1
|
Daniyan MO, Singh H, Blatch GL. The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans. Int J Mol Sci 2024; 25:12302. [PMID: 39596368 PMCID: PMC11594657 DOI: 10.3390/ijms252212302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Plasmodium knowlesi is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in Plasmodium falciparum, and shown to contribute to malaria pathology, there is currently very limited information on the P. knowlesi JDPs (PkJDPs). This review provides a critical analysis of the literature and publicly available data on PkJDPs. Interestingly, the P. knowlesi genome encodes at least 31 PkJDPs, with well over half belonging to the most diverse types which contain only the signature J domain (type IIIs, 19) or a corrupted version of the J domain (type IVs, 2) as evidence of their membership. The more typical PkJDPs containing other domains typical of JDPs in addition to the J domain are much fewer in number (type IIs, 8; type Is, 2). This study indentifies PkJDPs that are potentially involved in: folding of newly synthesized or misfolded proteins within the P. knowlesi cytosol (a canonical type I and certain typical type IIs); protein translocation (a type III) and folding (a type II) in the ER; and protein import into mitochondria (a type III). Interestingly, a type II PkJDP is potentially exported to the host cell cytosol where it may recruit human HSP70 for the trafficking and folding of other exported P. knowlesi proteins. Experimental studies are required on this fascinating family of proteins, not only to validate their role in the pathology of knowlesi malaria, but also because they represent potential anti-malarial drug targets.
Collapse
Affiliation(s)
- Michael O Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar 144008, India
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA 6959, Australia
| |
Collapse
|
2
|
Singh H, Almaazmi SY, Dutta T, Keyzers RA, Blatch GL. In silico identification of modulators of J domain protein-Hsp70 interactions in Plasmodium falciparum: a drug repurposing strategy against malaria. Front Mol Biosci 2023; 10:1158912. [PMID: 37621993 PMCID: PMC10445141 DOI: 10.3389/fmolb.2023.1158912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Plasmodium falciparum is a unicellular, intracellular protozoan parasite, and the causative agent of malaria in humans, a deadly vector borne infectious disease. A key phase of malaria pathology, is the invasion of human erythrocytes, resulting in drastic remodeling by exported parasite proteins, including molecular chaperones and co-chaperones. The survival of the parasite within the human host is mediated by P. falciparum heat shock protein 70s (PfHsp70s) and J domain proteins (PfJDPs), functioning as chaperones-co-chaperones partnerships. Two complexes have been shown to be important for survival and pathology of the malaria parasite: PfHsp70-x-PFE0055c (exported); and PfHsp70-2-PfSec63 (endoplasmic reticulum). Virtual screening was conducted on the drug repurposing library, the Pandemic Response Box, to identify small-molecules that could specifically disrupt these chaperone complexes. Five top ranked compounds possessing preferential binding affinity for the malarial chaperone system compared to the human system, were identified; three top PfHsp70-PfJDP binders, MBX 1641, zoliflodacin and itraconazole; and two top J domain binders, ezetimibe and a benzo-diazepinone. These compounds were validated by repeat molecular dockings and molecular dynamics simulation, resulting in all the compounds, except for MBX 1461, being confirmed to bind preferentially to the malarial chaperone system. A detailed contact analysis of the PfHsp70-PfJDP binders identified two different types of modulators, those that potentially inhibit complex formation (MBX 1461), and those that potentially stabilize the complex (zoliflodacin and itraconazole). These data suggested that zoliflodacin and itraconazole are potential novel modulators specific to the malarial system. A detailed contact analysis of the J domain binders (ezetimibe and the benzo-diazepinone), revealed that they bound with not only greater affinity but also a better pose to the malarial J domain compared to that of the human system. These data suggested that ezetimibe and the benzo-diazepinone are potential specific inhibitors of the malarial chaperone system. Both itraconazole and ezetimibe are FDA-approved drugs, possess anti-malarial activity and have recently been repurposed for the treatment of cancer. This is the first time that such drug-like compounds have been identified as potential modulators of PfHsp70-PfJDP complexes, and they represent novel candidates for validation and development into anti-malarial drugs.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Shaikha Y. Almaazmi
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Tanima Dutta
- Department of Diagnostic Genomics, Path West Nedlands, QEII Medical Centre, Nedlands, WA, Australia
| | - Robert A. Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory L. Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
- Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
3
|
Van Doorslaer K, Kraberger S, Austin C, Farkas K, Bergeman M, Paunil E, Davison W, Varsani A. Fish polyomaviruses belong to two distinct evolutionary lineages. J Gen Virol 2018. [PMID: 29517483 PMCID: PMC5982132 DOI: 10.1099/jgv.0.001041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Polyomaviridae is a diverse family of circular double-stranded DNA viruses. Polyomaviruses have been isolated from a wide array of animal hosts. An understanding of the evolutionary and ecological dynamics of these viruses is essential to understanding the pathogenicity of polyomaviruses. Using a high throughput sequencing approach, we identified a novel polyomavirus in an emerald notothen (Trematomus bernacchii) sampled in the Ross sea (Antarctica), expanding the known number of fish-associated polyomaviruses. Our analysis suggests that polyomaviruses belong to three main evolutionary clades; the first clade is made up of all recognized terrestrial polyomaviruses. The fish-associated polyomaviruses are not monophyletic, and belong to two divergent evolutionary lineages. The fish viruses provide evidence that the evolution of the key viral large T protein involves gain and loss of distinct domains.
