress conditions. We have investigated the role of alphaB-crystallin in the reactivation of denaturant [GdmCl (guanidinium chloride)]-inactivated G6PD (glucose-6-phosphate dehydrogenase). Studies indicate that unfolding and inactivation of G6PD by GdmCl proceeds via formation of a molten globule-like state at low concentrations of GdmCl, which was characterized by having maximum surface hydrophobicity and no catalytic activity. At high concentrations of GdmCl, G6PD was completely unfolded, which upon dilution-induced refolding yielding 35% of original activity. In contrast, no activity was recovered when G6PD was refolded from a molten globule-like state. Interestingly, refolding of completely unfolded G6PD in the presence of alphaB-crystallin resulted in 70% gain of the original activity, indicating that alphaB-crystallin assisted in enhanced refolding of G6PD. Intriguingly, alphaB-crystallin was unable to reactivate G6PD from a molten globule-like state. Size-exclusion chromatography data indicate that alphaB-crystallin-assisted reactivation of completely unfolded G6PD is concomitant with the restoration of the native structure of G6PD. Nonetheless, alphaB-crystallin failed to reactivate G6PD from preformed aggregates. Moreover, methylglyoxal-modified alpha-crystallin, which occurs in aged and diabetic cataract lenses, was less efficient in the reactivation of denaturant inactivated G6PD. Diminished chaperone-like activity of alpha-crystallin due to post-translational modifications may thus result in the accumulation of aggregated/inactivated proteins.
Collapse
Affiliation(s)
- M. Satish Kumar
- National Institute of Nutrition (ICMR), Jamai Osmania, Hyderabad 500 007, India
| | - P. Yadagiri Reddy
- National Institute of Nutrition (ICMR), Jamai Osmania, Hyderabad 500 007, India
| | - B. Sreedhar
- National Institute of Nutrition (ICMR), Jamai Osmania, Hyderabad 500 007, India
| | - G. Bhanuprakash Reddy
- National Institute of Nutrition (ICMR), Jamai Osmania, Hyderabad 500 007, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
16
|
Coi A, Bianucci AM, Ganadu ML, Mura GM. A modeling study of αB-crystallin in complex with zinc for seeking of correlations between chaperone-like activity and exposure of hydrophobic surfaces. Int J Biol Macromol 2005; 36:208-14. [PMID: 16098576 DOI: 10.1016/j.ijbiomac.2005.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 06/10/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
Three-dimensional models for alphaB-crystallin and its complex with zinc were obtained by molecular homology modeling and quantum mechanical calculations in order to explain the effect of the metal on the chaperone-like activity of alphaB-crystallin. In fact, measurements of the chaperone-like activity of alphaB-crystallin revealed that it is significantly increased in presence of the zinc. The theoretical models allowed us to estimate the increased exposition of hydrophobic residues caused by the presence of zinc, suggesting a relationship between structural changes and the increased chaperone-like activity.
Collapse
Affiliation(s)
- Alessio Coi
- Dipartimento di Chimica, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | | | | | | |
Collapse
|
17
|
Pasta SY, Raman B, Ramakrishna T, Rao CM. Role of the Conserved SRLFDQFFG Region of α-Crystallin, a Small Heat Shock Protein. J Biol Chem 2003; 278:51159-66. [PMID: 14532291 DOI: 10.1074/jbc.m307523200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small heat shock proteins (sHsps) are necessary for several cellular functions and in stress tolerance. Most sHsps are oligomers; intersubunit interactions leading to changes in oligomeric structure and exposure of specific regions may modulate their functioning. Many sHsps, including alpha A- and alpha B-crystallin, contain a well conserved SRLFDQFFG sequence motif in the N-terminal region. Sequence-based prediction shows that it exhibits helical propensity with amphipathic character, suggesting that it plays a critical role in the structure and function of alpha-crystallins. In order to investigate the role of this motif in the structure and function of sHsps, we have made constructs deleting this sequence from alpha A- and alpha B-crystallin, overexpressed, purified, and studied these engineered proteins. Circular dichroism spectroscopic studies show changes in tertiary and secondary structure on deletion of the sequence. Glycerol density gradient centrifugation and dynamic light scattering studies show that the multimeric size of the mutant proteins is significantly reduced, indicating a role for this motif in higher order organization of the subunits. Both deletion mutants exhibit similar oligomeric size and increased chaperone-like activity. Urea-induced denaturation study shows that the SRLFDQFFG sequence contributes significantly to the structural stability. Fluorescence resonance energy transfer studies show that the rate of exchange of the subunits in the alpha Adel-crystallin oligomer is higher compared with that in the alpha A-crystallin oligomer, suggesting that this region contributes to the oligomer dynamics in addition to the higher order assembly and structural stability. Thus, our study shows that the SRLFDQFFG sequence is one of the critical motifs in structure-function regulation of alpha A- and alpha B-crystallin.
