1
|
Shi D, Huang H, Zhang Y, Qian Z, Du J, Huang L, Yan X, Lin S. The roles of non-coding RNAs in male reproductive development and abiotic stress responses during this unique process in flowering plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111995. [PMID: 38266717 DOI: 10.1016/j.plantsci.2024.111995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Successful male reproductive development is the guarantee for sexual reproduction of flowering plants. Male reproductive development is a complicated and multi-stage process that integrates physiological processes and adaptation and tolerance to a myriad of environmental stresses. This well-coordinated process is governed by genetic and epigenetic machineries. Non-coding RNAs (ncRNAs) play pleiotropic roles in the plant growth and development. The identification, characterization and functional analysis of ncRNAs and their target genes have opened a new avenue for comprehensively revealing the regulatory network of male reproductive development and its response to environmental stresses in plants. This review briefly addresses the types, origin, biogenesis and mechanisms of ncRNAs in plants, highlights important updates on the roles of ncRNAs in regulating male reproductive development and emphasizes the contribution of ncRNAs, especially miRNAs and lncRNAs, in responses to abiotic stresses during this unique process in flowering plants.
Collapse
Affiliation(s)
- Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Huiting Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yuting Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Warren JM, Salinas-Giegé T, Triant DA, Taylor DR, Drouard L, Sloan DB. Rapid shifts in mitochondrial tRNA import in a plant lineage with extensive mitochondrial tRNA gene loss. Mol Biol Evol 2021; 38:5735-5751. [PMID: 34436590 PMCID: PMC8662596 DOI: 10.1093/molbev/msab255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In most eukaryotes, transfer RNAs (tRNAs) are one of the very few classes of genes remaining in the mitochondrial genome, but some mitochondria have lost these vestiges of their prokaryotic ancestry. Sequencing of mitogenomes from the flowering plant genus Silene previously revealed a large range in tRNA gene content, suggesting rapid and ongoing gene loss/replacement. Here, we use this system to test longstanding hypotheses about how mitochondrial tRNA genes are replaced by importing nuclear-encoded tRNAs. We traced the evolutionary history of these gene loss events by sequencing mitochondrial genomes from key outgroups (Agrostemma githago and Silene [=Lychnis] chalcedonica). We then performed the first global sequencing of purified plant mitochondrial tRNA populations to characterize the expression of mitochondrial-encoded tRNAs and the identity of imported nuclear-encoded tRNAs. We also confirmed the utility of high-throughput sequencing methods for the detection of tRNA import by sequencing mitochondrial tRNA populations in a species (Solanum tuberosum) with known tRNA trafficking patterns. Mitochondrial tRNA sequencing in Silene revealed substantial shifts in the abundance of some nuclear-encoded tRNAs in conjunction with their recent history of mt-tRNA gene loss and surprising cases where tRNAs with anticodons still encoded in the mitochondrial genome also appeared to be imported. These data suggest that nuclear-encoded counterparts are likely replacing mitochondrial tRNAs even in systems with recent mitochondrial tRNA gene loss, and the redundant import of a nuclear-encoded tRNA may provide a mechanism for functional replacement between translation systems separated by billions of years of evolutionary divergence.
Collapse
Affiliation(s)
- Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| | - Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Deborah A Triant
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Douglas R Taylor
- Department of Biology, University of Virginia, Charlottesville, VA, 22904-4328, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, Strasbourg, F-67084, France
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523-1878, USA
| |
Collapse
|
3
|
Anand A, Pandi G. Noncoding RNA: An Insight into Chloroplast and Mitochondrial Gene Expressions. Life (Basel) 2021; 11:life11010049. [PMID: 33450961 PMCID: PMC7828403 DOI: 10.3390/life11010049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression in any biological system is a complex process with many checkpoints at the transcriptional, post-transcriptional and translational levels. The control mechanism is mediated by various protein factors, secondary metabolites and a newly included regulatory member, i.e., noncoding RNAs (ncRNAs). It is known that ncRNAs modulate the mRNA or protein profiles of the cell depending on the degree of complementary and context of the microenvironment. In plants, ncRNAs are essential for growth and development in normal conditions by controlling various gene expressions and have emerged as a key player to guard plants during adverse conditions. In order to have smooth functioning of the plants under any environmental pressure, two very important DNA-harboring semi-autonomous organelles, namely, chloroplasts and mitochondria, are considered as main players. These organelles conduct the most crucial metabolic pathways that are required to maintain cell homeostasis. Thus, it is imperative to explore and envisage the molecular machineries responsible for gene regulation within the organelles and their coordination with nuclear transcripts. Therefore, the present review mainly focuses on ncRNAs origination and their gene regulation in chloroplasts and plant mitochondria.
Collapse
Affiliation(s)
- Asha Anand
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| | - Gopal Pandi
- Correspondence: (A.A.); (G.P.); Tel.: +91-452-245-8230 (G.P.)
| |
Collapse
|
4
|
Noutahi E, Calderon V, Blanchette M, El-Mabrouk N, Lang BF. Rapid Genetic Code Evolution in Green Algal Mitochondrial Genomes. Mol Biol Evol 2019; 36:766-783. [PMID: 30698742 PMCID: PMC6551751 DOI: 10.1093/molbev/msz016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic code deviations involving stop codons have been previously reported in mitochondrial genomes of several green plants (Viridiplantae), most notably chlorophyte algae (Chlorophyta). However, as changes in codon recognition from one amino acid to another are more difficult to infer, such changes might have gone unnoticed in particular lineages with high evolutionary rates that are otherwise prone to codon reassignments. To gain further insight into the evolution of the mitochondrial genetic code in green plants, we have conducted an in-depth study across mtDNAs from 51 green plants (32 chlorophytes and 19 streptophytes). Besides confirming known stop-to-sense reassignments, our study documents the first cases of sense-to-sense codon reassignments in Chlorophyta mtDNAs. In several Sphaeropleales, we report the decoding of AGG codons (normally arginine) as alanine, by tRNA(CCU) of various origins that carry the recognition signature for alanine tRNA synthetase. In Chromochloris, we identify tRNA variants decoding AGG as methionine and the synonymous codon CGG as leucine. Finally, we find strong evidence supporting the decoding of AUA codons (normally isoleucine) as methionine in Pycnococcus. Our results rely on a recently developed conceptual framework (CoreTracker) that predicts codon reassignments based on the disparity between DNA sequence (codons) and the derived protein sequence. These predictions are then validated by an evaluation of tRNA phylogeny, to identify the evolution of new tRNAs via gene duplication and loss, and structural modifications that lead to the assignment of new tRNA identities and a change in the genetic code.
