1
|
Xu H, Ye J, Zhang KX, Hu Q, Cui T, Tong C, Wang M, Geng H, Shui KM, Sun Y, Wang J, Hou X, Zhang K, Xie R, Yin Y, Chen N, Chen JY. Chemoproteomic profiling unveils binding and functional diversity of endogenous proteins that interact with endogenous triplex DNA. Nat Chem 2024; 16:1811-1821. [PMID: 39223307 DOI: 10.1038/s41557-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Triplex DNA structures, formed when a third DNA strand wraps around the major groove of DNA, are key molecular regulators and genomic threats. However, the regulatory network governing triplex DNA dynamics remains poorly understood. Here we reveal the binding and functional repertoire of proteins that interact with triplex DNA through chemoproteomic profiling in living cells. We develop a chemical probe that exhibits exceptional specificity towards triplex DNA. By employing a co-binding-mediated proximity capture strategy, we enrich triplex DNA interactome for quantitative proteomics analysis. This enables the identification of a comprehensive list of proteins that interact with triplex DNA, characterized by diverse binding properties and regulatory mechanisms in their native chromatin context. As a demonstration, we validate DDX3X as an ATP-independent triplex DNA helicase to unwind substrates with a 5' overhang to prevent DNA damage. Overall, our study provides a valuable resource for exploring the biology and translational potential of triplex DNA.
Collapse
Affiliation(s)
- Hongzhan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Kui-Xing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Qingxi Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Chong Tong
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Huichao Geng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Kun-Ming Shui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiaomeng Hou
- ChomiX Biotech (Nanjing) Co. Ltd., Nanjing, China
| | - Kai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Chen
- ChomiX Biotech (Nanjing) Co. Ltd., Nanjing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, China.
| |
Collapse
|
2
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2024. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
3
|
Gopalakrishnan V, Roy U, Srivastava S, Kariya KM, Sharma S, Javedakar SM, Choudhary B, Raghavan SC. Delineating the mechanism of fragility at BCL6 breakpoint region associated with translocations in diffuse large B cell lymphoma. Cell Mol Life Sci 2024; 81:21. [PMID: 38196006 PMCID: PMC11072719 DOI: 10.1007/s00018-023-05042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 01/11/2024]
Abstract
BCL6 translocation is one of the most common chromosomal translocations in cancer and results in its enhanced expression in germinal center B cells. It involves the fusion of BCL6 with any of its twenty-six Ig and non-Ig translocation partners associated with diffuse large B cell lymphoma (DLBCL). Despite being discovered long back, the mechanism of BCL6 fragility is largely unknown. Analysis of the translocation breakpoints in 5' UTR of BCL6 reveals the clustering of most of the breakpoints around a region termed Cluster II. In silico analysis of the breakpoint cluster sequence identified sequence motifs that could potentially fold into non-B DNA. Results revealed that the Cluster II sequence folded into overlapping hairpin structures and identified sequences that undergo base pairing at the stem region. Further, the formation of cruciform DNA blocked DNA replication. The sodium bisulfite modification assay revealed the single-strandedness of the region corresponding to hairpin DNA in both strands of the genome. Further, we report the formation of intramolecular parallel G4 and triplex DNA, at Cluster II. Taken together, our studies reveal that multiple non-canonical DNA structures exist at the BCL6 cluster II breakpoint region and contribute to the fragility leading to BCL6 translocation in DLBCL patients.
Collapse
Affiliation(s)
- Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India
- Department of Zoology, St. Joseph's College (Autonomous), Irinjalakuda, Kerala, 680121, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shikha Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, Rajasthan, 304022, India
| | - Khyati M Kariya
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Saniya M Javedakar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Electronics City, Bangalore, 560 100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
4
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
5
|
Pal T, Chauhan K, Kumar S. Role of Hoogsteen interaction in the stability of different phases of triplex DNA. Phys Rev E 2022; 105:044407. [PMID: 35590612 DOI: 10.1103/physreve.105.044407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
A simple coarse-grained model of DNA which includes both Watson-Crick and Hoogsteen base pairing has been used to study the melting and unzipping of triplex DNA. Using Langevin dynamics simulations, we reproduce the qualitative features of one-step and two-step thermal melting of triplex as seen in experiments. The thermal melting phase diagram shows the existence of a stable interchain three-strand complex (bubble-bound state). Our studies based on the mechanical unzipping of a triplex revealed that it is mechanically more stable compared to an isolated duplex-DNA.
Collapse
Affiliation(s)
- Tanmoy Pal
- Banaras Hindu University, Varanasi 221005, India
| | | | - Sanjay Kumar
- Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Shankar Singh R, Bhadra Arna A, Dong H, Yadav M, Aggarwal A, Wu Y. Structure-function analysis of DEAD-box helicase DDX43. Methods 2022; 204:286-299. [DOI: 10.1016/j.ymeth.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 01/21/2023] Open
|
7
|
Chakraborty P, Hiom K. DHX9-dependent recruitment of BRCA1 to RNA promotes DNA end resection in homologous recombination. Nat Commun 2021; 12:4126. [PMID: 34226554 PMCID: PMC8257769 DOI: 10.1038/s41467-021-24341-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Double stranded DNA Breaks (DSB) that occur in highly transcribed regions of the genome are preferentially repaired by homologous recombination repair (HR). However, the mechanisms that link transcription with HR are unknown. Here we identify a critical role for DHX9, a RNA helicase involved in the processing of pre-mRNA during transcription, in the initiation of HR. Cells that are deficient in DHX9 are impaired in the recruitment of RPA and RAD51 to sites of DNA damage and fail to repair DSB by HR. Consequently, these cells are hypersensitive to treatment with agents such as camptothecin and Olaparib that block transcription and generate DSB that specifically require HR for their repair. We show that DHX9 plays a critical role in HR by promoting the recruitment of BRCA1 to RNA as part of the RNA Polymerase II transcription complex, where it facilitates the resection of DSB. Moreover, defects in DHX9 also lead to impaired ATR-mediated damage signalling and an inability to restart DNA replication at camptothecin-induced DSB. Together, our data reveal a previously unknown role for DHX9 in the DNA Damage Response that provides a critical link between RNA, RNA Pol II and the repair of DNA damage by homologous recombination. DHX9 is an RNA helicase involved in the processing of pre-mRNA during transcription. Here the authors reveal a role for DHX9 in the initiation of homologues recombination during the early steps of end-resection.
Collapse
Affiliation(s)
- Prasun Chakraborty
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Scotland, United Kingdom
| | - Kevin Hiom
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Scotland, United Kingdom.
| |
Collapse
|
8
|
Ababou M. Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab 2021; 133:35-48. [PMID: 33736941 DOI: 10.1016/j.ymgme.2021.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
Autosomal hereditary recessive diseases characterized by genetic instability are often associated with cancer predisposition. Bloom syndrome (BS), a rare genetic disorder, with <300 cases reported worldwide, combines both. Indeed, patients with Bloom's syndrome are 150 to 300 times more likely to develop cancers than normal individuals. The wide spectrum of cancers developed by BS patients suggests that early initial events occur in BS cells which may also be involved in the initiation of carcinogenesis in the general population and these may be common to several cancers. BS is caused by mutations of both copies of the BLM gene, encoding the RecQ BLM helicase. This review discusses the different aspects of BS and the different cellular functions of BLM in genome surveillance and maintenance through its major roles during DNA replication, repair, and transcription. BLM's activities are essential for the stabilization of centromeric, telomeric and ribosomal DNA sequences, and the regulation of innate immunity. One of the key objectives of this work is to establish a link between BLM functions and the main clinical phenotypes observed in BS patients, as well as to shed new light on the correlation between the genetic instability and diseases such as immunodeficiency and cancer. The different potential implications of the BLM helicase in the tumorigenic process and the use of BLM as new potential target in the field of cancer treatment are also debated.
