1
|
Linder J, Koplik SE, Kundaje A, Seelig G. Deciphering the impact of genetic variation on human polyadenylation using APARENT2. Genome Biol 2022; 23:232. [PMID: 36335397 PMCID: PMC9636789 DOI: 10.1186/s13059-022-02799-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/19/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND 3'-end processing by cleavage and polyadenylation is an important and finely tuned regulatory process during mRNA maturation. Numerous genetic variants are known to cause or contribute to human disorders by disrupting the cis-regulatory code of polyadenylation signals. Yet, due to the complexity of this code, variant interpretation remains challenging. RESULTS We introduce a residual neural network model, APARENT2, that can infer 3'-cleavage and polyadenylation from DNA sequence more accurately than any previous model. This model generalizes to the case of alternative polyadenylation (APA) for a variable number of polyadenylation signals. We demonstrate APARENT2's performance on several variant datasets, including functional reporter data and human 3' aQTLs from GTEx. We apply neural network interpretation methods to gain insights into disrupted or protective higher-order features of polyadenylation. We fine-tune APARENT2 on human tissue-resolved transcriptomic data to elucidate tissue-specific variant effects. By combining APARENT2 with models of mRNA stability, we extend aQTL effect size predictions to the entire 3' untranslated region. Finally, we perform in silico saturation mutagenesis of all human polyadenylation signals and compare the predicted effects of [Formula: see text] million variants against gnomAD. While loss-of-function variants were generally selected against, we also find specific clinical conditions linked to gain-of-function mutations. For example, we detect an association between gain-of-function mutations in the 3'-end and autism spectrum disorder. To experimentally validate APARENT2's predictions, we assayed clinically relevant variants in multiple cell lines, including microglia-derived cells. CONCLUSIONS A sequence-to-function model based on deep residual learning enables accurate functional interpretation of genetic variants in polyadenylation signals and, when coupled with large human variation databases, elucidates the link between functional 3'-end mutations and human health.
Collapse
Affiliation(s)
| | | | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, USA
- Department of Computer Science, Stanford University, Stanford, USA
| | - Georg Seelig
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, USA
| |
Collapse
|
2
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
3
|
MacDonald CC. Tissue-specific mechanisms of alternative polyadenylation: Testis, brain, and beyond (2018 update). WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1526. [PMID: 30816016 PMCID: PMC6617714 DOI: 10.1002/wrna.1526] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/05/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA) is how genes choose different sites for 3′ end formation for mRNAs during transcription. APA often occurs in a tissue‐ or developmental stage‐specific manner that can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization within the cell, or its translatability. Despite the important regulatory effects that APA has on tissue‐specific gene expression, only a few examples have been characterized mechanistically. In this 2018 update to our 2010 review, we examine mechanisms for the control of APA and update our understanding of the older mechanisms since 2010. We once postulated the existence of tissue‐specific factors in APA. However, while a few tissue‐specific polyadenylation factors are known, the emerging conclusion is that the majority of APA is accomplished by altering levels of core polyadenylation proteins. Examples of those core proteins include CSTF2, CPSF1, and subunits of mammalian cleavage factor I. But despite support for these mechanisms, no one has yet documented any of these proteins changing in either a tissue‐specific or developmental manner. Given the profound effect that APA can have on gene expression and human health, improved understanding of tissue‐specific APA could lead to numerous advances in gene activity control. This article is categorized under:RNA Processing > 3′ End Processing RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
4
|
Grozdanov PN, Li J, Yu P, Yan W, MacDonald CC. Cstf2t Regulates expression of histones and histone-like proteins in male germ cells. Andrology 2018; 6:605-615. [PMID: 29673127 DOI: 10.1111/andr.12488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022]
Abstract
Formation of the 3' ends of mature mRNAs requires recognition of the correct site within the last exon, cleavage of the nascent pre-mRNA, and, for most mRNAs, addition of a poly(A) tail. Several factors are involved in recognition of the correct 3'-end site. The cleavage stimulation factor (CstF) has three subunits, CstF-50 (gene symbol Cstf1), CstF-64 (Cstf2), and CstF-77 (Cstf3). Of these, CstF-64 is the RNA-binding subunit that interacts with the pre-mRNA downstream of the cleavage site. In male germ cells where CstF-64 is not expressed, a paralog, τCstF-64 (gene symbol Cstf2t) assumes its functions. Accordingly, Cstf2t knockout (Cstf2t-/- ) mice exhibit male infertility due to defective development of spermatocytes and spermatids. To discover differentially expressed genes responsive to τCstF-64, we performed RNA-Seq in seminiferous tubules from wild-type and Cstf2t-/- mice, and found that several histone and histone-like mRNAs were reduced in Cstf2t-/- mice. We further observed delayed accumulation of the testis-specific histone, H1fnt (formerly, H1t2 or Hanp1) in Cstf2t-/- mice. High-throughput sequence analysis of polyadenylation sites (A-seq) indicated reduced use of polyadenylation sites within a cluster downstream of H1fnt in knockout mice. However, high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) was not consistent with a direct role of τCstF-64 in polyadenylation of H1fnt. These findings together suggest that the τCstF-64 may control other reproductive functions that are not directly linked to the formation of 3' ends of mature polyadenylated mRNAs during male germ cell formation.
Collapse
Affiliation(s)
- P N Grozdanov
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - J Li
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, USA
| | - P Yu
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX, USA
| | - W Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - C C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice. PLoS One 2016; 11:e0165976. [PMID: 27812195 PMCID: PMC5094787 DOI: 10.1371/journal.pone.0165976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
Polyadenylation is an essential mechanism for the processing of mRNA 3′ ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2) is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t). The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice) experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.
