1
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion prior to assembly of the Caenorhabditis elegans cuticle. PLoS Genet 2023; 19:e1010944. [PMID: 37721936 PMCID: PMC10538796 DOI: 10.1371/journal.pgen.1010944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K. Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer D. Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - John I. Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jennifer R. G. Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Andrew D. Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Birnbaum SK, Cohen JD, Belfi A, Murray JI, Adams JRG, Chisholm AD, Sundaram MV. The proprotein convertase BLI-4 promotes collagen secretion during assembly of the Caenorhabditis elegans cuticle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.542650. [PMID: 37333289 PMCID: PMC10274747 DOI: 10.1101/2023.06.06.542650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular aggregates. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and in the spatial and temporal restriction of matrix assembly in vivo . Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.
Collapse
Affiliation(s)
- Susanna K Birnbaum
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer D Cohen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - John I Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| | - Jennifer R G Adams
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Andrew D Chisholm
- Departments of Neurobiology and Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego CA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia PA
| |
Collapse
|
4
|
Kubanov AA, Chikin VV, Karamova AE, Monchakovskaya ES. Junctional epidermolysis bullosa: genotype-phenotype correlations. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Junctional epidermolysis bullosa most commonly results from mutations in theLAMA3, LAMB3, LAMC2, COL17A1, ITGA6 and ITGB4genes. Junctional epidermolysis bullosa is characterized by clinical heterogeneity. To date, scientific findings allow to evaluate correlations between the severity of clinical manifestations and genetic defects underlying in the development of the disease. A systematic literature search was performed using PubMed and RSCI, and keywords including junctional epidermolysis bullosa, laminin 332, collagen XVII, 64 integrin. The review includes description of clinical findings of junctional epidermolysis bullosa, mutation location and types, its impact on protein production and functions. To evaluate the impact of gene mutation on protein functions, this review explores the structure and functions of lamina lucida components, including laminin 332, collagen XVII and 64 integrin, which are frequently associated with the development of junctional epidermolysis bullosa. The correlation between severe types of junctional epidermolysis bullosa and mutations resulting in premature stop codon generation and complete absence of protein expression has been described. Although, genotype-phenotype correlations should be analyzed carefully due to mechanisms which enable to improve protein expression.
Collapse
|
5
|
Tuusa J, Kokkonen N, Tasanen K. BP180/Collagen XVII: A Molecular View. Int J Mol Sci 2021; 22:12233. [PMID: 34830116 PMCID: PMC8623354 DOI: 10.3390/ijms222212233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BP180 is a type II collagenous transmembrane protein and is best known as the major autoantigen in the blistering skin disease bullous pemphigoid (BP). The BP180 trimer is a central component in type I hemidesmosomes (HD), which cause the adhesion between epidermal keratinocytes and the basal lamina, but BP180 is also expressed in several non-HD locations, where its functions are poorly characterized. The immunological roles of intact and proteolytically processed BP180, relevant in BP, have been subject to intensive research, but novel functions in cell proliferation, differentiation, and aging have also recently been described. To better understand the multiple physiological functions of BP180, the focus should return to the protein itself. Here, we comprehensively review the properties of the BP180 molecule, present new data on the biochemical features of its intracellular domain, and discuss their significance with regard to BP180 folding and protein-protein interactions.
Collapse
Affiliation(s)
| | | | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (J.T.); (N.K.)
| |
Collapse
|
6
|
ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences. J Mech Behav Biomed Mater 2021; 125:104921. [PMID: 34758444 DOI: 10.1016/j.jmbbm.2021.104921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
Collagen is the most abundant structural protein in humans, with dozens of sequence variants accounting for over 30% of the protein in an animal body. The fibrillar and hierarchical arrangements of collagen are critical in providing mechanical properties with high strength and toughness. Due to this ubiquitous role in human tissues, collagen-based biomaterials are commonly used for tissue repairs and regeneration, requiring chemical and thermal stability over a range of temperatures during materials preparation ex vivo and subsequent utility in vivo. Collagen unfolds from a triple helix to a random coil structure during a temperature interval in which the midpoint or Tm is used as a measure to evaluate the thermal stability of the molecules. However, finding a robust framework to facilitate the design of a specific collagen sequence to yield a specific Tm remains a challenge, including using conventional molecular dynamics modeling. Here we propose a de novo framework to provide a model that outputs the Tm values of input collagen sequences by incorporating deep learning trained on a large data set of collagen sequences and corresponding Tm values. By using this framework, we are able to quickly evaluate how mutations and order in the primary sequence affect the stability of collagen triple helices. Specifically, we confirm that mutations to glycines, mutations in the middle of a sequence, and short sequence lengths cause the greatest drop in Tm values.
Collapse
|
7
|
Wakabayashi T. Transmembrane Collagens in Neuromuscular Development and Disorders. Front Mol Neurosci 2021; 13:635375. [PMID: 33536873 PMCID: PMC7848082 DOI: 10.3389/fnmol.2020.635375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Neuromuscular development is a multistep process and involves interactions among various extracellular and transmembrane molecules that facilitate the precise targeting of motor axons to synaptogenic regions of the target muscle. Collagenous proteins with transmembrane domains have recently emerged as molecules that play essential roles in multiple aspects of neuromuscular formation. Membrane-associated collagens with interrupted triple helices (MACITs) are classified as an unconventional subtype of the collagen superfamily and have been implicated in cell adhesion in a variety of tissues, including the neuromuscular system. Collagen XXV, the latest member of the MACITs, plays an essential role in motor axon growth within the developing muscle. In humans, loss-of-function mutations of collagen XXV result in developmental ocular motor disorders. In contrast, collagen XIII contributes to the formation and maintenance of neuromuscular junctions (NMJs), and disruption of its function leads to the congenital myasthenic syndrome. Transmembrane collagens are conserved not only in mammals but also in organisms such as C. elegans, where a single MACIT, COL-99, has been documented to function in motor innervation. Furthermore, in C. elegans, a collagen-like transmembrane protein, UNC-122, is implicated in the structural and functional integrity of the NMJ. This review article summarizes recent advances in understanding the roles of transmembrane collagens and underlying molecular mechanisms in multiple aspects of neuromuscular development and disorders.
