1
|
Hodyna D, Klipkov A, Kachaeva M, Shulha Y, Gerus I, Metelytsia L, Kovalishyn V. In Silico Design and In Vitro Assessment of Bicyclic Trifluoromethylated Pyrroles as New Antibacterial and Antifungal Agents. Chem Biodivers 2024; 21:e202400638. [PMID: 38837284 DOI: 10.1002/cbdv.202400638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
QSAR studies on the number of compounds tested as S. aureus inhibitors were performed using an interactive Online Chemical Database and Modeling Environment (OCHEM) web platform. The predictive ability of the developed consensus QSAR model was q2=0.79±0.02. The consensus prediction for the external evaluation set afforded high predictive power (q2=0.82±0.03). The models were applied to screen a virtual chemical library with anti-S. aureus activity. Six promising new bicyclic trifluoromethylated pyrroles were identified, synthesized and evaluated in vitro against S. aureus, E. coli, and A. baumannii for their antibacterial activity and against C. albicans, C. krusei and C. glabrata for their antifungal activity. The synthesized compounds were characterized by 1H, 19F, and 13C NMR and elemental analysis. The antimicrobial activity assessment indicated that trifluoromethylated pyrroles 9 and 11 demonstrated the greatest antibacterial and antifungal effects against all the tested pathogens, especially against multidrug-resistant strains. The acute toxicity of the compounds to Daphnia magna ranged from 1.21 to 33.39 mg/L (moderately and slightly toxic). Based on the docking results, it can be suggested that the antibacterial and antifungal effects of the compounds can be explained by the inhibition of bacterial wall component synthesis.
Collapse
Affiliation(s)
- Diana Hodyna
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Anton Klipkov
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
- National University of Kyiv -, Mohyla Academy, 2, Skovorody Str., Kyiv, 04070, Ukraine
| | - Maryna Kachaeva
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Yurii Shulha
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Igor Gerus
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Larysa Metelytsia
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| | - Vasyl Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar Str., Kyiv, 02094, Ukraine
| |
Collapse
|
2
|
Fathallah N, Elkady WM, Zahran SA, Darwish KM, Elhady SS, Elkhawas YA. Unveiling the Multifaceted Capabilities of Endophytic Aspergillus flavus Isolated from Annona squamosa Fruit Peels against Staphylococcus Isolates and HCoV 229E-In Vitro and In Silico Investigations. Pharmaceuticals (Basel) 2024; 17:656. [PMID: 38794226 PMCID: PMC11124496 DOI: 10.3390/ph17050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, there has been a surge towards searching for primitive treatment strategies to discover novel therapeutic approaches against multi-drug-resistant pathogens. Endophytes are considered unexplored yet perpetual sources of several secondary metabolites with therapeutic significance. This study aims to isolate and identify the endophytic fungi from Annona squamosa L. fruit peels using morphological, microscopical, and transcribed spacer (ITS-rDNA) sequence analysis; extract the fungus's secondary metabolites by ethyl acetate; investigate the chemical profile using UPLC/MS; and evaluate the potential antibacterial, antibiofilm, and antiviral activities. An endophytic fungus was isolated and identified as Aspergillus flavus L. from the fruit peels. The UPLC/MS revealed seven compounds with various chemical classes. The antimicrobial activity of the fungal ethyl acetate extract (FEA) was investigated against different Gram-positive and Gram-negative standard strains, in addition to resistant clinical isolates using the agar diffusion method. The CPE-inhibition assay was used to identify the potential antiviral activity of the crude fungal extract against low pathogenic human coronavirus (HCoV 229E). Selective Gram-positive antibacterial and antibiofilm activities were evident, demonstrating pronounced efficacy against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). However, the extract exhibited very weak activity against Gram-negative bacterial strains. The ethyl acetate extract of Aspergillus flavus L exhibited an interesting antiviral activity with a half maximal inhibitory concentration (IC50) value of 27.2 µg/mL against HCoV 229E. Furthermore, in silico virtual molecular docking-coupled dynamics simulation highlighted the promising affinity of the identified metabolite, orienting towards three MRSA biotargets and HCoV 229E main protease as compared to reported reference inhibitors/substrates. Finally, ADME analysis was conducted to evaluate the potential oral bioavailability of the identified metabolites.