Collapse
|
18
|
Yan H, Harding JJ, Hui YN, Li MY. Decreased chaperone activity of alpha-crystallin in selenite cataract may result from selenite-induced aggregation. Eye (Lond) 2003; 17:637-45. [PMID: 12855974 DOI: 10.1038/sj.eye.6700419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To investigate the role of chaperone activity of alpha-crystallin in selenite-induced cataract formation. METHODS Selenite cataract was induced in Sprague-Dawley rats by five subcutaneous injections of sodium selenite over a 20-day period starting at 8-10 days postpartum. alpha-Crystallin was separated from the rat lenses by size-exclusion chromatography. Bovine alpha(L)-crystallin and beta(L)-crystallin were isolated for studies in vitro, and for the chaperone assays. The protective effects of both alpha(H)- and alpha(L)-crystallin were measured spectrophotometrically in four different assay procedures including the thermally induced aggregation of catalase and beta(L)-crystallin, and the fructation- and heat-induced inactivation of catalase. The bovine alpha(L)-crystallin was incubated with different concentrations of sodium selenite for 72 h and then its chaperone activity against heat-induced beta(L)-crystallin aggregation was assayed. The aggregation of selenite-treated alpha(L)-crystallin was analysed by molecular sieve high-performance liquid chromatography (HPLC). RESULTS The protection of alpha(H)-crystallin was less than that of alpha(L)-crystallin in both normal and cataractous lenses. The chaperone activities of both alpha(H)- and alpha(L)-crystallin in selenite cataract were decreased compared with normal lenses. The protection provided by both alpha(H)-crystallin and alpha(L)-crystallin against the thermal aggregation of catalase was much greater than their protection against thermally and chemically induced inactivation. HPLC analysis demonstrated aggregation of alpha-crystallin by sodium selenite after 24 h incubation in a dose-dependent fashion. CONCLUSION The chaperone activity of alpha-crystallin presented parallel patterns of activity with different methods, further supporting the view that the different assays measure essentially the same property. The decreased chaperone activity of alpha-crystallin in selenite cataract may result from selenite-induced aggregation.
Collapse
Affiliation(s)
- H Yan
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | | | | | | |
Collapse
|
19
|
Srinivas V, Raman B, Rao KS, Ramakrishna T, Rao CM. Structural perturbation and enhancement of the chaperone-like activity of alpha-crystallin by arginine hydrochloride. Protein Sci 2003; 12:1262-70. [PMID: 12761397 PMCID: PMC2323889 DOI: 10.1110/ps.0302003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Structural perturbation of alpha-crystallin is shown to enhance its molecular chaperone-like activity in preventing aggregation of target proteins. We demonstrate that arginine, a biologically compatible molecule that is known to bind to the peptide backbone and negatively charged side-chains, increases the chaperone-like activity of calf eye lens alpha-crystallin as well as recombinant human alphaA- and alphaB-crystallins. Arginine-induced increase in the chaperone activity is more pronounced for alphaB-crystallin than for alphaA-crystallin. Other guanidinium compounds such as aminoguanidine hydrochloride and guanidine hydrochloride also show a similar effect, but to different extents. A point mutation, R120G, in alphaB-crystallin that is associated with desmin-related myopathy, results in a significant loss of chaperone-like activity. Arginine restores the activity of mutant protein to a considerable extent. We have investigated the effect of arginine on the structural changes of alpha-crystallin by circular dichroism, fluorescence, and glycerol gradient sedimentation. Far-UV CD spectra show no significant changes in secondary structure, whereas near-UV CD spectra show subtle changes in the presence of arginine. Glycerol gradient sedimentation shows a significant decrease in the size of alpha-crystallin oligomer in the presence of arginine. Increased exposure of hydrophobic surfaces of alpha-crystallin, as monitored by pyrene-solubilization and ANS-fluorescence, is observed in the presence of arginine. These results show that arginine brings about subtle changes in the tertiary structure and significant changes in the quaternary structure of alpha-crystallin and enhances its chaperone-like activity significantly. This study should prove useful in designing strategies to improve chaperone function for therapeutic applications.
