1
|
Sindhu R, Bhat SS, Sangta J, Dharmashekar C, Shreevatsa B, Shivamallu C, Devegowda D, Kollur SP, Ahmad SF, Attia SM, Sommano SR, Prasad SK. Gaining molecular insights towards inhibition of foodborne fungi Aspergillus fumigatus by a food colourant violacein via computational approach. Sci Rep 2024; 14:29905. [PMID: 39622982 PMCID: PMC11612196 DOI: 10.1038/s41598-024-81471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Filamentous Fungal Human Pathogens (FFHPs) such as Aspergillus fumigatus, are growing resistant to currently available antifungal drugs. One possible target, the Nucleoside diphosphate kinase (Ndk) is significant for nucleotide biosynthesis and crucial for fungal metabolism. Violacein, a natural food colorant, was examined for its antifungal effects against Aspergillus fumigatus via computational approach against the Ndk protein. Known and predicted interactions of Ndk with proteins was performed using the STRING application. Molecular docking was performed using Schrodinger Maestro software (V.14.1) under enhanced precision docking, with OPLS4 forcefield. MDS was performed for 500ns under OPLS4 forcefield and the TIP3P solvent system. The geometry optimization for DFT was performed using the Becke 3-parameter exchange functional (B3LYP) method. The Molecular Docking Studies revealed significant interactions with good binding energy between Violacein and Ndk. Subsequent MD Simulations confirmed the stability of Violacein-Ndk complex, compared to the reference ligand-complex, indicating a stable interaction between the protein and violacein. The energy band gap of violacein was found to be 0.072567 eV suggesting its softness with lower kinetic stability and higher chemical reactivity. The results suggest Violacein could potentially disrupt nucleotide metabolism by targeting Ndk, thus demonstrating antifungal activity. However, further experimental validation is required to confirm these computational findings and explore the practical use of Violacein in antifungal treatments.
Collapse
Affiliation(s)
- R Sindhu
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Smitha S Bhat
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Jiraporn Sangta
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chandan Dharmashekar
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Bhargav Shreevatsa
- Department of Microbiology, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, 570 026, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570 015, India.
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
2
|
Application of a C. trachomatis expression system to identify C. pneumoniae proteins translocated into host cells. J Bacteriol 2021; 203:JB.00511-20. [PMID: 33685970 PMCID: PMC8117517 DOI: 10.1128/jb.00511-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chlamydia pneumoniae is a Gram-negative, obligate intracellular pathogen that causes community-acquired respiratory infections. C. pneumoniae uses a cell contact-dependent type-III secretion (T3S) system to translocate pathogen effector proteins that manipulate host cellular functions. While several C. pneumoniae T3S effectors have been proposed, few have been experimentally confirmed in Chlamydia In this study, we expressed 382 C. pneumoniae genes in C. trachomatis as fusion proteins to an epitope tag derived from glycogen synthase kinase 3β (GSK3β) which is the target of phosphorylation by mammalian kinases. Based on the detection of the tagged C. pneumoniae protein with anti-phospho GSK3β antibodies, we identified 49 novel C. pneumoniae-specific proteins that are translocated by C. trachomatis into the host cytoplasm and thus likely play a role as modifiers of host cellular functions. In this manner, we identified and characterized a new C. pneumoniae effector CPj0678 that recruits the host cell protein PACSIN2 to the plasma membrane. These findings indicate that C. trachomatis provides a powerful screening system to detect candidate effector proteins encoded by other pathogenic and endosymbiotic Chlamydia species.Importance Chlamydia injects numerous effector proteins into host cells to manipulate cellular functions important for bacterial survival. Based on findings in C. trachomatis, it has been proposed that between 5-10% of the C. pneumoniae genome, a related respiratory pathogen, encodes secreted effectors. However only a few C. pneumoniae effectors have been identified and experimentally validated. With the development of methods for the stable genetic transformation of C. trachomatis, it is now possible to use C. trachomatis shuttle plasmids to express and explore the function of proteins from other Chlamydia in a more relevant bacterial system. In this study, we experimentally determined that 49 C. pneumoniae-specific proteins are translocated into the host cytoplasm by Chlamydia secretion systems, and identify a novel effector required to recruit the host factor PACSIN2 to the plasma membrane during infection.
