1
|
Caldovic L, Ahn JJ, Andricovic J, Balick VM, Brayer M, Chansky PA, Dawson T, Edwards AC, Felsen SE, Ismat K, Jagannathan SV, Mann BT, Medina JA, Morizono T, Morizono M, Salameh S, Vashist N, Williams EC, Zhou Z, Morizono H. Datamining approaches for examining the low prevalence of N-acetylglutamate synthase deficiency and understanding transcriptional regulation of urea cycle genes. J Inherit Metab Dis 2024; 47:1175-1193. [PMID: 37847851 PMCID: PMC11586597 DOI: 10.1002/jimd.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Ammonia, which is toxic to the brain, is converted into non-toxic urea, through a pathway of six enzymatically catalyzed steps known as the urea cycle. In this pathway, N-acetylglutamate synthase (NAGS, EC 2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetyl coenzyme A. NAGS deficiency (NAGSD) is the rarest of the urea cycle disorders, yet is unique in that ureagenesis can be restored with the drug N-carbamylglutamate (NCG). We investigated whether the rarity of NAGSD could be due to low sequence variation in the NAGS genomic region, high NAGS tolerance for amino acid replacements, and alternative sources of NAG and NCG in the body. We also evaluated whether the small genomic footprint of the NAGS catalytic domain might play a role. The small number of patients diagnosed with NAGSD could result from the absence of specific disease biomarkers and/or short NAGS catalytic domain. We screened for sequence variants in NAGS regulatory regions in patients suspected of having NAGSD and found a novel NAGS regulatory element in the first intron of the NAGS gene. We applied the same datamining approach to identify regulatory elements in the remaining urea cycle genes. In addition to the known promoters and enhancers of each gene, we identified several novel regulatory elements in their upstream regions and first introns. The identification of cis-regulatory elements of urea cycle genes and their associated transcription factors holds promise for uncovering shared mechanisms governing urea cycle gene expression and potentially leading to new treatments for urea cycle disorders.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Julie J. Ahn
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Jacklyn Andricovic
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Veronica M. Balick
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Mallory Brayer
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Pamela A. Chansky
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Tyson Dawson
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- AMPEL BioSolutions LLCCharlottesvilleVirginiaUSA
| | - Alex C. Edwards
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Sara E. Felsen
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Karim Ismat
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Sveta V. Jagannathan
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Brendan T. Mann
- Department of Microbiology, Immunology, and Tropical MedicineSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Jacob A. Medina
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Toshio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Shatha Salameh
- Department of Pharmacology & PhysiologySchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren's National HospitalWashingtonDCUSA
| | - Neerja Vashist
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Emily C. Williams
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- The George Washington University Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Zhe Zhou
- Department of Civil and Environmental EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Hiroki Morizono
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| |
Collapse
|
2
|
Konno N. Simultaneous activation of genes encoding urea cycle enzymes and gluconeogenetic enzymes coincides with a corticosterone surge period before metamorphosis in Xenopus laevis. Dev Growth Differ 2023; 65:6-15. [PMID: 36527293 DOI: 10.1111/dgd.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/30/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Amphibian tadpoles are postulated to excrete ammonia as nitrogen metabolites but to shift from ammonotelism to ureotelism during metamorphosis. However, it is unknown whether ureagenesis occurs or plays a functional role before metamorphosis. Here, the mRNA-expression levels of two urea cycle enzymes (carbamoyl phosphate synthetase I [CPSI] and ornithine transcarbamylase [OTC]) were measured beginning with stage-47 Xenopus tadpoles at 5 days post-fertilization (dpf), between the onset of feeding (stage 45, 4 dpf) and metamorphosis (stage 55, 32 dpf). CPSI and OTC expression levels increased significantly from stage 49 (12 dpf). Urea excretion was also detected at stage 47. A transient corticosterone surge peaking at stage 48 was previously reported, supporting the hypothesis that corticosterone can induce CPSI expression in tadpoles, as found in adult frogs and mammals. Stage-46 tadpoles were exposed to a synthetic glucocorticoid, dexamethasone (Dex, 10-500 nM) for 3 days. CPSI mRNA expression was significantly higher in tadpoles exposed to Dex than in tadpoles exposed to the vehicle control. Furthermore, glucocorticoid receptor mRNA expression increased during the pre-metamorphic period. In addition to CPSI and OTC mRNA upregulation, the expression levels of three gluconeogenic enzyme genes (glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase 1) increased with the onset of urea synthesis and excretion. These results suggest that simultaneous induction of the urea cycle and gluconeogenic enzymes coincided with a corticosterone surge occurring prior to metamorphosis. These metabolic changes preceding metamorphosis may be closely related to the onset of feeding and nutrient accumulation required for metamorphosis.