Collapse
Affiliation(s)
- Emmanuel Noutahi
- Département d'Informatique et de Recherche opérationnelle (DIRO), Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| | - Virginie Calderon
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Mathieu Blanchette
- School of Computer Science, McGill University, McConnell Engineering Bldg., Montréal, QC H3A 0E9, Canada
- McGill Centre for Bioinformatics, McGill University, Montréal, QC, Canada
| | - Nadia El-Mabrouk
- Département d'Informatique et de Recherche opérationnelle (DIRO), Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| | - Bernd Franz Lang
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, CP 6128 succursale Centre-Ville, Montreal, QC, Canada
| |
Collapse
|
5
|
Verechshagina NA, Konstantinov YM, Kamenski PA, Mazunin IO. Import of Proteins and Nucleic Acids into Mitochondria. BIOCHEMISTRY (MOSCOW) 2018; 83:643-661. [DOI: 10.1134/s0006297918060032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Abstract
Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
7
|
Igloi GL, Aldinger CA. Where have all the inosines gone? Conflicting evidence for A-to-I editing of the anticodon of higher eukaryotic tRNAACGArg questions the dogma of a universal wobble-mediated decoding of CGN codons. IUBMB Life 2016; 68:419-22. [DOI: 10.1002/iub.1497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/05/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Gabor L. Igloi
- Institut für Biologie III, Universität Freiburg; Freiburg Germany
| | | |
Collapse
|
8
|
Tang M, Chen Z, Grover CE, Wang Y, Li S, Liu G, Ma Z, Wendel JF, Hua J. Rapid evolutionary divergence of Gossypium barbadense and G. hirsutum mitochondrial genomes. BMC Genomics 2015; 16:770. [PMID: 26459858 PMCID: PMC4603758 DOI: 10.1186/s12864-015-1988-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background The mitochondrial genome from upland cotton, G. hirsutum, was previously sequenced. To elucidate the evolution of mitochondrial genomic diversity within a single genus, we sequenced the mitochondrial genome from Sea Island cotton (Gossypium barbadense L.). Methods Mitochondrial DNA from week-old etiolated seedlings was extracted from isolated organelles using discontinuous sucrose density gradient method. Mitochondrial genome was sequenced with Solexa using paired-end, 90 bp read. The clean reads were assembled into contigs using ABySS and finished via additional fosmid and BAC sequencing. Finally, the genome was annotated and analyzed using different softwares. Results The G. barbadense (Sea Island cotton) mitochondrial genome was fully sequenced (677,434-bp) and compared to the mitogenome of upland cotton. The G. barbadense mitochondrial DNA contains seven more genes than that of upland cotton, with a total of 40 protein coding genes (excluding possible pseudogenes), 6 rRNA genes, and 29 tRNA genes. Of these 75 genes, atp1, mttB, nad4, nad9, rrn5, rrn18, and trnD(GTC)-cp were each represented by two identical copies. A single 64 kb repeat was largely responsible for the 9 % difference in genome size between the two mtDNAs. Comparison of genome structures between the two mitochondrial genomes revealed 8 rearranged syntenic regions and several large repeats. The largest repeat was missing from the master chromosome in G. hirsutum. Both mitochondrial genomes contain a duplicated copy of rps3 (rps3-2) in conjunction with a duplication of repeated sequences. Phylogenetic and divergence considerations suggest that a 544-bp fragment of rps3 was transferred to the nuclear genome shortly after divergence of the A- and D- genome diploid cottons. Conclusion These results highlight the insights to the evolution of structural variation between Sea Island and upland cotton mitochondrial genomes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1988-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingyong Tang
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Zhiwen Chen
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Yumei Wang
- Institute of Cash Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| | - Shuangshuang Li
- Present address: Saskatchewan Cancer Agency, Division of Oncology, Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Guozheng Liu
- Present address: Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstrasse 3, D-06466, Stadt, Seeland, Germany.
| | - Zhiying Ma
- College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA50011, USA.
| | - Jinping Hua
- Department of Plant Genetics and Breeding /Key Laboratory of Crop Heterosis and Utilization of Ministry of Education /Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Salinas-Giegé T, Giegé R, Giegé P. tRNA biology in mitochondria. Int J Mol Sci 2015; 16:4518-59. [PMID: 25734984 PMCID: PMC4394434 DOI: 10.3390/ijms16034518] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/23/2015] [Accepted: 01/29/2015] [Indexed: 01/23/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells. They are considered as semi-autonomous because they have retained genomes inherited from their prokaryotic ancestor and host fully functional gene expression machineries. These organelles have attracted considerable attention because they combine bacterial-like traits with novel features that evolved in the host cell. Among them, mitochondria use many specific pathways to obtain complete and functional sets of tRNAs as required for translation. In some instances, tRNA genes have been partially or entirely transferred to the nucleus and mitochondria require precise import systems to attain their pool of tRNAs. Still, tRNA genes have also often been maintained in mitochondria. Their genetic arrangement is more diverse than previously envisaged. The expression and maturation of mitochondrial tRNAs often use specific enzymes that evolved during eukaryote history. For instance many mitochondria use a eukaryote-specific RNase P enzyme devoid of RNA. The structure itself of mitochondrial encoded tRNAs is also very diverse, as e.g., in Metazoan, where tRNAs often show non canonical or truncated structures. As a result, the translational machinery in mitochondria evolved adapted strategies to accommodate the peculiarities of these tRNAs, in particular simplified identity rules for their aminoacylation. Here, we review the specific features of tRNA biology in mitochondria from model species representing the major eukaryotic groups, with an emphasis on recent research on tRNA import, maturation and aminoacylation.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| | - Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 15 rue René Descartes, F-67084 Strasbourg Cedex, France.
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France.
| |
Collapse
|
10
|
Aldinger CA, Leisinger AK, Gaston KW, Limbach PA, Igloi GL. The absence of A-to-I editing in the anticodon of plant cytoplasmic tRNA (Arg) ACG demands a relaxation of the wobble decoding rules. RNA Biol 2012; 9:1239-46. [PMID: 22922796 PMCID: PMC3583854 DOI: 10.4161/rna.21839] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is a prevalent concept that, in line with the Wobble Hypothesis, those tRNAs having an adenosine in the first position of the anticodon become modified to an inosine at this position. Sequencing the cDNA derived from the gene coding for cytoplasmic tRNA (Arg) ACG from several higher plants as well as mass spectrometric analysis of the isoacceptor has revealed that for this kingdom an unmodified A in the wobble position of the anticodon is the rule rather than the exception. In vitro translation shows that in the plant system the absence of inosine in the wobble position of tRNA (Arg) does not prevent decoding. This isoacceptor belongs to the class of tRNA that is imported from the cytoplasm into the mitochondria of higher plants. Previous studies on the mitochondrial tRNA pool have demonstrated the existence of tRNA (Arg) ICG in this organelle. In moss the mitochondrial encoded distinct tRNA (Arg) ACG isoacceptor possesses the I34 modification. The implication is that for mitochondrial protein biosynthesis A-to-I editing is necessary and occurs by a mitochondrion-specific deaminase after import of the unmodified nuclear encoded tRNA (Arg) ACG.