Collapse
|
6
|
Grozdanov PN, Amatullah A, Graber JH, MacDonald CC. TauCstF-64 Mediates Correct mRNA Polyadenylation and Splicing of Activator and Repressor Isoforms of the Cyclic AMP-Responsive Element Modulator (CREM) in Mouse Testis. Biol Reprod 2015; 94:34. [PMID: 26700942 PMCID: PMC4787626 DOI: 10.1095/biolreprod.115.134684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is coordinated by the spatial and temporal expression of many transcriptional and posttranscriptional factors. The cyclic AMP-responsive element modulator (CREM) gene encodes both activator and repressor isoforms that act as transcription factors to regulate spermiogenesis. We found that the testis-expressed paralog of CstF-64, tauCstF-64 (gene symbol Cstf2t), is involved in a polyadenylation site choice switch of Crem mRNA and leads to an overall decrease of the Crem mRNAs that are generated from internal promoters in Cstf2t(-/-) mice. More surprisingly, loss of tauCstF-64 also leads to alternative splicing of Crem exon 4, which contains an important activation domain. Thus, testis-specific CREMtau2 isoform protein levels are reduced in Cstf2t(-/-) mice. Consequently, expression of 15 CREM-regulated genes is decreased in testes of Cstf2t(-/-) mice at 25 days postpartum. These effects might further contribute to the infertility phenotype of these animals. This demonstrates that tauCstF-64 is an important stage-specific regulator of Crem mRNA processing that modulates the spatial and temporal expression of downstream stage-specific genes necessary for the proper development of sperm in mice.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Atia Amatullah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joel H Graber
- Center for Genome Dynamics, The Jackson Laboratory, Bar Harbor, Maine
| | - Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
7
|
CstF64: cell cycle regulation and functional role in 3' end processing of replication-dependent histone mRNAs. Mol Cell Biol 2014; 34:4272-84. [PMID: 25266659 DOI: 10.1128/mcb.00791-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.
Collapse
|
8
|
Youngblood BA, MacDonald CC. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects. Stem Cell Res 2014; 13:413-21. [PMID: 25460602 DOI: 10.1016/j.scr.2014.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Although adult cardiomyocytes have the capacity for cellular regeneration, they are unable to fully repair severely injured hearts. The use of embryonic stem cell (ESC)-derived cardiomyocytes as transplantable heart muscle cells has been proposed as a solution, but is limited by the lack of understanding of the developmental pathways leading to specification of cardiac progenitors. Identification of these pathways will enhance the ability to differentiate cardiomyocytes into a clinical source of transplantable cells. Here, we show that the mRNA 3' end processing protein, CstF-64, is essential for cardiomyocyte differentiation in mouse ESCs. Loss of CstF-64 in mouse ESCs results in loss of differentiation potential toward the endodermal lineage. However, CstF-64 knockout (Cstf2(E6)) cells were able to differentiate into neuronal progenitors, demonstrating that some differentiation pathways were still intact. Markers for mesodermal differentiation were also present, although Cstf2(E6) cells were defective in forming beating cardiomyocytes and expressing cardiac specific markers. Since the extraembryonic endoderm is needed for cardiomyocyte differentiation and endodermal markers were decreased, we hypothesized that endodermal factors were required for efficient cardiomyocyte formation in the Cstf2(E6) cells. Using conditioned medium from the extraembryonic endodermal (XEN) stem cell line we were able to restore cardiomyocyte differentiation in Cstf2(E6) cells, suggesting that CstF-64 has a role in regulating endoderm differentiation that is necessary for cardiac specification and that extraembryonic endoderm signaling is essential for cardiomyocyte development.
Collapse
Affiliation(s)
- Bradford A Youngblood
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA.
| |
Collapse
|
9
|
The τCstF-64 polyadenylation protein controls genome expression in testis. PLoS One 2012; 7:e48373. [PMID: 23110235 PMCID: PMC3482194 DOI: 10.1371/journal.pone.0048373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022] Open
Abstract
The τCstF-64 polyadenylation protein (gene symbol Cstf2t) is a testis-expressed orthologue of CstF-64. Mice in which Cstf2t was knocked out had a phenotype that was only detected in meiotic and postmeiotic male germ cells, giving us the opportunity to examine CstF-64 function in an isolated developmental system. We performed massively parallel clonally amplified sequencing of cDNAs from testes of wild type and Cstf2t−/− mice. These results revealed that loss of τCstF-64 resulted in large-scale changes in patterns of genome expression. We determined that there was a significant overrepresentation of RNAs from introns and intergenic regions in testes of Cstf2t−/− mice, and a concomitant use of more distal polyadenylation sites. We observed this effect particularly in intronless small genes, many of which are expressed retroposons that likely co-evolved with τCstF-64. Finally, we observed overexpression of long interspersed nuclear element (LINE) sequences in Cstf2t−/− testes. These results suggest that τCstF-64 plays a role in 3′ end determination and transcription termination for a large range of germ cell-expressed genes.
Collapse
|
10
|
MacDonald CC, McMahon KW. Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:494-501. [PMID: 21956945 DOI: 10.1002/wrna.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changing the position of the poly(A) tail in an mRNA--alternative polyadenylation--is an important mechanism to increase the diversity of gene expression, especially in metazoans. Alternative polyadenylation often occurs in a tissue- or developmental stage-specific manner and can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization, or its translatability. Despite the important regulatory effects that alternative polyadenylation have on gene expression, only a sparse few examples have been mechanistically characterized. Here, we review the known mechanisms for the control of alternative polyadenylation, catalog the tissues that demonstrate a propensity for alternative polyadenylation, and focus on the proteins that are known to regulate alternative polyadenylation in specific tissues. We conclude that the field of alternative polyadenylation remains in its infancy, with possibilities for future investigation on the horizon. Given the profound effect alternative polyadenylation can have on gene expression and human health, improved understanding of alternative polyadenylation could lead to numerous advances in control of gene activity.