Collapse
Affiliation(s)
- Mouna Ababou
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco; Genomic Center of Human Pathologies, Faculty of medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| |
Collapse
|
9
|
The Genome Stability Maintenance DNA Helicase DDX11 and Its Role in Cancer. Genes (Basel) 2021; 12:genes12030395. [PMID: 33802088 PMCID: PMC8000936 DOI: 10.3390/genes12030395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
DDX11/ChlR1 is a super-family two iron–sulfur cluster containing DNA helicase with roles in DNA replication and sister chromatid cohesion establishment, and general chromosome architecture. Bi-allelic mutations of the DDX11 gene cause a rare hereditary disease, named Warsaw breakage syndrome, characterized by a complex spectrum of clinical manifestations (pre- and post-natal growth defects, microcephaly, intellectual disability, heart anomalies and sister chromatid cohesion loss at cellular level) in accordance with the multifaceted, not yet fully understood, physiological functions of this DNA helicase. In the last few years, a possible role of DDX11 in the onset and progression of many cancers is emerging. Herein we summarize the results of recent studies, carried out either in tumoral cell lines or in xenograft cancer mouse models, suggesting that DDX11 may have an oncogenic role. The potential of DDX11 DNA helicase as a pharmacological target for novel anti-cancer therapeutic interventions, as inferred from these latest developments, is also discussed.
Collapse
|
10
|
Santos D, Mahtab M, Boavida A, Pisani FM. Role of the DDX11 DNA Helicase in Warsaw Breakage Syndrome Etiology. Int J Mol Sci 2021; 22:2308. [PMID: 33669056 PMCID: PMC7956524 DOI: 10.3390/ijms22052308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Warsaw breakage syndrome (WABS) is a genetic disorder characterized by sister chromatid cohesion defects, growth retardation, microcephaly, hearing loss and other variable clinical manifestations. WABS is due to biallelic mutations of the gene coding for the super-family 2 DNA helicase DDX11/ChlR1, orthologous to the yeast chromosome loss protein 1 (Chl1). WABS is classified in the group of "cohesinopathies", rare hereditary diseases that are caused by mutations in genes coding for subunits of the cohesin complex or protein factors having regulatory roles in the sister chromatid cohesion process. In fact, among the cohesion regulators, an important player is DDX11, which is believed to be important for the functional coupling of DNA synthesis and cohesion establishment at the replication forks. Here, we will review what is known about the molecular and cellular functions of human DDX11 and its role in WABS etiopathogenesis, even in light of recent findings on the role of cohesin and its regulator network in promoting chromatin loop formation and regulating chromatin spatial organization.
Collapse
Affiliation(s)
- Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| |
Collapse
|
11
|
Mutations in conserved functional domains of human RecQ helicases are associated with diseases and cancer: A review. Biophys Chem 2020; 265:106433. [DOI: 10.1016/j.bpc.2020.106433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022]
|
12
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
13
|
Khristich AN, Mirkin SM. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability. J Biol Chem 2020; 295:4134-4170. [PMID: 32060097 PMCID: PMC7105313 DOI: 10.1074/jbc.rev119.007678] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability. Next, we describe the consequences of the presence of long structure-forming repeats at the molecular level: somatic and intergenerational instability, fragility, and repeat-induced mutagenesis. We discuss the reasons for gender bias in intergenerational repeat instability and the tissue specificity of somatic repeat instability. We also review the known pathways in which DNA replication, transcription, DNA repair, and chromatin state interact and thereby promote repeat instability. We then discuss possible reasons for the persistence of disease-causing DNA repeats in the genome. We describe evidence suggesting that these repeats are a payoff for the advantages of having abundant simple-sequence repeats for eukaryotic genome function and evolvability. Finally, we discuss two unresolved fundamental questions: (i) why does repeat behavior differ between model systems and human pedigrees, and (ii) can we use current knowledge on repeat instability mechanisms to cure repeat expansion diseases?
Collapse
Affiliation(s)
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, Massachusetts 02155.
| |
Collapse
|
14
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
15
|
Montenegro MM, Quaio CR, Palmeira P, Gasparini Y, Rangel-Santos A, Damasceno J, Novak EM, Gimenez TM, Yamamoto GL, Ronjo RS, Novo-Filho GM, Chehimi SN, Zanardo EA, Dias AT, Nascimento AM, Costa TVMM, Duarte AJDS, Coutinho LL, Kim CA, Kulikowski LD. Gene expression profile suggesting immunological dysregulation in two Brazilian Bloom's syndrome cases. Mol Genet Genomic Med 2020; 8:e1133. [PMID: 32073752 PMCID: PMC7196489 DOI: 10.1002/mgg3.1133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 11/04/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Background Bloom syndrome (BS) is a rare autosomal recessive chromosome instability disorder. The main clinical manifestations are growth deficiency, telangiectasic facial erythema, immunodeficiency, and increased risk to develop neoplasias at early age. Cytogenetic test for sister chromatid exchanges (SCEs) is used as a diagnostic marker for BS. In addition, most patients also present mutations in the BLM gene, related to defects in the DNA repair mechanism. However, the molecular mechanism behind the pathogenicity of BS is still not completely understood. Methods We describe two patients confirmed with BS by SCE and molecular analysis. Also, we performed the gene expression profile by the RNA‐seq methodology in mRNA transcripts for differential gene expression analysis using as a biological condition for comparison BS versus health controls. Results We detected 216 differentially expressed genes related to immunological pathways such as positive regulation and activation of B cells, immune effector process and absence of difference of DNA repair genes expression. In addition; we also observed differentially expressed genes associated with apoptosis control, such as BCL2L1, CASP7, CDKN1A, E2F2, ITPR, CD274, TNFAIP6, TNFRSF25, TNFRSF13C, and TNFRSF17. Conclusion Our results suggest that the combination of altered expression of genes involved in signaling pathways of immune response and apoptosis control may contribute directly to the main characteristics observed in BS, such as recurrent infections, growth failure, and high risk of cancer. Transcriptome studies of other instability syndromes could allow a more accurate analysis of the relevant gene interactions associated with the destabilization of the genome. This is a first description of the profile of differential gene expression related to immunological aspects detected in patients with BS by RNA‐seq.