Collapse
Affiliation(s)
| | | | - Kirk W. Gaston
- Rieveschl Laboratories for Mass Spectrometry; Department of Chemistry; University of Cincinnati; Cincinnati, OH USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry; Department of Chemistry; University of Cincinnati; Cincinnati, OH USA
| | - Gabor L. Igloi
- Institut für Biologie III; Universität Freiburg; Freiburg, Germany
| |
Collapse
|
11
|
Salinas T, Duby F, Larosa V, Coosemans N, Bonnefoy N, Motte P, Maréchal-Drouard L, Remacle C. Co-evolution of mitochondrial tRNA import and codon usage determines translational efficiency in the green alga Chlamydomonas. PLoS Genet 2012; 8:e1002946. [PMID: 23028354 PMCID: PMC3447967 DOI: 10.1371/journal.pgen.1002946] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/26/2012] [Indexed: 11/26/2022] Open
Abstract
Mitochondria from diverse phyla, including protozoa, fungi, higher plants, and humans, import tRNAs from the cytosol in order to ensure proper mitochondrial translation. Despite the broad occurrence of this process, our understanding of tRNA import mechanisms is fragmentary, and crucial questions about their regulation remain unanswered. In the unicellular green alga Chlamydomonas, a precise correlation was found between the mitochondrial codon usage and the nature and amount of imported tRNAs. This led to the hypothesis that tRNA import might be a dynamic process able to adapt to the mitochondrial genome content. By manipulating the Chlamydomonas mitochondrial genome, we introduced point mutations in order to modify its codon usage. We find that the codon usage modification results in reduced levels of mitochondrial translation as well as in subsequent decreased levels and activities of respiratory complexes. These effects are linked to the consequential limitations of the pool of tRNAs in mitochondria. This indicates that tRNA mitochondrial import cannot be rapidly regulated in response to a novel genetic context and thus does not appear to be a dynamic process. It rather suggests that the steady-state levels of imported tRNAs in mitochondria result from a co-evolutive adaptation between the tRNA import mechanism and the requirements of the mitochondrial translation machinery. Mitochondria are endosymbiotic organelles involved in diverse fundamental cellular processes. They contain their own genome that encodes a few but essential proteins (e.g. proteins of the respiratory chain complexes). Their synthesis requires functional mitochondrial translational machinery that necessitates a full set of transfer RNAs (tRNAs). As mitochondrial genomes of various organisms do not code for the complete set of tRNA genes, nucleus-encoded tRNAs have to be imported into mitochondria to compensate. Mitochondrial import of tRNAs is highly specific and tailored to the mitochondrial needs. Because transformation of the mitochondrial genome is possible in Chlamydomonas, we used this green alga as model to know if a fine regulation of the tRNA import process is possible so that the tRNA population can rapidly adapt to codon usage changes in mitochondria. Here we provide evidence that the regulation of tRNA mitochondrial import process is not dynamic but is rather the result of a co-evolutive process between the import and the mitochondrial codon bias in order to optimize the mitochondrial translation efficiency.
Collapse
Affiliation(s)
- Thalia Salinas
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Francéline Duby
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Véronique Larosa
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Nadine Coosemans
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, UPR3404, FRC3115, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Patrick Motte
- Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR 2357, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
- * E-mail: (LM-D); (CR)
| | - Claire Remacle
- Génétique des Microorganismes, Department of Life Sciences, Institute of Botany, University of Li?ge, Li?ge, Belgium
- * E-mail: (LM-D); (CR)
| |
Collapse
|
12
|
Seed Plant Mitochondrial Genomes: Complexity Evolving. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2012. [DOI: 10.1007/978-94-007-2920-9_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Abstract
The mitochondrial genomes of most eukaryotes lack a variable number of tRNA genes. This lack is compensated for by import of a small fraction of the corresponding cytosolic tRNAs. There are two broad mechanisms for the import of tRNAs into mitochondria. In the first one, the tRNA is coimported together with a mitochondrial precursor protein along the protein import pathway. It applies to the yeast tRNA(Lys) and has been elucidated in great detail. In the second more vaguely defined mechanism, which is mainly found in plants and protozoa, tRNAs are directly imported independent of cytosolic factors. However, results in plants indicate that direct import of tRNAs may nevertheless require some components of the protein import machinery. All imported tRNAs in all systems are of the eukaryotic type but need to be functionally integrated into the mitochondrial translation system of bacterial descent. For some tRNAs, this is not trivial and requires unique evolutionary adaptations.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
14
|
Pett W, Ryan JF, Pang K, Mullikin JC, Martindale MQ, Baxevanis AD, Lavrov DV. Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome. MITOCHONDRIAL DNA 2011; 22:130-42. [PMID: 21985407 PMCID: PMC3313829 DOI: 10.3109/19401736.2011.624611] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in sequencing technology have led to a rapid accumulation of mitochondrial DNA (mtDNA) sequences, which now represent the wide spectrum of animal diversity. However, one animal phylum--Ctenophora--has, to date, remained completely unsampled. Ctenophores, a small group of marine animals, are of interest due to their unusual biology, controversial phylogenetic position, and devastating impact as invasive species. Using data from the Mnemiopsis leidyi genome sequencing project, we Polymerase Chain Reaction (PCR) amplified and analyzed its complete mitochondrial (mt-) genome. At just over 10 kb, the mt-genome of M. leidyi is the smallest animal mtDNA ever reported and is among the most derived. It has lost at least 25 genes, including atp6 and all tRNA genes. We show that atp6 has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence, while tRNA genes have been genuinely lost, along with nuclear-encoded mt-aminoacyl tRNA synthetases. The mt-genome of M. leidyi also displays extremely high rates of sequence evolution, which likely led to the degeneration of both protein and rRNA genes. In particular, encoded rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures. At the same time, nuclear encoded mt-ribosomal proteins have undergone expansions, likely to compensate for the reductions in mt-rRNA. The unusual features identified in M. leidyi mtDNA make this organism an interesting system for the study of various aspects of mitochondrial biology, particularly protein and tRNA import and mt-ribosome structures, and add to its value as an emerging model species. Furthermore, the fast-evolving M. leidyi mtDNA should be a convenient molecular marker for species- and population-level studies.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Joseph F. Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dennis V. Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
15
|
Michaud M, Cognat V, Duchêne AM, Maréchal-Drouard L. A global picture of tRNA genes in plant genomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:80-93. [PMID: 21443625 DOI: 10.1111/j.1365-313x.2011.04490.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although transfer RNA (tRNA) has a fundamental role in cell life, little is known about tRNA gene organization and expression on a genome-wide scale in eukaryotes, particularly plants. Here, we analyse the content and distribution of tRNA genes in five flowering plants and one green alga. The tRNA gene content is homogenous in plants, and is mostly correlated with genome size. The number of tRNA pseudogenes and organellar-like tRNA genes present in nuclear genomes varies greatly from one plant species to another. These pseudogenes or organellar-like genes appear to be generated or inserted randomly during evolution. Interestingly, we identified a new family of tRNA-related short interspersed nuclear elements (SINEs) in the Populus trichocarpa nuclear genome. In higher plants, intron-containing tRNA genes are rare, and correspond to genes coding for tRNA(Tyr) and tRNA(Mete) . By contrast, in green algae, more than half of the tRNA genes contain an intron. This suggests divergent means of intron acquisition and the splicing process between green algae and land plants. Numerous tRNAs are co-transcribed in Chlamydomonas, but they are mostly transcribed as a single unit in flowering plants. The only exceptions are tRNA(Gly) -snoRNA and tRNA(Mete) -snoRNA cotranscripts in dicots and monocots, respectively. The internal or external motifs required for efficient transcription of tRNA genes by RNA polymerase III are well conserved among angiosperms. A brief analysis of the mitochondrial and plastidial tRNA gene populations is also provided.