Collapse
Affiliation(s)
- Noha Fathallah
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Wafaa M. Elkady
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Sara A. Zahran
- Department of Microbiology and Immunology, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- King Abdulaziz University Herbarium, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasmin A. Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt;
| |
Collapse
|
3
|
Eltabeeb MA, Hamed RR, El-Nabarawi MA, Teaima MH, Hamed MIA, Darwish KM, Hassan M, Abdellatif MM. Nanocomposite alginate hydrogel loaded with propranolol hydrochloride kolliphor ® based cerosomes as a repurposed platform for Methicillin-Resistant Staphylococcus aureus-(MRSA)-induced skin infection; in-vitro, ex-vivo, in-silico, and in-vivo evaluation. Drug Deliv Transl Res 2024:10.1007/s13346-024-01611-z. [PMID: 38762697 DOI: 10.1007/s13346-024-01611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/20/2024]
Abstract
Nanocomposite alginate hydrogel containing Propranolol hydrochloride (PNL) cerosomes (CERs) was prepared as a repurposed remedy for topical skin Methicillin-Resistant Staphylococcus aureus (MRSA) infection. CERs were formed via an ethanol injection technique using different ceramides, Kolliphores® as a surfactant, and Didodecyldimethylammonium bromide (DDAB) as a positive charge inducer. CERs were optimized utilizing 13. 22 mixed-factorial design employing Design-Expert® software, the assessed responses were entrapment efficiency (EE%), particle size (PS), and zeta potential (ZP). The optimum CER, composed of 5 mg DDAB, ceramide VI, and Kolliphor® RH40 showed tubular vesicles with EE% of 92.91 ± 0.98%, PS of 388.75 ± 18.99 nm, PDI of 0.363 ± 0.01, and ZP of 30.36 ± 0.69 mV. Also, it remained stable for 90 days and manifested great mucoadhesive aspects. The optimum CER was incorporated into calcium alginate to prepare nanocomposite hydrogel. The ex-vivo evaluation illustrated that PNL was permeated in a more prolonged pattern from PNL-loaded CERs nanocomposite related to PNL-composite, optimum CER, and PNL solution. Confocal laser scanning microscopy revealed a perfect accumulation of fluorescein-labeled CERs in the skin. The in-silico investigation illustrated that the PNL was stable when mixed with other ingredients in the CERs and confirmed that PNL is a promising candidate for curing MRSA. Moreover, the PNL-loaded CERs nanocomposite revealed superiority over the PNL solution in inhibiting biofilm formation and eradication. The PNL-loaded CERs nanocomposite showed superiority over the PNL-composite for treating MRSA infection in the in-vivo mice model. Histopathological studies revealed the safety of the tested formulations. In conclusion, PNL-loaded CERs nanocomposite provided a promising, safe cure for MRSA bacterial skin infection.
Collapse
Affiliation(s)
- Moaz A Eltabeeb
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt.
| | - Raghda Rabe Hamed
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed I A Hamed
- Organic and Medicinal Chemistry Department, Faculty of Pharmacy, Fayoum University, Faiyum, Egypt
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
4
|
Hervin V, Roy V, Agrofoglio LA. Antibiotics and Antibiotic Resistance-Mur Ligases as an Antibacterial Target. Molecules 2023; 28:8076. [PMID: 38138566 PMCID: PMC10745416 DOI: 10.3390/molecules28248076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of Multidrug Resistance (MDR) strains of bacteria has accelerated the search for new antibacterials. The specific bacterial peptidoglycan biosynthetic pathway represents opportunities for the development of novel antibacterial agents. Among the enzymes involved, Mur ligases, described herein, and especially the amide ligases MurC-F are key targets for the discovery of multi-inhibitors, as they share common active sites and structural features.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| | - Luigi A. Agrofoglio
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| |
Collapse
|
5
|
Rambaher MH, Zdovc I, Glavač NK, Gobec S, Frlan R. Mur ligase F as a new target for the flavonoids quercitrin, myricetin, and (-)-epicatechin. J Comput Aided Mol Des 2023; 37:721-733. [PMID: 37796382 PMCID: PMC10618370 DOI: 10.1007/s10822-023-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
MurC, D, E, and F are ATP-dependent ligases involved in the stepwise assembly of the tetrapeptide stem of forming peptidoglycan. As highly conserved targets found exclusively in bacterial cells, they are of significant interest for antibacterial drug discovery. In this study, we employed a computer-aided molecular design approach to identify potential inhibitors of MurF. A biochemical inhibition assay was conducted, screening twenty-four flavonoids and related compounds against MurC-F, resulting in the identification of quercitrin, myricetin, and (-)-epicatechin as MurF inhibitors with IC50 values of 143 µM, 139 µM, and 92 µM, respectively. Notably, (-)-epicatechin demonstrated mixed type inhibition with ATP and uncompetitive inhibition with D-Ala-D-Ala dipeptide and UM3DAP substrates. Furthermore, in silico analysis using Sitemap and subsequent docking analysis using Glide revealed two plausible binding sites for (-)-epicatechin. The study also investigated the crucial structural features required for activity, with a particular focus on the substitution pattern and hydroxyl group positions, which were found to be important for the activity. The study highlights the significance of computational approaches in targeting essential enzymes involved in bacterial peptidoglycan synthesis.