Collapse
Affiliation(s)
- Marilia M Montenegro
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Caio R Quaio
- Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia Palmeira
- Laboratório de Pediatria Clínica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yanca Gasparini
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Andreia Rangel-Santos
- Laboratório de Pediatria Clínica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Julian Damasceno
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Estela M Novak
- Fundação Pró-Sangue, Hemocentro de São Paulo, Sao Paulo, SP, Brazil
| | - Thamires M Gimenez
- Laboratório de Pesquisa Translacional em Oncohematologia, Instituto de Tratamento de Cancer Infantil (ITACI), Sao Paulo, SP, Brazil
| | - Guilherme L Yamamoto
- Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Rachel S Ronjo
- Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gil M Novo-Filho
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Samar N Chehimi
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Evelin A Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alexandre T Dias
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Amom M Nascimento
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Thais V M M Costa
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Alberto J da S Duarte
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Luiz L Coutinho
- Centro de Genomica Funcional, Departamento de Zootecnia, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, ESALQ-USP, Piracicaba, Brazil
| | - Chong A Kim
- Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Leslie D Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.,Unidade de Genetica, Departamento de Pediatria, Instituto da Crianca, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
16
|
Awate S, Dhar S, Sommers JA, Brosh RM. Cellular Assays to Study the Functional Importance of Human DNA Repair Helicases. Methods Mol Biol 2019; 1999:185-207. [PMID: 31127577 PMCID: PMC9123881 DOI: 10.1007/978-1-4939-9500-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA helicases represent a specialized class of enzymes that play crucial roles in the DNA damage response. Using the energy of nucleoside triphosphate binding and hydrolysis, helicases behave as molecular motors capable of efficiently disrupting the many noncovalent hydrogen bonds that stabilize DNA molecules with secondary structure. In addition to their importance in DNA damage sensing and signaling, DNA helicases facilitate specific steps in DNA repair mechanisms that require polynucleotide tract unwinding or resolution. Because they play fundamental roles in the DNA damage response and DNA repair, defects in helicases disrupt cellular homeostasis. Thus, helicase deficiency or inhibition may result in reduced cell proliferation and survival, apoptosis, DNA damage induction, defective localization of repair proteins to sites of genomic DNA damage, chromosomal instability, and defective DNA repair pathways such as homologous recombination of double-strand breaks. In this chapter, we will describe step-by-step protocols to assay the functional importance of human DNA repair helicases in genome stability and cellular homeostasis.
Collapse
Affiliation(s)
- Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD, USA.
| |
Collapse
|
17
|
Pisani FM, Napolitano E, Napolitano LMR, Onesti S. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11. Genes (Basel) 2018; 9:genes9110564. [PMID: 30469382 PMCID: PMC6266566 DOI: 10.3390/genes9110564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron–sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Ettore Napolitano
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Luisa M R Napolitano
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| | - Silvia Onesti
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
18
|
Lee T, Pelletier J. The biology of DHX9 and its potential as a therapeutic target. Oncotarget 2018; 7:42716-42739. [PMID: 27034008 PMCID: PMC5173168 DOI: 10.18632/oncotarget.8446] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/16/2016] [Indexed: 12/25/2022] Open
Abstract
DHX9 is member of the DExD/H-box family of helicases with a “DEIH” sequence at its eponymous DExH-box motif. Initially purified from human and bovine cells and identified as a homologue of the Drosophila Maleless (MLE) protein, it is an NTP-dependent helicase consisting of a conserved helicase core domain, two double-stranded RNA-binding domains at the N-terminus, and a nuclear transport domain and a single-stranded DNA-binding RGG-box at the C-terminus. With an ability to unwind DNA and RNA duplexes, as well as more complex nucleic acid structures, DHX9 appears to play a central role in many cellular processes. Its functions include regulation of DNA replication, transcription, translation, microRNA biogenesis, RNA processing and transport, and maintenance of genomic stability. Because of its central role in gene regulation and RNA metabolism, there are growing implications for DHX9 in human diseases and their treatment. This review will provide an overview of the structure, biochemistry, and biology of DHX9, its role in cancer and other human diseases, and the possibility of targeting DHX9 in chemotherapy.
Collapse
Affiliation(s)
- Teresa Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada.,Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Dehghani-Tafti S, Sanders CM. DNA substrate recognition and processing by the full-length human UPF1 helicase. Nucleic Acids Res 2017; 45:7354-7366. [PMID: 28541562 PMCID: PMC5499549 DOI: 10.1093/nar/gkx478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
UPF1 is a conserved helicase required for nonsense-mediated decay (NMD) regulating mRNA stability in the cytoplasm. Human UPF1 (hUPF1) is also needed for nuclear DNA replication. While loss of NMD is tolerated, loss of hUPF1 induces a DNA damage response and cell cycle arrest. We have analysed nucleic acid (NA) binding and processing by full-length hUPF1. hUPF1 unwinds non-B and B-form DNA and RNA substrates in vitro. Unlike many helicases involved in genome stability no hUPF1 binding to DNA structures stabilized by inter-base-pair hydrogen bonding was observed. Alternatively, hUPF1 binds to single-stranded NAs (ssNA) with apparent affinity increasing with substrate length and with no preference for binding RNA or DNA or purine compared to pyrimidine polynucleotides. However, the data show a pronounced nucleobase bias with a preference for binding poly (U) or d(T) while d(A) polymers bind with low affinity. Although the data indicate that hUPF1 must bind a ssNA segments to initiate unwinding they also raise the possibility that hUPF1 has significantly reduced affinity for ssNA structures with stacked bases. Overall, the NA processing activities of hUPF1 are consistent with its function in mRNA regulation and suggest that roles in DNA replication could also be influenced by base sequence.
Collapse
Affiliation(s)
- Saba Dehghani-Tafti
- Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| | - Cyril M Sanders
- Department of Oncology & Metabolism, Academic Unit of Molecular oncology, University of Sheffield Medical School, Beech Hill Rd, Sheffield, S10 2RX, UK
| |
Collapse
|
20
|
Li Y, Syed J, Sugiyama H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem Biol 2016; 23:1325-1333. [DOI: 10.1016/j.chembiol.2016.09.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/29/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
|
21
|
Cea V, Cipolla L, Sabbioneda S. Replication of Structured DNA and its implication in epigenetic stability. Front Genet 2015; 6:209. [PMID: 26136769 PMCID: PMC4468945 DOI: 10.3389/fgene.2015.00209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/29/2015] [Indexed: 11/23/2022] Open
Abstract
DNA replication is an extremely risky process that cells have to endure in order to correctly duplicate and segregate their genome. This task is particularly sensitive to DNA damage and multiple mechanisms have evolved to protect DNA replication as a block to the replication fork could lead to genomic instability and possibly cell death. The DNA in the genome folds, for the most part, into the canonical B-form but in some instances can form complex secondary structures such as G-quadruplexes (G4). These G rich regions are thermodynamically stable and can constitute an obstacle to DNA and RNA metabolism. The human genome contains more than 350,000 sequences potentially capable to form G-quadruplexes and these structures are involved in a variety of cellular processes such as initiation of DNA replication, telomere maintenance and control of gene expression. Only recently, we started to understand how G4 DNA poses a problem to DNA replication and how its successful bypass requires the coordinated activity of ssDNA binding proteins, helicases and specialized DNA polymerases. Their role in the resolution and replication of structured DNA crucially prevents both genetic and epigenetic instability across the genome.