Collapse
Affiliation(s)
- Morgane Michaud
- Institut de Biologie Moléculaire des Plantes, UPR 2357-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
16
|
Hecht J, Grewe F, Knoop V. Extreme RNA editing in coding islands and abundant microsatellites in repeat sequences of Selaginella moellendorffii mitochondria: the root of frequent plant mtDNA recombination in early tracheophytes. Genome Biol Evol 2011; 3:344-58. [PMID: 21436122 PMCID: PMC5654404 DOI: 10.1093/gbe/evr027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Using an independent fosmid cloning approach and comprehensive transcriptome analysis to complement data from the Selaginella moellendorffii genome project, we determined the complete mitochondrial genome structure of this spikemoss. Numerous recombination events mediated mainly via long sequence repeats extending up to 7kbp result in a complex mtDNA network structure. Peculiar features associated with the repeat sequences are more than 80 different microsatellite sites (predominantly trinucleotide motifs). The S. moellendorffii mtDNA encodes a plant-typical core set of a twin-arginine translocase (tatC), 17 respiratory chain subunits, and 2 rRNAs but lacks atp4 and any tRNA genes. As a further novelty among plant chondromes, the nad4L gene is encoded within an intron of the nad1 gene. A total of 37 introns occupying the 20 mitochondrial genes (four of which are disrupted into trans-splicing arrangements including two novel instances of trans-splicing introns) make the S. moellendorffii chondrome the intron-richest and gene-poorest plant mtDNA known. Our parallel transcriptome analyses demonstrates functional splicing of all 37 introns and reveals a new record amount of plant organelle RNA editing with a total of 2,139 sites in mRNAs and 13 sites in the two rRNAs, all of which are exclusively of the C-to-U type.
Collapse
Affiliation(s)
- Julia Hecht
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Felix Grewe
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
| | - Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik, Universität Bonn, D-53115 Bonn, Germany
- Corresponding author: E-mail:
| |
Collapse
|
17
|
Mitochondrial RNA import: from diversity of natural mechanisms to potential applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 287:145-90. [PMID: 21414588 DOI: 10.1016/b978-0-12-386043-9.00004-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria, owing to their bacterial origin, still contain their own DNA. However, the majority of bacterial genes were lost or transferred to the nuclear genome and the biogenesis of the "present-day" mitochondria mainly depends on the expression of the nuclear genome. Thus, most mitochondrial proteins and a small number of mitochondrial RNAs (mostly tRNAs) expressed from nuclear genes need to be imported into the organelle. During evolution, macromolecule import systems were universally established. The processes of protein mitochondrial import are very well described in the literature. By contrast, deciphering the mitochondrial RNA import phenomenon is still a real challenge. The purpose of this review is to present a general survey of our present knowledge in this field in different model organisms, protozoa, plants, yeast, and mammals. Questions still under debate and major challenges are discussed. Mitochondria are involved in numerous human diseases. The targeting of macromolecule to mitochondria represents a promising way to fight mitochondrial disorders and recent developments in this area of research are presented.
Collapse
|
18
|
Sloan DB, Alverson AJ, Storchová H, Palmer JD, Taylor DR. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 2010; 10:274. [PMID: 20831793 PMCID: PMC2942850 DOI: 10.1186/1471-2148-10-274] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms. Results In this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near "recombinational equilibrium". The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA. Conclusions These findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered selective constraints operating on the mitochondrial translational apparatus in this lineage.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
19
|
Gardiner SA, Boddu J, Berthiller F, Hametner C, Stupar RM, Adam G, Muehlbauer GJ. Transcriptome analysis of the barley-deoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:962-76. [PMID: 20521958 DOI: 10.1094/mpmi-23-7-0962] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Trichothecenes are a major group of toxins produced by phytopathogenic fungi, including Fusarium graminearum. Trichothecenes inhibit protein synthesis in eukaryotic cells and are toxicologically relevant mycotoxins for humans and animals. Because they promote plant disease, the role of host responses to trichothecene accumulation is considered to be an important aspect of plant defense and resistance to fungal infection. Our overall objective was to examine the barley response to application of the type B trichothecene deoxynivalenol (DON). We found that DON is diluted by movement from the application site to acropetal and basipetal florets. A susceptible barley genotype converted DON to DON-3-O-glucoside, indicating that UDP-glucosyltransferases capable of detoxifying DON must exist in barley. RNA profiling of DON-treated barley spikes revealed strong upregulation of gene transcripts encoding ABC transporters, UDP-glucosyltransferases, cytochrome P450s, and glutathione-S-transferases. We noted that transcripts encoding cysteine synthases were dramatically induced by DON, and that toxin-sensitive yeast on glutathione- or cysteine-supplemented media or carrying a gene that encodes a cysteine biosynthetic enzyme exhibit DON resistance, suggesting that preventing glutathione depletion by increasing cysteine supply could play a role in ameliorating the impact of DON. Evidence for nonenzymatic formation of DON-glutathione adducts in vitro was found using both liquid chromatography-mass spectrometry and nuclear magnetic resonance analysis, indicating that the formation of DON-glutathione conjugates in vivo may reduce the impact of trichothecenes. Our results indicate that barley exhibits multiple defense mechanisms against trichothecenes.