Collapse
Affiliation(s)
- Tomoko Wakabayashi
- Department of Innovative Dementia Prevention, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Nyström A, Kiritsi D. Transmembrane collagens-Unexplored mediators of epidermal-dermal communication and tissue homeostasis. Exp Dermatol 2020; 30:10-16. [PMID: 32869371 DOI: 10.1111/exd.14180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Tissue homeostasis is maintained through constant, dynamic and heterogeneous communication between cells and their microenvironment. Proteins that are at the same time active at the intracellular, cell periphery and deeper extracellular levels possess the ability to, on the individual molecular level, influence the cells and their microenvironment in a bidirectional manner. The transmembrane collagens are a family of such proteins, which are of notable interest for tissue development and homeostasis. In skin, expression of all transmembrane collagens has been reported and deficiency of transmembrane collagen XVII manifests with distinct skin phenotypes. Nevertheless, transmembrane collagens in skin remain understudied despite the association of them with epidermal wound healing and dermal fibrotic processes. Here, we present an overview of transmembrane collagens and put a spotlight on them as regulators of epidermal-dermal communication and as potential players in fibrinogenesis.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Has C, Nyström A, Saeidian AH, Bruckner-Tuderman L, Uitto J. Epidermolysis bullosa: Molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol 2018; 71-72:313-329. [PMID: 29627521 DOI: 10.1016/j.matbio.2018.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023]
Abstract
Epidermolysis bullosa (EB), a group of heritable skin fragility disorders, is characterized by blistering, erosions and chronic ulcers in the skin and mucous membranes. In some forms, the blistering phenotype is associated with extensive mutilating scarring and development of aggressive squamous cell carcinomas. The skin findings can be associated with extracutaneous manifestations in the ocular as well as gastrointestinal and vesico-urinary tracts. The phenotypic heterogeneity reflects the presence of mutations in as many as 20 different genes expressed in the cutaneous basement membrane zone, and the types and combinations of the mutations and their consequences at the mRNA and protein levels contribute to the spectrum of severity encountered in different subtypes of EB. This overview highlights the molecular genetics of EB based on mutations in the genes encoding type VII and XVII collagens as well as laminin-332. The mutations identified in these protein components of the extracellular matrix attest to their critical importance in providing stability to the cutaneous basement membrane zone, with implications for heritable and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Golser AV, Röber M, Börner HG, Scheibel T. Engineered Collagen: A Redox Switchable Framework for Tunable Assembly and Fabrication of Biocompatible Surfaces. ACS Biomater Sci Eng 2017; 4:2106-2114. [DOI: 10.1021/acsbiomaterials.7b00583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adrian V. Golser
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Matthias Röber
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Hans G. Börner
- Laboratory for Organic Synthesis of Functional Systems, Department of Chemistry Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Fakultät für Ingenieurwissenschaften Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Theocharidis G, Connelly JT. Minor collagens of the skin with not so minor functions. J Anat 2017; 235:418-429. [PMID: 31318053 DOI: 10.1111/joa.12584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
The structure and function of the skin relies on the complex expression pattern and organisation of extracellular matrix macromolecules, of which collagens are a principal component. The fibrillar collagens, types I and III, constitute over 90% of the collagen content within the skin and are the major determinants of the strength and stiffness of the tissue. However, the minor collagens also play a crucial regulatory role in a variety of processes, including cell anchorage, matrix assembly, and growth factor signalling. In this article, we review the expression patterns, key functions and involvement in disease pathogenesis of the minor collagens found in the skin. While it is clear that the minor collagens are important mediators of normal tissue function, homeostasis and repair, further insight into the molecular level structure and activity of these proteins is required for translation into clinical therapies.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Kroeger JK, Hofmann SC, Leppert J, Has C, Franzke CW. Amino acid duplication in the coiled-coil structure of collagen XVII alters its maturation and trimerization causing mild junctional epidermolysis bullosa. Hum Mol Genet 2017; 26:479-488. [PMID: 28365758 DOI: 10.1093/hmg/ddw404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2023] Open
Abstract
The function and stability of collagens depend on the accurate triple helix formation of three distinct polypeptide chains. Disruption of this triple-helical structure can result in connective-tissue disorders. Triple helix formation is thought to depend on three-stranded coiled-coil oligomerization sites within non-collagenous domains. However, only little is known about the physiological relevance of these coiled-coil structures. Transmembrane collagen XVII, also known as 180 kDa bullous pemphigoid antigen provides mechanical stability through the anchorage of epithelial cells to the basement membrane. Mutations in the collagen XVII gene, COL17A1, cause junctional epidermolysis bullosa (JEB), characterized by chronic trauma-induced skin blistering. Here we exploited a novel naturally occurring COL17A1 mutation, leading to an in-frame lysine duplication within the coiled-coil structure of the juxtamembranous NC16A domain of collagen XVII, which resulted in a mild phenotype of JEB due to reduced membrane-anchored collagen XVII molecules. This mutation causes structural changes in the mutant molecule and interferes with its maturation. The destabilized coiled-coil structure of the mutant collagen XVII unmasks a furin cleavage site that results in excessive and non-physiological ectodomain shedding during its maturation. Furthermore, it decreases its triple-helical stability due to defective coiled-coil oligomerization, which makes it highly susceptible to proteolytic degradation. As a consequence of altered maturation and decreased stability of collagen XVII trimers, reduced collagen XVII is incorporated into the cell membrane, resulting in compromised dermal-epidermal adhesion. Taken together, using this genetic model, we provide the first proof that alteration of the coiled-coil structure destabilizes oligomerization and impairs physiological shedding of collagen XVII in vivo.
Collapse
Affiliation(s)
- Jasmin K Kroeger
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Silke C Hofmann
- Center for Dermatology, Allergy and Dermatosurgery, HELIOS University Hospital Wuppertal, University Witten/Herdecke, Germany
| | - Juna Leppert
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Claus-Werner Franzke
- Department of Dermatology, Medical Center-University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Generation of a Functional Non-Shedding Collagen XVII Mouse Model: Relevance of Collagen XVII Shedding in Wound Healing. J Invest Dermatol 2016; 136:516-525. [DOI: 10.1016/j.jid.2015.10.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/16/2015] [Accepted: 10/09/2015] [Indexed: 01/27/2023]
|
14
|
Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012; 36:1122-80. [PMID: 22537156 DOI: 10.1111/j.1574-6976.2012.00340.x] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 02/08/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
Laminin (Ln) and collagen are multifunctional glycoproteins that play an important role in cellular morphogenesis, cell signalling, tissue repair and cell migration. These proteins are ubiquitously present in tissues as a part of the basement membrane (BM), constitute a protective layer around blood capillaries and are included in the extracellular matrix (ECM). As a component of BMs, both Lns and collagen(s), thus function as major mechanical containment molecules that protect tissues from pathogens. Invasive pathogens breach the basal lamina and degrade ECM proteins of interstitial spaces and connective tissues using various ECM-degrading proteases or surface-bound plasminogen and matrix metalloproteinases recruited from the host. Most pathogens associated with the respiratory, gastrointestinal, or urogenital tracts, as well as with the central nervous system or the skin, have the capacity to bind and degrade Lns and collagen(s) in order to adhere to and invade host tissues. In this review, we focus on the adaptability of various pathogens to utilize these ECM proteins as enhancers for adhesion to host tissues or as a targets for degradation in order to breach the cellular barriers. The major pathogens discussed are Streptococcus, Staphylococcus, Pseudomonas, Salmonella, Yersinia, Treponema, Mycobacterium, Clostridium, Listeria, Porphyromonas and Haemophilus; Candida, Aspergillus, Pneumocystis, Cryptococcus and Coccidioides; Acanthamoeba, Trypanosoma and Trichomonas; retrovirus and papilloma virus.