Collapse
Affiliation(s)
- Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA.
| | | |
Collapse
|
11
|
Huang Q, Deng X, Best SM, Bloom ME, Li Y, Qiu J. Internal polyadenylation of parvoviral precursor mRNA limits progeny virus production. Virology 2012; 426:167-77. [PMID: 22361476 DOI: 10.1016/j.virol.2012.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/19/2012] [Accepted: 01/26/2012] [Indexed: 11/19/2022]
Abstract
Aleutian Mink Disease Virus (AMDV) is the only virus in the genus Amdovirus of family Parvoviridae. In adult mink, AMDV causes a persistent infection associated with severe dysfunction of the immune system. Cleavage of AMDV capsid proteins has been previously shown to play a role in regulating progeny virus production (Fang Cheng et al., J. Virol. 84:2687-2696, 2010). The present study shows that AMDV has evolved a second strategy to limit expression of capsid proteins by preventing processing of the full-length capsid protein-encoding mRNA transcripts. Characterization of the cis-elements of the proximal polyadenylation site [(pA)p] in the infectious clone of AMDV revealed that polyadenylation at the (pA)p site is controlled by an upstream element (USE) of 200 nts in length, the AAUAAA signal, and a downstream element (DSE) of 40 nts. A decrease in polyadenylation at the (pA)p site, either by mutating the AAUAAA signal or the DSE, which does not affect the encoding of amino acids in the infectious clone, increased the expression of capsid protein VP1/VP2 and thereby increased progeny virus production approximately 2-3-fold. This increase was accompanied by enhanced replication of the AMDV genome. Thus, this study reveals correlations among internal polyadenylation, capsid production, viral DNA replication and progeny virus production of AMDV, indicating that internal polyadenylation is a limiting step for parvovirus replication and progeny virus production.
Collapse
Affiliation(s)
- Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hockert KJ, Martincic K, Mendis-Handagama SMLC, Borghesi LA, Milcarek C, Dass B, MacDonald CC. Spermatogenetic but not immunological defects in mice lacking the τCstF-64 polyadenylation protein. J Reprod Immunol 2011; 89:26-37. [PMID: 21489638 DOI: 10.1016/j.jri.2011.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/07/2011] [Accepted: 01/16/2011] [Indexed: 12/31/2022]
Abstract
Alternative polyadenylation controls expression of genes in many tissues including immune cells and male germ cells. The τCstF-64 polyadenylation protein is expressed in both cell types, and we previously showed that Cstf2t, the gene encoding τCstF-64 was necessary for spermatogenesis and fertilization. Here we examine consequences of τCstF-64 loss in both germ cells and immune cells. Spermatozoa from Cstf2t null mutant (Cstf2t(-/-)) mice of ages ranging from 60 to 108 days postpartum exhibited severe defects in motility and morphology that were correlated with a decrease in numbers of round spermatids. Spermatozoa in these mice also displayed severe morphological defects at every age, especially in the head and midpiece. In the testicular epithelium, we saw normal numbers of cells in earlier stages of spermatogenesis, but reduced numbers of round spermatids in Cstf2t(-/-) mice. Although Leydig cell numbers were normal, we did observe reduced levels of plasma testosterone in the knockout animals, suggesting that reduced androgen might also be contributing to the Cstf2t(-/-) phenotype. Finally, while τCstF-64 was expressed in a variety of immune cell types in wild type mice, we did not find differences in secreted IgG or IgM or changes in immune cell populations in Cstf2t(-/-) mice, suggesting that τCstF-64 function in immune cells is either redundant or vestigial. Together, these data show that τCstF-64 function is primarily to support spermatogenesis, but only incidentally to support immune cell function.
Collapse
Affiliation(s)
- Kathy Jo Hockert
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Texas, Lubbock, TX 79430, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Ruepp MD, Schweingruber C, Kleinschmidt N, Schümperli D. Interactions of CstF-64, CstF-77, and symplekin: implications on localisation and function. Mol Biol Cell 2010; 22:91-104. [PMID: 21119002 PMCID: PMC3016980 DOI: 10.1091/mbc.e10-06-0543] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Important interactions controlling the function of CstF-64 in histone RNA processing and general mRNA cleavage/polyadenylation are identified, and an interesting coregulation of CstF-64 and its paralogue CstF-64Tau leads to a model for CstF regulation and its role in modulating poly(A) site choice. Cleavage/polyadenylation of mRNAs and 3′ processing of replication-dependent histone transcripts are both mediated by large complexes that share several protein components. Functional studies of these shared proteins are complicated by the cooperative binding of the individual subunits. For CstF-64, an additional difficulty is that symplekin and CstF-77 bind mutually exclusively to its hinge domain. Here we have identified CstF-64 and symplekin mutants that allowed us to distinguish between these interactions and to elucidate the role of CstF-64 in the two processing reactions. The interaction of CstF-64 with symplekin is limiting for histone RNA 3′ processing but relatively unimportant for cleavage/polyadenylation. In contrast, the nuclear accumulation of CstF-64 depends on its binding to CstF-77 and not to symplekin. Moreover, the CstF-64 paralogue CstF-64Tau can compensate for the loss of CstF-64. As CstF-64Tau has a lower affinity for CstF-77 than CstF-64 and is relatively unstable, it is the minor form. However, it may become up-regulated when the CstF-64 level decreases, which has biological implications for spermatogenesis and probably also for other regulatory events. Thus, the interactions between CstF-64/CstF-64Tau and CstF-77 are important for the maintenance of stoichiometric nuclear levels of the CstF complex components and for their intracellular localization, stability, and function.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
14
|
Tardif S, Akrofi AS, Dass B, Hardy DM, MacDonald CC. Infertility with impaired zona pellucida adhesion of spermatozoa from mice lacking TauCstF-64. Biol Reprod 2010; 83:464-72. [PMID: 20463354 DOI: 10.1095/biolreprod.109.083238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fertilization is a multistep process requiring spermatozoa with unique cellular structures and numerous germ cell-specific molecules that function in the various steps. In the highly coordinated process of male germ cell development, RNA splicing and polyadenylation help regulate gene expression to assure formation of functional spermatozoa. Male germ cells express tauCstF-64 (Cstf2t gene product), a paralog of the X-linked CstF-64 protein that supports polyadenylation in most somatic cells. We previously showed that loss of tauCstF-64 causes male infertility because of major defects in mouse spermatogenesis. Surprisingly, although Cstf2t(-/-) males produce very few recognizable spermatozoa, some of the spermatozoa produced are motile. This led us to ask whether these Cstf2t(-/-) sperm were fertile. A motile cell-enriched population of spermatozoa from Cstf2t-null males dispersed cumulus cells of cumulus-oocyte complexes normally. However, motile spermatozoa from Cstf2t-null males failed to fertilize cumulus-intact mouse eggs in vitro. In addition, sperm adhesion to the zona pellucida (ZP) of cumulus-free eggs was significantly decreased, indicating tauCstF-64 is required for production of spermatozoa capable of ZP interaction. Acrosomal proteins involved in sperm-ZP recognition, including zonadhesin, proacrosin, SPAM1/PH-20, and ZP3R/sp56, were normally distributed in the apical head of Cstf2t(-/-) spermatozoa. We conclude that tauCstF-64 is required not only for expression of genes involved in morphological differentiation of spermatids but also for genes having products that function during interaction of motile spermatozoa with eggs. To our knowledge, this is the first demonstration that a gene involved in polyadenylation has a negative consequence on sperm-ZP adhesion.