Collapse
Affiliation(s)
- Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Irena Zdovc
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Gerbičeva ul. 60, Ljubljana, Slovenia
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| | - Rok Frlan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Hodyna D, Kovalishyn V, Kachaeva M, Shulha Y, Klipkov A, Shaitanova E, Kobzar O, Shablykin O, Metelytsia L. In Silico, in Vitro and in Vivo Study of Substituted Imidazolidinone Sulfonamides as Antibacterial Agents. Chem Biodivers 2023; 20:e202301267. [PMID: 37943002 DOI: 10.1002/cbdv.202301267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
New substituted imidazolidinone sulfonamides have been developed using a rational drug design strategy. Predictive QSAR models for the search of new antibacterials were created using the OCHEM platform. Regression models were applied to verify a virtual chemical library of new imidazolidinone derivatives designed to have antibacterial activity. A number of substituted imidazolidinone sulfonamides as effective antibacterial agents were identified by QSAR prediction, synthesized and characterized by spectral and elemental, and tested in vitro. Six studied compounds have shown the highest in vitro antibacterial activity against Gram-negative E. coli and Gram-positive S. aureus multidrug-resistant strains. The in vivo acute toxicity of these imidazolidinone sulfonamides based on the LC50 value ranged from 16.01 to 44.35 mg/L (slightly toxic compounds class). The results of molecular docking suggest that the antibacterial mechanism of the compounds can be associated with the inhibition of post-translational modification processes of bacterial peptides and proteins.
Collapse
Affiliation(s)
- Diana Hodyna
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Vasyl Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Maryna Kachaeva
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Yurii Shulha
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Anton Klipkov
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Elena Shaitanova
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Oleksandr Kobzar
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Oleh Shablykin
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Larysa Metelytsia
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| |
Collapse
|
7
|
de Oliveira Rossini N, Dos Santos Silva C, Vinicius Bertacine Dias M. The crystal structure of Mycobacterium thermoresistibile MurE ligase reveals the binding mode of the substrate m-diaminopimelate. J Struct Biol 2023; 215:107957. [PMID: 36944394 DOI: 10.1016/j.jsb.2023.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
The cytoplasmatic biosynthesis of the stem peptide from the peptidoglycan in bacteria involves six steps, which have the role of three ATP-dependent Mur ligases that incorporate three consecutive amino acids to a substrate precursor. MurE is the last Mur ligase to incorporate a free amino acid. Although the structure of MurE from Mycobacterium tuberculosis (MtbMurE) was determined at 3.0Å, the binding mode of (meso-Diaminopimelate) m-DAP and the effect of substrate absence is unknown. Herein, we show the structure of MurE from M. thermoresistibile (MthMurE) in complex with ADP and m-DAP at 1.4 Å resolution. The analysis of the structure indicates key conformational changes that the substrate UDP-MurNAc-L-Ala-D-Glu (UAG) and the free amino acid m-DAP cause on the MthMurE conformation. We observed several movements of domains or loop regions that displace their position in order to perform enzymatic catalysis. Since MthMurE has a high similarity to MtbMurE, this enzyme could also guide strategies for structure-based antimicrobial discovery to fight against tuberculosis or other mycobacterial infections. Synopsis Structural characterization of Mycobacterium thermoresistibile MurE at 1.45Å resolution in complex with ADP and m-DAP shows novel conformational changes when compared to other MurE structures in complex with different ligands.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Catharina Dos Santos Silva
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil
| | - Marcio Vinicius Bertacine Dias
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo. Av. Prof Lineu Prestes, 1374, CEP 05508-000, São Paulo, SP. Brazil; Department of Chemistry. The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
8
|
Anti-Tuberculosis Mur Inhibitors: Structural Insights and the Way Ahead for Development of Novel Agents. Pharmaceuticals (Basel) 2023; 16:ph16030377. [PMID: 36986477 PMCID: PMC10058398 DOI: 10.3390/ph16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mur enzymes serve as critical molecular devices for the synthesis of UDP-MurNAc-pentapeptide, the main building block of bacterial peptidoglycan polymer. These enzymes have been extensively studied for bacterial pathogens such as Escherichia coli and Staphylococcus aureus. Various selective and mixed Mur inhibitors have been designed and synthesized in the past few years. However, this class of enzymes remains relatively unexplored for Mycobacterium tuberculosis (Mtb), and thus offers a promising approach for drug design to overcome the challenges of battling this global pandemic. This review aims to explore the potential of Mur enzymes of Mtb by systematically scrutinizing the structural aspects of various reported bacterial inhibitors and implications concerning their activity. Diverse chemical scaffolds such as thiazolidinones, pyrazole, thiazole, etc., as well as natural compounds and repurposed compounds, have been reviewed to understand their in silico interactions with the receptor or their enzyme inhibition potential. The structural diversity and wide array of substituents indicate the scope of the research into developing varied analogs and providing valuable information for the purpose of modifying reported inhibitors of other multidrug-resistant microorganisms. Therefore, this provides an opportunity to expand the arsenal against Mtb and overcome multidrug-resistant tuberculosis.