Collapse
Affiliation(s)
- Birendra Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
15
|
Lu H, Wang W, Zheng Z, Sun P, Wang X, Chang FC. Pepsin-inspired polyurethanes containing a tyrosine–fumaric acid–tyrosine segment. Polym Chem 2012. [DOI: 10.1039/c2py00481j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
|
17
|
Abstract
Collagen XVII has been identified as having a role in inherited junctional epidermolysis bullosa non-Herlitz (JEB-other, MIM #226650). The role of collagen XVII in both autoimmune and genetic blistering disorders demonstrates its relevance to dermal-epidermal adhesion. Collagen XVII is a major structural component of the hemidesmosome (HD), a highly specialized multiprotein complex that mediates the anchorage of basal epithelial cells to the underlying basement membrane in stratified, pseudostratified, and transitional epithelia. This article examines the genetic and pathological features of collagen XVII.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Hauptstr. 7, 79104 Freiburg, Germany.
| | | |
Collapse
|
18
|
Ito K, Sawamura D, Goto M, Nakamura H, Nishie W, Sakai K, Natsuga K, Shinkuma S, Shibaki A, Uitto J, Denton CP, Nakajima O, Akiyama M, Shimizu H. Keratinocyte-/fibroblast-targeted rescue of Col7a1-disrupted mice and generation of an exact dystrophic epidermolysis bullosa model using a human COL7A1 mutation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2508-17. [PMID: 19893033 DOI: 10.2353/ajpath.2009.090347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a severe hereditary bullous disease caused by mutations in COL7A1, which encodes type VII collagen (COL7). Col7a1 knockout mice (COL7(m-/-)) exhibit a severe RDEB phenotype and die within a few days after birth. Toward developing novel approaches for treating patients with RDEB, we attempted to rescue COL7(m-/-) mice by introducing human COL7A1 cDNA. We first generated transgenic mice that express human COL7A1 cDNA specifically in either epidermal keratinocytes or dermal fibroblasts. We then performed transgenic rescue experiments by crossing these transgenic mice with COL7(m+/-) heterozygous mice. Surprisingly, human COL7 expressed by keratinocytes or by fibroblasts was able to rescue all of the abnormal phenotypic manifestations of the COL7(m-/-) mice, indicating that fibroblasts as well as keratinocytes are potential targets for RDEB gene therapy. Furthermore, we generated transgenic mice with a premature termination codon expressing truncated COL7 protein and performed the same rescue experiments. Notably, the COL7(m-/-) mice rescued with the human COL7A1 allele were able to survive despite demonstrating clinical manifestations very similar to those of human RDEB, indicating that we were able to generate surviving animal models of RDEB with a mutated human COL7A1 gene. This model has great potential for future research into the pathomechanisms of dystrophic epidermolysis bullosa and the development of gene therapies for patients with dystrophic epidermolysis bullosa.
Collapse
Affiliation(s)
- Kei Ito
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Franzke CW, Bruckner-Tuderman L, Blobel CP. Shedding of collagen XVII/BP180 in skin depends on both ADAM10 and ADAM9. J Biol Chem 2009; 284:23386-96. [PMID: 19574220 PMCID: PMC2749112 DOI: 10.1074/jbc.m109.034090] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Indexed: 11/06/2022] Open
Abstract
Collagen XVII is a transmembrane collagen and the major autoantigen of the autoimmune skin blistering disease bullous pemphigoid. Collagen XVII is proteolytically released from the membrane, and the pathogenic epitope harbors the cleavage site for its ectodomain shedding, suggesting that proteolysis has an important role in regulating the function of collagen XVII in skin homeostasis. Previous studies identified ADAMs 9, 10, and 17 as candidate collagen XVII sheddases and suggested that ADAM17 is a major sheddase. Here we show that ADAM17 only indirectly affects collagen XVII shedding and that ADAMs 9 and 10 are the most prominent collagen XVII sheddases in primary keratinocytes because (a) collagen XVII shedding was not stimulated by phorbol esters, known activators of ADAM17, (b) constitutive and calcium influx-stimulated shedding was sensitive to the ADAM10-selective inhibitor GI254023X and was strongly reduced in Adam10(-/-) cells, (c) there was a 55% decrease in constitutive collagen XVII ectodomain shedding from Adam9(-/-) keratinocytes, and (d) H(2)O(2) enhanced ADAM9 expression and stimulated collagen XVII shedding in skin and keratinocytes of wild type mice but not of Adam9(-/-) mice. We conclude that ADAM9 and ADAM10 can both contribute to collagen XVII shedding in skin with an enhanced relative contribution of ADAM9 in the presence of reactive oxygen species. These results provide critical new insights into the identity and regulation of the major sheddases for collagen XVII in keratinocytes and skin and have implications for the treatment of blistering diseases of the skin.
Collapse
Affiliation(s)
- Claus-Werner Franzke
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021
- the Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany, and
| | - Leena Bruckner-Tuderman
- the Department of Dermatology, University of Freiburg, 79104 Freiburg, Germany, and
- the Freiburg Institute of Advanced Studies, School of Life Sciences, D-79085 Freiburg, Germany
| | - Carl P. Blobel
- From the Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York 10021
| |
Collapse
|
20
|
Boudko SP, Sasaki T, Engel J, Lerch TF, Nix J, Chapman MS, Bächinger HP. Crystal structure of human collagen XVIII trimerization domain: A novel collagen trimerization Fold. J Mol Biol 2009; 392:787-802. [PMID: 19631658 DOI: 10.1016/j.jmb.2009.07.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/17/2009] [Accepted: 07/18/2009] [Indexed: 11/15/2022]
Abstract
Collagens contain a unique triple-helical structure with a repeating sequence -G-X-Y-, where proline and hydroxyproline are major constituents in X and Y positions, respectively. Folding of the collagen triple helix requires trimerization domains. Once trimerized, collagen chains are correctly aligned and the folding of the triple helix proceeds in a zipper-like fashion. Here we report the isolation, characterization, and crystal structure of the trimerization domain of human type XVIII collagen, a member of the multiplexin family. This domain differs from all other known trimerization domains in other collagens and exhibits a high trimerization potential at picomolar concentrations. Strong chain association and high specificity of binding are needed for multiplexins, which are present at very low levels.
Collapse
Affiliation(s)
- Sergei P Boudko
- Research Department of Shriners Hospital for Children, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Jäälinoja J, Ylöstalo J, Beckett W, Hulmes DJS, Ala-Kokko L. Trimerization of collagen IX alpha-chains does not require the presence of the COL1 and NC1 domains. Biochem J 2008; 409:545-54. [PMID: 17880280 DOI: 10.1042/bj20070984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Collagen IX is a heterotrimer of three alpha-chains, which consists of three COL domains (collagenous domains) (COL1-COL3) and four NC domains (non-collagenous domains) (NC1-NC4), numbered from the C-terminus. Although collagen IX chains have been shown to associate via their C-terminal NC1 domains and form a triple helix starting from the COL1 domain, it is not known whether chain association can occur at other sites and whether other collagenous and non-collagenous regions are involved. To address this question, we prepared five constructs, two long variants (beginning at the NC4 domain) and three short variants (beginning at the COL2 domain), all ending at the NC2 domain (or NC2 replaced by NC1), to study association and selection of collagen IX alpha-chains. Both long variants were able to associate with NC1 or NC2 at the C-terminus and form various disulfide-bonded trimers, but the specificity of chain selection was diminished compared with full-length chains. Trimers of the long variant ending at NC2 were shown to be triple helical by CD. Short variants were not able to assemble into disulfide-bonded trimers even in the presence of both conserved cysteine residues from the COL1-NC1 junction. Our results demonstrate that collagen IX alpha-chains can associate in the absence of COL1 and NC1 domains to form a triple helix, but the COL2-NC2 region alone is not sufficient for trimerization. The results suggest that folding of collagen IX is a co-operative process involving multiple COL and NC domains and that the COL1-NC1 region is important for chain specificity.