Collapse
Affiliation(s)
- Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
3
|
Zhang M, Wang S, Sun L, Gan L, Lin Y, Shao J, Jiang H, Li M. Ammonia induces changes in carbamoyl phosphate synthetase I and its regulation of glutamine synthesis and urea cycle in yellow catfish Pelteobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2022; 120:242-251. [PMID: 34856372 DOI: 10.1016/j.fsi.2021.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Fishes can adapt to certain levels of environmental ammonia in water, but the strategies utilized to defend against ammonia toxicity are not exactly the same. The carbamyl phosphate synthase I (CPS I) plays an important role in the regulation of glutamine synthesis and urea cycle, which are the most common strategies for ammonia detoxification. In this study, CPS I was cloned from the yellow catfish. The full-length cDNAs of the CPS I was 5 034 bp, with open reading frames of 4 461 bp. Primary amino acid sequence alignment of CPS I revealed conserved similarity between the functional domains of the yellow catfish CPS I protein with CPS I proteins of other animals. The mRNA expression of CPS I was significantly up-regulated in liver and kidney tissues after acute ammonia stress. The CPS I RNA interference (RNAi) down-regulated the mRNA expressions of CPS I and ornithine transcarbamylase (OTC), but up-regulated glutamine synthetase (GS) and glutamate dehydrogenase (GDH) expressions in primary culture of liver cell after acute ammonia stress. Similarly, the activity of enzymes related to urea cycle decreased significantly, while the activity of enzymes related to glutamine synthesis increased significantly. The results of RNAi in vitro suggested that when the urea cycle is disturbed, the glutamine synthesis will be activated to cope with ammonia toxicity.
Collapse
Affiliation(s)
- Muzi Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Liying Sun
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lei Gan
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yanhong Lin
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jian Shao
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Häberle J, Moore MB, Haskins N, Rüfenacht V, Rokicki D, Rubio-Gozalbo E, Tuchman M, Longo N, Yandell M, Andrews A, AhMew N, Caldovic L. Noncoding sequence variants define a novel regulatory element in the first intron of the N-acetylglutamate synthase gene. Hum Mutat 2021; 42:1624-1636. [PMID: 34510628 DOI: 10.1002/humu.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022]
Abstract
N-acetylglutamate synthase deficiency is an autosomal recessive urea cycle disorder caused either by decreased expression of the NAGS gene or defective NAGS enzyme resulting in decreased production of N-acetylglutamate (NAG), an allosteric activator of carbamylphosphate synthetase 1 (CPS1). NAGSD is the only urea cycle disorder that can be effectively treated with a single drug, N-carbamylglutamate (NCG), a stable NAG analog, which activates CPS1 to restore ureagenesis. We describe three patients with NAGSD due to four novel noncoding sequence variants in the NAGS regulatory regions. All three patients had hyperammonemia that resolved upon treatment with NCG. Sequence variants NM_153006.2:c.427-222G>A and NM_153006.2:c.427-218A>C reside in the 547 bp-long first intron of NAGS and define a novel NAGS regulatory element that binds retinoic X receptor α. Sequence variants NC_000017.10:g.42078967A>T (NM_153006.2:c.-3065A>T) and NC_000017.10:g.42078934C>T (NM_153006.2:c.-3098C>T) reside in the NAGS enhancer, within known HNF1 and predicted glucocorticoid receptor binding sites, respectively. Reporter gene assays in HepG2 and HuH-7 cells demonstrated that all four substitutions could result in reduced expression of NAGS. These findings show that analyzing noncoding regions of NAGS and other urea cycle genes can reveal molecular causes of disease and identify novel regulators of ureagenesis.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marvin B Moore
- Department of Human Genetics, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Nantaporn Haskins
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah Health Science Center, Salt Lake City, Utah, USA.,8USTAR Center for Genetic Discovery, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Ashley Andrews
- Division of Medical Genetics, Pediatrics, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Nicholas AhMew
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA.,Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
5
|