Collapse
Affiliation(s)
- Koenraad Van Doorslaer
- Cancer Biology Graduate Interdisciplinary Program, Genetics Graduate Interdisciplinary Program, Bio5 Institute, and the University of Arizona Cancer Center University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA.,School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Charlotte Austin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Kata Farkas
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,School of Environment, Natural Resources and Geography Bangor University Bangor, LL57 2UW, UK
| | - Melissa Bergeman
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - Emma Paunil
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1657 E Helen St., Tucson, AZ 85721, USA
| | - William Davison
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
4
|
Baez CF, Brandão Varella R, Villani S, Delbue S. Human Polyomaviruses: The Battle of Large and Small Tumor Antigens. Virology (Auckl) 2017; 8:1178122X17744785. [PMID: 29238174 PMCID: PMC5721967 DOI: 10.1177/1178122x17744785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
About 40 years ago, the large and small tumor antigens (LT-Ag and sT-Ag) of the polyomavirus (PyVs) simian vacuolating virus 40 have been identified and characterized. To date, it is well known that all the discovered human PyVs (HPyVs) encode these 2 multifunctional and tumorigenic proteins, expressed at viral replication early stage. The 2 T-Ags are able to transform cells both in vitro and in vivo and seem to play a distinct role in the pathogenesis of some tumors in humans. In addition, they are involved in viral DNA replication, transcription, and virion assembly. This short review focuses on the structural and functional features of the HPyVs’ LT-Ag and sT-Ag, with special attention to their transforming properties.
Collapse
Affiliation(s)
- Camila Freze Baez
- Department of Preventive Medicine, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milano, Milano, Italy
| |
Collapse
|
5
|
Hoffmann F, Vancea I, Kamat SG, Strodel B. Protein structure prediction: assembly of secondary structure elements by basin-hopping. Chemphyschem 2014; 15:3378-90. [PMID: 25056272 DOI: 10.1002/cphc.201402247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 12/30/2022]
Abstract
The prediction of protein tertiary structure from primary structure remains a challenging task. One possible approach to this problem is the application of basin-hopping global optimization combined with an all-atom force field. In this work, the efficiency of basin-hopping is improved by introducing an approach that derives tertiary structures from the secondary structure assignments of individual residues. This approach is termed secondary-to-tertiary basin-hopping and benchmarked for three miniproteins: trpzip, trp-cage and ER-10. For each of the three miniproteins, the secondary-to-tertiary basin-hopping approach successfully and reliably predicts their three-dimensional structure. When it is applied to larger proteins, correctly folded structures are obtained. It can be concluded that the assembly of secondary structure elements using basin-hopping is a promising tool for de novo protein structure prediction.
Collapse
Affiliation(s)
- Falk Hoffmann
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich (Germany)
| | | | | | | |
Collapse
|
6
|
Hatherley R, Blatch GL, Bishop ÖT. Plasmodium falciparumHsp70-x: a heat shock protein at the host–parasite interface. J Biomol Struct Dyn 2013; 32:1766-79. [DOI: 10.1080/07391102.2013.834849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Chebaro Y, Pasquali S, Derreumaux P. The Coarse-Grained OPEP Force Field for Non-Amyloid and Amyloid Proteins. J Phys Chem B 2012; 116:8741-52. [DOI: 10.1021/jp301665f] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yassmine Chebaro
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
| | - Samuela Pasquali
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
| | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique,
CNRS UPR 9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique,
13 rue Pierre et Marie Curie, 75005 Paris
- Institut Universitaire de France, 103 Bvd Saint-Michel, Paris 75005, France
| |
Collapse
|
8
|
Fluck MM, Schaffhausen BS. Lessons in signaling and tumorigenesis from polyomavirus middle T antigen. Microbiol Mol Biol Rev 2009; 73:542-63, Table of Contents. [PMID: 19721090 PMCID: PMC2738132 DOI: 10.1128/mmbr.00009-09] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The small DNA tumor viruses have provided a very long-lived source of insights into many aspects of the life cycle of eukaryotic cells. In recent years, the emphasis has been on cancer-related signaling. Here we review murine polyomavirus middle T antigen, its mechanisms, and its downstream pathways of transformation. We concentrate on the MMTV-PyMT transgenic mouse, one of the most studied models of breast cancer, which permits the examination of in situ tumor progression from hyperplasia to metastasis.
Collapse
Affiliation(s)
- Michele M Fluck
- Department of Microbiology and Molecular Genetics, Interdepartmental Program in Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
9
|
Knoblich K, Whittaker S, Ludwig C, Michiels P, Jiang T, Schaffhausen B, Günther U. Backbone assignment of the N-terminal polyomavirus large T antigen. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:119-23. [PMID: 19636961 DOI: 10.1007/s12104-009-9155-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/23/2009] [Indexed: 05/13/2023]
Abstract
Polyoma Large T antigen (PyLT) is a viral oncoprotein that targets cell proteins important for growth regulation. PyLT has two functional domains. Here we report (1)H, (15)N, (13)C backbone and (13)C beta assignments of 76% of the residues of the polyomavirus large T antigen N-terminal domain (PyLTNT) that is sufficient to regulate cell phenotype. PyLTNT is substantially unfolded even in regions known to be critical for its biological function. The protein also includes a previously characterised J domain that although conformationally influenced by the residue extension, retains its folded state unlike the majority of the protein sequence.