Collapse
Affiliation(s)
- Juha Jäälinoja
- Collagen Research Unit, Biocenter and Department of Medical Biochemistry and Molecular Biology, Oulu University, P.O. Box 5000, 90014 Oulu, Finland
| | | | | | | | | |
Collapse
|
22
|
Boulègue C, Musiol HJ, Götz MG, Renner C, Moroder L. Natural and artificial cystine knots for assembly of homo- and heterotrimeric collagen models. Antioxid Redox Signal 2008; 10:113-25. [PMID: 17961005 DOI: 10.1089/ars.2007.1868] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Native collagens are molecules that are difficult to handle because of their high tendency towards aggregation and denaturation. It was discovered early on that synthetic collagenous peptides are more amenable to conformational characterization and thus can serve as useful models for structural and functional studies. Single-stranded collagenous peptides of high propensity to self-associate into triple-helical trimers were used for this purpose as well as interchain-crosslinked homotrimers assembled on synthetic scaffolds. With the growing knowledge of the biosynthetic pathways of natural collagens and the importance of their interchain disulfide crosslinks, which stabilize the triple-helical structure, native as well as de novo designed cystine knots have gained increasing attention in the assembly of triple-stranded collagen peptides. In addition, natural sequences of collagens were incorporated in order to biophysically characterize their functional epitopes. This review is focused on the methods developed over the years, and future perspectives for the production of collagen-mimicking synthetic and recombinant triple-helical homo- and heterotrimers.
Collapse
Affiliation(s)
- Cyril Boulègue
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | |
Collapse
|
23
|
Terentiev AA, Moldogazieva NT. Cell adhesion proteins and α-fetoprotein. Similar structural motifs as prerequisites for common functions. BIOCHEMISTRY (MOSCOW) 2007; 72:920-35. [DOI: 10.1134/s0006297907090027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
24
|
Pasmooij AMG, Pas HH, Jansen GHL, Lemmink HH, Jonkman MF. Localized and generalized forms of blistering in junctional epidermolysis bullosa due to COL17A1 mutations in the Netherlands. Br J Dermatol 2007; 156:861-70. [PMID: 17263807 DOI: 10.1111/j.1365-2133.2006.07730.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mutations in the gene COL17A1 coding for type XVII collagen cause non-Herlitz junctional epidermolysis bullosa (nH-JEB). OBJECTIVES Here we give an overview of the genotype-phenotype correlation in 12 patients from the Netherlands with type XVII collagen-deficient nH-JEB. PATIENT AND METHODS Family and personal history and clinical presentation were recorded from each patient, and skin biopsies of intact and bullous skin were taken for immunofluorescence and electron microscopy. The mutations were identified by analysing the patient's DNA isolated from peripheral blood cells. RESULTS DNA analysis identified five novel deletions: 1284delA, 1365delC, 3236delT, 3600-3601delCT and 4425delT. Interestingly, we identified a new patient, homozygous for 4425delT, with an exceptionally mild blistering phenotype. All together, three patients had more localized blistering confined to hands, lower legs and face, absent or very mild nail dystrophy, normal primary hair and sparse secondary hair. Nine patients had generalized blistering, nail dystrophy, sparse primary and absent secondary hair. All 12 patients had amelogenesis imperfecta (enamel pitting). Immunofluorescence (IF) antigen mapping with monoclonal antibodies 1A8C and 1D1 that bind to type XVII collagen, but not to its 97-kDa fragment was completely negative in patients with generalized blistering, whereas reduced in patients with localized blistering. CONCLUSIONS Our data reveal that in patients with COL17A1 mutations a localized nH-JEB phenotype can be differentiated from a generalized nH-JEB phenotype by IF antigen mapping. The data are important for genetic counselling at early age when the clinical phenotype is not yet clear.
Collapse
Affiliation(s)
- A M G Pasmooij
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, Hanzeplein-1, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Van den Bergh F, Fu CL, Olague-Marchan M, Giudice GJ. The NC16A domain of collagen XVII plays a role in triple helix assembly and stability. Biochem Biophys Res Commun 2006; 350:1032-7. [PMID: 17045967 PMCID: PMC1847801 DOI: 10.1016/j.bbrc.2006.09.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 09/28/2006] [Indexed: 11/30/2022]
Abstract
Collagen XVII/BP180 is a transmembrane constituent of the epidermal anchoring complex. To study the role of its non-collagenous linker domain, NC16A, in protein assembly and stability, we analyzed the following recombinant proteins: the collagen XVII extracellular domain with or without NC16A, and a pair of truncated proteins comprising the COL15-NC15 stretch expressed with or without NC16A. All four proteins were found to exist as stable collagen triple helices; however, the two missing NC16A exhibited melting temperatures significantly lower than their NC16A-containing counterparts. Protein refolding experiments revealed that the rate of triple helix assembly of the collagen model peptide GPP(10) is greatly increased by the addition of an upstream NC16A domain. In summary, the NC16A linker domain of collagen XVII exhibits a positive effect on both the rate of assembly and the stability of the adjoining collagen structure.
Collapse
Affiliation(s)
- Françoise Van den Bergh
- Department of Dermatology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
26
|
Khoshnoodi J, Cartailler JP, Alvares K, Veis A, Hudson BG. Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers. J Biol Chem 2006; 281:38117-21. [PMID: 17082192 DOI: 10.1074/jbc.r600025200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-chains of the collagen superfamily are encoded with information that specifies self-assembly into fibrils, microfibrils, and networks that have diverse functions in the extracellular matrix. A key self-organizing step, common to all collagen types, is trimerization that selects, binds, and registers cognate alpha-chains for assembly of triple helical protomers that subsequently oligomerize into specific suprastructures. In this article, we review recent findings on the mechanism of chain selection and infer that terminal noncollagenous domains function as recognition modules in trimerization and are therefore key determinants of specificity in the assembly of suprastructures. This mechanism is also illustrated with computer-generated animations.
Collapse
Affiliation(s)
- Jamshid Khoshnoodi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-2372, USA
| | | | | | | | | |
Collapse
|
27
|
Fu CL, Giudice GJ, Van den Bergh F. Protein structural analysis of BP180 mutant isoforms linked to non-Herlitz junctional epidermolysis bullosa. J Invest Dermatol 2006; 126:232-4. [PMID: 16417243 DOI: 10.1038/sj.jid.5700024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Väisänen L, Has C, Franzke C, Hurskainen T, Tuomi ML, Bruckner-Tuderman L, Tasanen K. Molecular mechanisms of junctional epidermolysis bullosa: Col 15 domain mutations decrease the thermal stability of collagen XVII. J Invest Dermatol 2005; 125:1112-8. [PMID: 16354180 DOI: 10.1111/j.0022-202x.2005.23943.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutations in the collagen XVII gene, COL17A1, are associated with junctional epidermolysis bullosa. Most COL17A1 mutations lead to a premature termination codon (PTC), whereas only a few mutations result in amino acid substitutions or deletions. We describe here two novel glycine substitutions, G609D and G612R, and a splice site mutation resulting in a deletion of three Gly-X-Y amino acid triplets. In order to investigate the molecular pathomechanisms of non-PTC mutations, G609D and G612R and two previously known substitutions, G627V and G633, and deletion of the amino acids 779-787 were introduced into recombinant collagen XVII. The thermal stability of the mutated collagens was assessed using trypsin digestions at incremental temperatures. All the four glycine substitutions significantly destabilized the ectodomain of collagen XVII, which manifested as 16 degrees C-20 degrees C lower T(m) (midpoint of the helix-to-coil transition). These results were supported by secondary structure predictions, which suggested interruptions of the collagenous triple helix within the largest collagenous domain, Col15. In contrast, deletion of the three full Gly-X-Y triplets, amino acids 779-787, had no overall effect on the stability of the ectodomain, as the deletion was in register with the triplet structure and also generated compensatory changes in the NC15 domain.