Collapse
Affiliation(s)
- Steve Tardif
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| | | | | | | | | |
Collapse
|
15
|
Rigo F, Martinson HG. Polyadenylation releases mRNA from RNA polymerase II in a process that is licensed by splicing. RNA (NEW YORK, N.Y.) 2009; 15:823-36. [PMID: 19304926 PMCID: PMC2673064 DOI: 10.1261/rna.1409209] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
When transcription is coupled to pre-mRNA processing in HeLa nuclear extracts nascent transcripts become attached to RNA polymerase II during assembly of the cleavage/polyadenylation apparatus (CPA), and are not released even after cleavage at the poly(A) site. Here we show that these cleaved transcripts are anchored to the polymerase at their 3' ends by the CPA or, when introns are present, by the larger 3'-terminal exon definition complex (EDC), which consists of splicing factors complexed with the CPA. Poly(A) addition releases the RNA from the polymerase when the RNA is anchored only by the CPA. When anchored by the EDC, poly(A) addition remains a requirement, but it triggers release only after being licensed by splicing. The process by which RNA must first be attached to the polymerase by the EDC, and then can only be released following dual inputs from splicing and polyadenylation, provides an obvious opportunity for surveillance as the RNA enters the transport pathway.
Collapse
Affiliation(s)
- Frank Rigo
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
16
|
Shankarling GS, Coates PW, Dass B, Macdonald CC. A family of splice variants of CstF-64 expressed in vertebrate nervous systems. BMC Mol Biol 2009; 10:22. [PMID: 19284619 PMCID: PMC2660332 DOI: 10.1186/1471-2199-10-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 03/12/2009] [Indexed: 01/23/2023] Open
Abstract
Background Alternative splicing and polyadenylation are important mechanisms for creating the proteomic diversity necessary for the nervous system to fulfill its specialized functions. The contribution of alternative splicing to proteomic diversity in the nervous system has been well documented, whereas the role of alternative polyadenylation in this process is less well understood. Since the CstF-64 polyadenylation protein is known to be an important regulator of tissue-specific polyadenylation, we examined its expression in brain and other organs. Results We discovered several closely related splice variants of CstF-64 – collectively called βCstF-64 – that could potentially contribute to proteomic diversity in the nervous system. The βCstF-64 splice variants are found predominantly in the brains of several vertebrate species including mice and humans. The major βCstF-64 variant mRNA is generated by inclusion of two alternate exons (that we call exons 8.1 and 8.2) found between exons 8 and 9 of the CstF-64 gene, and contains an additional 147 nucleotides, encoding 49 additional amino acids. Some variants of βCstF-64 contain only the first alternate exon (exon 8.1) while other variants contain both alternate exons (8.1 and 8.2). In mice, the predominant form of βCstF-64 also contains a deletion of 78 nucleotides from exon 9, although that variant is not seen in any other species examined, including rats. Immunoblot and 2D-PAGE analyses of mouse nuclear extracts indicate that a protein corresponding to βCstF-64 is expressed in brain at approximately equal levels to CstF-64. Since βCstF-64 splice variant family members were found in the brains of all vertebrate species examined (including turtles and fish), this suggests that βCstF-64 has an evolutionarily conserved function in these animals. βCstF-64 was present in both pre- and post-natal mice and in different regions of the nervous system, suggesting an important role for βCstF-64 in neural gene expression throughout development. Finally, experiments in representative cell lines suggest that βCstF-64 is expressed in neurons but not glia. Conclusion This is the first report of a family of splice variants encoding a key polyadenylation protein that is expressed in a nervous system-specific manner. We propose that βCstF-64 contributes to proteomic diversity by regulating alternative polyadenylation of neural mRNAs.
Collapse
Affiliation(s)
- Ganesh S Shankarling
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430-6540, USA.
| | | | | | | |
Collapse
|
17
|
Abstract
Regulation of gene expression by RNA processing mechanisms is now understood to be an important level of control in mammalian cells. Regulation at the level of RNA transcription, splicing, polyadenylation, nucleo-cytoplasmic transport, and translation into polypeptides has been well-studied. Alternative RNA processing events, such as alternative splicing, also have been recognized as key contributors to the complexity of mammalian gene expression. Pre-messenger RNAs (pre-mRNAs) may be polyadenylated in several different ways due to more than one polyadenylation signal, allowing a single gene to encode multiple mRNA transcripts. However, alternative polyadenylation has only recently taken the field as a major player in gene regulation. This review summarizes what is currently known about alternative polyadenylation. It covers results from bioinformatics, as well as those from investigations of viral and tissue-specific studies and, importantly, will set the stage for what is yet to come.
Collapse
Affiliation(s)
- Carol S. Lutz
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey−New Jersey Medical School, MSB E671, 185 South Orange Avenue, Newark, New Jersey 07101
| |
Collapse
|
18
|
Abstract
Most eukaryotic mRNA precursors (premRNAs) must undergo extensive processing, including cleavage and polyadenylation at the 3'-end. Processing at the 3'-end is controlled by sequence elements in the pre-mRNA (cis elements) as well as protein factors. Despite the seeming biochemical simplicity of the processing reactions, more than 14 proteins have been identified for the mammalian complex, and more than 20 proteins have been identified for the yeast complex. The 3'-end processing machinery also has important roles in transcription and splicing. The mammalian machinery contains several sub-complexes, including cleavage and polyadenylation specificity factor, cleavage stimulation factor, cleavage factor I, and cleavage factor II. Additional protein factors include poly(A) polymerase, poly(A)-binding protein, symplekin, and the C-terminal domain of RNA polymerase II largest subunit. The yeast machinery includes cleavage factor IA, cleavage factor IB, and cleavage and polyadenylation factor.