Collapse
|
3
|
Su X, Lu G, Li X, Rehman L, Liu W, Sun G, Guo H, Wang G, Cheng H. Host-Induced Gene Silencing of an Adenylate Kinase Gene Involved in Fungal Energy Metabolism Improves Plant Resistance to Verticillium dahliae. Biomolecules 2020; 10:E127. [PMID: 31940882 PMCID: PMC7023357 DOI: 10.3390/biom10010127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Verticillium wilt, caused by the ascomycete fungus Verticillium dahliae (Vd), is a devastating disease of numerous plant species. However, the pathogenicity/virulence-related genes in this fungus, which may be potential targets for improving plant resistance, remain poorly elucidated. For the study of these genes in Vd, we used a well-established host-induced gene silencing (HIGS) approach and identified 16 candidate genes, including a putative adenylate kinase gene (VdAK). Transiently VdAK-silenced plants developed milder wilt symptoms than control plants did. VdAK-knockout mutants were more sensitive to abiotic stresses and had reduced germination and virulence on host plants. Transgenic Nicotiana benthamiana and Arabidopsis thaliana plants that overexpressed VdAK dsRNAs had improved Vd resistance than the wild-type. RT-qPCR results showed that VdAK was also crucial for energy metabolism. Importantly, in an analysis of total small RNAs from Vd strains isolated from the transgenic plants, a small interfering RNA (siRNA) targeting VdAK was identified in transgenic N. benthamiana. Our results demonstrate that HIGS is a promising strategy for efficiently screening pathogenicity/virulence-related genes of Vd and that VdAK is a potential target to control this fungus.
Collapse
Affiliation(s)
- Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Guoqing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Xiaokang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Latifur Rehman
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
- Department of Biotechnology, University of Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Guoliang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| |
Collapse
|
4
|
Su X, Rehman L, Guo H, Li X, Zhang R, Cheng H. AAC as a Potential Target Gene to Control Verticillium dahliae. Genes (Basel) 2017; 8:genes8010025. [PMID: 28075391 PMCID: PMC5295020 DOI: 10.3390/genes8010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Verticillium dahliae invades the roots of host plants and causes vascular wilt, which seriously diminishes the yield of cotton and other important crops. The protein AAC (ADP, ATP carrier) is responsible for transferring ATP from the mitochondria into the cytoplasm. When V. dahliae protoplasts were transformed with short interfering RNAs (siRNAs) targeting the VdAAC gene, fungal growth and sporulation were significantly inhibited. To further confirm a role for VdAAC in fungal development, we generated knockout mutants (ΔVdACC). Compared with wild-type V. dahliae (Vd wt), ΔVdAAC was impaired in germination and virulence; these impairments were rescued in the complementary strains (ΔVdAAC-C). Moreover, when an RNAi construct of VdAAC under the control of the 35S promoter was used to transform Nicotiana benthamiana, the expression of VdAAC was downregulated in the transgenic seedlings, and they had elevated resistance against V. dahliae. The results of this study suggest that VdAAC contributes to fungal development, virulence and is a promising candidate gene to control V. dahliae. In addition, RNAi is a highly efficient way to silence fungal genes and provides a novel strategy to improve disease resistance in plants.