Heibel SK, McGuire PJ, Haskins N, Datta Majumdar H, Rayavarapu S, Nagaraju K, Hathout Y, Brown K, Tuchman M, Caldovic L. AMP-activated protein kinase signaling regulated expression of urea cycle enzymes in response to changes in dietary protein intake. J Inherit Metab Dis 2019; 42:1088-1096. [PMID: 31177541 PMCID: PMC7385982 DOI: 10.1002/jimd.12133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
Abundance of urea cycle enzymes in the liver is regulated by dietary protein intake. Although urea cycle enzyme levels rise in response to a high-protein (HP) diet, signaling networks that sense dietary protein intake and trigger changes in expression of urea cycle genes have not been identified. The aim of this study was to identify signaling pathway(s) that respond to changes in protein intake and regulate expression of urea cycle genes in mice and human hepatocytes. Mice were adapted to either HP or low-protein diets followed by isolation of liver protein and mRNA and integrated analysis of the proteomic and transcriptomic data. HP diet led to increased expression of mRNA and enzymes in amino acid degradation pathways and decreased expression of mRNA and enzymes in carbohydrate and fat metabolism, which implicated adenosine monophosphate-activated protein kinase (AMPK) as a possible regulator. Primary human hepatocytes, treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) an activator of AMPK, were used to test whether AMPK regulates expression of urea cycle genes. The abundance of carbamoylphosphate synthetase 1 and ornithine transcarbamylase mRNA increased in hepatocytes treated with AICAR, which supports a role for AMPK signaling in regulation of the urea cycle. Because AMPK is either a target of drugs used to treat type-2 diabetes, these drugs might increase the expression of urea cycle enzymes in patients with partial urea cycle disorders, which could be the basis of a new therapeutic approach.
Collapse
Affiliation(s)
- Sandra Kirsch Heibel
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | | | - Nantaporn Haskins
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Himani Datta Majumdar
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Sree Rayavarapu
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton NY, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton NY, USA
| | - Kristy Brown
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| |
Collapse
|
6
|
Khoja S, Nitzahn M, Hermann K, Truong B, Borzone R, Willis B, Rudd M, Palmer DJ, Ng P, Brunetti-Pierri N, Lipshutz GS. Conditional disruption of hepatic carbamoyl phosphate synthetase 1 in mice results in hyperammonemia without orotic aciduria and can be corrected by liver-directed gene therapy. Mol Genet Metab 2018; 124:243-253. [PMID: 29801986 PMCID: PMC6076338 DOI: 10.1016/j.ymgme.2018.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) is a urea cycle enzyme that forms carbamoyl phosphate from bicarbonate, ammonia and ATP. Bi-allelic mutations of the CPS1 gene result in a urea cycle disorder presenting with hyperammonemia, often with reduced citrulline, and without orotic aciduria. CPS1 deficiency is particularly challenging to treat and lack of early recognition typically results in early neonatal death. Therapeutic interventions have limited efficacy and most patients develop long-term neurologic sequelae. Using transgenic techniques, we generated a conditional Cps1 knockout mouse. By loxP/Cre recombinase technology, deletion of the Cps1 locus was achieved in adult transgenic animals using a Cre recombinase-expressing adeno-associated viral vector. Within four weeks from vector injection, all animals developed hyperammonemia without orotic aciduria and died. Minimal CPS1 protein was detectable in livers. To investigate the efficacy of gene therapy for CPS deficiency following knock-down of hepatic endogenous CPS1 expression, we injected these mice with a helper-dependent adenoviral vector (HDAd) expressing the large murine CPS1 cDNA under control of the phosphoenolpyruvate carboxykinase promoter. Liver-directed HDAd-mediated gene therapy resulted in survival, normalization of plasma ammonia and glutamine, and 13% of normal Cps1 expression. A gender difference in survival suggests that female mice may require higher hepatic CPS1 expression. We conclude that this conditional murine model recapitulates the clinical and biochemical phenotype detected in human patients with CPS1 deficiency and will be useful to investigate ammonia-mediated neurotoxicity and for the development of cell- and gene-based therapeutic approaches.