Collapse
Affiliation(s)
- C. R. Mandel
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - Y. Bai
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| | - L. Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027 USA
| |
Collapse
|
19
|
Finishing touches: post-translational modification of protein factors involved in mammalian pre-mRNA 3' end formation. Int J Biochem Cell Biol 2008; 40:2384-96. [PMID: 18468939 DOI: 10.1016/j.biocel.2008.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 11/27/2022]
Abstract
In eukaryotes, a pre-messenger RNA (pre-mRNA) must undergo several processing reactions before it is exported to the cytoplasm for translation. One of these reactions, endonucleolytic 3' cleavage at the polyadenylation site, prepares the pre-mRNA for addition of the poly(A) tail and defines the 3' untranslated region (UTR), which typically contains important gene expression regulatory sequences. While the protein factors responsible for the endonucleolytic cleavage have been largely identified, the means by which their action is limited to the 3' end of the transcription unit and coordinated with other co-transcriptional events remains unclear. In this review, we summarize and review recent findings revealing that the mammalian 3' cleavage factors undergo extensive post-translational modification. These modifications include: arginine methylation, lysine sumoylation, lysine acetylation, and the phosphorylation of serine, threonine and tyrosine residues. Every cleavage factor, though not every subunit, is affected. Human Fip1 and the 59 kDa subunit of cleavage factor I emerge as the most frequently modified core cleavage factor subunits. We outline and compare the various proteomic methods that have uncovered these modifications, and review emerging hypotheses concerning their function. The roles of these covalent but reversible modifications in other systems suggest that 3' end formation in mammals relies upon post-translational modification for proper function and regulation.
Collapse
|
20
|
|
21
|
Loss of polyadenylation protein tauCstF-64 causes spermatogenic defects and male infertility. Proc Natl Acad Sci U S A 2007; 104:20374-9. [PMID: 18077340 DOI: 10.1073/pnas.0707589104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Polyadenylation, the process of eukaryotic mRNA 3' end formation, is essential for gene expression and cell viability. Polyadenylation of male germ cell mRNAs is unusual, exhibiting increased alternative polyadenylation, decreased AAUAAA polyadenylation signal use, and reduced downstream sequence element dependence. CstF-64, the RNA-binding component of the cleavage stimulation factor (CstF), interacts with pre-mRNAs at sequences downstream of the cleavage site. In mammalian testes, meiotic XY-body formation causes suppression of X-linked CstF-64 expression during pachynema. Consequently, an autosomal paralog, tauCstF-64 (gene name Cstf2t), is expressed during meiosis and subsequent haploid differentiation. Here we show that targeted disruption of Cstf2t in mice causes aberrant spermatogenesis, specifically disrupting meiotic and postmeiotic development, resulting in male infertility resembling oligoasthenoteratozoospermia. Furthermore, the Cstf2t mutant phenotype displays variable expressivity such that spermatozoa show a broad range of defects. The overall phenotype is consistent with a requirement for tauCstF-64 in spermatogenesis as indicated by the significant changes in expression of thousands of genes in testes of Cstf2t(-/-) mice as measured by microarray. Our results indicate that, although the infertility in Cstf2t(-/-) males is due to low sperm count, multiple genes controlling many aspects of germ-cell development depend on tauCstF-64 for their normal expression. Finally, these transgenic mice provide a model for the study of polyadenylation in an isolated in vivo system and highlight the role of a growing family of testis-expressed autosomal retroposed variants of X-linked genes.
Collapse
|
22
|
Elliott AM, de Miguel MP, Rebel VI, Donovan PJ. Identifying genes differentially expressed between PGCs and ES cells reveals a role for CREB-binding protein in germ cell survival. Dev Biol 2007; 311:347-58. [DOI: 10.1016/j.ydbio.2007.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 08/11/2007] [Accepted: 08/14/2007] [Indexed: 12/30/2022]
|
23
|
Monarez RR, MacDonald CC, Dass B. Polyadenylation proteins CstF-64 and tauCstF-64 exhibit differential binding affinities for RNA polymers. Biochem J 2007; 401:651-8. [PMID: 17029590 PMCID: PMC1770853 DOI: 10.1042/bj20061097] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CstF-64 (cleavage stimulation factor-64), a major regulatory protein of polyadenylation, is absent during male meiosis. Therefore a paralogous variant, tauCstF-64 is expressed in male germ cells to maintain normal spermatogenesis. Based on sequence differences between tauCstF-64 and CstF-64, and on the high incidence of alternative polyadenylation in testes, we hypothesized that the RBDs (RNA-binding domains) of tauCstF-64 and CstF-64 have different affinities for RNA elements. We quantified K(d) values of CstF-64 and tauCstF-64 RBDs for various ribopolymers using an RNA cross-linking assay. The two RBDs had similar affinities for poly(G)18, poly(A)18 or poly(C)18, with affinity for poly(C)18 being the lowest. However, CstF-64 had a higher affinity for poly(U)18 than tauCstF-64, whereas it had a lower affinity for poly(GU)9. Changing Pro-41 to a serine residue in the CstF-64 RBD did not affect its affinity for poly(U)18, but changes in amino acids downstream of the C-terminal alpha-helical region decreased affinity towards poly(U)18. Thus we show that the two CstF-64 paralogues differ in their affinities for specific RNA sequences, and that the region C-terminal to the RBD is mportant in RNA sequence recognition. This supports the hypothesis that tauCstF-64 promotes germ-cell-specific patterns of polyadenylation by binding to different downstream sequence elements.
Collapse
Affiliation(s)
- Roberto R Monarez
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
24
|
Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, MacDonald CC, Graber JH. Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis. Nucleic Acids Res 2006; 35:234-46. [PMID: 17158511 PMCID: PMC1802579 DOI: 10.1093/nar/gkl919] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis.