Collapse
Affiliation(s)
- Valentina Cea
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| | - Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche , Pavia, Italy
| |
Collapse
|
22
|
Structural mechanisms of DNA binding and unwinding in bacterial RecQ helicases. Proc Natl Acad Sci U S A 2015; 112:4292-7. [PMID: 25831501 DOI: 10.1073/pnas.1416746112] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RecQ helicases unwind remarkably diverse DNA structures as key components of many cellular processes. How RecQ enzymes accommodate different substrates in a unified mechanism that couples ATP hydrolysis to DNA unwinding is unknown. Here, the X-ray crystal structure of the Cronobacter sakazakii RecQ catalytic core domain bound to duplex DNA with a 3' single-stranded extension identifies two DNA-dependent conformational rearrangements: a winged-helix domain pivots ∼90° to close onto duplex DNA, and a conserved aromatic-rich loop is remodeled to bind ssDNA. These changes coincide with a restructuring of the RecQ ATPase active site that positions catalytic residues for ATP hydrolysis. Complex formation also induces a tight bend in the DNA and melts a portion of the duplex. This bending, coupled with translocation, could provide RecQ with a mechanism for unwinding duplex and other DNA structures.
Collapse
|
23
|
Guo M, Hundseth K, Ding H, Vidhyasagar V, Inoue A, Nguyen CH, Zain R, Lee JS, Wu Y. A distinct triplex DNA unwinding activity of ChlR1 helicase. J Biol Chem 2015; 290:5174-5189. [PMID: 25561740 DOI: 10.1074/jbc.m114.634923] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ(-/-) cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.
Collapse
Affiliation(s)
- Manhong Guo
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kristian Hundseth
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Hao Ding
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Akira Inoue
- the Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Chi-Hung Nguyen
- UMR176 CNRS-Institut Curie, Laboratoire de Pharmacochimie, Centre Universitaire, 91405 Orsay, France, and
| | - Rula Zain
- the Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | - Jeremy S Lee
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,.
| |
Collapse
|
24
|
Xu M, Lai Y, Jiang Z, Terzidis MA, Masi A, Chatgilialoglu C, Liu Y. A 5', 8-cyclo-2'-deoxypurine lesion induces trinucleotide repeat deletion via a unique lesion bypass by DNA polymerase β. Nucleic Acids Res 2014; 42:13749-63. [PMID: 25428354 PMCID: PMC4267656 DOI: 10.1093/nar/gku1239] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5',8-cyclo-2'-deoxypurines (cdPus) are common forms of oxidized DNA lesions resulting from endogenous and environmental oxidative stress such as ionizing radiation. The lesions can only be repaired by nucleotide excision repair with a low efficiency. This results in their accumulation in the genome that leads to stalling of the replication DNA polymerases and poor lesion bypass by translesion DNA polymerases. Trinucleotide repeats (TNRs) consist of tandem repeats of Gs and As and therefore are hotspots of cdPus. In this study, we provided the first evidence that both (5'R)- and (5'S)-5',8-cyclo-2'-deoxyadenosine (cdA) in a CAG repeat tract caused CTG repeat deletion exclusively during DNA lagging strand maturation and base excision repair. We found that a cdA induced the formation of a CAG loop in the template strand, which was skipped over by DNA polymerase β (pol β) lesion bypass synthesis. This subsequently resulted in the formation of a long flap that was efficiently cleaved by flap endonuclease 1, thereby leading to repeat deletion. Our study indicates that accumulation of cdPus in the human genome can lead to TNR instability via a unique lesion bypass by pol β.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Zhongliang Jiang
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| | - Michael A Terzidis
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- ISOF, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy Institute of Nanoscience and Nanotechnology, N.C.S.R. 'Demokritos', 15341 Agia, Paraskevi, Athens, Greece
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA Biomolecular Sciences Institute, School of Integrated Sciences and Humanities, Florida International University, 11200 SW, 8th Street, Miami, FL 33199, USA
| |
Collapse
|
25
|
Ben Salah G, Hadj Salem I, Masmoudi A, Kallabi F, Turki H, Fakhfakh F, Ayadi H, Kamoun H. A novel frameshift mutation in BLM gene associated with high sister chromatid exchanges (SCE) in heterozygous family members. Mol Biol Rep 2014; 41:7373-80. [PMID: 25129257 DOI: 10.1007/s11033-014-3624-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/19/2014] [Indexed: 12/01/2022]
Abstract
The Bloom syndrome (BS) is an autosomic recessive disorder comprising a wide range of abnormalities, including stunted growth, immunodeficiency, sun sensitivity and increased frequency of various types of cancer. Bloom syndrome cells display a high level of genetic instability, including a 10-fold increase in the sister chromatid exchanges (SCE) level. Bloom syndrome arises through mutations in both alleles of the BLM gene, which was identified as a member of the RecQ helicase family. In this study, we screened a Tunisian family with three BS patients. Cytogenetic analysis showed several chromosomal aberrations, and an approximately 14-fold elevated SCE frequency in BS cells. A significant increase in SCE frequency was observed in some family members but not reaching the BS patients values, leading to suggest that this could be due to the heterozygous profile. Microsatellite genotyping using four fluorescent dye-labeled microsatellite markers revealed evidence of linkage to BLM locus and the healthy members, sharing higher SCE frequency, showed heterozygous haplotypes as expected. Additionally, the direct BLM gene sequencing identified a novel homozygous frameshift mutation c.3617-3619delAA (p.K1207fsX9) in BS patients and a heterozygous BLM mutation in the family members with higher SCE frequency. Our findings suggest that this latter mutation likely leads to a reduced BLM activity explaining the homologous recombination repair defect and, therefore, the increase in SCE. Based on the present data, the screening of this mutation could contribute to the rapid diagnosis of BS. The genetic confirmation of the mutation in BLM gene provides crucial information for genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Ghada Ben Salah
- Laboratory of Human Molecular Genetics, Faculty of Medicine, University of Sfax, Av. Majida Boulila, 3029, Sfax, Tunisia,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Toscano-Garibay JD, Aquino-Jarquin G. Transcriptional regulation mechanism mediated by miRNA-DNA•DNA triplex structure stabilized by Argonaute. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1079-83. [PMID: 25086339 DOI: 10.1016/j.bbagrm.2014.07.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/19/2022]
Abstract
Transcription regulation depends on interactions between repressor or activator proteins with promoter sequences, while post-transcriptional regulation typically relies on microRNA (miRNA) interaction with sequences in 5' and 3'-Untranslated regions (UTRs) of messenger RNA (mRNA). However, several pieces of evidence suggest that miRNA:Argonaute (AGO) complexes may also suppress transcription through RNA interference (RNAi) components and epigenetic mechanisms. However, recent observations suggest that miRNA-induced transcriptional silencing could be exerted by an unknown mechanism independent of chromatin modifiers. The RNA-DNA•DNA triplex structure has emerged as an important RNA tertiary motif in which successive non-canonical base pairs form between a DNA-DNA duplex and a third strand. Frequently, promoters have Purine (PU)-rich tracts, and some Triplex-forming oligonucleotides (TFOs) targeting these regulatory regions have been shown to inhibit transcription selectively. Here, we summarize observations suggesting that miRNAs exert regulation over promoter regions through miRNA-DNA•DNA triplex structure formation stabilized by AGO proteins which represents a plausible model of RNA-mediated Transcriptional gene silencing (TGS).