Collapse
Affiliation(s)
- Konstantin Knoblich
- HWB-NMR, School for Cancer Sciences, Birmingham University, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Cho US, Morrone S, Sablina AA, Arroyo JD, Hahn WC, Xu W. Structural basis of PP2A inhibition by small t antigen. PLoS Biol 2008; 5:e202. [PMID: 17608567 PMCID: PMC1945078 DOI: 10.1371/journal.pbio.0050202] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/21/2007] [Indexed: 12/16/2022] Open
Abstract
The SV40 small t antigen (ST) is a potent oncoprotein that perturbs the function of protein phosphatase 2A (PP2A). ST directly interacts with the PP2A scaffolding A subunit and alters PP2A activity by displacing regulatory B subunits from the A subunit. We have determined the crystal structure of full-length ST in complex with PP2A A subunit at 3.1 Å resolution. ST consists of an N-terminal J domain and a C-terminal unique domain that contains two zinc-binding motifs. Both the J domain and second zinc-binding motif interact with the intra-HEAT-repeat loops of HEAT repeats 3–7 of the A subunit, which overlaps with the binding site of the PP2A B56 subunit. Intriguingly, the first zinc-binding motif is in a position that may allow it to directly interact with and inhibit the phosphatase activity of the PP2A catalytic C subunit. These observations provide a structural basis for understanding the oncogenic functions of ST. The study of how DNA tumor viruses induce malignant transformation has led to the identification of key pathways that also play a role in spontaneously arising cancers. One such virus, simian virus 40 (SV40), produces two proteins, the large T and small t antigens, that bind and inactivate tumor suppressor genes important for cell transformation. Specifically, SV40 small t antigen (ST) binds to and perturbs the function of the abundant protein phosphatase 2A (PP2A). PP2A is a family of heterotrimeric enzymes, composed of a structural A subunit, a catalytic C subunit, and one of several regulatory B subunits. Here we have determined the structure of SV40 ST in complex with the PP2A structural subunit Aα. SV40 ST consists of an N-terminal J domain and a C-terminal unique domain that contains two separate zinc-binding motifs. SV40 ST binds to the same region of PP2A as the regulatory subunit B56, which provides a structural explanation for the displacement of regulatory B subunits by SV40 ST. Taken together, these observations provide a structural basis for understanding the oncogenic functions of ST. The crystal structure of full-length SV40 small t antigen (ST) in complex with the A subunit of its target, protein phosphatase 2A, contributes to our understanding of the oncogenic functions of ST.
Collapse
Affiliation(s)
- Uhn Soo Cho
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Seamus Morrone
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Anna A Sablina
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Jason D Arroyo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Berjanskii MV, Wishart DS. Application of the random coil index to studying protein flexibility. JOURNAL OF BIOMOLECULAR NMR 2008; 40:31-48. [PMID: 17985196 DOI: 10.1007/s10858-007-9208-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 10/10/2007] [Indexed: 05/19/2023]
Abstract
Protein flexibility lies at the heart of many protein-ligand binding events and enzymatic activities. However, the experimental measurement of protein motions is often difficult, tedious and error-prone. As a result, there is a considerable interest in developing simpler and faster ways of quantifying protein flexibility. Recently, we described a method, called Random Coil Index (RCI), which appears to be able to quantitatively estimate model-free order parameters and flexibility in protein structural ensembles using only backbone chemical shifts. Because of its potential utility, we have undertaken a more detailed investigation of the RCI method in an attempt to ascertain its underlying principles, its general utility, its sensitivity to chemical shift errors, its sensitivity to data completeness, its applicability to other proteins, and its general strengths and weaknesses. Overall, we find that the RCI method is very robust and that it represents a useful addition to traditional methods of studying protein flexibility. We have implemented many of the findings and refinements reported here into a web server that allows facile, automated predictions of model-free order parameters, MD RMSF and NMR RMSD values directly from backbone 1H, 13C and 15N chemical shift assignments. The server is available at http://wishart.biology.ualberta.ca/rci.
Collapse
Affiliation(s)
- Mark V Berjanskii
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
12
|
Nicoll W, Botha M, McNamara C, Schlange M, Pesce ER, Boshoff A, Ludewig M, Zimmermann R, Cheetham M, Chapple J, Blatch G. Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK. Int J Biochem Cell Biol 2006; 39:736-51. [PMID: 17239655 PMCID: PMC1906734 DOI: 10.1016/j.biocel.2006.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/12/2006] [Accepted: 11/14/2006] [Indexed: 02/05/2023]
Abstract
Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I–IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.
Collapse
Affiliation(s)
- W.S. Nicoll
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M. Botha
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - C. McNamara
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M. Schlange
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - E.-R. Pesce
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - A. Boshoff
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M.H. Ludewig
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - R. Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Universität des Saarlandes, Homburg D66421, Germany
| | - M.E. Cheetham
- Division of Molecular and Cellular Neuroscience, Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - J.P. Chapple
- Center for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London C1M 6BQ, UK
| | - G.L. Blatch
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
- Corresponding author. Tel.: +27 46 603 8262; fax: +27 46 622 3984.