Collapse
Affiliation(s)
- Stephanie A Gardiner
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Sloan DB, Taylor DR. Testing for selection on synonymous sites in plant mitochondrial DNA: the role of codon bias and RNA editing. J Mol Evol 2010; 70:479-91. [PMID: 20424833 DOI: 10.1007/s00239-010-9346-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/13/2010] [Indexed: 11/26/2022]
Abstract
Since plant mitochondrial genomes exhibit some of the slowest known synonymous substitution rates, it is generally believed that they experience exceptionally low mutation rates. However, the use of synonymous substitution rates to infer mutation rates depends on the implicit assumption that synonymous sites are evolving neutrally (or nearly so). To assess the validity of this assumption in plant mitochondrial genomes, we examined coding sequence for footprints of selection acting at synonymous sites. We found that synonymous sites exhibit an AT rich and pyrimidine skewed nucleotide composition compared to both non-synonymous sites and non-coding regions. We also found some evidence for selection associated with both biased codon usage and conservation of regulatory sequences involved in mRNA processing, although some of these findings are subject to alternative non-adaptive interpretations. Regardless, the inferred strength of selection appears too weak to account for the variation in substitution rates between the mitochondrial genomes of plants and other multicellular eukaryotes. Therefore, these results are consistent with the interpretation that plant mitochondrial genomes experience a substantially lower mutation rate rather than increased functional constraints acting on synonymous sites. Nevertheless, there are important nucleotide composition patterns (particularly the differences between synonymous sites and non-coding DNA) that remain largely unexplained.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | |
Collapse
|
21
|
Smith DR. Unparalleled GC content in the plastid DNA of Selaginella. PLANT MOLECULAR BIOLOGY 2009; 71:627-639. [PMID: 19774466 DOI: 10.1007/s11103-009-9545-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 08/21/2009] [Indexed: 05/26/2023]
Abstract
One of the more conspicuous features of plastid DNA (ptDNA) is its low guanine and cytosine (GC) content. As of February 2009, all completely-sequenced plastid genomes have a GC content below 43% except for the ptDNA of the lycophyte Selaginella uncinata, which is 55% GC. The forces driving the S. uncinata ptDNA towards G and C are undetermined, and it is unknown if other Selaginella species have GC-biased plastid genomes. This study presents the complete ptDNA sequence of Selaginella moellendorffii and compares it with the previously reported S. uncinata plastid genome. Partial ptDNA sequences from 103 different Selaginella species are also described as well as a significant proportion of the S. moellendorffii mitochondrial genome. Moreover, S. moellendorffii express sequence tags are data-mined to estimate levels of plastid and mitochondrial RNA editing. Overall, these data are used to show that: (1) there is a genus-wide GC bias in Selaginella ptDNA, which is most pronounced in South American articulate species; (2) within the Lycopsida class (and among plants in general), GC-biased ptDNA is restricted to the Selaginella genus; (3) the cause of this GC bias is arguably a combination of reduced AT-mutation pressure relative to other plastid genomes and a large number of C-to-U RNA editing sites; and (4) the mitochondrial DNA (mtDNA) of S. moellendorffii is also GC biased (even more so than the ptDNA) and is arguably the most GC-rich organelle genome observed to date-the high GC content of the mtDNA also appears to be influenced by RNA editing. Ultimately, these findings provide convincing support for the earlier proposed theory that the GC content of land-plant organelle DNA is positively correlated and directly connected to levels of organelle RNA editing.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
22
|
Smirnov AV, Entelis NS, Krasheninnikov IA, Martin R, Tarassov IA. Specific features of 5S rRNA structure - its interactions with macromolecules and possible functions. BIOCHEMISTRY (MOSCOW) 2009; 73:1418-37. [PMID: 19216709 DOI: 10.1134/s000629790813004x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Small non-coding RNAs are today a topic of great interest for molecular biologists because they can be regarded as relicts of a hypothetical "RNA world" which, apparently, preceded the modern stage of organic evolution on Earth. The small molecule of 5S rRNA (approximately 120 nucleotides) is a component of large ribosomal subunits of all living beings (5S rRNAs are not found only in mitoribosomes of fungi and metazoans). This molecule interacts with various protein factors and 23S (28S) rRNA. This review contains the accumulated data to date concerning 5S rRNA structure, interactions with other biological macromolecules, intracellular traffic, and functions in the cell.
Collapse
Affiliation(s)
- A V Smirnov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
23
|
Vinogradova E, Salinas T, Cognat V, Remacle C, Maréchal-Drouard L. Steady-state levels of imported tRNAs in Chlamydomonas mitochondria are correlated with both cytosolic and mitochondrial codon usages. Nucleic Acids Res 2009; 37:1521-8. [PMID: 19139073 PMCID: PMC2655685 DOI: 10.1093/nar/gkn1073] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mitochondrial genome of Chlamydomonas reinhardtii only encodes three expressed tRNA genes, thus most mitochondrial tRNAs are likely imported. The sharing of tRNAs between chloroplasts and mitochondria has been speculated in this organism. We first demonstrate that no plastidial tRNA is present in mitochondria and that the mitochondrial translation mainly relies on the import of nucleus-encoded tRNA species. Then, using northern analysis, we show that the extent of mitochondrial localization for the 49 tRNA isoacceptor families encoded by the C. reinhardtii nuclear genome is highly variable. Until now the reasons for such variability were unknown. By comparing cytosolic and mitochondrial codon usage with the sub-cellular distribution of tRNAs, we provide unprecedented evidence that the steady-state level of a mitochondrial tRNA is linked not only to the frequency of the cognate codon in mitochondria but also to its frequency in the cytosol, then allowing optimal mitochondrial translation.
Collapse
Affiliation(s)
- Elizaveta Vinogradova
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Université Louis Pasteur, Centre National de la Recherche Scientifique, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
24
|
Duchêne AM, Pujol C, Maréchal-Drouard L. Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 2008; 55:1-18. [PMID: 19083240 DOI: 10.1007/s00294-008-0223-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 12/13/2022]
Abstract
During evolution, most of the bacterial genes from the ancestral endosymbiotic alpha-proteobacteria at the origin of mitochondria have been either lost or transferred to the nuclear genome. A crucial evolutionary step was the establishment of macromolecule import systems to allow the come back of proteins and RNAs into the organelle. Paradoxically, the few mitochondria-encoded protein genes remain essential and must be translated by a mitochondrial translation machinery mainly constituted by nucleus-encoded components. Two crucial partners of the mitochondrial translation machinery are the aminoacyl-tRNA synthetases and the tRNAs. All mitochondrial aminoacyl-tRNA synthetases and many tRNAs are imported from the cytosol into the mitochondria in eukaryotic cells. During the last few years, their origin and their import into the organelle have been studied in evolutionary distinct organisms and we review here what is known in this field.
Collapse
Affiliation(s)
- Anne-Marie Duchêne
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche du CNRS, Associated with Louis Pasteur University, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France.
| | | | | |
Collapse
|
25
|
Salinas T, Duchêne AM, Maréchal-Drouard L. Recent advances in tRNA mitochondrial import. Trends Biochem Sci 2008; 33:320-9. [DOI: 10.1016/j.tibs.2008.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 02/02/2023]
|
26
|
Kim E, Lane CE, Curtis BA, Kozera C, Bowman S, Archibald JM. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae). BMC Genomics 2008; 9:215. [PMID: 18474103 PMCID: PMC2397417 DOI: 10.1186/1471-2164-9-215] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/12/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes-a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. RESULTS The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a approximately 20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22-336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. CONCLUSION Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol.