Collapse
Affiliation(s)
- Julia D Toscano-Garibay
- Laboratorio de Medicina Regenerativa, Dirección de Investigación, Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Col. Magdalena de las Salinas Del., Gustavo A. Madero, Distrito Federal C.P. 07760, Mexico
| | - Guillermo Aquino-Jarquin
- Laboratorio de Genómica, Genética y Bioinformática, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Delegación: Cuauhtémoc, México D.F. C.P. 06720, Mexico.
| |
Collapse
|
27
|
Keijzers G, Maynard S, Shamanna RA, Rasmussen LJ, Croteau DL, Bohr VA. The role of RecQ helicases in non-homologous end-joining. Crit Rev Biochem Mol Biol 2014; 49:463-72. [PMID: 25048400 DOI: 10.3109/10409238.2014.942450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA double-strand breaks are highly toxic DNA lesions that cause genomic instability, if not efficiently repaired. RecQ helicases are a family of highly conserved proteins that maintain genomic stability through their important roles in several DNA repair pathways, including DNA double-strand break repair. Double-strand breaks can be repaired by homologous recombination (HR) using sister chromatids as templates to facilitate precise DNA repair, or by an HR-independent mechanism known as non-homologous end-joining (NHEJ) (error-prone). NHEJ is a non-templated DNA repair process, in which DNA termini are directly ligated. Canonical NHEJ requires DNA-PKcs and Ku70/80, while alternative NHEJ pathways are DNA-PKcs and Ku70/80 independent. This review discusses the role of RecQ helicases in NHEJ, alternative (or back-up) NHEJ (B-NHEJ) and microhomology-mediated end-joining (MMEJ) in V(D)J recombination, class switch recombination and telomere maintenance.
Collapse
Affiliation(s)
- Guido Keijzers
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen , Copenhagen , Denmark and
| | | | | | | | | | | |
Collapse
|
28
|
Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities. Biogerontology 2014; 15:347-66. [PMID: 24965941 DOI: 10.1007/s10522-014-9506-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor HU. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency.
Collapse
|
29
|
Schleifman EB, McNeer NA, Jackson A, Yamtich J, Brehm MA, Shultz LD, Greiner DL, Kumar P, Saltzman WM, Glazer PM. Site-specific Genome Editing in PBMCs With PLGA Nanoparticle-delivered PNAs Confers HIV-1 Resistance in Humanized Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2013; 2:e135. [PMID: 24253260 PMCID: PMC3889188 DOI: 10.1038/mtna.2013.59] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/12/2013] [Indexed: 01/05/2023]
Abstract
Biodegradable poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) encapsulating triplex-forming peptide nucleic acids (PNAs) and donor DNAs for recombination-mediated editing of the CCR5 gene were synthesized for delivery into human peripheral blood mononuclear cells (PBMCs). NPs containing the CCR5-targeting molecules efficiently entered PBMCs with low cytotoxicity. Deep sequencing revealed that a single treatment with the formulation resulted in a targeting frequency of 0.97% in the CCR5 gene and a low off-target frequency of 0.004% in the CCR2 gene, a 216-fold difference. NP-treated PBMCs efficiently engrafted immunodeficient NOD-scid IL-2rγ-/- mice, and the targeted CCR5 modification was detected in splenic lymphocytes 4 weeks posttransplantation. After infection with an R5-tropic strain of HIV-1, humanized mice with CCR5-NP–treated PBMCs displayed significantly higher levels of CD4+ T cells and significantly reduced plasma viral RNA loads compared with control mice engrafted with mock-treated PBMCs. This work demonstrates the feasibility of PLGA-NP–encapsulated PNA-based gene-editing molecules for the targeted modification of CCR5 in human PBMCs as a platform for conferring HIV-1 resistance.
Collapse
Affiliation(s)
- Erica B Schleifman
- Department of Therapeutic Radiology and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jain A, Bacolla A, Del Mundo IM, Zhao J, Wang G, Vasquez KM. DHX9 helicase is involved in preventing genomic instability induced by alternatively structured DNA in human cells. Nucleic Acids Res 2013; 41:10345-57. [PMID: 24049074 PMCID: PMC3905860 DOI: 10.1093/nar/gkt804] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sequences that have the capacity to adopt alternative (i.e. non-B) DNA structures in the human genome have been implicated in stimulating genomic instability. Previously, we found that a naturally occurring intra-molecular triplex (H-DNA) caused genetic instability in mammals largely in the form of DNA double-strand breaks. Thus, it is of interest to determine the mechanism(s) involved in processing H-DNA. Recently, we demonstrated that human DHX9 helicase preferentially unwinds inter-molecular triplex DNA in vitro. Herein, we used a mutation-reporter system containing H-DNA to examine the relevance of DHX9 activity on naturally occurring H-DNA structures in human cells. We found that H-DNA significantly increased mutagenesis in small-interfering siRNA-treated, DHX9-depleted cells, affecting mostly deletions. Moreover, DHX9 associated with H-DNA in the context of supercoiled plasmids. To further investigate the role of DHX9 in the recognition/processing of H-DNA, we performed binding assays in vitro and chromatin immunoprecipitation assays in U2OS cells. DHX9 recognized H-DNA, as evidenced by its binding to the H-DNA structure and enrichment at the H-DNA region compared with a control region in human cells. These composite data implicate DHX9 in processing H-DNA structures in vivo and support its role in the overall maintenance of genomic stability at sites of alternatively structured DNA.
Collapse
Affiliation(s)
- Aklank Jain
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. Austin, TX 78723, USA
| | | | | | | | | | | |
Collapse
|
31
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
32
|
Wong IN, Sayers JR, Sanders CM. Characterization of an unusual bipolar helicase encoded by bacteriophage T5. Nucleic Acids Res 2013; 41:4587-600. [PMID: 23435232 PMCID: PMC3632103 DOI: 10.1093/nar/gkt105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteriophage T5 has a 120 kb double-stranded linear DNA genome encoding most of the genes required for its own replication. This lytic bacteriophage has a burst size of ∼500 new phage particles per infected cell, demonstrating that it is able to turn each infected bacterium into a highly efficient DNA manufacturing machine. To begin to understand DNA replication in this prodigious bacteriophage, we have characterized a putative helicase encoded by gene D2. We show that bacteriophage T5 D2 protein is the first viral helicase to be described with bipolar DNA unwinding activities that require the same core catalytic residues for unwinding in either direction. However, unwinding of partially single- and double-stranded DNA test substrates in the 3′–5′ direction is more robust and can be distinguished from the 5′–3′ activity by a number of features including helicase complex stability, salt sensitivity and the length of single-stranded DNA overhang required for initiation of helicase action. The presence of D2 in an early gene cluster, the identification of a putative helix-turn-helix DNA-binding motif outside the helicase core and homology with known eukaryotic and prokaryotic replication initiators suggest an involvement for this unusual helicase in DNA replication initiation.