Collapse
Affiliation(s)
- Donglin Liu
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
| | - J. Michael Brockman
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
- Bioinformatics Program, Boston University24 Cummington Street, Boston, MA 02215, USA
| | - Brinda Dass
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX 79430, USA
| | | | - Priyam Singh
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
- Bioinformatics Program, Boston University24 Cummington Street, Boston, MA 02215, USA
| | - John R. McCarrey
- Department of Biology, University of Texas at San AntonioSan Antonio, TX 78249, USA
| | - Clinton C. MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX 79430, USA
| | - Joel H. Graber
- The Jackson Laboratory, 600 Main StreetBar Harbor, ME 04609, USA
- Bioinformatics Program, Boston University24 Cummington Street, Boston, MA 02215, USA
- To whom correspondence should be addressed. Tel: +1 207 288 6847; Fax: +1 207 288 6073;
| |
Collapse
|
25
|
McMahon KW, Hirsch BA, MacDonald CC. Differences in polyadenylation site choice between somatic and male germ cells. BMC Mol Biol 2006; 7:35. [PMID: 17038175 PMCID: PMC1618850 DOI: 10.1186/1471-2199-7-35] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/12/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have previously noted that there were differences in somatic and male germ cell polyadenylation site choices. First, male germ cells showed a lower incidence of the sequence AAUAAA (an important element for somatic polyadenylation site choice) near the polyadenylation site choice. Second, the polyadenylation sites chosen in male germ cells tended to be nearer the 5' end of the mRNA than those chosen in somatic cells. Finally, a number of mRNAs used a different polyadenylation site in male germ cells than in somatic cells. These differences suggested that male germ cell-specific polyadenylation sites may be poor substrates for polyadenylation in somatic cells. We therefore hypothesized that male germ cell-specific polyadenylation sites would be inefficiently used in somatic cells. RESULTS We tested whether pre-mRNA sequences surrounding male germ cell-specific polyadenylation sites (polyadenylation cassettes) could be used to direct polyadenylation efficiently in somatic cells. To do this, we developed a luciferase reporter system in which luciferase activity correlated with polyadenylation efficiency. We showed that in somatic cells, somatic polyadenylation cassettes were efficiently polyadenylated, while male germ cell-specific polyadenylation cassettes were not. We also developed a sensitive, 3' RACE-based assay to analyze polyadenylation site choice. Using this assay, we demonstrated that male germ cell-specific polyadenylation cassettes were not polyadenylated at the expected site in somatic cells, but rather at aberrant sites upstream of the sites used in male germ cells. Finally, mutation of the male germ cell-specific poly(A) signal to a somatic poly(A) signal resulted in more efficient polyadenylation in somatic cells. CONCLUSION These data suggest that regulated polyadenylation site choice of male germ cell-specific polyadenylation sites requires one or more factors that are absent from somatic cells.
Collapse
Affiliation(s)
- K Wyatt McMahon
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4St, Lubbock, TX 79430-6540 USA
| | - Benjamin A Hirsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4St, Lubbock, TX 79430-6540 USA
| | - Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4St, Lubbock, TX 79430-6540 USA
| |
Collapse
|
26
|
Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 2006; 20:2713-27. [PMID: 17015433 PMCID: PMC1578697 DOI: 10.1101/gad.1471006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 08/07/2006] [Indexed: 01/22/2023]
Abstract
Fully grown oocytes (FGOs) contain all the necessary transcripts to activate molecular pathways underlying the oocyte-to-embryo transition (OET). To elucidate this critical period of development, an extensive survey of the FGO transcriptome was performed by analyzing 19,000 expressed sequence tags of the Mus musculus FGO cDNA library. Expression of 5400 genes and transposable elements is reported. For a majority of genes expressed in mouse FGOs, homologs transcribed in eggs of Xenopus laevis or Ciona intestinalis were found, pinpointing evolutionary conservation of most regulatory cascades underlying the OET in chordates. A large proportion of identified genes belongs to several gene families with oocyte-restricted expression, a likely result of lineage-specific genomic duplications. Gene loss by mutation and expression in female germline of retrotransposed genes specific to M. musculus is documented. These findings indicate rapid diversification of genes involved in female reproduction. Comparison of the FGO and two-cell embryo transcriptomes demarcated the processes important for oogenesis from those involved in OET and identified novel motifs in maternal mRNAs associated with transcript stability. Discovery of oocyte-specific eukaryotic translation initiation factor 4E distinguishes a novel system of translational regulation. These results implicate conserved pathways underlying transition from oogenesis to initiation of development and illustrate how genes acquire and lose reproductive functions during evolution, a potential mechanism for reproductive isolation.
Collapse
|
27
|
Huber Z, Monarez RR, Dass B, MacDonald CC. The mRNA encoding tauCstF-64 is expressed ubiquitously in mouse tissues. Ann N Y Acad Sci 2006; 1061:163-72. [PMID: 16467265 DOI: 10.1196/annals.1336.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyadenylation is a process of endonucleolytic cleavage of the mRNA, followed by addition of up to 250 adenosine residues to the 3' end of the mRNA. Polyadenylation is essential for eukaryotic mRNA expression, and CstF-64 is a subunit of the CstF polyadenylation factor that is required for accurate polyadenylation. We discovered that there are two forms of the CstF-64 protein in mammalian male germ cells, one of which (CstF-64) is expressed in all tissues, the other of which (tauCstF-64) is expressed only in male germ cells and in brain (albeit at significantly lower levels in the brain). Therefore, we were surprised to find that, using reverse transcription-PCR, cDNA cloning, and RNA blot analyses, tauCstF-64 mRNA was expressed at higher levels in brain than in testis. Also, tauCstF-64 mRNA was expressed at lower but detectable levels in all tissues tested, including epididymis, heart, kidney, liver, lung, muscle, ovary, spleen, thymus, and uterus. These results suggest the hypothesis that tauCstF-64 mRNA is regulated at the translational or post-translational level.