| |
Collapse
|
13
|
Garimella R, Liu X, Qiao W, Liang X, Zuiderweg ERP, Riley MI, Van Doren SR. Hsc70 contacts helix III of the J domain from polyomavirus T antigens: addressing a dilemma in the chaperone hypothesis of how they release E2F from pRb. Biochemistry 2006; 45:6917-29. [PMID: 16734427 DOI: 10.1021/bi060411d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsc70's expected binding site on helix II of the J domain of T antigens appears to be blocked in its structure bound to tumor suppressor pRb. We used NMR to map where mammalian Hsc70 binds the J domain of murine polyomavirus T antigens (PyJ). The ATPase domain of Hsc70 unexpectedly has its biggest effects on the NMR peak positions of the C-terminal end of helix III of PyJ. The Hsc70 ATPase domain protects the C-terminal end of helix III of PyJ from an uncharged paramagnetic probe of chelated Gd(III), clearly suggesting the interface. Effects on the conserved HPD loop and helix II of PyJ are smaller. The NMR results are supported by a novel assay of Hsc70's ATP hydrolysis showing that mutations of surface residues in PyJ helix III impair PyJ-dependent stimulation of Hsc70 activity. Evolutionary trace analysis of J domains suggests that helix III usually may join helix II in contributing specificities for cognate hsp70s. Our novel evidence implicating helix III differs from evidence that Escherichia coli DnaK primarily affects helix II and the HPD loop of DnaJ. We find the pRb-binding fragment of E2F1 to be intrinsically unfolded and a good substrate for Hsc70 in vitro. This suggests that E2F1 could be a substrate for Hsc70 recruited by T antigen to an Rb family member. Importantly, our results strengthen the chaperone hypothesis for E2F release from an Rb family member by Hsc70 recruited by large T antigen. That is, it now appears that Hsc70 can freely access helix III and the HPD motif of large T antigen bound to an Rb family member.
Collapse
Affiliation(s)
- Ravindranath Garimella
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Craig EA, Huang P, Aron R, Andrew A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol 2006; 156:1-21. [PMID: 16634144 DOI: 10.1007/s10254-005-0001-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hsp70s and J-proteins, which constitute one of the most ubiquitous types of molecular chaperone machineries, function in a wide variety of cellular processes. J-proteins play a central role by stimulating an Hsp70's ATPase activity, thereby stabilizing its interaction with client proteins. However, while all J-proteins serve this core purpose, individual proteins are both structurally and functionally diverse. Some, but not all, J-proteins interact with client polypeptides themselves, facilitating their binding to an Hsp70. Some J-proteins have many client proteins, others only one. Certain J-proteins, while not others, are tethered to particular locations within a cellular compartment, thus "recruiting" Hsp70s to the vicinity of their clients. Here we review recent work on the diverse family of J-proteins, outlining emerging themes concerning their function.
Collapse
Affiliation(s)
- E A Craig
- University of Wisconsin-Madison, 441E Biochemistry Addition, Department of Biochemistry, 433 Babcock Drive, Madison, 53706 WI, USA.
| | | | | | | |
Collapse
|
15
|
Ahuja D, Sáenz-Robles MT, Pipas JM. SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 2005; 24:7729-45. [PMID: 16299533 DOI: 10.1038/sj.onc.1209046] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA tumor viruses such as simian virus 40 (SV40) express dominant acting oncoproteins that exert their effects by associating with key cellular targets and altering the signaling pathways they govern. Thus, tumor viruses have proved to be invaluable aids in identifying proteins that participate in tumorigenesis, and in understanding the molecular basis for the transformed phenotype. The roles played by the SV40-encoded 708 amino-acid large T antigen (T antigen), and 174 amino acid small T antigen (t antigen), in transformation have been examined extensively. These studies have firmly established that large T antigen's inhibition of the p53 and Rb-family of tumor suppressors and small T antigen's action on the pp2A phosphatase, are important for SV40-induced transformation. It is not yet clear if the Rb, p53 and pp2A proteins are the only targets through which SV40 transforms cells, or whether additional targets await discovery. Finally, expression of SV40 oncoproteins in transgenic mice results in effects ranging from hyperplasia to invasive carcinoma accompanied by metastasis, depending on the tissue in which they are expressed. Thus, the consequences of SV40 action on these targets depend on the cell type being studied. The identification of additional cellular targets important for transformation, and understanding the molecular basis for the cell type-specific action of the viral T antigens are two important areas through which SV40 will continue to contribute to our understanding of cancer.
Collapse
Affiliation(s)
- Deepika Ahuja
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
16
|
Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL. Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 2005; 14:1697-709. [PMID: 15987899 PMCID: PMC2253343 DOI: 10.1110/ps.051406805] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.
Collapse
Affiliation(s)
- Fritha Hennessy
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | |
Collapse
|
17
|
Abstract
Polyomavirus T antigens share a common N-terminal sequence that comprises a DnaJ domain. DnaJ domains activate DnaK molecular chaperones. The functions of J domains have primarily been tested by mutation of their conserved HPD residues. Here, we report detailed mutagenesis of the polyomavirus J domain in both large T (63 mutants) and middle T (51 mutants) backgrounds. As expected, some J mutants were defective in binding DnaK (Hsc70); other mutants retained the ability to bind Hsc70 but were defective in stimulating its ATPase activity. Moreover, the J domain behaves differently in large T and middle T. A given mutation was twice as likely to render large T unstable as it was to affect middle T stability. This apparently arose from middle T's ability to bind stabilizing proteins such as protein phosphatase 2A (PP2A), since introduction of a second mutation preventing PP2A binding rendered some middle T J-domain mutants unstable. In large T, the HPD residues are critical for Rb-dependent effects on the host cell. Residues Q32, A33, Y34, H49, M52, and N56 within helix 2 and helix 3 of the large T J domain were also found to be required for Rb-dependent transactivation. Cyclin A promoter assays showed that J domain function also contributes to large T transactivation that is independent of Rb. Single point mutations in middle T were generally without effect. However, residue Q37 is critical for middle T's ability to form active signaling complexes. The Q37A middle T mutant was defective in association with pp60(c-src) and in transformation.