Collapse
Affiliation(s)
- Suhail Khoja
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Matt Nitzahn
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Kip Hermann
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Brian Truong
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | | | - Brandon Willis
- Mouse Biology Program (MBP), University of California, Davis, United States
| | - Mitchell Rudd
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Donna J Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Naples, Italy; Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Gerald S Lipshutz
- Departments of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
7
|
Hu L, Wang C, Zhang Q, Yan H, Li Y, Pan J, Tang Z. Mitochondrial Protein Profile in Mice with Low or Excessive Selenium Diets. Int J Mol Sci 2016; 17:ijms17071137. [PMID: 27428959 PMCID: PMC4964510 DOI: 10.3390/ijms17071137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/07/2016] [Accepted: 07/09/2016] [Indexed: 11/16/2022] Open
Abstract
Dietary selenium putatively prevents oxidative damage, whereas excessive selenium may lead to animal disorder. In this study, we investigated the effects of low and excessive levels of dietary selenium on oxidative stress and mitochondrial proteins in mouse liver. Six to eight week old mice were fed a diet with low, excessive, or moderate (control) levels of selenium (sodium selenite). The selenium concentration and oxidative stress-related parameters in hepatic mitochondria were evaluated. Two-dimensional electrophoresis and mass spectrometry were applied to identify the differentially-expressed proteins associated with dietary selenium. The selenium content of the livers in mice with the low selenium diet was significantly lower than that of the control, while that of mice fed excessive levels was significantly higher. In both groups oxidative stress in hepatic mitochondria was found; accompanied by lower superoxide dismutase (SOD) and glutathione peroxidase (GPX) levels and higher malondialdehyde (MDA) content, compared with the control group. Furthermore, ten proteins in the hepatic mitochondria of the selenium-low or -excessive groups with more than two-fold differences in abundance compared with the control group were identified. The differentially-expressed proteins in hepatic mitochondria may be associated with dietary (low or excessive) selenium-induced oxidative stress.
Collapse
Affiliation(s)
- Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China.