Collapse
Affiliation(s)
- Zane Huber
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|
28
|
Yang F, Skaletsky H, Wang PJ. Ubl4b, an X-derived retrogene, is specifically expressed in post-meiotic germ cells in mammals. Gene Expr Patterns 2006; 7:131-6. [PMID: 16872915 PMCID: PMC1647293 DOI: 10.1016/j.modgep.2006.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 06/09/2006] [Accepted: 06/10/2006] [Indexed: 11/18/2022]
Abstract
Post-translational modification by ubiquitin and ubiquitin-related proteins plays critical roles in protein degradation and in regulation of essential cellular processes. In mammals, transcription grinds to a halt during late spermiogenesis due to compaction of the spermatid genome, which creates a special need for robust post-transcriptional regulation. Here, we report the finding of a novel mouse ubiquitin-like protein, UBL4B. Ubl4b is a testis-specific autosomal gene. Ubl4b lacks introns and evidently arose from an X-linked intron-bearing housekeeping gene, Ubl4a, by retroposition during mammalian evolution. While Ubl4a is expressed throughout spermatogenesis, Ubl4b is restricted to post-meiotic germ cells. Ubl4a is highly conserved, but Ubl4b has undergone rapid evolution and may have evolved new functions. Our data suggest that evolution of Ubl4b is not due to meiotic sex chromosome inactivation (MSCI). Alternatively, origination of Ubl4b was due to MSCI, but Ubl4b eventually evolved to be restricted to post-meiotic germ cells.
Collapse
Affiliation(s)
- Fang Yang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Helen Skaletsky
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - P. Jeremy Wang
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
- * Corresponding author: P. Jeremy Wang, Dept. of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA. Tel: +1-215-746-0160. Fax: +1-215-573-5188.
| |
Collapse
|
29
|
Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG. Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit. PLANT PHYSIOLOGY 2006; 140:1507-21. [PMID: 16500995 PMCID: PMC1459842 DOI: 10.1104/pp.105.070672] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) gene that encodes the probable ortholog of the 30-kD subunit of the mammalian cleavage and polyadenylation specificity factor (CPSF) is a complex one, encoding small (approximately 28 kD) and large (approximately 68 kD) polypeptides. The small polypeptide (AtCPSF30) corresponds to CPSF30 and is the focus of this study. Recombinant AtCPSF30 was purified from Escherichia coli and found to possess RNA-binding activity. Mutational analysis indicated that an evolutionarily conserved central core of AtCPSF30 is involved in RNA binding, but that RNA binding also requires a short sequence adjacent to the N terminus of the central core. AtCPSF30 was found to bind calmodulin, and calmodulin inhibited the RNA-binding activity of the protein in a calcium-dependent manner. Mutational analysis showed that a small part of the protein, again adjacent to the N terminus of the conserved core, is responsible for calmodulin binding; point mutations in this region abolished both binding to and inhibition of RNA binding by calmodulin. Interestingly, AtCPSF30 was capable of self-interactions. This property also mapped to the central conserved core of the protein. However, calmodulin had no discernible effect on the self-association. These results show that the central portion of AtCPSF30 is involved in a number of important functions, and they raise interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through calmodulin.
Collapse
Affiliation(s)
- Kimberly J Delaney
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Bradley J, Baltus A, Skaletsky H, Royce-Tolland M, Dewar K, Page DC. An X-to-autosome retrogene is required for spermatogenesis in mice. Nat Genet 2004; 36:872-6. [PMID: 15258580 DOI: 10.1038/ng1390] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 06/03/2004] [Indexed: 11/09/2022]
Abstract
We identified the gene carrying the juvenile spermatogonial depletion mutation (jsd), a recessive spermatogenic defect mapped to mouse chromosome 1 (refs. 1,2). We localized jsd to a 272-kb region and resequenced this area to identify the underlying mutation: a frameshift that severely truncates the predicted protein product of a 2.3-kb genomic open reading frame. This gene, Utp14b, evidently arose through reverse transcription of an mRNA from an X-linked gene and integration of the resulting cDNA into an intron of an autosomal gene, whose promoter and 5' untranslated exons are shared with Utp14b. To our knowledge, Utp14b is the first protein-coding retrogene to be linked to a recessive mammalian phenotype. The X-linked progenitor of Utp14b is the mammalian ortholog of yeast Utp14, which encodes a protein required for processing of pre-rRNA and hence for ribosome assembly. Our findings substantiate the hypothesis that mammalian spermatogenesis is supported by autosomal retrogenes that evolved from X-linked housekeeping genes to compensate for silencing of the X chromosome during male meiosis. We find that Utp14b-like retrogenes arose independently and were conserved during evolution in at least four mammalian lineages. This recurrence implies a strong selective pressure, perhaps to enable ribosome assembly in male meiotic cells.
Collapse
Affiliation(s)
- Julie Bradley
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
31
|
Elliott D. Pathways of post-transcriptional gene regulation in mammalian germ cell development. Cytogenet Genome Res 2004; 103:210-6. [PMID: 15051941 DOI: 10.1159/000076806] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 09/11/2003] [Indexed: 11/19/2022] Open
Abstract
Male germ cell development is orchestrated by complex and disparate patterns of gene expression operating in different cell types. The mechanisms of gene expression underlying these have been dissected in the mouse because of its readily available genetics. These analyses have shown that as well as the traditional transcriptional mechanisms, post-transcriptional regulatory pathways of gene expression are essential for mouse spermatogenesis. Proteins essential for germ cell development have been identified which operate at different points throughout the life cycle of RNA from pre-mRNA splicing to translation and RNA decay in the cytoplasm. Recent data suggests that these post-transcriptional pathways respond to environmental cues via signalling pathways.
Collapse
Affiliation(s)
- D Elliott
- Institute of Human Genetics, Centre for Life Central Parkway, University of Newcastle upon Tyne, Newcastle, England.
| |
Collapse
|
32
|
Abstract
Retrogenes originate from their progenitor genes by retroposition. Several retrogenes reported in recent studies are autosomal, originating from X-linked progenitor genes, and have evolved a testis-specific expression pattern. During male meiosis, sex chromosomes are segregated into a so-called 'XY' body and are silenced transcriptionally. It has been widely hypothesized that the silencing of the X chromosome during male meiosis is the driving force behind the retroposition of X-linked genes to autosomes during evolution. With the advent of sequenced genomes of many species, many retrogenes can be identified and characterized. The testis-specific retrogenes might be associated with human male infertility. My goal here is to integrate recent findings, highlight controversies in the field and identify areas for further study.
Collapse
Affiliation(s)
- P Jeremy Wang
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Abstract
Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.