Collapse
Affiliation(s)
- Volety Srinivas
- Centre for Cellular & Molecular Biology, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
20
|
Abstract
Alpha A and alpha B-crystallins are a major protein component of the mammalian eye lens. Being a member of the small heat-shock protein family they possess chaperone-like function. The alpha-crystallins and especially alpha B is also found outside the lens having an extensive tissue distribution. Alpha B-crystallin is found to be over-expressed in many neurological diseases, and mutations in alpha A or B-crystallin can cause cataract and myopathy. This review deals with some of the unique properties of the alpha-crystallins emphasizing especially what we don't know about its function and structure.
Collapse
Affiliation(s)
- Joseph Horwitz
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza RM B168, Los Angeles, CA 90095-7008, USA.
| |
Collapse
|
21
|
Day RM, Gupta JS, MacRae TH. A small heat shock/α-crystallin protein from encysted Artemia embryos suppresses tubulin denaturation. Cell Stress Chaperones 2003; 8:183-93. [PMID: 14627204 PMCID: PMC514870 DOI: 10.1379/1466-1268(2003)008<0183:ashcpf>2.0.co;2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Small heat shock/alpha-crystallin proteins function as molecular chaperones, protecting other proteins from irreversible denaturation by an energy-independent process. The brine shrimp, Artemia franciscana, produces a small heat shock/alpha-crystallin protein termed p26, found in embryos undergoing encystment, diapause, and metabolic arrest. These embryos withstand long-term anoxia and other stresses normally expected to cause death, a property likely dependent on molecular chaperone activity. The association of p26 with tubulin in unfractionated cell-free extracts of Artemia embryos was established by affinity chromatography, suggesting that p26 chaperones tubulin during encystment. To test this possibility, both proteins were purified by modifying published protocols, thereby simplifying the procedures, enhancing p26 yield about 2-fold, and recovering less tubulin than before. The denaturation of purified tubulin as it "aged" and exposed hydrophobic sites during incubation at 35 degrees C was greatly reduced when p26 was present; however, tubulin polymerization into microtubules was reduced. On incubation at 35 degrees C, centrifugation in sucrose density gradients demonstrated the association of purified p26 with tubulin. This is the first study where the relationship between a small heat shock/alpha-crystallin protein and tubulin from the same physiologically stressed organism was examined. The results support the proposal that p26 binds tubulin and prevents its denaturation, thereby increasing the resistance of encysted Artemia embryos to stress. Additional factors are apparently required for release of tubulin from p26 and restoration of efficient assembly, events that would occur as embryos resume development and the need for microtubules is established.