Collapse
Affiliation(s)
- Laura Väisänen
- Department of Dermatology, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
29
|
Powell AM, Sakuma-Oyama Y, Oyama N, Black MM. Collagen XVII/BP180: a collagenous transmembrane protein and component of the dermoepidermal anchoring complex. Clin Exp Dermatol 2005; 30:682-7. [PMID: 16197389 DOI: 10.1111/j.1365-2230.2005.01937.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Collagen XVII, or BP180, is a collagenous transmembrane protein and a structural component of the dermoepidermal anchoring complex. Molecular studies reveal that it has a globular cytosolic amino-terminal domain and flexible-rod extracellular carboxyterminal domain. The extracellular portion of collagen XVII is constitutively shed from the cell surface by ADAMs (proteinases that contain adhesive and metalloprotease domains). Cell biological analyses suggest that collagen XVII functions as a cell-matrix adhesion molecule through stabilization of the hemidesmosome complex. This concept is supported by investigations into human diseases of the dermoepidermal junction, in which collagen XVII is either genetically defective or absent (as in some forms of nonlethal junctional epidermolysis bullosa). Autoantibodies against collagen XVII (BP180) are seen in bullous pemphigoid, pemphigoid gestationis, mucous membrane pemphigoid, linear IgA disease, lichen planus pemphigoides and pemphigoid nodularis. In vivo and in vitro studies provide evidence for a pathogenic role of these autoantibodies, and suggest that the serum level and epitope specificity of these antibodies influences disease severity and phenotype. This review summarizes the structural and biological features of collagen XVII and its role in diseases of the basement membrane zone.
Collapse
Affiliation(s)
- A M Powell
- Department of Immunodermatology, St John's Institute of Dermatology, St Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|
30
|
Franzke CW, Bruckner P, Bruckner-Tuderman L. Collagenous transmembrane proteins: recent insights into biology and pathology. J Biol Chem 2005; 280:4005-8. [PMID: 15561712 DOI: 10.1074/jbc.r400034200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
31
|
Ricard-Blum S, Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. ACTA ACUST UNITED AC 2005; 53:430-42. [PMID: 16085121 DOI: 10.1016/j.patbio.2004.12.024] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 12/10/2004] [Indexed: 12/17/2022]
Abstract
The collagen superfamily is highly complex and shows a remarkable diversity in molecular and supramolecular organization, tissue distribution and function. However, all its members share a common structural feature, the presence of at least one triple-helical domain, which corresponds to a number of (Gly-X-Y)n repeats (X being frequently proline and Y hydroxyproline) in the amino acid sequence. Several sub-families have been determined according to sequence homologies and to similarities in the structural organization and supramolecular assembly. In the present review, we focus on the newly described fibrillar collagens, fibrillar-associated collagens with interrupted triple helix, membrane collagens and multiplexins. Recent advances in the characterization of proteins containing triple-helical domains but not referred to as collagens are also discussed.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS UCBL, IFR128 Biosciences Gerland, Lyon, France.
| | | |
Collapse
|
32
|
Kefalides NA, Borel JP. Minor Proteins of Basement Membranes, Minor Collagens of the Basement Membrane Zone. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Yang C, Hillas P, Tang J, Balan J, Notbohm H, Polarek J. Development of a recombinant human collagen-type III based hemostat. J Biomed Mater Res B Appl Biomater 2004; 69:18-24. [PMID: 15015205 DOI: 10.1002/jbm.b.20030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Animal-tissue-derived collagen, containing mostly type I collagen with a minor amount of type III collagen, has been widely used in the production of hemostats for many decades, although it has been known for a long time that type III collagen is more likely to induce platelet aggregation in vitro. Because it is hard to purify type III from animal tissue, it has not been possible to correlate this finding with in vivo data. In this report, it is demonstrated that recombinant human collagen III fibrils are more capable of inducing platelet aggregation in vitro than those comprised of bovine collagen I, in agreement with previously published data on tissue-derived type III collagen. When formed into three-dimensional matrices, the use of type III collagen results in formulations with better mechanical integrity, larger surface area, and higher hemostatic activity in a rabbit spleen injury model as compared with commercially available hemostats formed from bovine type I collagen.
Collapse
Affiliation(s)
- C Yang
- Fibrogen, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | |
Collapse
|
34
|
Söder S, Pöschl E. The NC1 domain of human collagen IV is necessary to initiate triple helix formation. Biochem Biophys Res Commun 2004; 325:276-80. [PMID: 15522229 DOI: 10.1016/j.bbrc.2004.10.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 11/28/2022]
Abstract
Type IV collagen is a heterotrimeric molecule, which contains the N-terminal 7S, a central triple-helical domain, and the globular C-terminal NC1 domain. A zipper-like mechanism of triple helix formation, starting from the C-terminus, has been proposed for most collagens but for collagen type IV there has only been indirect evidence so far. In this study we expressed trimeric human collagen type IV to compare the effects of different structural variants on the formation of collagen IV molecules. Our data show that the NC1 but not 7S domain is essential for the chain association and initiation of triple helix formation. This strongly suggests an N-to-C terminal mechanism of triple helix formation. Additionally, we could show that the human alpha2(IV) chain can form chimeric alpha1.alpha1.alpha2(IV) heterotrimers with mouse subunits when expressed in PF-HR9 cells.
Collapse
Affiliation(s)
- Stephan Söder
- Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Germany.
| | | |
Collapse
|
35
|
Buevich AV, Silva T, Brodsky B, Baum J. Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders. J Biol Chem 2004; 279:46890-5. [PMID: 15299012 DOI: 10.1074/jbc.m407061200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NMR and CD studies show that placement of a (GPO)4 nucleation domain at the N terminus rather than the C terminus of a native collagen sequence allows the formation of a stable triple helix but alters the folding mechanism. Although C- to N-terminal directional folding occurs when the nucleation domain is at the C terminus, there is no preferential folding direction when the nucleation domain is at the N terminus. The lack of zipper-like directional folding does not interfere with triple-helix formation, and when a Gly residue is replaced by Ser to model an osteogenesis imperfecta mutation, the peptide with the N-terminal (GPO)4 domain can still form a good triple helix N-terminal to the mutation site. These peptide studies raise the possibility that mutant collagen could fold in a C to N direction in a zipper-like manner up to the mutation site and that completion of the triple helix N-terminal to the mutation would involve an alternative mechanism.