Collapse
Affiliation(s)
- Eunsoo Kim
- Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Cognat V, Deragon JM, Vinogradova E, Salinas T, Remacle C, Maréchal-Drouard L. On the evolution and expression of Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes. Genetics 2008; 179:113-23. [PMID: 18493044 PMCID: PMC2390591 DOI: 10.1534/genetics.107.085688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/18/2008] [Indexed: 11/18/2022] Open
Abstract
In Chlamydomonas reinhardtii, 259 tRNA genes were identified and classified into 49 tRNA isoaccepting families. By constructing phylogenetic trees, we determined the evolutionary history for each tRNA gene family. The majority of the tRNA sequences are more closely related to their plant counterparts than to animals ones. Northern experiments also permitted us to show that at least one member of each tRNA isoacceptor family is transcribed and correctly processed in vivo. A short stretch of T residues known to be a signal for termination of polymerase III transcription was found downstream of most tRNA genes. It allowed us to propose that the vast majority of the tRNA genes are expressed and to confirm that numerous tRNA genes separated by short spacers are indeed cotranscribed. Interestingly, in silico analyses and hybridization experiments show that the cellular tRNA abundance is correlated with the number of tRNA genes and is adjusted to the codon usage to optimize translation efficiency. Finally, we studied the origin of SINEs, short interspersed elements related to tRNAs, whose presence in Chlamydomonas is exceptional. Phylogenetic analysis strongly suggests that tRNA(Asp)-related SINEs originate from a prokaryotic-type tRNA either horizontally transferred from a bacterium or originally present in mitochondria or chloroplasts.
Collapse
Affiliation(s)
- Valérie Cognat
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357, Conventionnée avec l'Université Louis Pasteur (Strasbourg 1), Centre National de la Recherche Scientifique, 67084 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
28
|
Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K. The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. JOURNAL OF PLANT RESEARCH 2007; 120:281-90. [PMID: 17297557 DOI: 10.1007/s10265-006-0055-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 10/25/2006] [Indexed: 05/13/2023]
Abstract
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago.
Collapse
Affiliation(s)
- Sumika Tsuji
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Khan SM, Smigrodzki RM, Swerdlow RH. Cell and animal models of mtDNA biology: progress and prospects. Am J Physiol Cell Physiol 2006; 292:C658-69. [PMID: 16899549 DOI: 10.1152/ajpcell.00224.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The past two decades have witnessed an evolving understanding of the mitochondrial genome's (mtDNA) role in basic biology and disease. From the recognition that mutations in mtDNA can be responsible for human disease to recent efforts showing that mtDNA mutations accumulate over time and may be responsible for some phenotypes of aging, the field of mitochondrial genetics has greatly benefited from the creation of cell and animal models of mtDNA mutation. In this review, we critically discuss the past two decades of efforts and insights gained from cell and animal models of mtDNA mutation. We attempt to reconcile the varied and at times contradictory findings by highlighting the various methodologies employed and using human mtDNA disease as a guide to better understanding of cell and animal mtDNA models. We end with a discussion of scientific and therapeutic challenges and prospects for the future of mtDNA transfection and gene therapy.
Collapse
Affiliation(s)
- Shaharyar M Khan
- Gencia Corp., 706 B Forrest St., Charlottesville, VA 22903, USA.
| | | | | |
Collapse
|
30
|
Mukhopadhyay A, Zullo SJ, Weiner H. Factors that might affect the allotopic replacement of a damaged mitochondrial DNA-encoded protein. Rejuvenation Res 2006; 9:182-90. [PMID: 16706640 DOI: 10.1089/rej.2006.9.182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human mitochondrion contains a small circular genome that codes for 13 proteins, 22 tRNAs, and 2 rRNAs. The proteins are all inner membrane bound components of complexes involved in the electron transport system and ATP formation. Mutations to any of the 13 proteins affect cellular behavior because energy production could be decreased. Investigators have attempted to find methods to correct these mutated proteins. One way is to express the mitochondrial gene in the nucleus (called allotopic expression). The newly synthesized protein would have to be imported into mitochondria and assembled into complexes. This paper reviews some of the successful attempts to achieve allotopic expression and discusses some issues that might affect the ability to have the proteins properly inserted into the inner membrane.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 22046, USA
| | | | | |
Collapse
|
31
|
Kim YK, Lee JY, Cho HS, Lee SS, Ha HJ, Kim S, Choi D, Pai HS. Inactivation of organellar glutamyl- and seryl-tRNA synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants. J Biol Chem 2005; 280:37098-106. [PMID: 16107332 DOI: 10.1074/jbc.m504805200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are key enzymes involved in protein translation, and both cytosolic and organellar forms are present in the genomes of eukaryotes. In this study, we investigated cellular effects of depletion of organellar forms of ARS using virus-induced gene silencing (VIGS) in Nicotiana benthamiana. VIGS of NbERS and NbSRS, which encode organellar GluRS and SerRS, respectively, resulted in a severe leaf-yellowing phenotype. The NbERS and NbSRS genes were ubiquitously expressed in plant tissues, and induced in response to light. Green fluorescent protein (GFP) fusion proteins of the full-length glutamyl-tRNA synthetase (ERS) and seryl-tRNA synthetase (SRS) of Arabidopsis and GFP fusions to the N-terminal extension of these proteins were all dualtargeted to chloroplasts and mitochondria. At the cell level, depletion of NbERS and NbSRS resulted in dramatically reduced numbers of chloroplasts with reduced sizes and chlorophyll content. The numbers and/or physiology of mitochondria were also severely affected. The abnormal chloroplasts lacked most of the thylakoid membranes and appeared to be degenerating, whereas some of them showed doublet morphology, indicating defective chloroplast division. Pulse-field gel electrophoresis analyses demonstrated that chloroplast DNA in subgenomic sizes is the predominant form in the abnormal chloroplasts. Interestingly, despite severe abnormalities in chloroplasts and mitochondria, expression of many nuclear genes encoding chloroplastor mitochondria-targeted proteins, and chlorophyll biosynthesis genes remained unchanged in the ERS and SRS VIGS lines. This is the first report to analyze the effect of ARS disruption on organelle development in plants.