Collapse
Affiliation(s)
- Io Nam Wong
- Department of Oncology, Institute for Cancer Studies
| | | | | |
Collapse
|
33
|
Rezazadeh S. On BLM helicase in recombination-mediated telomere maintenance. Mol Biol Rep 2012; 40:3049-64. [DOI: 10.1007/s11033-012-2379-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 11/29/2022]
|
34
|
Xu M, Gabison J, Liu Y. Trinucleotide repeat deletion via a unique hairpin bypass by DNA polymerase β and alternate flap cleavage by flap endonuclease 1. Nucleic Acids Res 2012; 41:1684-97. [PMID: 23258707 PMCID: PMC3561997 DOI: 10.1093/nar/gks1306] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegenerative diseases and prostate cancer. Recent studies have pointed to a linkage between oxidative DNA damage, base excision repair (BER) and TNR expansion, which is demonstrated by the observation that DNA polymerase β (pol β) gap-filling synthesis acts in concert with alternate flap cleavage by flap endonuclease 1 (FEN1) to mediate CAG repeat expansions. In this study, we provide the first evidence that the repair of a DNA base lesion can also contribute to CAG repeat deletions that were initiated by the formation of hairpins on both the template and the damaged strand of a continuous run of (CAG)20 or (CAG)25 repeats. Most important, we found that pol β not only bypassed one part of the large template hairpin but also managed to pass through almost the entire length of small hairpin. The unique hairpin bypass of pol β resulted in large and small deletions in coordination with FEN1 alternate flap cleavage. Our results provide new insight into the role of BER in modulating genome stability that is associated with human diseases.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | | | | |
Collapse
|
35
|
Structural and Functional Characterization of RecG Helicase under Dilute and Molecular Crowding Conditions. J Nucleic Acids 2012; 2012:392039. [PMID: 22919464 PMCID: PMC3420092 DOI: 10.1155/2012/392039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/30/2012] [Indexed: 12/04/2022] Open
Abstract
In an ATP-dependent reaction, the Escherichia coli RecG helicase unwinds DNA junctions in vitro. We present evidence of a unique protein conformational change in the RecG helicase from an α-helix to a β-strand upon an ATP binding under dilute conditions using circular dichroism (CD) spectroscopy. In contrast, under molecular crowding conditions, the α-helical conformation was stable even upon an ATP binding. These distinct conformational behaviors were observed to be independent of Na+ and Mg2+. Interestingly, CD measurements demonstrated that the spectra of a frayed duplex decreased with increasing of the RecG concentration both under dilute and molecular crowding conditions in the presence of ATP, suggesting that RecG unwound the frayed duplex. Our findings raise the possibility that the α-helix and β-strand forms of RecG are a preactive and an active structure with the helicase activity, respectively.
Collapse
|
36
|
Kamath-Loeb AS, Shen JC, Schmitt MW, Loeb LA. The Werner syndrome exonuclease facilitates DNA degradation and high fidelity DNA polymerization by human DNA polymerase δ. J Biol Chem 2012; 287:12480-90. [PMID: 22351772 DOI: 10.1074/jbc.m111.332577] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA Polymerase δ (Pol δ) and the Werner syndrome protein, WRN, are involved in maintaining cellular genomic stability. Pol δ synthesizes the lagging strand during replication of genomic DNA and also functions in the synthesis steps of DNA repair and recombination. WRN is a member of the RecQ helicase family, loss of which results in the premature aging and cancer-prone disorder, Werner syndrome. Both Pol δ and WRN encode 3' → 5' DNA exonuclease activities. Pol δ exonuclease removes 3'-terminal mismatched nucleotides incorporated during replication to ensure high fidelity DNA synthesis. WRN exonuclease degrades DNA containing alternate secondary structures to prevent formation and enable resolution of stalled replication forks. We now observe that similarly to WRN, Pol δ degrades alternate DNA structures including bubbles, four-way junctions, and D-loops. Moreover, WRN and Pol δ form a complex with enhanced ability to hydrolyze these structures. We also present evidence that WRN can proofread for Pol δ; WRN excises 3'-terminal mismatches to enable primer extension by Pol δ. Consistent with our in vitro observations, we show that WRN contributes to the maintenance of DNA synthesis fidelity in vivo. Cells expressing limiting amounts (∼10% of normal) of WRN have elevated mutation frequencies compared with wild-type cells. Together, our data highlight the importance of WRN exonuclease activity and its cooperativity with Pol δ in preserving genome stability, which is compromised by the loss of WRN in Werner syndrome.
Collapse
|
37
|
Sharma S. Non-B DNA Secondary Structures and Their Resolution by RecQ Helicases. J Nucleic Acids 2011; 2011:724215. [PMID: 21977309 PMCID: PMC3185257 DOI: 10.4061/2011/724215] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/25/2011] [Indexed: 01/14/2023] Open
Abstract
In addition to the canonical B-form structure first described by Watson and Crick, DNA can adopt a number of alternative structures. These non-B-form DNA secondary structures form spontaneously on tracts of repeat sequences that are abundant in genomes. In addition, structured forms of DNA with intrastrand pairing may arise on single-stranded DNA produced transiently during various cellular processes. Such secondary structures have a range of biological functions but also induce genetic instability. Increasing evidence suggests that genomic instabilities induced by non-B DNA secondary structures result in predisposition to diseases. Secondary DNA structures also represent a new class of molecular targets for DNA-interactive compounds that might be useful for targeting telomeres and transcriptional control. The equilibrium between the duplex DNA and formation of multistranded non-B-form structures is partly dependent upon the helicases that unwind (resolve) these alternate DNA structures. With special focus on tetraplex, triplex, and cruciform, this paper summarizes the incidence of non-B DNA structures and their association with genomic instability and emphasizes the roles of RecQ-like DNA helicases in genome maintenance by resolution of DNA secondary structures. In future, RecQ helicases are anticipated to be additional molecular targets for cancer chemotherapeutics.
Collapse
Affiliation(s)
- Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, 520 W Street, NW, Suite 3424A, Washington, DC 20059, USA
| |
Collapse
|
38
|
Abstract
Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chromosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis. This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication and their roles in telomere maintenance and protection.
Collapse
Affiliation(s)
- Shilpa Sampathi
- WWAMI Medical Education Program, Washington State University, Spokane, WA 99210-1495, USA
| | | |
Collapse
|
39
|
Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011; 8:427-39. [PMID: 21525785 DOI: 10.4161/rna.8.3.14999] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation, and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation.