Collapse
Affiliation(s)
- Kerry A Whalen
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
18
|
Gruschus JM, Han CJ, Greener T, Ferretti JA, Greene LE, Eisenberg E. Structure of the functional fragment of auxilin required for catalytic uncoating of clathrin-coated vesicles. Biochemistry 2004; 43:3111-9. [PMID: 15023062 DOI: 10.1021/bi0354740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three-dimensional structure of the C-terminal 20 kDa portion of auxilin, which consists of the clathrin binding region and the C-terminal J-domain, has been determined by NMR. Auxilin is an Hsp40 family protein that catalytically supports the uncoating of clathrin-coated vesicles through recruitment of Hsc70 in an ATP hydrolysis-driven process. This 20 kDa auxilin construct contains the minimal sequential region required to uncoat clathrin-coated vesicles catalytically. The tertiary structure consists of six helices, where the first three are unique to auxilin and believed to be important in the catalytic uncoating of clathrin. The last three helices correspond to the canonical J-domain of Hsp40 proteins. The first helix, helix 1, which contains a conserved FEDLL motif believed to be necessary for clathrin binding, is transient and not packed against the rest of the structure. Helix 1 is joined to helix 2 by a flexible linker. Helix 2 packs loosely against the J-domain surface, whereas helix 3 packs tightly and makes critical contributions to the J-domain core. A long insert loop, also unique to the auxilin J-domain, is seen between helix 4 and helix 5. Comparison with a previously reported structure of auxilin containing only helices 3-6 shows a significant difference in the invariant HPD segment of the J-domain. The region where helix 1 is located corresponds to the expected region of the unstructured G/F-rich domain seen in DnaJ, i.e., the canonical N-terminal J-domain protein. In contrast, the location of helix 1 differs from the substrate binding regions of two other Hsp40 proteins, Escherichia coli Hsc20 and viral large T antigen. The variety of biological functions performed by Hsp40 proteins such as auxilin, as well as the observed differences in the structure and function of their substrate binding regions, supports the notion that Hsp40 proteins act as target-specific adaptors that recruit their more general Hsp70 partners to specific biological roles.
Collapse
Affiliation(s)
- James M Gruschus
- Laboratory of Biophysical Chemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-0301, USA
| | | | | | | | | | | |
Collapse
|
19
|
Mayer MP. Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 2004; 153:1-46. [PMID: 15243813 DOI: 10.1007/s10254-004-0025-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Virus proliferation depends on the successful recruitment of host cellular components for their own replication, protein synthesis, and virion assembly. In the course of virus particle production a large number of proteins are synthesized in a relatively short time, whereby protein folding can become a limiting step. Most viruses therefore need cellular chaperones during their life cycle. In addition to their own protein folding problems viruses need to interfere with cellular processes such as signal transduction, cell cycle regulation and induction of apoptosis in order to create a favorable environment for their proliferation and to avoid premature cell death. Chaperones are involved in the control of these cellular processes and some viruses reprogram their host cell by interacting with them. Hsp70 chaperones, as central components of the cellular chaperone network, are frequently recruited by viruses. This review focuses on the function of Hsp70 chaperones at the different stages of the viral life cycle emphasizing mechanistic aspects.
Collapse
Affiliation(s)
- M P Mayer
- Zentrum für Molekulare Biologie, Universität Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Genevaux P, Lang F, Schwager F, Vartikar JV, Rundell K, Pipas JM, Georgopoulos C, Kelley WL. Simian virus 40 T antigens and J domains: analysis of Hsp40 cochaperone functions in Escherichia coli. J Virol 2003; 77:10706-13. [PMID: 12970459 PMCID: PMC228479 DOI: 10.1128/jvi.77.19.10706-10713.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal exon of DNA tumor virus T antigens represents a J domain that can direct interaction with the host-encoded Hsp70 chaperones. We have taken advantage of rapid Hsp40 cochaperone assays with Escherichia coli to assess simian virus 40 (SV40)-encoded J-domain loss of function. We found a strong correlation between loss of cochaperone function in E. coli and defective SV40 growth, suggesting that the major role of the J domain in DNA tumor viruses is to provide cochaperone function. We also report the expression of native SV40 virus T antigens in E. coli. Our results show that small t antigen, but not large T antigen (LT) or LT truncation TN125 or TN136, can functionally replace under limited growth conditions DnaJ (Hsp40) function in vivo. In addition, purified small t antigen can efficiently stimulate E. coli DnaK's (Hsp70) ATPase in vitro, thus behaving like a bona fide cochaperone. Furthermore, small t amino acids 83 to 174, which are adjacent to the viral J domain, can replace the E. coli DnaJ J-domain glycine-phenylalanine-rich domain, immediately adjacent to the J-domain sequences, even in the absence of significant amino acid similarity to their DnaJ counterpart. Taken together, our studies demonstrate that functionally related Hsp40 proteins from mammalian viral systems can be rapidly studied in bacteria and exploited to probe the universally conserved Hsp70 chaperone machine mechanism.