Collapse
|
9
|
Subedi BP, Schofield LR, Carbone V, Wolf M, Martin WF, Ronimus RS, Sutherland-Smith AJ. Structural characterisation of methanogen pseudomurein cell wall peptide ligases homologous to bacterial MurE/F murein peptide ligases. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36178458 DOI: 10.1099/mic.0.001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Archaea have diverse cell wall types, yet none are identical to bacterial peptidoglycan (murein). Methanogens Methanobacteria and Methanopyrus possess cell walls of pseudomurein, a structural analogue of murein. Pseudomurein differs from murein in containing the unique archaeal sugar N-acetyltalosaminuronic acid instead of N-acetylmuramic acid, β-1,3 glycosidic bonds in place of β-1,4 bonds and only l-amino acids in the peptide cross-links. We have determined crystal structures of methanogen pseudomurein peptide ligases (termed pMurE) from Methanothermus fervidus (Mfer762) and Methanothermobacter thermautotrophicus (Mth734) that are structurally most closely related to bacterial MurE peptide ligases. The homology of the archaeal pMurE and bacterial MurE enzymes is clear both in the overall structure and at the level of each of the three domains. In addition, we identified two UDP-binding sites in Mfer762 pMurE, one at the exterior surface of the interface of the N-terminal and middle domains, and a second site at an inner surface continuous with the highly conserved interface of the three domains. Residues involved in ATP binding in MurE are conserved in pMurE, suggesting that a similar ATP-binding pocket is present at the interface of the middle and the C-terminal domains of pMurE. The presence of pMurE ligases in members of the Methanobacteriales and Methanopyrales, that are structurally related to bacterial MurE ligases, supports the idea that the biosynthetic origins of archaeal pseudomurein and bacterial peptidoglycan cell walls are evolutionarily related.
Collapse
Affiliation(s)
- Bishwa P Subedi
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand.,School of Natural Sciences, Massey University, Palmerston North 4442, New Zealand.,Present address: Faculty of Medicine, Nursing and Health Sciences, Monash Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Linley R Schofield
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Vincenzo Carbone
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | - Maximilian Wolf
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand.,Present address: Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Ron S Ronimus
- AgResearch Ltd, Grasslands, Tennent Drive, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
10
|
Saqallah FG, Hamed WM, Talib WH, Dianita R, Wahab HA. Antimicrobial activity and molecular docking screening of bioactive components of Antirrhinum majus (snapdragon) aerial parts. Heliyon 2022; 8:e10391. [PMID: 36072262 PMCID: PMC9441312 DOI: 10.1016/j.heliyon.2022.e10391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/19/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Antirrhinum majus (Snapdragon) is a perennial Mediterranean-native plant that is commonly used for mass display. Few reports acknowledged the traditional use of A. majus for its medicinal and therapeutic effects. Herein, we assess the impact of A. majus’s sample preparation and extraction methods on the plant-aerial parts’ phytochemical contents and antimicrobial activity. Furthermore, the microbial targets of the extracts’ secondary metabolites are inspected using molecular docking simulations. Methods The leaves and flowers of A. majus were prepared as fresh and air-dried samples, then extracted using cold maceration and hot reflux, respectively. Extracts with the best phytochemical profiles were selected to test their antimicrobial activities against Bacillus subtilis, Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli and Candida albicans. Besides, molecular docking of 66 reported isolated compounds was conducted against various microbial targets. Results The dried-refluxed samples revealed a massive deterioration in their phytochemical profiles, whereas the macerated flowers extract exhibited the highest total phenolic content and antimicrobial activity against all tested bacterial strains. However, both flowers and leaves extracts showed similar minimum inhibitory and lethal concentrations against C. albicans. Molecular docking studies revealed that chlorogenic acid, chalcononaringenin 4’-glucoside, 3,4,2’,4’,6’-pentahydroxy-chalcone 4’-glucoside, apigenin-7-glucuronide, and luteolin-7-glucuronide were the lead compounds in expressing the antimicrobial activity. Yet, A. majus’s compounds could neither inhibit the 30S ribosomal subunit nor muramyl ligase E. Conclusion Our results suggest that cold maceration of A. majus fresh aerial parts gave higher flavonoid and phenolic content contributing to its antimicrobial