Collapse
Affiliation(s)
- Rossalyn M Day
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1
| | | | | |
Collapse
|
22
|
Pasta SY, Raman B, Ramakrishna T, Rao CM. Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity. J Biol Chem 2002; 277:45821-8. [PMID: 12235146 DOI: 10.1074/jbc.m206499200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several small heat shock proteins contain a well conserved alpha-crystallin domain, flanked by an N-terminal domain and a C-terminal extension, both of which vary in length and sequence. The structural and functional role of the C-terminal extension of small heat shock proteins, particularly of alphaA- and alphaB-crystallins, is not well understood. We have swapped the C-terminal extensions between alphaA- and alphaB-crystallins and generated two novel chimeric proteins, alphaABc and alphaBAc. We have investigated the domain-swapped chimeras for structural and functional alterations. We have used thermal and non-thermal models of protein aggregation and found that the chimeric alphaB with the C-terminal extension of alphaA-crystallin, alphaBAc, exhibits dramatically enhanced chaperone-like activity. Interestingly, however, the chimeric alphaA with the C-terminal extension of alphaB-crystallin, alphaABc, has almost lost its activity. Pyrene solubilization and bis-1-anilino-8-naphthalenesulfonate binding studies show that alphaBAc exhibits more solvent-exposed hydrophobic pockets than alphaA, alphaB, or alphaABc. Significant tertiary structural changes are revealed by tryptophan fluorescence and near-UV CD studies upon swapping the C-terminal extensions. The far-UV CD spectrum of alphaBAc differs from that of alphaB-crystallin whereas that of alphaABc overlaps with that of alphaA-crystallin. Gel filtration chromatography shows alteration in the size of the proteins upon swapping the C-terminal extensions. Our study demonstrates that the unstructured C-terminal extensions play a crucial role in the structure and chaperone activity, in addition to generally believed electrostatic "solubilizer" function.
Collapse
Affiliation(s)
- Saloni Yatin Pasta
- Centre for Cellular and Molecular Biology, Hyderabad, Andhrapradesh 500 007, India
| | | | | | | |
Collapse
|
23
|
Tanksale A, Ghatge M, Deshpande V. Alpha-crystallin binds to the aggregation-prone molten-globule state of alkaline protease: implications for preventing irreversible thermal denaturation. Protein Sci 2002; 11:1720-8. [PMID: 12070325 PMCID: PMC2384148 DOI: 10.1110/ps.0201802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2002] [Revised: 04/03/2002] [Accepted: 04/16/2002] [Indexed: 10/14/2022]
Abstract
Alpha-crystallin, the major eye-lens protein with sequence homology with heat-shock proteins (HSPs), acts like a molecular chaperone by suppressing the aggregation of damaged crystallins and proteins. To gain more insight into its chaperoning ability, we used a protease as the model system that is known to require a propeptide (intramolecular chaperone) for its proper folding. The protease ("N" state) from Conidiobolus macrosporus (NCIM 1298) unfolds at pH 2.0 ("U" state) through a partially unfolded "I" state at pH 3.5 that undergoes transition to a molten globule-(MG) like "I(A)" state in the presence of 0.5 M sodium sulfate. The thermally-stressed I(A) state showed complete loss of structure and was prone to aggregation. Alpha-crystallin was able to bind to this state and suppress its aggregation, thereby preventing irreversible denaturation of the enzyme. The alpha-crystallin-bound I(A) state exhibited native-like secondary and tertiary structure showing the interaction of alpha-crystallin with the MG state of the protease. 8-Anilinonaphthalene sulphonate (ANS) binding studies revealed the involvement of hydrophobic interactions in the formation of the complex of alpha-crystallin and protease. Refolding of acid-denatured protease by dilution to pH 7.5 resulted in aggregation of the protein. Unfolding of the protease in the presence of alpha-crystallin and its subsequent refolding resulted in the generation of a near-native intermediate with partial secondary and tertiary structure. Our studies represent the first report of involvement of a molecular chaperone-like alpha-crystallin in the unfolding and refolding of a protease. Alpha-crystallin blocks the unfavorable pathways that lead to irreversible denaturation of the alkaline protease and keeps it in a near-native, folding-competent intermediate state.