| | - Congcong Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Qin Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Ali EZ, Khalid MKNM, Yunus ZM, Yakob Y, Chin CB, Abd Latif K, Hock NL. Carbamoylphosphate synthetase 1 (CPS1) deficiency: clinical, biochemical, and molecular characterization in Malaysian patients. Eur J Pediatr 2016; 175:339-46. [PMID: 26440671 DOI: 10.1007/s00431-015-2644-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
UNLABELLED Carbamoyl phosphate synthetase 1 (CPS1) deficiency is a rare autosomal recessive disorder of ureagenesis presenting as life-threatening hyperammonemia. In this study, we present the main clinical features and biochemical and molecular data of six Malaysian patients with CPS1 deficiency. All the patients have neonatal-onset symptoms, initially diagnosed as infections before hyperammonemia was recognized. They have typical biochemical findings of hyperglutaminemia, hypocitrullinemia, and low to normal urinary excretion of orotate. One neonate succumbed to the first hyperammonemic decompensation. Five neonatal survivors received long-term treatment consisting of dietary protein restriction and ammonia-scavenging drugs. They have delayed neurocognitive development of varying severity. Genetic analysis revealed eight mutations in CPS1 gene, five of which were not previously reported. Five mutations were missense changes while another three were predicted to create premature stop codons. In silico analyses showed that these new mutations affected different CPS1 enzyme domains and were predicted to interrupt interactions at enzyme active sites, disturb local enzyme conformation, and destabilize assembly of intact enzyme complex. CONCLUSION All mutations are private except one mutation; p.Ile1254Phe was found in three unrelated families. Identification of a recurrent p.Ile1254Phe mutation suggests the presence of a common and unique mutation in our population. Our study also expands the mutational spectrum of the CPS1 gene.
Collapse
Affiliation(s)
- Ernie Zuraida Ali
- Molecular Diagnostics and Protein Unit, Specialised Diagnostics Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - Mohd Khairul Nizam Mohd Khalid
- Molecular Diagnostics and Protein Unit, Specialised Diagnostics Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - Zabedah Md Yunus
- Biochemistry Unit, Specialised Diagnostics Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - Yusnita Yakob
- Molecular Diagnostics and Protein Unit, Specialised Diagnostics Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - Chen Bee Chin
- Medical Genetics Department, Kuala Lumpur Hospital, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - Kartikasalwah Abd Latif
- Department of Diagnostic Imaging, Kuala Lumpur Hospital, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - Ngu Lock Hock
- Medical Genetics Department, Kuala Lumpur Hospital, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
LeMoine CMR, Walsh PJ. Ontogeny of ornithine-urea cycle gene expression in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2013; 304:R991-1000. [PMID: 23576614 DOI: 10.1152/ajpregu.00411.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the majority of adult teleosts excrete most of their nitrogenous wastes as ammonia, several fish species are capable of producing urea early in development. In zebrafish, it is unclear whether this results from a functional ornithine-urea cycle (O-UC) and, if so, how it might be regulated. This study examined the spatiotemporal patterns of gene expression of four major O-UC enzymes: carbamoyl phosphate synthase III (CPSIII), ornithine transcarboxylase, arginosuccinate synthetase, and arginosuccinate lyase, using real-time PCR and whole mount in situ hybridization. In addition, we hypothesized that CPSIII gene expression was epigenetically regulated through methylation of its promoter, a widespread mode of differential gene regulation between tissues and life stages in vertebrates. Furthermore, to assess CPSIII functionality, we used morpholinos to silence CPSIII in zebrafish embryos and assessed their nitrogenous waste handling during development, and in response to ammonia injections. Our results suggest that mRNAs of O-UC enzymes are expressed early in zebrafish development and colocalize to the embryonic endoderm. In addition, the methylation status of CPSIII promoter is not consistent with the patterns of expression observed in developing larvae or adult tissues, suggesting other means of transcriptional regulation of this enzyme. Finally, CPSIII morphants exhibited a transient reduction in CPSIII enzyme activity 24 h postfertilization, which was paralleled by reduced urea production during development and in response to an ammonia challenge. Overall, we conclude that the O-UC is functional in zebrafish embryos, providing further evidence that the capacity to produce urea via the O-UC is widespread in developing teleosts.