Collapse
Affiliation(s)
- Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Latifur Rehman
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaokang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
5
|
Song Q, Chen H, Li Y, Zhou H, Han Q, Diao X. Toxicological effects of benzo(a)pyrene, DDT and their mixture on the green mussel Perna viridis revealed by proteomic and metabolomic approaches. CHEMOSPHERE 2016; 144:214-224. [PMID: 26363323 DOI: 10.1016/j.chemosphere.2015.08.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Benzo(a)pyrene (BaP) and dichlorodiphenyltrichloroethane (DDT) are persistent organic pollutants and environmental estrogens (EEs) with known toxicity towards the green mussel, Perna viridis. In this study, the toxic effects of BaP (10 µg/L) and DDT (10 µg/L) and their mixture were assessed in green mussel gills with proteomic and metabolomic approaches. Metabolic responses indicated that BaP mainly caused disturbance in osmotic regulation by significantly decrease in branched chain amino acids, dimethylamine and dimethylglycine in gills of male green mussels after exposure for 7 days. DDT mainly caused disturbance in osmotic regulation and energy metabolism by differential alteration of betaine, dimethylamine, dimethylglycine, amino acids, and succinate in gills of male green mussels. However, the mixture of BaP and DDT didn't show obvious metabolite changes. Proteomic analysis showed different protein expression profiles between different treatment groups, which demonstrated that BaP, DDT and their mixture may have different modes of action. Proteomic responses revealed that BaP induced cell apoptosis, disturbance in protein digestion and energy metabolism in gills of green mussels, whereas DDT exposure altered proteins that were associated with oxidative stress, cytoskeleton and cell structure, protein digestion and energy metabolism. However, the mixture of BaP and DDT affected proteins related to the oxidative stress, cytoskeleton and cell structure, protein biosynthesis and modification, energy metabolism, growth and apoptosis.
Collapse
Affiliation(s)
- Qinqin Song
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hao Chen
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuhu Li
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| | - Qian Han
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou 570228, China; Haikou Key Laboratory of Environment Toxicology, Haikou 570228, China.
| |
Collapse
|
6
|
Yasui Y, Yanatori I, Kawai Y, Miura K, Suminami Y, Hirota T, Tamari M, Ouchi K, Kishi F. Genomic screening for Chlamydophila pneumoniae-specific antigens using serum samples from patients with primary infection. FEMS Microbiol Lett 2012; 329:168-76. [PMID: 22309593 DOI: 10.1111/j.1574-6968.2012.02520.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/31/2012] [Indexed: 11/29/2022] Open
Abstract
Chlamydophila pneumoniae, an obligate intracellular human pathogen, causes respiratory tract infections. The most common techniques used for the serological diagnosis of C. pneumoniae infections are microimmunofluorescence tests and commercial serological ELISA tests; these are based on the detection of antibodies against whole chlamydial elementary bodies and lipopolysaccharide/outer membrane protein, respectively. Identification of more specific and highly immunodominant antigens is essential for the development of new serodiagnostic assays. To identify novel specific antigens from C. pneumoniae, we screened 455 genes with unknown function in the genome of C. pneumoniae J138. Extracts of Saccharomyces cerevisiae cells expressing GFP-tagged C. pneumoniae proteins were subjected to Western blot analysis using serum samples from C. pneumoniae-infected patients as the primary antibodies. From this comprehensive analysis, 58 clones expressing C. pneumoniae open reading frames, including hypothetical proteins, were identified as antigens. These results have provided useful information for the development of new serological tools for the diagnosis for C. pneumoniae infections and for the development of vaccines in future.
Collapse
Affiliation(s)
- Yumiko Yasui
- Department of Molecular Genetics, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria. J Biol Inorg Chem 2010; 16:51-61. [PMID: 20821240 DOI: 10.1007/s00775-010-0700-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/02/2010] [Indexed: 12/13/2022]
Abstract
Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn(2+), Zn-AK; Co(2+), Co-AK; and Fe(2+), Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 Å, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway.
Collapse
|
8
|
Zinc-, cobalt- and iron-chelated forms of adenylate kinase from the Gram-negative bacterium Desulfovibrio gigas. Int J Biol Macromol 2009; 45:524-31. [DOI: 10.1016/j.ijbiomac.2009.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022]
|
9
|
Gavel OY, Bursakov SA, Di Rocco G, Trincão J, Pickering IJ, George GN, Calvete JJ, Shnyrov VL, Brondino CD, Pereira AS, Lampreia J, Tavares P, Moura JJG, Moura I. A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774. J Inorg Biochem 2008; 102:1380-95. [PMID: 18328566 DOI: 10.1016/j.jinorgbio.2008.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/13/2008] [Accepted: 01/18/2008] [Indexed: 11/28/2022]
Abstract
Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence 129Cys-X5-His-X15-Cys-X2-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.