Collapse
Affiliation(s)
- Alexei V Buevich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
36
|
Franzke CW, Tasanen K, Borradori L, Huotari V, Bruckner-Tuderman L. Shedding of collagen XVII/BP180: structural motifs influence cleavage from cell surface. J Biol Chem 2004; 279:24521-9. [PMID: 15047704 DOI: 10.1074/jbc.m308835200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen XVII/BP180, an epithelial adhesion molecule, belongs to the group of collagenous transmembrane proteins, which are characterized by ectodomain shedding. We recently showed that ADAMs can cleave collagen XVII, but also that furin participates in this process (Franzke, C. W., Tasanen, K., Schäcke, H., Zhou, Z., Tryggvason, K., Mauch, C., Zigrino, P., Sunnarborg, S., Lee, D. C., Fahrenholz, F., and Bruckner-Tuderman, L. (2002) EMBO J. 21, 5026-5035). To define the cleavage region in the juxtamembranous NC16A linker domain and assess its structure and requirements for shedding, we constructed deletion mutants of the NC16A domain, expressed them in COS-7 cells, and analyzed their structural integrity and shedding behavior. A mutant lacking the furin consensus sequence was shed in a normal manner, demonstrating that furin does not cleave collagen XVII but rather activates ADAMs (a disintegrin and metalloproteinase). Large deletions of the NC16A domain prevented shedding, and analysis of defined smaller deletions pointed to the stretch of amino acid residues 528-547 as important for sheddase recognition and cleavage. Secondary protein structure predictions showed that deletion of this stretch resulted in an NC16A domain with a positive net charge and an amphipathic alpha-helix, which can cause conformational changes in the collagen XVII homotrimer. Assessment of triple-helix folding of the mutants revealed a lower thermal stability of all non-shed variants than of wild-type collagen XVII or the shed mutants. In contrast, deletion of the putative nucleation site for triple-helix folding of collagenous transmembrane proteins did not affect folding of collagen XVII. The data indicate that the conformation of the NC16A domain and steric availability of the cleavage site influence shedding and is important for folding of collagen XVII.
Collapse
Affiliation(s)
- Claus-Werner Franzke
- Department of Dermatology, University of Freiburg, Hauptstrasse 7, 79106 Freiburg, Germany
| | | | | | | | | |
Collapse
|
37
|
Tasanen K, Tunggal L, Chometon G, Bruckner-Tuderman L, Aumailley M. Keratinocytes from patients lacking collagen XVII display a migratory phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2027-38. [PMID: 15161638 PMCID: PMC1615787 DOI: 10.1016/s0002-9440(10)63762-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/06/2004] [Indexed: 10/18/2022]
Abstract
Acquired or inherited junctional epidermolysis bullosa are skin diseases characterized by a separation between the epidermis and the dermis. In inherited nonlethal junctional epidermolysis bullosa, genetic analysis has identified mutations in the COL17A1 gene coding for the transmembrane collagen XVII whereas patients with acquired diseases have autoantibodies against this protein. This suggests that collagen XVII participates in the adhesion of basal keratinocytes to the extracellular matrix. To test this hypothesis, we studied the behavior of keratinocytes with null mutations in the COL17A1 gene. Initial adhesion of mutant cells to laminin 5 was comparable to controls and similarly dependent on alpha3beta1 integrins. The spreading of mutant cells was, however, enhanced, suggesting a propensity to migrate, which was confirmed by migration assays. In addition, laminin 5 deposited by collagen XVII-deficient keratinocytes was scattered and poorly organized, suggesting that correct integration of laminin 5 within the matrix requires collagen XVII. This assumption was supported by the co-distribution of the two proteins in the matrix of normal human keratinocytes and by protein-protein-binding assays showing that the C-terminus of collagen XVII binds to laminin 5. Together, the results unravel an unexpected role of collagen XVII in the regulation of keratinocyte migration.
Collapse
Affiliation(s)
- Kaisa Tasanen
- Department of Dermatology, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
38
|
Kassner A, Tiedemann K, Notbohm H, Ludwig T, Mörgelin M, Reinhardt DP, Chu ML, Bruckner P, Grässel S. Molecular Structure and Interaction of Recombinant Human Type XVI Collagen. J Mol Biol 2004; 339:835-53. [PMID: 15165854 DOI: 10.1016/j.jmb.2004.03.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Revised: 03/10/2004] [Accepted: 03/10/2004] [Indexed: 11/30/2022]
Abstract
Collagen XVI is a minor component of at least two different extracellular fibrillar networks of specialized regions of skin and cartilage. In skin, collagen XVI is integrated into particular fibrillin-rich microfibrils lacking an amorphous elastin core. In cartilage, collagen XVI is a component of small heterotypic D-banded fibrils, mainly occurring in the territorial matrix of chondrocytes. Here, we present the first direct evidence for the molecular structure and functional properties of these fibril-associated collagens with interrupted triple helices (FACIT). We have expressed recombinantly the full-length alpha1 chain of human collagen XVI in HEK 293 EBNA cells in large quantities using an episomal expression system. Secreted full-length recombinant collagen XVI forms stable disulfide-bonded homotrimers and is rapidly proteolytically processed to distinct fragments at specific protease sequence motifs, one resembling an aggrecanase recognition site. Limited trypsin digestion assays and thermal transition curves imply sequential thermal denaturation of individual triple helical domains of this recombinant collagen, similar to authentic collagen XVI. Molecular images of collagen XVI reveal rod-like molecules which harbor multiple sharp kinks attributing a highly flexible structure presumably introduced by non-collagenous (NC) regions. Terminally located cloverleaf-shaped nodules correspond to the large NC NC11 domain of trimeric collagen XVI. The total length of individual trimeric recombinant collagen XVI molecules constitutes about 240 nm as calculated by atomic force and negative staining electron microscopy. Recombinant collagen XVI interacts with fibrillin-1 and with fibronectin indicating multiple molecular interactions in which this ubiquitously expressed and versatile FACIT-collagen can participate. In vitro generated collagen XVI provides an indispensable tool for future determination of its function during supramolecular assembly of matrix aggregates and its role in maintenance, organization and interaction of fibrillar structures.
Collapse
Affiliation(s)
- Anja Kassner
- Institut für Physiologische Chemie und Pathobiochemie, Universitätsklinikum Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
McAlinden A, Smith TA, Sandell LJ, Ficheux D, Parry DAD, Hulmes DJS. Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 2003; 278:42200-7. [PMID: 12920133 DOI: 10.1074/jbc.m302429200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-helical coiled-coils are widely occurring protein oligomerization motifs. Here we show that most members of the collagen superfamily contain short, repeating heptad sequences typical of coiled coils. Such sequences are found at the N-terminal ends of the C-propeptide domains in all fibrillar procollagens. When fused C-terminal to a reporter molecule containing a collagen-like sequence that does not spontaneously trimerize, the C-propeptide heptad repeats induced trimerization. C-terminal heptad repeats were also found in the oligomerization domains of the multiplexins (collagens XV and XVIII). N-terminal heptad repeats are known to drive trimerization in transmembrane collagens, whereas fibril-associated collagens with interrupted triple helices, as well as collagens VII, XIII, XXIII, and XXV, were found to contain heptad repeats between collagen domains. Finally, heptad repeats were found in the von Willebrand factor A domains known to be involved in trimerization of collagen VI, as well as in collagen VII. These observations suggest that coiled-coil oligomerization domains are widely used in the assembly of collagens and collagen-like proteins.