Collapse
Affiliation(s)
- Yu-Kyung Kim
- Laboratory of Plant Genomics, Korea Research Institute of Bioscience and Biotechnology, Taejon 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Salinas T, Schaeffer C, Maréchal-Drouard L, Duchêne AM. Sequence dependence of tRNA(Gly) import into tobacco mitochondria. Biochimie 2005; 87:863-72. [PMID: 15927343 DOI: 10.1016/j.biochi.2005.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2004] [Revised: 03/29/2005] [Accepted: 04/01/2005] [Indexed: 11/16/2022]
Abstract
Plant mitochondrial genomes lack a number of tRNA genes and the corresponding tRNAs, which are nuclear-encoded, are imported from the cytosol. We show that specific import of tRNA(Gly) isoacceptors occurs in tobacco mitochondria: tRNA(Gly)(UCC) and tRNA(Gly)(CCC) are cytosolic and mitochondrial, while tRNA(Gly)(GCC) is found only in the cytosol. Exchange of sequences between tRNA(Gly)(UCC) and tRNA(Gly)(GCC) shows that the anticodon and D-domain are essential for tRNA(Gly)(UCC) import. However the reverse mutations in tRNA(Gly)(GCC) are not sufficient to promote its import into tobacco mitochondria.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR du CNRS no. 2357, Université Louis Pasteur, 12, rue du Général Zimmer, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
33
|
Laforest MJ, Delage L, Maréchal-Drouard L. The T-domain of cytosolic tRNAVal, an essential determinant for mitochondrial import. FEBS Lett 2005; 579:1072-8. [PMID: 15710393 DOI: 10.1016/j.febslet.2004.12.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 12/06/2004] [Accepted: 12/28/2004] [Indexed: 11/17/2022]
Abstract
Import of tRNAs into plant mitochondria appears to be highly specific. We recently showed that the anticodon and the D-domain sequences are essential determinants for tRNAVal import into tobacco cell mitochondria. To determine the minimal set of elements required to direct import of a cytosol-specific tRNA species, tobacco cells were transformed with an Arabidopsis thaliana intron-containing tRNAMet-e gene carrying the D-domain and the anticodon of a valine tRNA. Although well expressed and processed into tobacco cells, this mutated tRNA was shown to remain in the cytosol. Furthermore, a mutant tRNAVal carrying the T-domain of the tRNAMet-e, although still efficiently recognized by the valyl-tRNA synthetase, is not imported into mitochondria. Altogether these results suggest that mutations affecting the core of a tRNA molecule also alter its import ability into plant mitochondria.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Base Sequence
- Cell Line
- Gene Expression Regulation, Plant
- Introns/genetics
- Kinetics
- Mitochondria/genetics
- Mitochondria/metabolism
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Plants, Genetically Modified
- RNA Splice Sites/genetics
- RNA Transport
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Nicotiana
- Transcription, Genetic/genetics
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Marie-Josée Laforest
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
34
|
Smith PM, Ross GF, Taylor RW, Turnbull DM, Lightowlers RN. Strategies for treating disorders of the mitochondrial genome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1659:232-9. [PMID: 15576056 DOI: 10.1016/j.bbabio.2004.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/01/2004] [Accepted: 09/08/2004] [Indexed: 11/22/2022]
Abstract
Defects of the mitochondrial genome are a significant cause of disease. Patients suffer from a wide variety of clinical presentations, ranging from fatal infantile disease to mild muscle weakness. Most disorders, however, are characterized by inexorable progression. As mutations often cause defects in several components of the complexes that couple oxidative phosphorylation, this terminal state of oxidative metabolism cannot be readily bypassed by dietary means, leading to the search for novel therapies. In this article, we present the theory behind several concepts and report progress. We also discuss some of the recent difficulties encountered in the progress towards an antigenomc approach to treating mtDNA disorders.
Collapse
Affiliation(s)
- Paul M Smith
- Mitochondrial Research Group, The Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
35
|
Delage L, Duchêne AM, Zaepfel M, Maréchal-Drouard L. The anticodon and the D-domain sequences are essential determinants for plant cytosolic tRNA(Val) import into mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:623-33. [PMID: 12787244 DOI: 10.1046/j.1365-313x.2003.01752.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In higher plants, one-third to one-half of the mitochondrial tRNAs are encoded in the nucleus and are imported into mitochondria. This process appears to be highly specific for some tRNAs, but the factors that interact with tRNAs before and/or during import, as well as the signals present on the tRNAs, still need to be identified. The rare experiments performed so far suggest that, besides the probable implication of aminoacyl-tRNA synthetases, at least one additional import factor and/or structural features shared by imported tRNAs must be involved in plant mitochondrial tRNA import. To look for determinants that direct tRNA import into higher plant mitochondria, we have transformed BY2 tobacco cells with Arabidopsis thaliana cytosolic tRNA(Val)(AAC) carrying various mutations. The nucleotide replacements introduced in this naturally imported tRNA correspond to the anticodon and/or D-domain of the non-imported cytosolic tRNA(Met-e). Unlike the wild-type tRNA(Val)(AAC), a mutant tRNA(Val) carrying a methionine CAU anticodon that switches the aminoacylation of this tRNA from valine to methionine is not present in the mitochondrial fraction. Furthermore, mutant tRNAs(Val) carrying the D-domain of the tRNA(Met-e), although still efficiently recognized by the valyl-tRNA synthetase, are not imported any more into mitochondria. These data demonstrate that in plants, besides identity elements required for the recognition by the cognate aminoacyl-tRNA synthetase, tRNA molecules contain other determinants that are essential for mitochondrial import selectivity. Indeed, this suggests that the tRNA import mechanism occurring in plant mitochondria may be different from what has been described so far in yeast or in protozoa.
Collapse
Affiliation(s)
- Ludovic Delage
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR 2357, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
36
|
Delage L, Dietrich A, Cosset A, Maréchal-Drouard L. In vitro import of a nuclearly encoded tRNA into mitochondria of Solanum tuberosum. Mol Cell Biol 2003; 23:4000-12. [PMID: 12748301 PMCID: PMC155205 DOI: 10.1128/mcb.23.11.4000-4012.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some of the mitochondrial tRNAs of higher plants are nuclearly encoded and imported into mitochondria. The import of tRNAs encoded in the nucleus has been shown to be essential for proper protein translation within mitochondria of a variety of organisms. Here, we report the development of an in vitro assay for import of nuclearly encoded tRNAs into plant mitochondria. This in vitro system utilizes isolated mitochondria from Solanum tuberosum and synthetic tRNAs transcribed from cloned nuclear tRNA genes. Although incubation of radioactively labeled in vitro-transcribed tRNA(Ala), tRNA(Phe), and tRNA(Met-e) with isolated potato mitochondria resulted in importation, as measured by nuclease protection, the amount of tRNA transcripts protected at saturation was at least five times higher for tRNA(Ala) than for the two other tRNAs. This difference in in vitro saturation levels of import is consistent with the in vivo localization of these tRNAs, since cytosolic tRNA(Ala) is naturally imported into potato mitochondria whereas tRNA(Phe) and tRNA(Met-e) are not. Characterization of in vitro tRNA import requirements indicates that mitochondrial tRNA import proceeds in the absence of any added cytosolic protein fraction, involves at least one protein component on the surface of mitochondria, and requires ATP-dependent step(s) and a membrane potential.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Biological Transport/physiology
- Cytoplasm/chemistry
- Electron Transport/physiology
- Genes, Plant
- Hydrogen-Ion Concentration
- Membrane Potentials/physiology
- Mitochondria/metabolism
- Nucleic Acid Conformation
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/metabolism
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Phe/metabolism
- Ribonuclease T1/metabolism
- Ribonuclease, Pancreatic/metabolism
- Solanum tuberosum/metabolism
- Solanum tuberosum/ultrastructure
- Time Factors
Collapse
Affiliation(s)
- Ludovic Delage
- Institut de Biologie Moléculaire des Plantes, UPR 2357 CNRS, Université Louis Pasteur, 67084 Strasbourg Cedex, France
| | | | | | | |
Collapse
|
37
|
Koulintchenko M, Konstantinov Y, Dietrich A. Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 2003; 22:1245-54. [PMID: 12628917 PMCID: PMC151061 DOI: 10.1093/emboj/cdg128] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant mitochondria are remarkable with respect to their content in foreign, alien and plasmid-like DNA, raising the question of the transfer of this information into the organelles. We demonstrate the existence of an active, transmembrane potential-dependent mechanism of DNA uptake into plant mitochondria. The process is restricted to double-strand DNA, but has no obvious sequence specificity. It is most efficient with linear fragments up to a few kilobase pairs. When containing appropriate information, imported sequences are transcribed within the organelles. The uptake likely involves the voltage-dependent anion channel and the adenine nucleotide translocator, i.e. the core components of the mitochondrial permeability transition pore complex in animal cells, but it does not rely on known mitochondrial membrane permeabilization processes. We conclude that DNA import into plant mitochondria might represent a physiological phenomenon with some functional relevance.