Collapse
Affiliation(s)
- Olga Yu Gavel
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Miura K, Toh H, Hirakawa H, Sugii M, Murata M, Nakai K, Tashiro K, Kuhara S, Azuma Y, Shirai M. Genome-wide analysis of Chlamydophila pneumoniae gene expression at the late stage of infection. DNA Res 2008; 15:83-91. [PMID: 18222926 PMCID: PMC2650627 DOI: 10.1093/dnares/dsm032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chlamydophila pneumoniae, an obligate intracellular eubacterium, changes its form from a vegetative reticulate body into an infectious elementary body during the late stage of its infection cycle. Comprehension of the molecular events in the morphological change is important to understand the switching mechanism between acute and chronic infection, which is deemed to relate to the pathogenesis of atherosclerosis. Herein, we have attempted to screen genes expressed in the late stage with a genome-wide DNA microarray, resulting in nomination of 17 genes as the late-stage genes. Fourteen of the 17 genes and six other genes predicted as late-stage genes were confirmed to be up-regulated in the late stage with a quantitative reverse transcriptase–polymerase chain reaction. These 20 late-stage genes were classified into two groups by clustering analysis: ‘drastically induced’ and ‘moderately induced’ genes. Out of eight drastically induced genes, four contain σ28 promoter-like sequences and the other four contain an upstream common sequence. It suggests that besides σ28, there are certain up-regulatory mechanisms at the late stage, which may be involved in the chlamydial morphological change and thus pathogenesis.
Collapse
Affiliation(s)
- Koshiro Miura
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Murata M, Azuma Y, Miura K, Rahman MA, Matsutani M, Aoyama M, Suzuki H, Sugi K, Shirai M. Chlamydial SET domain protein functions as a histone methyltransferase. MICROBIOLOGY-SGM 2007; 153:585-592. [PMID: 17259630 DOI: 10.1099/mic.0.29213-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SET domain genes have been identified in numbers of bacterial genomes based on similarity to SET domains of eukaryotic histone methyltransferases. Herein, a Chlamydophila pneumoniae SET domain gene was clarified to be coincidently expressed with hctA and hctB genes encoding chlamydial histone H1-like proteins, Hc1 and Hc2, respectively. The SET domain protein (cpnSET) is localized in chlamydial cells and interacts with Hc1 and Hc2 through the C-terminal SET domain. As expected from conservation of catalytic sites in cpnSET, it functions as a protein methyltransferase to murine histone H3 and Hc1. However, little is known about protein methylation in the molecular pathogenesis of chlamydial infection. cpnSET may play an important role in chlamydial cell maturation due to modification of chlamydial histone H1-like proteins.
Collapse
Affiliation(s)
- Masayuki Murata
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Yoshinao Azuma
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Koshiro Miura
- Department of Clinical Research, National Sanyo Hospital, 685 Higashi-Kiwa, Ube, Yamaguchi 755-0241, Japan
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Mohd Akhlakur Rahman
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Minenosuke Matsutani
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masahiro Aoyama
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Harumi Suzuki
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Kazuro Sugi
- Department of Clinical Research, National Sanyo Hospital, 685 Higashi-Kiwa, Ube, Yamaguchi 755-0241, Japan
| | - Mutsunori Shirai
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| |
Collapse
|
12
|
Willemoës M, Kilstrup M. Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent. Arch Biochem Biophys 2005; 444:195-9. [PMID: 16297370 DOI: 10.1016/j.abb.2005.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 10/03/2005] [Accepted: 10/04/2005] [Indexed: 11/25/2022]
Abstract
Adenylate kinase (Adk) that catalyses the synthesis of ADP from ATP and AMP has also been shown to perform an ATP dependent phosphorylation of ribo- and deoxynucleoside diphosphates to their corresponding nucleoside triphosphate; ATP+(d)NDP<-->ADP+(d)NTP. This reaction, suggested to occur by the transfer of the gamma-phosphoryl from ATP to the nucleoside diphosphate, is overall similar to that normally carried out by nucleoside diphosphate kinase (Ndk). Accordingly, Adk was proposed to be responsible for residual Ndk-like activity measured in a mutant strain of Escherichia coli, where the ndk gene was disrupted. We present data supporting a mechanism for the synthesis of nucleoside triphosphates by Adk that unlike the previously suggested mechanism mentioned above are in complete agreement with the current knowledge about the Adk enzyme and its various catalytic properties. We propose that nucleoside triphosphate synthesis occurs by beta-phosphoryl transfer from ADP to any bound nucleoside diphosphate. Our results point to the fact that the proposed Ndk-like mechanism of Adk originated from an erroneous interpretation of data, in that contamination of ATP preparations with AMP and ADP was not taken into account. Our results also address the proposed role of Adk in restoring a normal growth rate of mutant strains of E. coli lacking Ndk. These mutant strains apparently, in spite of a mutator phenotype, are able to synthesise nucleoside triphosphates by alternative pathways to maintain the same growth rate as the wildtype.