Collapse
Affiliation(s)
- Audrey McAlinden
- Department of Orthopedic Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
40
|
Cauza K, Hinterhuber G, Mann U, Horvat R, Rappersberger K, Wolff K, Foedinger D. Internalization via plasmalemmal vesicles: a route for antidesmoplakin autoantibodies into cultured human keratinocytes. Exp Dermatol 2003; 12:546-54. [PMID: 14705794 DOI: 10.1034/j.1600-0625.2003.00036.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, autoantibodies to desmoplakin I and II have been identified in a subset of patients with a severe form of erythema multiforme. These autoantibodies recognize a specific peptide sequence at the carboxy terminal domain of desmoplakin I and II responsible for interaction with keratin filaments. Desmoplakins are major constitutive proteins of the inner dense desmosomal plaque of keratinocytes and are entirely localized within the cells. With the assumption of pathogenecity for circulating autoantibodies, the question arose how antidesmoplakin autoantibodies enter keratinocytes. Utilizing immunhistochemical procedures for cell motility and time kinetic studies at the light- and electron-microscopic level, we found that autoantibodies are bound at the cell surface of cultured human keratinocytes, internalized via plasmalemmal vesicles, and are found consecutively within tubulovesicular structures inside the cells. At the same time, a fraction of antibodies can be detected at the inner dense desmosomal plaques. Immunogold labeling reveals internalization of autoantibodies in small non-coated plasmalemmal vesicles positive for caveolin. These observations indicate that vesicular transport may represent a relevant biological mechanism for antidesmoplakin autoantibodies to enter keratinocytes and allow access to their corresponding antigenic target in vivo.
Collapse
Affiliation(s)
- Karla Cauza
- Department of Dermatology, Division of General Dermatology, University of Vienna, School of Medicine, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
41
|
Franzke CW, Tasanen K, Schumann H, Bruckner-Tuderman L. Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol 2003; 22:299-309. [PMID: 12935815 DOI: 10.1016/s0945-053x(03)00051-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Collagenous transmembrane proteins are an emerging group of biologically versatile molecules which function as both cell surface receptors and matrix molecules. The seven group members have interesting structural similarities: they are integral membrane proteins in type II orientation and have one or more collagenous domains in the extracellular C-terminus; interspersed by non-collagenous stretches which confer structural flexibility to the ectodomain. A conserved coiled-coil sequence (linker domain) immediately adjacent to the extracellular face of the cell membrane presumably serves as a nucleus for trimerization and triple-helix folding of each collagen. Intriguingly, the ectodomains of at least some of these molecules are proteolytically shed from the cell surface, releasing a shorter form of the collagen into the extracellular matrix. Collagenous transmembrane proteins are expressed in many different tissues and cells, and are involved in a broad spectrum of biological functions, reaching from epithelial and neural cell adhesion, and epithelial-mesenchymal interactions during morphogenesis to host defense against microbial agents. Several group members are involved in the molecular pathology of genetic and acquired human diseases including epidermolysis bullosa, ectodermal dysplasia, bullous pemphigoid or Alzheimer disease. An extensively investigated member is collagen XVII, a keratinocyte surface protein, which attaches the epidermis to the basement membrane in the skin. In this review, the structure and functions of the currently known collagenous transmembrane proteins are summarized and, as a 'prototype' of the group, collagen XVII and its biology and pathophysiology are delineated.
Collapse
Affiliation(s)
- Claus-Werner Franzke
- Departments of Dermatology, University of Freiburg, Hauptstr 7, Freiburg D-79104, Germany
| | | | | | | |
Collapse
|
42
|
Frank S, Boudko S, Mizuno K, Schulthess T, Engel J, Bächinger HP. Collagen triple helix formation can be nucleated at either end. J Biol Chem 2003; 278:7747-50. [PMID: 12540847 DOI: 10.1074/jbc.c200698200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The directional dependence of folding rates for rod-like macromolecules such as parallel alpha-helical coiled-coils, DNA double-helices, and collagen triple helices is largely unexplored. This is mainly due to technical difficulties in measuring rates in different directions. Folding of collagens is nucleated by trimeric non-collagenous domains. These are usually located at the COOH terminus, suggesting that triple helix folding proceeds from the COOH to the NH(2) terminus. Evidence is presented here that effective nucleation is possible at both ends of the collagen-like peptide (Gly-Pro-Pro)(10), using designed proteins in which this peptide is fused either NH(2)- or COOH-terminal to a nucleation domain, either T4-phage foldon or the disulfide knot of type III collagen. The location of the nucleation domain influences triple-helical stability, which might be explained by differences in the linker sequences and the presence or absence of repulsive charges at the carboxyl-terminal end of the triple helix. Triple helical folding rates are found to be independent of the site of nucleation and consistent with cis-trans isomerization being the rate-limiting step.
Collapse
Affiliation(s)
- Sabine Frank
- Department of Biophysical Chemistry, Biozentrum, Universität Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Presslauer S, Hinterhuber G, Cauza K, Horvat R, Rappersberger K, Wolff K, Foedinger D. RasGAP-like protein IQGAP1 is expressed by human keratinocytes and recognized by autoantibodies in association with bullous skin disease. J Invest Dermatol 2003; 120:365-71. [PMID: 12603848 DOI: 10.1046/j.1523-1747.2003.12070.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Autoantibodies in patients with autoimmune bullous skin diseases, such as pemphigus or bullous pemphigoid are of diagnostic value and might play a part in the pathogenic scenario. In this study we present five patients with erythematous plaques, subepidermal blister formation of the skin, and the presence of circulating autoantibodies directed against a so far unrecognized 190 kDa antigen in human keratinocytes. Amino acid sequence analysis identified the protein as IQGAP1, a recently described human Ras GTPase-activating-like protein suspected to act as an effector molecule for Cdc42 and Rac1, members of the Rho small GTPase family and to play a key part in regulating E-cadherin-mediated cell adhesion. The protein is selectively recognized by a monoclonal anti-IQGAP1 antibody on western blots and immunoprecipitates from keratinocyte extracts. Indirect immunofluorescence locates IQGAP1 within individual keratinocytes in a cytoplasmic pattern and along the cell periphery at adhesive sites. Our results demonstrate IQGAP1, a newly described multifunctional protein, to be constitutively expressed in human keratinocytes where it may contribute to the integrity of the epidermal layer. Furthermore, we found autoantibodies reacting with IQGAP1 in patients with bullous skin eruptions most apparently belonging to the spectrum of bullous pemphigoid.
Collapse
Affiliation(s)
- Stefan Presslauer
- Department of Dermatology, Division of General Dermatology, University of Vienna, School of Medicine, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
44
|
de Wolf F. Chapter V Collagen and gelatin. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0921-0423(03)80005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
45
|
Franzke CW, Tasanen K, Schäcke H, Zhou Z, Tryggvason K, Mauch C, Zigrino P, Sunnarborg S, Lee DC, Fahrenholz F, Bruckner-Tuderman L. Transmembrane collagen XVII, an epithelial adhesion protein, is shed from the cell surface by ADAMs. EMBO J 2002; 21:5026-35. [PMID: 12356719 PMCID: PMC129053 DOI: 10.1093/emboj/cdf532] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 07/24/2002] [Accepted: 08/15/2002] [Indexed: 01/13/2023] Open
Abstract
Collagen XVII, a type II transmembrane protein and epithelial adhesion molecule, can be proteolytically shed from the cell surface to generate a soluble collagen. Here we investigated the release of the ectodomain and identified the enzymes involved. After surface biotinylation of keratinocytes, the ectodomain was detectable in the medium within minutes and remained stable for >48 h. Shedding was enhanced by phorbol esters and inhibited by metalloprotease inhibitors, including hydroxamates and TIMP-3, but not by inhibitors of other protease classes or by TIMP-2. This profile implicated MMPs or ADAMs as candidate sheddases. MMP-2, MMP-9 and MT1-MMP were excluded, but TACE, ADAM-10 and ADAM-9 were shown to be expressed in keratinocytes and to be actively involved. Transfection with cDNAs for the three ADAMs resulted in increased shedding and, vice versa, in TACE-deficient cells shedding was significantly reduced, indicating that transmembrane collagen XVII represents a novel class of substrates for ADAMs. Functionally, release of the ectodomain of collagen XVII from the cell surface was associated with altered keratinocyte motility in vitro.