Collapse
Affiliation(s)
- Pierre Genevaux
- Département de Biochimie Médicale, Centre Médical Universitaire, Université de Genève, CH-1211 Genève 14, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schirmbeck R, Fissolo N, Chaplin P, Reimann J. Enhanced priming of multispecific, murine CD8+ T cell responses by DNA vaccines expressing stress protein-binding polytope peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1240-6. [PMID: 12874211 DOI: 10.4049/jimmunol.171.3.1240] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A polytope DNA vaccine (pCI/pt10) was used that encodes within a 106-residue sequence 10-well characterized epitopes binding MHC class I molecules encoded by the K, D, or L locus (of H-2(d), H-2(b), and H-2(k) haplotype mice). The pCI/pt10 DNA vaccine efficiently primed all four K(b)/D(b)-restricted CD8(+) T cell responses in H-2(b) mice, but was deficient in stimulating most CD8(+) T cell responses in H-2(d) mice. Comparing CD8(+) T cell responses elicited with the pCI/pt10 DNA vaccine in L(d+) BALB/c and L(d-) BALB/c(dm2) (dm2) mice revealed that L(d)-restricted CD8(+) T cell responses down-regulated copriming of CD8(+) T cell responses to other epitopes regardless of their restriction or epitope specificity. Although the pt10 vaccine could thus efficiently co prime multispecific CD8(+) T cell responses, this priming was impaired by copriming L(d)-restricted CD8(+) T cell responses. When the pt10 sequence was fused to a 77-residue DnaJ-homologous, heat shock protein 73-binding domain (to generate a 183-residue cT(77)-pt10 fusion protein), expression and immunogenicity (for CD8(+) T cells) of the chimeric Ag were greatly enhanced. Furthermore, priming of multispecific CD8(+) T cell responses was readily elicited even under conditions in which the suppressive, L(d)-dependent immunodominance operated. The expression of polytope vaccines as chimeric peptides that endogenously capture stress proteins during in situ production thus facilitates copriming of CD8(+) T cell populations with a diverse repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Carrier Proteins/administration & dosage
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Chickens
- Cytotoxicity, Immunologic/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Female
- Genetic Vectors
- H-2 Antigens/biosynthesis
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- HSC70 Heat-Shock Proteins
- HSP70 Heat-Shock Proteins
- Histocompatibility Antigen H-2D
- Injections, Intramuscular
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Protein Binding/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Reinhold Schirmbeck
- Institute of Medical Microbiology and Immunology, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
22
|
Jiang J, Taylor AB, Prasad K, Ishikawa-Brush Y, Hart PJ, Lafer EM, Sousa R. Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface. Biochemistry 2003; 42:5748-53. [PMID: 12741832 DOI: 10.1021/bi034270g] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
J-domains are widespread protein interaction modules involved in recruiting and stimulating the activity of Hsp70 family chaperones. We have determined the crystal structure of the J-domain of auxilin, a protein which is involved in uncoating clathrin-coated vesicles. Comparison to the known structures of J-domains from four other proteins reveals that the auxilin J-domain is the most divergent of all J-domain structures described to date. In addition to the canonical J-domain features described previously, the auxilin J-domain contains an extra N-terminal helix and a long loop inserted between helices I and II. The latter loop extends the positively charged surface which forms the Hsc70 binding site, and is shown by directed mutagenesis and surface plasmon resonance to contain side chains important for binding to Hsc70.
Collapse
Affiliation(s)
- Jianwen Jiang
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Landry SJ. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK. Biochemistry 2003; 42:4926-36. [PMID: 12718534 DOI: 10.1021/bi027070y] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The molecular chaperone machine composed of Escherichia coli Hsp70/DnaK and Hsp40/DnaJ binds and releases client proteins in cycles of ATP-dependent protein folding, membrane translocation, disassembly, and degradation. The J-domain of DnaJ simultaneously stimulates ATP hydrolysis in the ATPase domain and capture of the client protein in the peptide-binding domain of DnaK. ATP-dependent binding of DnaJ to DnaK mimics DnaJ-dependent capture of a client protein. The dnaJ mutation that replaces aspartate-35 with asparagine (D35N) in the J-domain causes a defect in binding of DnaJ to DnaK. The dnaK mutation that replaces arginine-167 with alanine (R167A) in the ATPase domain of DnaK(R167A) restores binding of DnaJ(D35N). This genetic interaction was said to be allele-specific because wild-type DnaJ does not bind to DnaK(R167A). The J-domain of DnaJ binds to the ATPase domain of DnaK in its capacity as modulator of DnaK ATPase activity and conformational behavior. Surprisingly, the mutations affect the domainwise interaction in an almost opposite manner. D35N increases the affinity of the J-domain for the ATPase domain. R167A has no affect on the affinity of the ATPase domain for the D35N mutant J-domain, but it reduces the affinity for the wild-type J-domain. Previous amide ((1)H, (15)N) NMR chemical shift perturbation mapping in the J-domain suggested that the ATPase domain binds to J-domain helix II and the flanking loops. In the D35N mutant J-domain, chemical shift perturbations include additional effects at amides in the flexible loop II-III and helix III, which have been proposed to undergo an induced fit conformational change upon binding to DnaK. The integrated magnitudes of chemical shift perturbations for the various J-domain and ATPase domain pairs correlate with the free energies of binding. Thus, the J-domain structure can be described as a dynamic ensemble of conformations that is constrained by binding to the ATPase domain. J-domain helix II bends upon binding to the ATPase domain. D35N increases helix II bending, but less so in combination with R167A in the ATPase domain. Taken together, the results suggest that D35N overstabilizes an induced fit conformational change in loop II-III and helix III that is necessary for the J-domain to couple ATP hydrolysis with a conformational change in DnaK, and R167A destabilizes the induced conformation. Conclusions from this work have implications for understanding mechanisms of protein-protein interaction that are involved in allosteric regulation and genetic suppression.