Collapse
Affiliation(s)
- Martin Willemoës
- Department of Biological Chemistry, Institute of Molecular Biology and Physiology, University of Copenhagen, Sølvgade 83H DK-1307, Denmark.
| | | |
Collapse
|
13
|
Yang G, Yu X, Wu Z, Xu J, Song L, Zhang H, Hu X, Zheng N, Guo L, Xu J, Dai J, Ji C, Gu S, Ying K. Molecular cloning and characterization of a novel adenylate kinase 3 gene from Clonorchis sinensis. Parasitol Res 2005; 95:406-12. [PMID: 15747033 DOI: 10.1007/s00436-005-1305-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 12/20/2004] [Indexed: 11/24/2022]
Abstract
Adenylate kinase (AK) is a ubiquitous enzyme that contributes to the homeostasis of adenine nucleotides in living cells. AK catalyzes reversible high energy phosphoryl transfer reactions between ATP (or GTP) and AMP to generate ADP (or GDP). From a Clonorchis sinensis adult worm cDNA library, we isolated a cDNA clone encoding a novel AK3 isozyme. The 956 bp cDNA encodes a putative protein of 228 amino acids with a predicted molecular mass of 26.2 kDa. The recombinant CsAK3 protein produced in Escherichia coli can be refolded into a functional protein with AK3 activity. The optimum pH and temperature for the enzyme are 8.5 and 40 degrees C, respectively. The calculated activation energy is 56.04 kJ mol-1. The Km of the CsAK3 for AMP and GTP are 118 microM and 359 microM, respectively. CsAK3 is inhibited by Ap5A (>70% inhibition by 2.0 mM AP5A). Ap5A may be a potential lead compound acting on C. sinensis in which AK3 as a drug target.
Collapse
Affiliation(s)
- Guang Yang
- Department of Parasitology, Medical School, Sun Yat-Sen University, 74 Zhongshan 2 Road, 510089, Guangzhou , P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pullen TJ, Ginger ML, Gaskell SJ, Gull K. Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. Mol Biol Cell 2004; 15:3257-65. [PMID: 15146060 PMCID: PMC452581 DOI: 10.1091/mbc.e04-03-0217] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The eukaryotic flagellum is a large structure into which specific constituent proteins must be targeted, transported and assembled after their synthesis in the cytoplasm. Using Trypanosoma brucei and a proteomic approach, we have identified and characterized a novel set of adenylate kinase proteins that are localized to the flagellum. These proteins represent unique isoforms that are targeted to the flagellum by an N-terminal extension to the protein and are incorporated into an extraaxonemal structure (the paraflagellar rod). We show that the N-terminal extension is both necessary for isoform location in the flagellum and sufficient for targeting of a green fluorescent protein reporter protein to the flagellum. Moreover, these N-terminal extension sequences are conserved in evolution and we find that they allow the identification of novel adenylate kinases in the genomes of humans and worms. Given the existence of specific isoforms of certain central metabolic enzymes, and targeting sequences for these isoforms, we suggest that these isoforms form part of a complex, "solid-phase" metabolic capability that is built into the eukaryotic flagellum.