Collapse
|
10
|
Funghini S, Thusberg J, Spada M, Gasperini S, Parini R, Ventura L, Meli C, De Cosmo L, Sibilio M, Mooney SD, Guerrini R, Donati MA, Morrone A. Carbamoyl phosphate synthetase 1 deficiency in Italy: clinical and genetic findings in a heterogeneous cohort. Gene 2011; 493:228-34. [PMID: 22173106 DOI: 10.1016/j.gene.2011.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/07/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Carbamoyl Phosphate Synthetase 1 deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder, potentially leading to lethal hyperammonemia. Based on the age of onset, there are two distinct phenotypes: neonatal and late form. The CPS1 enzyme, located in the mitochondrial matrix of hepatocytes and epithelial cells of intestinal mucosa, is encoded by the CPS1 gene. At present more than 220 clear-cut genetic lesions leading to CPS1D have been reported. As most of them are private mutations diagnosis is complicated. Here we report an overview of the main clinical findings and biochemical and molecular data of 13 CPS1D Italian patients. In two of them, one with the neonatal form and one with the late form, cadaveric auxiliary liver transplant was performed. Mutation analysis in these patients identified 17 genetic lesions, 9 of which were new confirming their "private" nature. Seven of the newly identified mutations were missense/nonsense changes. In order to study their protein level effects, we performed an in silico analysis whose results indicate that the amino acid substitutions occur at evolutionary conserved positions and affect residues necessary for enzyme stability or function.
Collapse
Affiliation(s)
- S Funghini
- Metabolic and Muscular Unit, Clinic of Paediatric Neurology, Meyer Children's Hospital, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Visone T, Charron M, Wright WW. Activation and repression domains within the promoter of the rat cathepsin L gene orchestrate sertoli cell-specific and stage-specific gene transcription in transgenic mice. Biol Reprod 2009; 81:571-9. [PMID: 19458314 DOI: 10.1095/biolreprod.109.075952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In murine testes, only Sertoli cells express the cathepsin L (Ctsl) gene, and this expression is restricted to stages V-VIII of the cycle. Our previous transgenic analysis of Tg (-2065/+977) demonstrated that this expression is regulated by a approximately 2-kb promoter. To begin to elucidate this regulation, we analyzed the in vivo expression of two new transgenes, Tg (-935/+977) and Tg (-451/+977). Tg (-935/+977) was expressed by Sertoli cells but, in contrast to Tg (-2065/+977), was expressed at all stages of the cycle, by spermatocytes, by the vascular endothelium, and by seven other organs. Tg (-451/+977) was not expressed by Sertoli cells but by spermatogenic cells and by the brain. Lack of expression of Tg (-451/+977) by Sertoli cells was not due to a lack of essential cis-acting elements. Transient transfection analysis of primary cultures of mature rat Sertoli cells demonstrated that in mature Sertoli cells, most of the activity of the Ctsl promoter is accounted for by one of two redundant upstream GC motifs and an Initiator that are within 100 bp of the transcription start site. We conclude that transcriptional repressors upstream from nucleotide -935 of the rat Ctsl gene restrict testicular expression of this gene to Sertoli cells at stages V-VIII. At these stages, transcriptional activators located between nucleotides -935 and -452 promote access of the transcriptional machinery to the two GC boxes and to the Initiator. Thus, upstream repressors and activators as well as cis-acting elements near the transcription start site control stage-specific Ctsl transcription by Sertoli cells.