Collapse
Affiliation(s)
- J J Emerson
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
34
|
Wallace AM, Denison TL, Attaya EN, MacDonald CC. Developmental distribution of the polyadenylation protein CstF-64 and the variant tauCstF-64 in mouse and rat testis. Biol Reprod 2003; 70:1080-7. [PMID: 14681198 DOI: 10.1095/biolreprod.103.022947] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Messenger RNA polyadenylation is one of the processes that control gene expression in all eukaryotic cells and tissues. In mice, two forms of the regulatory polyadenylation protein CstF-64 are found. The gene Cstf2 on the X chromosome encodes this form, and it is expressed in all somatic tissues. The second form, tauCstF-64 (encoded by the autosomal gene Cstf2t), is expressed in a more limited set of tissues and cell types, largely in meiotic and postmeiotic male germ cells and, to a smaller extent, in brain. We report here that whereas CstF-64 and tauCstF-64 expression in rat tissues resembles their expression in mouse tissues, significant differences also are found. First, unlike in mice, in which CstF-64 was expressed in postmeiotic round and elongating spermatids, rat CstF-64 was absent in those cell types. Second, unlike in mice, tauCstF-64 was expressed at significant levels in rat liver. These differences in expression suggest interesting differences in X-chromosomal gene expression between these two rodent species.
Collapse
Affiliation(s)
- A Michelle Wallace
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | |
Collapse
|
35
|
Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res 2003; 31:1375-86. [PMID: 12595544 PMCID: PMC149834 DOI: 10.1093/nar/gkg241] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Accepted: 01/13/2003] [Indexed: 01/06/2023] Open
Abstract
Primary, secondary and higher-order structures of downstream elements of mammalian pre-mRNA polyadenylation signals [poly(A) signals] are re viewed. We have carried out a detailed analysis on our database of 244 human pre-mRNA poly(A) signals in order to characterize elements in their downstream regions. We suggest that the downstream region of the mammalian pre-mRNA poly(A) signal consists of various simple elements located at different distances from each other. Thus, the downstream region is not described by any precise consensus. Searching our database, we found that approximately 80% of pre-mRNAs with the AAUAAA or AUUAAA core upstream elements contain simple downstream elements, consisting of U-rich and/or 2GU/U tracts, the former occurring approximately 2-fold more often than the latter. Approximately one-third of the pre-mRNAs analyzed here contain sequences that may form G-quadruplexes. A substantial number of these sequences are located immediately downstream of the poly(A) signal. A possible role of G-rich sequences in the polyadenylation process is discussed. A model of the secondary structure of the SV40 late pre-mRNA poly(A) signal downstream region is presented.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- Molecular Biophysics Department, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, vul. Zabolotnoho, Kyiv, 03143, Ukraine.
| | | | | | | |
Collapse
|
36
|
The Gene CSTF2T, Encoding the Human Variant CstF-64 Polyadenylation Protein τCstF-64, Lacks Introns and May Be Associated with Male Sterility. Genomics 2002. [DOI: 10.1006/geno.2002.6862] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Abstract
Polyadenylation is the process by which most eukaryotic mRNAs form their 3' ends. It was long held that polyadenylation required the sequence AAUAAA and that 90% of mRNAs had AAUAAA within 30 nucleotides of the site of poly(A) addition. More recent studies, aided by computer analysis of sequences made available in GenBank and expressed sequence tag (EST) databases, have suggested that the actual incidence of AAUAAA is much lower, perhaps as low as 50-60%. Reproductive biologists have long recognized that a large number of mRNAs in male germ cells of mammals lack AAUAAA but are otherwise normally polyadenylated. Recent research in our laboratory has uncovered a new form of an essential polyadenylation protein, tauCstF-64, that is most highly expressed in male germ cells, and to a smaller extent in the brain, and which we propose plays a significant role in AAUAAA-independent mRNA polyadenylation in germ cells.
Collapse
Affiliation(s)
- Clinton C MacDonald
- Department of Cell Biology & Biochemistry and Southwest Cancer Center at University Medical Center, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock 79430, USA.
| | | |
Collapse
|
38
|
Ogi T, Mimura J, Hikida M, Fujimoto H, Fujii-Kuriyama Y, Ohmori H. Expression of human and mouse genes encoding polkappa: testis-specific developmental regulation and AhR-dependent inducible transcription. Genes Cells 2001; 6:943-53. [PMID: 11733032 DOI: 10.1046/j.1365-2443.2001.00478.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Human polkappa is a newly identified low-fidelity DNA polymerase. While the enzyme bypasses an abasic site and acetylaminofluorene-adduct in an error-prone manner, it bypasses benzo[a]pyrene-N2-dG lesions in a mostly error-free manner by incorporating predominantly dC opposite the bulky lesions. Benzo[a]pyrene (B[a]P) is activated through intracellular process mediated by the arylhydrocarbon receptor (AhR, also called the dioxin receptor), which is a ligand-activated transcription factor with high affinities for aromatic compounds such as B[a]P and dioxin. RESULTS We examined promoter structures of the human POLK and mouse Polk genes to study how their expressions are regulated. The mouse Polk gene is developmentally regulated in testis and utilizes two transcription start sites during spermatogenesis, while it utilizes only one site in tissues other than testis. Both of the mouse Polk and the human POLK genes have two AhR-binding sites in the promoter regions and the expression of the mouse Polk gene is indeed enhanced upon AhR-activation. CONCLUSIONS The AhR activation increases expression of the mouse Polk gene and probably the human POLK gene, the product of which bypasses benzo[a]pyrene-N2-dG lesions in a mostly accurate manner. Thus, polkappa seems to function to reduce mutagenesis at benzo[a]pyrene-adducts, although it may also have a role related to spermatogenesis.
Collapse
MESH Headings
- Animals
- Base Sequence
- Benzo(a)pyrene/pharmacology
- Binding Sites
- DNA, Complementary
- DNA-Directed DNA Polymerase
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Male
- Methylcholanthrene/pharmacology
- Mice
- Molecular Sequence Data
- Promoter Regions, Genetic
- Proteins/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/physiology
- Sequence Homology, Nucleic Acid
- Testis/enzymology
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- T Ogi
- Institute for Virus Research, Kyoto University, Shogoin-Kawaramachi 53, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|