properties. These flavonoids and phenolic compounds are predicted to have a crucial role in inhibiting fungal sterol 14-demethylase, and bacterial dihydropteroate synthase and gyrase B subunit proteins. Air-drying of A. majus’s aerial parts deteriorates its phytochemical composition, affecting its antimicrobial activity. A. majus’s fresh-flowers macerate exhibited the highest total phenolic content and antibacterial activity. The antimycotic activity of A. majus was the same for flowers and leaves macerates. In-silico results showed that some phenolics, chalcones, and flavonoids are responsible for the antimicrobial activity. A.majus’s components act on fungal sterol 14-demethylase, and bacterial dihydropteroate synthase and gyrase B enzymes.
Collapse
Affiliation(s)
- Fadi G. Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Faculty of Pharmacy, Applied Science Private University, 11931, Amman, Jordan
| | - Wafaa M. Hamed
- Pharmacy Department, Al-Noor University College, 41019, Mosul, Iraq
- Corresponding author.
| | - Wamidh H. Talib
- Faculty of Pharmacy, Applied Science Private University, 11931, Amman, Jordan
| | - Roza Dianita
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Habibah A. Wahab
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
- Corresponding author.
| |
Collapse
|
11
|
Naorem RS, Pangabam BD, Bora SS, Goswami G, Barooah M, Hazarika DJ, Fekete C. Identification of Putative Vaccine and Drug Targets against the Methicillin-Resistant Staphylococcus aureus by Reverse Vaccinology and Subtractive Genomics Approaches. Molecules 2022; 27:2083. [PMID: 35408485 PMCID: PMC9000511 DOI: 10.3390/molecules27072083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/23/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and responsible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant (MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach, 4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found to be more promising vaccine candidates. We applied a molecular docking approach of selected 8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug molecule with favorable interactions with the target active site residues of 5 drug target proteins viz., biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment of multidrug-resistant staphylococcal infection.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
| | - Bandana Devi Pangabam
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
| | - Sudipta Sankar Bora
- DBT—North East Centre for Agricultural Biotechnology (DBT-AAU Center), Assam Agricultural University, Jorhat 785013, India;
| | - Gunajit Goswami
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785008, India;
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
- DBT—North East Centre for Agricultural Biotechnology (DBT-AAU Center), Assam Agricultural University, Jorhat 785013, India;
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
| | - Csaba Fekete
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
| |
Collapse
|
12
|
Mujahid A, Rasool N, Usman Qamar M, Zubair M, Ahmad F, Ali Altaf A, Akhtar A, Adnan Ali Shah S, Alqahtani F, Alsanea S, Albekairi TH, Jawad Nasim M, Fawad Rasool M, Imran I. Arylation of halogenated thiophene carboxylate via Suzuki–Miyaura reaction: Anti-bacterial study against Clinically isolated extensively drug resistant Escherichia coli sequence type 405 and Computational Investigation. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
13
|
Sharon I, Haque AS, Grogg M, Lahiri I, Seebach D, Leschziner AE, Hilvert D, Schmeing TM. Structures and function of the amino acid polymerase cyanophycin synthetase. Nat Chem Biol 2021; 17:1101-1110. [PMID: 34385683 DOI: 10.1038/s41589-021-00854-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Cyanophycin is a natural biopolymer produced by a wide range of bacteria, consisting of a chain of poly-L-Asp residues with L-Arg residues attached to the β-carboxylate sidechains by isopeptide bonds. Cyanophycin is synthesized from ATP, aspartic acid and arginine by a homooligomeric enzyme called cyanophycin synthetase (CphA1). CphA1 has domains that are homologous to glutathione synthetases and muramyl ligases, but no other structural information has been available. Here, we present cryo-electron microscopy and X-ray crystallography structures of cyanophycin synthetases from three different bacteria, including cocomplex structures of CphA1 with ATP and cyanophycin polymer analogs at 2.6 Å resolution. These structures reveal two distinct tetrameric architectures, show the configuration of active sites and polymer-binding regions, indicate dynamic conformational changes and afford insight into catalytic mechanism. Accompanying biochemical interrogation of substrate binding sites, catalytic centers and oligomerization interfaces combine with the structures to provide a holistic understanding of cyanophycin biosynthesis.