Collapse
Affiliation(s)
- Thomas Visone
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
12
|
Abstract
Our understanding of metabolism is undergoing a dramatic shift. Indeed, the efforts made towards elucidating the mechanisms controlling the major regulatory pathways are now being rewarded. At the molecular level, the crucial role of transcription factors is particularly well-illustrated by the link between alterations of their functions and the occurrence of major metabolic diseases. In addition, the possibility of manipulating the ligand-dependent activity of some of these transcription factors makes them attractive as therapeutic targets. The aim of this review is to summarize recent knowledge on the transcriptional control of metabolic homeostasis. We first review data on the transcriptional regulation of the intermediary metabolism, i.e., glucose, amino acid, lipid, and cholesterol metabolism. Then, we analyze how transcription factors integrate signals from various pathways to ensure homeostasis. One example of this coordination is the daily adaptation to the circadian fasting and feeding rhythm. This section also discusses the dysregulations causing the metabolic syndrome, which reveals the intricate nature of glucose and lipid metabolism and the role of the transcription factor PPARgamma in orchestrating this association. Finally, we discuss the molecular mechanisms underlying metabolic regulations, which provide new opportunities for treating complex metabolic disorders.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, National Centre of Competence in Research Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
13
|
Schoneveld OJLM, Gaemers IC, Hoogenkamp M, Lamers WH. The role of proximal-enhancer elements in the glucocorticoid regulation of carbamoylphosphate synthetase gene transcription from the upstream response unit. Biochimie 2005; 87:1033-40. [PMID: 15992985 DOI: 10.1016/j.biochi.2005.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/24/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
As part of the urea cycle, carbamoylphosphate synthetase (CPS) converts toxic ammonia resulting from amino-acid catabolism into urea. Liver-specific and glucocorticoid-dependent expression of the gene involves a distal enhancer, a promoter-proximal enhancer, and the minimal promoter itself. When challenged with glucocorticoids, the glucocorticoid-responsive unit (GRU) in the distal enhancer of the carbamoylphosphate-synthetase gene can only activate gene expression if, in addition to the minimal promoter, the proximal enhancer is present. Here, we identify and characterise two elements in the proximal CPS enhancer that are involved in glucocorticoid-dependent gene activation mediated by the GRU. A purine-rich stretch forming a so-called GAGA-box and a glucocorticoid-response element (GRE) are both crucial for the efficacy of the GRU and appear to constitute a promoter-proximal response unit that activates the promoter. The glucocorticoid response of the CPS gene is, therefore, dependent on the combined action of a distal and a promoter-proximal response unit.
Collapse
Affiliation(s)
- Onard J L M Schoneveld
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
14
|
Schoneveld OJLM, Gaemers IC, Lamers WH. Mechanisms of glucocorticoid signalling. ACTA ACUST UNITED AC 2004; 1680:114-28. [PMID: 15488991 DOI: 10.1016/j.bbaexp.2004.09.004] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2004] [Revised: 09/10/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
It has become increasingly clear that glucocorticoid signalling not only comprises the binding of the glucocorticoid receptor (GR) to its response element (GRE), but also involves indirect regulation glucocorticoid-responsive genes by regulating or interacting with other transcription factors. In addition, they can directly regulate gene expression by binding to negative glucocorticoid response elements (nGREs), to simple GREs, to GREs, or to GREs and GRE half sites (GRE1/2s) that are part of a regulatory unit. A response unit allows a higher level of glucocorticoid induction than simple GREs and, in addition, allows the integration of tissue-specific information with the glucocorticoid response. Presumably, the complexity of such a glucocorticoid response unit (GRU) depends on the number of pathways that integrate at this unit. Because GRUs are often located at distant sites relative to the transcription-start site, the GRU has to find a way to communicate with the basal-transcription machinery. We propose that the activating signal of a distal enhancer can be relayed onto the transcription-initiation complex by coupling elements located proximal to the promoter.
Collapse
Affiliation(s)
- Onard J L M Schoneveld
- AMC Liver Center, Academic Medical Center, University of Amsterdam, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Abstract
The urea cycle is comprised of five enzymes but also requires other enzymes and mitochondrial amino acid transporters to function fully. The complete urea cycle is expressed in liver and to a small degree also in enterocytes. However, highly regulated expression of several enzymes present in the urea cycle occurs also in many other tissues, where these enzymes are involved in synthesis of nitric oxide, polyamines, proline and glutamate. Glucagon, insulin, and glucocorticoids are major regulators of the expression of urea cycle enzymes in liver. In contrast, the "urea cycle" enzymes in nonhepatic cells are regulated by a wide range of pro- and antiinflammatory cytokines and other agents. Regulation of these enzymes is largely transcriptional in virtually all cell types. This review emphasizes recent information regarding roles and regulation of urea cycle and arginine metabolic enzymes in liver and other cell types.
Collapse
Affiliation(s)
- Sidney M Morris
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| |
Collapse
|