Collapse
Affiliation(s)
- Milana Koulintchenko
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France and Siberian Institute of Plant Physiology and Biochemistry of the RAS, Lermontov Street 132, PO Box 1243, 664033 Irkutsk, Russia Corresponding author e-mail:
| | - Yuri Konstantinov
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France and Siberian Institute of Plant Physiology and Biochemistry of the RAS, Lermontov Street 132, PO Box 1243, 664033 Irkutsk, Russia Corresponding author e-mail:
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg, France and Siberian Institute of Plant Physiology and Biochemistry of the RAS, Lermontov Street 132, PO Box 1243, 664033 Irkutsk, Russia Corresponding author e-mail:
| |
Collapse
|
38
|
Tan THP, Pach R, Crausaz A, Ivens A, Schneider A. tRNAs in Trypanosoma brucei: genomic organization, expression, and mitochondrial import. Mol Cell Biol 2002; 22:3707-17. [PMID: 11997507 PMCID: PMC133840 DOI: 10.1128/mcb.22.11.3707-3716.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial genome of Trypanosoma brucei does not encode tRNAs. Consequently, all mitochondrial tRNAs are imported from the cytosol and originate from nucleus-encoded genes. Analysis of all currently available T. brucei sequences revealed that its genome carries 50 tRNA genes representing 40 different isoacceptors. The identified set is expected to be nearly complete since all but four codons are accounted for. The number of tRNA genes in T. brucei is very low for a eukaryote and lower than those of many prokaryotes. Using quantitative Northern analysis we have determined the absolute abundance in the cell and the mitochondrion of a group of 15 tRNAs specific for 12 amino acids. Except for the initiator type tRNA(Met), which is cytosol specific, the cytosolic and the mitochondrial sets of tRNAs were qualitatively identical. However, the extent of mitochondrial localization was variable for the different tRNAs, ranging from 1 to 7.5% per cell. Finally, by using transgenic cell lines in combination with quantitative Northern analysis it was shown that import of tRNA(Leu)(CAA) is independent of its 5'-genomic context, suggesting that the in vivo import substrate corresponds to the mature, fully processed tRNA.
Collapse
Affiliation(s)
- Timothy H P Tan
- Department of Biology/Zoology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Kanamaru K, Nagashima A, Fujiwara M, Shimada H, Shirano Y, Nakabayashi K, Shibata D, Tanaka K, Takahashi H. An Arabidopsis sigma factor (SIG2)-dependent expression of plastid-encoded tRNAs in chloroplasts. PLANT & CELL PHYSIOLOGY 2001; 42:1034-43. [PMID: 11673617 DOI: 10.1093/pcp/pce155] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A eubacteria-type RNA polymerase (PEP) plays crucial roles for chloroplast development in higher plants. The core subunits are encoded on plastid DNA (rpo genes) while the regulatory sigma factors are encoded on the nuclear DNA (SIG genes). However, the definite gene specificity of each sigma factor is unknown. We recently identified an Arabidopsis recessive pale-green mutant abc1 in which T-DNA is inserted in SIG2 (sigB). In this mutant, almost normal etioplasts were developed under dark conditions while the small chloroplasts with poor thylakoid membranes and stacked lamellar were developed under light conditions. The sig2-1 mutant was deficient in accumulating enough photosynthetic and photosynthesis-related proteins as well as chlorophyll. However, mRNAs of their structural genes were not significantly reduced. Further analyses revealed that several plastid-encoded tRNAs including trnE-UUC that has dual function for protein and ALA biosyntheses were drastically reduced in the sig2-1 mutant. In contrast, nucleus-encoded T7 phage-type RNA polymerase (NEP)-dependent gene transcripts were steadily accumulated in the mutant. These results indicate that progress of chloroplast development requires SIG2-dependent expression of plastid genes, particularly some of the tRNA genes.
Collapse
Affiliation(s)
- K Kanamaru
- Laboratory of Molecular Genetics, Department of Molecular Biology, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Duchêne AM, Maréchal-Drouard L. The chloroplast-derived trnW and trnM-e genes are not expressed in Arabidopsis mitochondria. Biochem Biophys Res Commun 2001; 285:1213-6. [PMID: 11478784 DOI: 10.1006/bbrc.2001.5303] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depending on their genetic origin, plant mitochondrial tRNAs are classified into three categories: the "native" and "chloroplast-like" mitochondrial-encoded tRNAs and the imported nuclear-encoded tRNAs. The number and identity of tRNAs in each category change from one plant specie to another. As some plant mitochondrial trn genes were found to be not expressed, and as all Arabidopsis thaliana mitochondrial trn genes are known, we systematically tested the expression of A. thaliana mitochondrial trn genes. Both the "chloroplast-like" trnW and trnM-e genes were found to be not expressed. These exceptions are remarkable since trnW and trnM-e are expressed in the mitochondria of other land plants. Whereas we could not conclude which tRNA(Met) compensates the lack of expression of trnM-e, we showed that the cytosolic tRNA(Trp) is present in A. thaliana mitochondria, thus compensating the absence of expression of the mitochondrial-encoded trnW.
Collapse
Affiliation(s)
- A M Duchêne
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR 2357, Université Louis Pasteur, 12 rue du Général Zimmer, Strasbourg Cedex, 67084, France.
| | | |
Collapse
|