Collapse
Affiliation(s)
- Samuel J Landry
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| |
Collapse
|
24
|
Genevaux P, Schwager F, Georgopoulos C, Kelley WL. Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain. Genetics 2002; 162:1045-53. [PMID: 12454054 PMCID: PMC1462316 DOI: 10.1093/genetics/162.3.1045] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The DnaJ (Hsp40) cochaperone regulates the DnaK (Hsp70) chaperone by accelerating ATP hydrolysis in a cycle closely linked to substrate binding and release. The J-domain, the signature motif of the Hsp40 family, orchestrates interaction with the DnaK ATPase domain. We studied the J-domain by creating 42 mutant E. coli DnaJ variants and examining their phenotypes in various separate in vivo assays, namely, bacterial growth at low and high temperatures, motility, and propagation of bacteriophage lambda. Most mutants studied behaved like wild type in all assays. In addition to the (33)HisProAsp(35) (HPD) tripeptide found in all known functional J-domains, our study uncovered three new single substitution mutations (Y25A, K26A, and F47A) that totally abolish J-domain function. Furthermore, two glycine substitution mutants in an exposed flexible loop (R36G, N37G) showed partial loss of J-domain function alone and complete loss of function as a triple (RNQ-GGG) mutant coupled with the phenotypically silent Q38G. Interestingly, all the essential residues map to a small region on the same solvent-exposed face of the J-domain. Engineered mutations in the corresponding residues of the human Hdj1 J-domain grafted in E. coli DnaJ also resulted in loss of function, suggesting an evolutionarily conserved interaction surface. We propose that these clustered residues impart critical sequence determinants necessary for J-domain catalytic activity and reversible contact interface with the DnaK ATPase domain.
Collapse
Affiliation(s)
- Pierre Genevaux
- Département de Biochimie Médicale, Centre Médical Universitaire, CH-1211 Geneva 4, Switzerland.
| | | | | | | |
Collapse
|
25
|
Mayer MP, Brehmer D, Gässler CS, Bukau B. Hsp70 chaperone machines. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:1-44. [PMID: 11868269 DOI: 10.1016/s0065-3233(01)59001-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- M P Mayer
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Hermann-Herder-Str. 7, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
26
|
Berjanskii M, Riley M, Van Doren SR. Hsc70-interacting HPD loop of the J domain of polyomavirus T antigens fluctuates in ps to ns and micros to ms. J Mol Biol 2002; 321:503-16. [PMID: 12162962 DOI: 10.1016/s0022-2836(02)00631-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The backbone dynamics of the J domain from polyomavirus T antigens have been investigated using 15N NMR relaxation and molecular dynamics simulation. Model-free relaxation analysis revealed picosecond to nanosecond motions in the N terminus, the I-II loop, the C-terminal end of helix II through the HPD loop to the beginning of helix III, and the C-terminal end of helix III to the C terminus. The backbone dynamics of the HPD loop and termini are dominated by motions with moderately large amplitudes and correlation times of the order of a nanosecond or longer. Conformational exchange on the microsecond to millisecond timescale was identified in the HPD loop, the N and C termini, and the I-II loop. A 9.7ns MD trajectory manifested concerted swings of the HPD loop. Transitions between major and minor conformations of the HPD loop featured distinct patterns of change in backbone dihedral angles and hydrogen bonds. Fraying of the C-terminal end of helix II and the N-terminal end of helix III correlated with displacements of the HPD loop. Correlation of crankshaft motions of Gly46 and Gly47 with the collective motions of the HPD loop suggested an important role of the two glycine residues in the mobility of the loop. Fluctuations of the HPD loop correlated with relative reorientation of side-chains of Lys35 and Asp44 that interact with Hsc70.
Collapse
Affiliation(s)
- Mark Berjanskii
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
27
|
Sullivan CS, Pipas JM. T antigens of simian virus 40: molecular chaperones for viral replication and tumorigenesis. Microbiol Mol Biol Rev 2002; 66:179-202. [PMID: 12040123 PMCID: PMC120785 DOI: 10.1128/mmbr.66.2.179-202.2002] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus that has been extensively characterized due to its relatively simple genetic organization and the ease with which its genome is manipulated. The large and small tumor antigens (T antigens) are the major regulatory proteins encoded by SV40. Large T antigen is responsible for both viral and cellular transcriptional regulation, virion assembly, viral DNA replication, and alteration of the cell cycle. Deciphering how a single protein can perform such numerous and diverse functions has remained elusive. Recently it was established that the SV40 T antigens, including large T antigen, are molecular chaperones, each with a functioning DnaJ domain. The molecular chaperones were originally identified as bacterial genes essential for bacteriophage growth and have since been shown to be conserved in eukaryotes, participating in an array of both viral and cellular processes. This review discusses the mechanisms of DnaJ/Hsc70 interactions and how they are used by T antigen to control viral replication and tumorigenesis. The use of the DnaJ/Hsc70 system by SV40 and other viruses suggests an important role for these molecular chaperones in the regulation of the mammalian cell cycle and sheds light on the enigmatic SV40 T antigen-a most amazing molecule.