Collapse
Affiliation(s)
- Timothy J Pullen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | |
Collapse
|
15
|
Villa H, Pérez-Pertejo Y, García-Estrada C, Reguera RM, Requena JM, Tekwani BL, Balaña-Fouce R, Ordóñez D. Molecular and functional characterization of adenylate kinase 2 gene from Leishmania donovani. ACTA ACUST UNITED AC 2003; 270:4339-47. [PMID: 14622299 DOI: 10.1046/j.1432-1033.2003.03826.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ATP-regenerating enzymes may have an important role in maintaining ATP levels in mitochondria-like kinetoplast organelle and glycosomes in parasitic protozoa. Adenylate kinase (AK) (ATP:AMP phosphotransferase) catalyses the reversible transfer of the gamma-phosphate group from ATP to AMP, releasing two molecules of ADP. This study describes cloning and functional characterization of the gene encoding AK2 from a genomic library of Leishmania donovani and also its expression in leishmania promastigote cultures. AK2 was localized on an approximately 1.9-Mb chromosomal band as a single copy gene. L. donovani AK2 gene is expressed as a single 1.9-kb mRNA transcript that is developmentally regulated and accumulated during the early log phase. The overexpression of L. donovani AKgene in Escherichia coli yielded a 26-kDa polypeptide that could be refolded to a functional protein with AK activity. The recombinant protein was purified to apparent homogeneity. Kinetic analysis of purified L. donovani AK showed hyperbolic behaviour for both ATP and AMP, with Km values of 104 and 74 microM, respectively. The maximum enzyme activity (Vmax) was 0.18 micromol.min(-1).mg(-1) protein. P1,P5-(bis adenosine)-5'-pentaphosphate (Ap5A), the specific inhibitor of AK, competitively inhibited activity of the recombinant enzymes with estimated Ki values of 190 nM and 160 nM for ATP and AMP, respectively. Ap5A also inhibited the growth of L. donovani promastigotes in vitro which could be only partially reversed by the addition of ADP. Thus, presence of a highly regulated AK2, which may have role in maintenance of ADP/ATP levels in L. donovani, has been demonstrated.
Collapse
Affiliation(s)
- Héctor Villa
- Departamento de Farmacología y Toxicología (INTOXCAL), Facultad de Veterinaria, Universidad de León, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Vieille C, Krishnamurthy H, Hyun HH, Savchenko A, Yan H, Zeikus JG. Thermotoga neapolitana adenylate kinase is highly active at 30 degrees C. Biochem J 2003; 372:577-85. [PMID: 12625835 PMCID: PMC1223421 DOI: 10.1042/bj20021377] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2002] [Revised: 02/18/2003] [Accepted: 03/07/2003] [Indexed: 11/17/2022]
Abstract
The adenylate kinase (AK) gene from Thermotoga neapolitana, a hyperthermophilic bacterium, was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was biochemically characterized. The T. neapolitana AK (TNAK) sequence indicates that this enzyme belongs to the long bacterial AKs. TNAK contains the four cysteine residues that bind Zn(2+) in all Gram-positive AKs and in a few other Zn(2+)-containing bacterial AKs. Atomic emission spectroscopy and titration data indicate a content of 1 mol of Zn(2+)/mol of recombinant TNAK. The EDTA-treated enzyme has a melting temperature (T (m)=93.5 degrees C) 6.2 degrees C below that of the holoenzyme (99.7 degrees C), identifying Zn(2+) as a stabilizing feature in TNAK. TNAK is a monomeric enzyme with a molecular mass of approx. 25 kDa. TNAK displays V (max) and K (m) values at 30 degrees C identical with those of the E. coli AK at 30 degrees C, and displays very high activity at 80 degrees C, with a specific activity above 8000 units/mg. The unusually high activity of TNAK at 30 degrees C makes it an interesting model to test the role of enzyme flexibility in activity.
Collapse
Affiliation(s)
- Claire Vieille
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, USA.
| | | | | | | | | | | |
Collapse
|