Collapse
Affiliation(s)
- Fabian A Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | | | | |
Collapse
|
40
|
Mukherjee A, Vasquez KM. Triplex technology in studies of DNA damage, DNA repair, and mutagenesis. Biochimie 2011; 93:1197-208. [PMID: 21501652 DOI: 10.1016/j.biochi.2011.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/01/2011] [Indexed: 12/18/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) can bind to the major groove of homopurine-homopyrimidine stretches of double-stranded DNA in a sequence-specific manner through Hoogsteen hydrogen bonding to form DNA triplexes. TFOs by themselves or conjugated to reactive molecules can be used to direct sequence-specific DNA damage, which in turn results in the induction of several DNA metabolic activities. Triplex technology is highly utilized as a tool to study gene regulation, molecular mechanisms of DNA repair, recombination, and mutagenesis. In addition, TFO targeting of specific genes has been exploited in the development of therapeutic strategies to modulate DNA structure and function. In this review, we discuss advances made in studies of DNA damage, DNA repair, recombination, and mutagenesis by using triplex technology to target specific DNA sequences.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | | |
Collapse
|
41
|
Bacolla A, Wang G, Jain A, Chuzhanova NA, Cer RZ, Collins JR, Cooper DN, Bohr VA, Vasquez KM. Non-B DNA-forming sequences and WRN deficiency independently increase the frequency of base substitution in human cells. J Biol Chem 2011; 286:10017-26. [PMID: 21285356 PMCID: PMC3060453 DOI: 10.1074/jbc.m110.176636] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/31/2011] [Indexed: 01/01/2023] Open
Abstract
Although alternative DNA secondary structures (non-B DNA) can induce genomic rearrangements, their associated mutational spectra remain largely unknown. The helicase activity of WRN, which is absent in the human progeroid Werner syndrome, is thought to counteract this genomic instability. We determined non-B DNA-induced mutation frequencies and spectra in human U2OS osteosarcoma cells and assessed the role of WRN in isogenic knockdown (WRN-KD) cells using a supF gene mutation reporter system flanked by triplex- or Z-DNA-forming sequences. Although both non-B DNA and WRN-KD served to increase the mutation frequency, the increase afforded by WRN-KD was independent of DNA structure despite the fact that purified WRN helicase was found to resolve these structures in vitro. In U2OS cells, ∼70% of mutations comprised single-base substitutions, mostly at G·C base-pairs, with the remaining ∼30% being microdeletions. The number of mutations at G·C base-pairs in the context of NGNN/NNCN sequences correlated well with predicted free energies of base stacking and ionization potentials, suggesting a possible origin via oxidation reactions involving electron loss and subsequent electron transfer (hole migration) between neighboring bases. A set of ∼40,000 somatic mutations at G·C base pairs identified in a lung cancer genome exhibited similar correlations, implying that hole migration may also be involved. We conclude that alternative DNA conformations, WRN deficiency and lung tumorigenesis may all serve to increase the mutation rate by promoting, through diverse pathways, oxidation reactions that perturb the electron orbitals of neighboring bases. It follows that such "hole migration" is likely to play a much more widespread role in mutagenesis than previously anticipated.
Collapse
Affiliation(s)
- Albino Bacolla
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Guliang Wang
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Aklank Jain
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| | - Nadia A. Chuzhanova
- the School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom
| | - Regina Z. Cer
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - Jack R. Collins
- the Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland 21702
| | - David N. Cooper
- the Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, United Kingdom, and
| | - Vilhelm A. Bohr
- the Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224
| | - Karen M. Vasquez
- From the Department of Molecular Carcinogenesis, Science Park-Research Division, The University of Texas, M. D. Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|
42
|
Jain A, Bacolla A, Chakraborty P, Grosse F, Vasquez KM. Human DHX9 helicase unwinds triple-helical DNA structures. Biochemistry 2010; 49:6992-9. [PMID: 20669935 DOI: 10.1021/bi100795m] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Naturally occurring poly(purine.pyrimidine) rich regions in the human genome are prone to adopting non-canonical DNA structures such as intramolecular triplexes (i.e., H-DNA). Such structure-forming sequences are abundant and can regulate the expression of several disease-linked genes. In addition, the use of triplex-forming oligonucleotides (TFOs) to modulate gene structure and function has potential as an approach to targeted gene therapy. Previously, we found that endogenous H-DNA structures can induce DNA double-strand breaks and promote genomic rearrangements. Herein, we find that the DHX9 helicase co-immunoprecipitates with triplex DNA structures in mammalian cells, suggesting a role in the maintenance of genome stability. We tested this postulate by assessing the helicase activity of purified human DHX9 on various duplex and triplex DNA substrates in vitro. DHX9 displaced the third strand from a specific triplex DNA structure and catalyzed the unwinding with a 3' --> 5' polarity with respect to the displaced third strand. Helicase activity required a 3'-single-stranded overhang on the third strand and was dependent on ATP hydrolysis. The reaction kinetics consisted of a pre-steady-state burst phase followed by a linear, steady-state pseudo-zero-order reaction. In contrast, very little if any helicase activity was detected on blunt triplexes, triplexes with 5'-overhangs, blunt duplexes, duplexes with overhangs, or forked duplex substrates. Thus, triplex structures containing a 3'-overhang represent preferred substrates for DHX9, where it removes the strand with Hoogsteen hydrogen-bonded bases. Our results suggest the involvement of DHX9 in maintaining genome integrity by unwinding mutagenic triplex DNA structures.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas M. D. Anderson Cancer Center, Smithville, Texas 78957, USA
| | | | | | | | | |
Collapse
|
43
|
Molecular analyses of DNA helicases involved in the replicational stress response. Methods 2010; 51:303-12. [PMID: 20188837 DOI: 10.1016/j.ymeth.2010.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/12/2010] [Accepted: 02/23/2010] [Indexed: 02/04/2023] Open
Abstract
The importance of helicases in nucleic acid metabolism and human disease has raised the bar for understanding how these unique enzymes function to perform their biological roles at the molecular level. Here we will describe experimental procedures and strategies to investigate the functions of helicases. These functional assays have been used to study DNA helicases important for the maintenance of genomic stability and genetically linked to age-related diseases and cancer. We will focus on the description of fluorometric helicase assays, protein displacement assays, and methods to characterize helicase activity on alternate DNA structures (triplex and quadruplex) used by our laboratory. The procedures to study these helicase functions are described in step-by-step detail to enable researchers interested in nucleic acid metabolism and related fields to apply these techniques to their own research questions.
Collapse
|
44
|
Sommers JA, Rawtani N, Gupta R, Bugreev DV, Mazin AV, Cantor SB, Brosh RM. FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J Biol Chem 2009; 284:7505-17. [PMID: 19150983 DOI: 10.1074/jbc.m809019200] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mutations in the FANCJ helicase predispose individuals to breast cancer and are genetically linked to the Fanconi anemia (FA) complementation group J. FA is a chromosomal instability disorder characterized by multiple congenital anomalies, progressive bone marrow failure, and high cancer risk. FANCJ has been proposed to function downstream of FANCD2 monoubiquitination, a critical event in the FA pathway. Evidence supports a role for FANCJ in a homologous recombination pathway of double strand break repair. In an effort to understand the molecular functions of FANCJ, we have investigated the ability of purified FANCJ recombinant protein to use its motor ATPase function for activities in addition to unwinding of conventional duplex DNA substrates. These efforts have led to the discovery that FANCJ ATP hydrolysis can be used to destabilize protein-DNA complexes and unwind triple helix alternate DNA structures. These novel catalytic functions of FANCJ may be important for its role in cellular DNA repair, recombination, or resolving DNA structural obstacles to replication. Consistent with this, we show that FANCJ can inhibit RAD51 strand exchange, an activity that is likely to be important for its role in controlling DNA repair through homologous recombination.
Collapse
Affiliation(s)
- Joshua A Sommers
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, National Institutes of Health Biomedical Research Center, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ding SL, Shen CY. Model of human aging: recent findings on Werner's and Hutchinson-Gilford progeria syndromes. Clin Interv Aging 2008; 3:431-44. [PMID: 18982914 PMCID: PMC2682376 DOI: 10.2147/cia.s1957] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms involved in human aging are complicated. Two progeria syndromes, Werner's syndrome (WS) and Hutchinson-Gilford progeria syndrome (HGPS), characterized by clinical features mimicking physiological aging at an early age, provide insights into the mechanisms of natural aging. Based on recent findings on WS and HGPS, we suggest a model of human aging. Human aging can be triggered by two main mechanisms, telomere shortening and DNA damage. In telomere-dependent aging, telomere shortening and dysfunction may lead to DNA damage responses which induce cellular senescence. In DNA damage-initiated aging, DNA damage accumulates, along with DNA repair deficiencies, resulting in genomic instability and accelerated cellular senescence. In addition, aging due to both mechanisms (DNA damage and telomere shortening) is strongly dependent on p53 status. These two mechanisms can also act cooperatively to increase the overall level ofgenomic instability, triggering the onset of human aging phenotypes.