Collapse
Affiliation(s)
- Christopher S Sullivan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
28
|
Lee C, Cho Y. Interactions of SV40 large T antigen and other viral proteins with retinoblastoma tumour suppressor. Rev Med Virol 2002; 12:81-92. [PMID: 11921304 DOI: 10.1002/rmv.340] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Simian virus 40 large T antigen, human papilloma virus E7 and adenovirus E1A are all potent oncoproteins that can induce several types of tumours. One of the major functions of these oncoproteins is to interact with the retinoblastoma tumour suppressor protein, Rb, a master switch of the mammalian cell cycle, and to inactivate its function. Rb promotes cell-cycle arrest by recruiting and regulating proteins involved in the transcription of cell proliferation genes. The binding of viral oncoproteins to Rb disrupts the Rb-E2F complex, a central component in the Rb-mediated cell-cycle network. The crystal structures of Rb pocket-viral oncoprotein complexes indicate that the viral proteins recognise a highly conserved region in the Rb pocket through a common motif, LxCxE, and through other unique regions within each viral protein. Although the mechanism of Rb inactivation by viral proteins is not fully understood, information at the atomic level about the interactions between the Rb pocket and viral proteins is providing some insights into how viral proteins dissociate E2F from Rb and thus how they deregulate the cell cycle.
Collapse
Affiliation(s)
- Changwook Lee
- National Creative Research Center for Structural Biology and Division of Molecular and Life Science, Pohang University of Science & Technology, Hyo-ja dong, San31, Pohang, KyungBook, South Korea
| | | |
Collapse
|
29
|
Fewell SW, Pipas JM, Brodsky JL. Mutagenesis of a functional chimeric gene in yeast identifies mutations in the simian virus 40 large T antigen J domain. Proc Natl Acad Sci U S A 2002; 99:2002-7. [PMID: 11854498 PMCID: PMC122309 DOI: 10.1073/pnas.042670999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2001] [Accepted: 12/14/2001] [Indexed: 01/10/2023] Open
Abstract
Simian virus 40 large T antigen contains an amino terminal J domain that catalyzes T antigen-mediated viral DNA replication and cellular transformation. To dissect the role of the J domain in these processes, we exploited the genetic tools available only in the yeast Saccharomyces cerevisiae to isolate 14 loss-of-function point mutations in the T antigen J domain. This screen also identified mutations that, when engineered into simian virus 40, resulted in T antigen mutants that were defective for the ability to support viral growth, to transform mammalian cells in culture, to dissociate the p130-E2F4 transcription factor complex, and to stimulate ATP hydrolysis by hsc70, a hallmark of J domain-containing molecular chaperones. These data correlate the chaperone activity of the T antigen J domain with its roles in viral infection and cellular transformation and support a model by which the viral J domain recruits the cytoplasmic hsc70 molecular chaperone in the host to rearrange multiprotein complexes implicated in replication and transformation. More generally, this study presents the use of a yeast screen to identify loss-of-function mutations in a mammalian virus and can serve as a widely applicable method to uncover domain functions of mammalian proteins for which there are yeast homologues with selectable mutant phenotypes.
Collapse
Affiliation(s)
- Sheara W Fewell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
30
|
Fewell SW, Travers KJ, Weissman JS, Brodsky JL. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 2002; 35:149-91. [PMID: 11700281 DOI: 10.1146/annurev.genet.35.102401.090313] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endoplasmic reticulum (ER) serves as a way-station during the biogenesis of nearly all secreted proteins, and associated with or housed within the ER are factors required to catalyze their import into the ER and facilitate their folding. To ensure that only properly folded proteins are secreted and to temper the effects of cellular stress, the ER can target aberrant proteins for degradation and/or adapt to the accumulation of misfolded proteins. Molecular chaperones play critical roles in each of these phenomena.
Collapse
Affiliation(s)
- S W Fewell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- M T Sáenz-Robles
- Department of Biological Sciences. University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
32
|
Li H, Söderbärg K, Houshmand H, You ZY, Magnusson G. Effect on polyomavirus T-antigen function of mutations in a conserved leucine-rich segment of the DnaJ domain. J Virol 2001; 75:2253-61. [PMID: 11160729 PMCID: PMC114809 DOI: 10.1128/jvi.75.5.2253-2261.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The N-terminal part of the mouse polyomavirus T antigens contains a highly conserved segment (-LLELLKL-), including amino acid residues 13 to 19. The sequence motif is predicted to form alpha helix I in the DnaJ domain of the T antigens. Four mutants with conservative substitutions of amino acid residues 13 and 14 were constructed. Of the four substitutions, L13M, L13I, L13V, and L14V, only L13V resulted in a phenotypic change. In transfected mouse cells, L13V large T antigen showed a more than 100-fold-reduced viral DNA synthesis. The viral replication could not be rescued by cotransfection of the cells with DNA expressing small t antigen or a large T antigen truncated at the C terminus that would compensate for a defect in host cell stimulation. In contrast to the effect on DNA replication, the L13V substitution in large T antigen did not prevent complex formation with Hsc70 and the Rb protein. Also, the activity of the protein in transactivation of transcription from the adenovirus E2 promoter was unimpaired, showing that the transcription factor E2F was released from pRb. The L13V substitution also caused a defect in small t antigen. However, this phenotypic change was due to protein instability. In contrast, middle T antigen with the L13V substitution remained stable and functional in cellular transformation. Together, the data show that the effect of the L13V substitution did not abrogate the Hsc70 interaction of the DnaJ domain. However, it is possible that the substitution of amino acid residue 13 affected specific DnaJ functions of large T antigen.
Collapse
Affiliation(s)
- H Li
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|