Collapse
Affiliation(s)
- Claus-Werner Franzke
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Kaisa Tasanen
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Heike Schäcke
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Zhongjun Zhou
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Karl Tryggvason
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Cornelia Mauch
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Paola Zigrino
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Susan Sunnarborg
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - David C. Lee
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Falk Fahrenholz
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University of Münster, D-48149 Münster, Department of Dermatology, University of Cologne,D-50931 Cologne and Institute of Biochemistry, University of Mainz, D-55128 Mainz, Germany, Department of Dermatology, University of Oulu, F-90220 Oulu, Finland, Karolinska Institute, Division of Matrix Biology, S-17177 Stockholm, Sweden and
Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA Corresponding author e-mail:
| |
Collapse
|
46
|
Sankala M, Brännström A, Schulthess T, Bergmann U, Morgunova E, Engel J, Tryggvason K, Pikkarainen T. Characterization of recombinant soluble macrophage scavenger receptor MARCO. J Biol Chem 2002; 277:33378-85. [PMID: 12097327 DOI: 10.1074/jbc.m204494200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARCO is a type II transmembrane protein of the class A scavenger receptor family. It has a short N-terminal cytoplasmic domain, a transmembrane domain, and a large extracellular part composed of a 75-residue long spacer domain, a 270-residue collagenous domain, and a 99-residue long scavenger receptor cysteine-rich (SRCR) domain. Previous studies have indicated a role for this receptor in anti-microbial host defense functions. In this work we have produced the extracellular part of MARCO as a recombinant protein, and analyzed its binding properties. The production of this protein, soluble MARCO (sMARCO), has made it possible for the first time to study MARCO and its binding properties in a cell-free system. Using circular dichroism analyses, a protease-sensitive assay, and rotary shadowing electron microscopy, sMARCO was shown to have a triple-helical collagenous structure. Rotary shadowing also demonstrated that the molecules often associate with each other via the globes. sMARCO was found to bind avidly both heat-killed and living bacteria. Lipopolysaccharide, an important component of the outer membrane of Gram-negative bacteria, was shown to be a ligand of MARCO. Studies with different bacterial strains indicated that the O-side chain of lipopolysaccharide is not needed for the bacterial recognition. Finally, the C-terminal SRCR domain was also produced as a recombinant protein, and its bacteria-binding capability was studied. Although the transfection experiments with transmembrane MARCO variants have indicated a crucial role for this domain in bacterial binding, the monomeric domain exhibited low, barely detectable bacteria-binding activity. Thus, it is possible that cooperation between the SRCR domain and the collagenous domain is needed for high-affinity bacterial binding, or that the SRCR domain has to be in a trimeric form to effectively bind to bacteria.
Collapse
Affiliation(s)
- Marko Sankala
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Boudko S, Frank S, Kammerer RA, Stetefeld J, Schulthess T, Landwehr R, Lustig A, Bächinger HP, Engel J. Nucleation and propagation of the collagen triple helix in single-chain and trimerized peptides: transition from third to first order kinetics. J Mol Biol 2002; 317:459-70. [PMID: 11922677 DOI: 10.1006/jmbi.2002.5439] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetics of triple helix formation from single non-crosslinked peptide chains were studied for the collagen models (ProProGly)10 and (ProHypGly)10 in a broad concentration range and compared with those in nucleated trimers. At very low peptide concentrations the reaction order is 3 but decreases at higher concentrations. For (ProProGly)10 the third order rate constant is 800 M(-2) x s(-1) at 7 degrees C, which corresponds to a very long half time of 15 hours at 60 microM chain concentration. For (ProHypGly)10 the rate constant is about 1000-fold higher, which is consistent with the stabilizing effect of 4-hydroxyproline in collagens. The concentration dependence of the reaction order is explained by a nucleation mechanism in which a very unstable dimer is in fast equilibrium with the monomeric chains and addition of the third chain occurs in a rate-limiting step. At high concentrations nucleation is faster than propagation of helix formation and propagation becomes rate-limiting. To test this hypothesis an artificial nucleus was introduced by fusion of (ProProGly)10 with the trimeric foldon domain of T4 phage or the crosslinking domain of collagen III GlyProProGlyProCysCysGlyGlyGly. These domains were recombinantly attached to the C terminus of (GlyProPro)10 and link the three chains in a similar way to the C-terminal propeptide domain in collagen III. This results in a local intrinsic chain concentration of about 1 M. A first order reaction is observed for the folding of the triple helix in (GlyProPro)10foldon with a half time of 8.3 minutes, which approximately matches the rate of folding from single chains at 1 M peptide concentration. A high activation energy of 54 kJ/mol is found for this reaction, whereas the temperature dependence of the nucleation step is close to zero, confirming earlier findings on natural collagens that cis-trans isomerization of peptide bonds is the rate-limiting step in propagation.
Collapse
Affiliation(s)
- Sergei Boudko
- Department of Biophysical Chemistry, Biozentrum, University of Basel, Basel, CH 4056, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
van Leusden MR, Pas HH, Gedde-Dahl T, Sonnenberg A, Jonkman MF. Truncated typeXVII collagen expression in a patient with non-herlitz junctional epidermolysis bullosa caused by a homozygous splice-site mutation. J Transl Med 2001; 81:887-94. [PMID: 11406649 DOI: 10.1038/labinvest.3780297] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
SUMMARY Type XVII collagen (180-kDa bullous pemphigoid antigen) is a structural component of hemidesmosomes. Mutations in the type XVII collagen gene (COL17A1) have been established to be the molecular basis of non-Herlitz junctional epidermolysis bullosa (JEB-nH), an inherited skin blistering disorder. Here we report for the first time truncated type XVII collagen expression, caused by homozygosity for a COL17A1 donor splice-site mutation (4261+1 g --> c), which was identified by PCR amplification on genomic DNA. By RT-PCR and sequencing of cDNA derived from mRNA from the patient's cultured keratinocytes, we provide evidence of cryptic splicing and exon skipping, most abundantly of exon 52. JEB-nH patients with COL17A1 splice-site mutations resulting in an exon skip often have no immunologically detectable type XVII collagen. However, in our patient with the generalized atrophic benign epidermolysis bullosa subtype, a small amount of type XVII collagen was detectable in the skin, and immunoblotting of cultured keratinocytes revealed that the 180-kDa protein was 10 kDa shorter. We hypothesize that the function of this truncated type XVII collagen polypeptide, which is expressed at low levels, is impaired, explaining the JEB-nH phenotype.
Collapse
Affiliation(s)
- M R van Leusden
- Centre for Blistering Skin Diseases, Department of Dermatology, Groningen University Hospital, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|