Collapse
Affiliation(s)
- Aparna Tanksale
- Levine Science Research Center, Duke University, Durham, NC 27708, USA
| | | | | |
Collapse
|
24
|
Crack JA, Mansour M, Sun Y, MacRae TH. Functional analysis of a small heat shock/alpha-crystallin protein from Artemia franciscana. Oligomerization and thermotolerance. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:933-42. [PMID: 11846795 DOI: 10.1046/j.0014-2956.2001.02726.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oviparously developing embryos of the brine shrimp, Artemia franciscana, synthesize abundant quantities of a small heat shock/alpha-crystallin protein, termed p26. Wild-type p26 functions as a molecular chaperone in vitro and is thought to help encysted Artemia embryos survive severe physiological stress encountered during diapause and anoxia. Full-length and truncated p26 cDNA derivatives were generated by PCR amplification of p26-3-6-3, then cloned in either pET21(+) or pRSETC and expressed in Escherichia coli BL21(DE3). All constructs gave a polypeptide detectable on Western blots with either p26 specific antibody, or with antibody to the His(6) epitope tag encoded by pRSETC. Full-length p26 in cell-free extracts of E. coli was about equal in mass to that found in Artemia embryos, but p26 lacking N- and C-terminal residues remained either as monomers or small multimers. All p26 constructs conferred thermotolerance on transformed E. coli, although not all formed oligomers, and cells expressing N-terminal truncated derivatives of p26 were more heat resistant than bacteria expressing p26 with C-terminal deletions. The C-terminal extension of p26 is seemingly more important for thermotolerance than is the N-terminus, and p26 protects E. coli against heat shock when oligomer size and protein concentration are low. The findings have important implications for understanding the functional mechanisms of small heat shock/alpha-crystallin proteins.
Collapse
Affiliation(s)
- Julie A Crack
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
25
|
Goenka S, Raman B, Ramakrishna T, Rao CM. Unfolding and refolding of a quinone oxidoreductase: alpha-crystallin, a molecular chaperone, assists its reactivation. Biochem J 2001; 359:547-56. [PMID: 11672428 PMCID: PMC1222175 DOI: 10.1042/0264-6021:3590547] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
alpha-Crystallin, a member of the small heat-shock protein family and present in vertebrate eye lens, is known to prevent the aggregation of other proteins under conditions of stress. However, its role in the reactivation of enzymes from their non-native inactive states has not been clearly demonstrated. We have studied the effect of alpha-crystallin on the refolding of zeta-crystallin, a quinone oxidoreductase, from its different urea-denatured states. Co-refolding zeta-crystallin from its denatured state in 2.5 M urea with either calf eye lens alpha-crystallin or recombinant human alpha B-crystallin could significantly enhance its reactivation yield. alpha B-crystallin was found to be more efficient than alpha A-crystallin in chaperoning the refolding of zeta-crystallin. In order to understand the nature of the denatured state(s) of zeta-crystallin that can interact with alpha-crystallin, we have investigated the unfolding pathway of zeta-crystallin. We find that it unfolds through three distinct intermediates: an altered tetramer, a partially unfolded dimer, which is competent to fold back to its active state, and a partially unfolded monomer. The partially unfolded monomer is inactive, exhibits highly exposed hydrophobic surfaces and has significant secondary structural elements with little or no tertiary structure. This intermediate does not refold into the active state without assistance. alpha-Crystallin provides the required assistance and improves the reactivation yield several-fold.
Collapse
Affiliation(s)
- S Goenka
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | | | | |
Collapse
|
26
|
Rajaraman K, Raman B, Ramakrishna T, Rao CM. Interaction of human recombinant αA- and αB-crystallins with early and late unfolding intermediates of citrate synthase on its thermal denaturation. FEBS Lett 2001; 497:118-23. [PMID: 11377425 DOI: 10.1016/s0014-5793(01)02451-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the role of recombinant human alphaA- and alphaB-crystallins in the heat-induced inactivation and aggregation of citrate synthase. Homo-multimers of both alphaA- and alphaB-crystallins confer protection against heat-induced inactivation in a concentration-dependent manner and also prevent aggregation. Interaction of crystallins with early unfolding intermediates of citrate synthase reduces their partitioning into aggregation-prone intermediates. This appears to result in enhanced population of early unfolding intermediates that can be reactivated by its substrate, oxaloacetate. Both these homo-multimers do not form a stable complex with the early unfolding intermediates. However, they can form a soluble, stable complex with aggregation-prone late unfolding intermediates. This soluble complex formation prevents aggregation. Thus, it appears that the chaperone activity of alpha-crystallin involves both transient and stable interactions depending on the nature of intermediates on the unfolding pathway; one leads to reactivation of the enzyme activity while the other prevents aggregation.
Collapse
Affiliation(s)
- K Rajaraman
- Centre for Cellular and Molecular Biology, 500 007, Hyderabad, India
| | | | | | | |
Collapse
|