Collapse
Affiliation(s)
- Shian-Ling Ding
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management,Taipei,Taiwan.
| | | |
Collapse
|
46
|
Kusumoto R, Dawut L, Marchetti C, Wan Lee J, Vindigni A, Ramsden D, Bohr VA. Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing. Biochemistry 2008; 47:7548-56. [PMID: 18558713 DOI: 10.1021/bi702325t] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Werner syndrome is a rare human disease characterized by the premature onset of aging-associated pathologies, cancer predisposition, and genomic instability. The Werner protein (WRN), which is defective in Werner syndrome ( WS) patients, belongs to the RecQ family helicases and interacts with several DNA metabolic proteins, including DNA repair factors and telomere associated proteins. Nonhomologous end-joining (NHEJ) is an important pathway in the repair of DNA double strand breaks (DSBs), and the DNA-PK complex, composed of the heterodimer Ku 70/86 and the DNA-PK catalytic subunit (DNA-PKcs), together with the XRCC4-DNA ligase IV complex (X4L4), are major factors. One of the most prominent protein interactions of WRN is with Ku 70/86, and it is possible that WRN is involved in NHEJ via its associations with Ku 70/86 and DNA-PKcs. This study demonstrates that WRN physically interacts with the major NHEJ factor, X4L4, which stimulates WRN exonuclease but not its helicase activity. The human RecQ helicase, BLM, which possesses only helicase activity, does not bind to X4L4, and its helicase activity is not affected by X4L4. In a DNA end-joining assay, we find that a substrate, which is processed by WRN, is ligated by X4L4, thus further supporting the significance of their functional interaction.
Collapse
Affiliation(s)
- Rika Kusumoto
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Dixon BP, Lu L, Chu A, Bissler JJ. RecQ and RecG helicases have distinct roles in maintaining the stability of polypurine.polypyrimidine sequences. Mutat Res 2008; 643:20-8. [PMID: 18582477 DOI: 10.1016/j.mrfmmm.2008.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 01/07/2023]
Abstract
DNA triplex structures can block the replication fork and result in double-stranded DNA breaks (DSBs). RecQ and RecG helicases may be important for replication of such sequences as RecQ resolves synthetic triplex DNA structures and RecG mediates replication restart by fork regression. Primer extension on an 88 bp triplex-forming polypurine.polypyrimidine (Pu.Py) tract from the PKD1 gene demonstrated that RecQ, but not RecG, facilitated primer extension by T7 DNA polymerase. A high-throughput, dual plasmid screening system using isogenic bacterial lines deficient in RecG, RecQ, or both, revealed that RecQ deficiency increased mutation to sequence flanking this 88 bp tract by eight to ten-fold. Although RecG facilitated small deletions in an 88 bp mirror repeat-containing sequence, it was absolutely required to maintain a 2.5 kb Pu.Py tract containing multiple mirror repeats. These results support a two-tiered model where RecQ facilitates fork progression through triplex-forming tracts and, failing processivity, RecG is critical for replication fork restart.
Collapse
Affiliation(s)
- Bradley P Dixon
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, MLC 7022, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, United States
| | | | | | | |
Collapse
|
48
|
Bugreev DV, Brosh RM, Mazin AV. RECQ1 possesses DNA branch migration activity. J Biol Chem 2008; 283:20231-42. [PMID: 18495662 DOI: 10.1074/jbc.m801582200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RecQ helicases are essential for the maintenance of genome stability. Five members of the RecQ family have been found in humans, including RECQ1, RECQ5, BLM, WRN, and RECQ4; the last three are associated with human diseases. At this time, only BLM and WRN helicases have been extensively characterized, and the information on the other RecQ helicases has only started to emerge. Our current paper is focused on the biochemical properties of human RECQ1 helicase. Recent cellular studies have shown that RECQ1 may participate in DNA repair and homologous recombination, but the exact mechanisms of how RECQ1 performs its cellular functions remain largely unknown. Whereas RECQ1 possesses poor helicase activity, we found here that the enzyme efficiently promotes DNA branch migration. Further analysis revealed that RECQ1 catalyzes unidirectional three-stranded branch migration with a 3' --> 5' polarity. We show that this RECQ1 activity is instrumental in specific disruption of joint molecules (D-loops) formed by a 5' single-stranded DNA invading strand, which may represent dead end intermediates of homologous recombination in vivo. The newly found enzymatic properties of the RECQ1 helicase may have important implications for the function of RECQ1 in maintenance of genomic stability.
Collapse
Affiliation(s)
- Dmitry V Bugreev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102-1192, USA
| | | | | |
Collapse
|
49
|
Wu Y, Rawtani N, Thazhathveetil AK, Kenny MK, Seidman MM, Brosh RM. Human replication protein A melts a DNA triple helix structure in a potent and specific manner. Biochemistry 2008; 47:5068-77. [PMID: 18410127 DOI: 10.1021/bi702102d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alternate DNA structures other than double-stranded B-form DNA can potentially impede cellular processes such as transcription and replication. The DNA triplex helix and G4 tetraplex structures that form by Hoogsteen hydrogen bonding are two examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human replication protein A (RPA), a single-stranded DNA binding protein that is implicated in all facets of DNA metabolism, to destabilize DNA triplexes and tetraplexes. Biochemical studies demonstrate that RPA efficiently melts an intermolecular DNA triple helix consisting of a pyrimidine motif third strand annealed to a 4 kb duplex DNA fragment at protein concentrations equimolar to the triplex substrate. Heterologous single-stranded DNA binding proteins ( Escherichia coli SSB, T4 gene 32) melt the triplex substrate very poorly or not at all, suggesting that the triplex destabilizing effect of RPA is specific. In contrast to the robust activity on DNA triplexes, RPA does not melt intermolecular G4 tetraplex structures. Cellular assays demonstrated increased triplex DNA content when RPA is transiently repressed, suggesting that RPA melting of triple helical structures is physiologically important. On the basis of our results, we suggest that the abundance of RPA known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form from human genomic DNA sequences.
Collapse
Affiliation(s)
- Yuliang Wu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Genomic instability leads to mutations, cellular dysfunction and aberrant phenotypes at the tissue and organism levels. A number of mechanisms have evolved to cope with endogenous or exogenous stress to prevent chromosomal instability and maintain cellular homeostasis. DNA helicases play important roles in the DNA damage response. The RecQ family of DNA helicases is of particular interest since several human RecQ helicases are defective in diseases associated with premature aging and cancer. In this review, we will provide an update on our understanding of the specific roles of human RecQ helicases in the maintenance of genomic stability through their catalytic activities and protein interactions in various pathways of cellular nucleic acid metabolism with an emphasis on DNA replication and repair. We will also discuss the clinical features of the premature aging disorders associated with RecQ helicase deficiencies and how they relate to the molecular defects.
Collapse
Affiliation(s)
- Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|