Collapse
Affiliation(s)
- Itai Sharon
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Asfarul S Haque
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Marcel Grogg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Dieter Seebach
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, and Section of Molecular Biology, Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
14
|
Screening of Neutrophil Activating Factors from a Metagenome Library of Sponge-Associated Bacteria. Mar Drugs 2021; 19:md19080427. [PMID: 34436266 PMCID: PMC8402132 DOI: 10.3390/md19080427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Marine sponge-associated bacteria are known as bio-active compound produce. We have constructed metagenome libraries of the bacteria and developed a metagenomic screening approach. Activity-based screening successfully identified novel genes and novel enzymes; however, the efficiency was only in 1 out of 104 clones. Therefore, in this study, we thought that bioinformatics could help to reduce screening efforts, and combined activity-based screening with database search. Neutrophils play an important role for the immune system to recognize excreted bacterial by-products as chemotactic factors and are recruited to infection sites to kill pathogens via phagocytosis. These excreted by-products are considered critical triggers that engage the immune system to mount a defense against infection, and identifying these factors may guide developments in medicine and diagnostics. We focused on genes encoding amino acid ligase and peptide synthetase and selected from an in-house sponge metagenome database. Cell-free culture medium of each was used in a neutrophil chemiluminescence assay in luminol reaction. The clone showing maximum activity had a genomic sequence expected to produce a molecule like a phospho-N-acetylmuramyl pentapeptide by the metagenome fragment analysis.
Collapse
|
15
|
Design, synthesis and molecular modelling of phenoxyacetohydrazide derivatives as Staphylococcus aureus MurD inhibitors. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Zhao J, Han ML, Zhu Y, Lin YW, Wang YW, Lu J, Hu Y, Tony Zhou Q, Velkov T, Li J. Comparative metabolomics reveals key pathways associated with the synergistic activity of polymyxin B and rifampicin combination against multidrug-resistant Acinetobacter baumannii. Biochem Pharmacol 2020; 184:114400. [PMID: 33387481 DOI: 10.1016/j.bcp.2020.114400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 01/04/2023]
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii presents a critical challenge to human health worldwide and polymyxins are increasingly used as a last-line therapy. Due to the rapid emergence of resistance during polymyxin monotherapy, synergistic combinations (e.g. with rifampicin) are recommended to treat A. baumannii infections. However, most combination therapies are empirical, owing to a dearth of understanding on the mechanism of synergistic antibacterial killing. In the present study, we employed metabolomics to investigate the synergy mechanism of polymyxin B-rifampicin against A. baumannii AB5075, an MDR clinical isolate. The metabolomes of A. baumannii AB5075 were compared at 1 and 4 h following treatments with polymyxin B alone (0.75 mg/L, i.e. 3 × MIC), rifampicin alone (1 mg/L, i.e. 0.25 × MIC) and their combination. Polymyxin B monotherapy significantly perturbed glycerophospholipid and fatty acid metabolism at 1 h, reflecting its activity on bacterial outer membrane. Rifampicin monotherapy significantly perturbed glycerophospholipid, nucleotide and amino acid metabolism, which are related to the inhibition of RNA synthesis. The combination treatment significantly perturbed the metabolism of nucleotides, amino acids, fatty acids and glycerophospholipids at 1 and 4 h. Notably, the intermediate metabolite pools from pentose phosphate pathway were exclusively enhanced by the combination, while most metabolites from the nucleotide and amino acid biosynthesis pathways were significantly decreased. Overall, the synergistic activity of the combination was initially driven by polymyxin B which impacted pathways associated with outer membrane biogenesis; and subsequent effects were mainly attributed to rifampicin via the inhibition of RNA synthesis. This study is the first to reveal the synergistic killing mechanism of polymyxin-rifampicin combination against polymyxin-susceptible MDR A. baumannii at the network level. Our findings provide new mechanistic insights for optimizing this synergistic combination in patients.
Collapse
Affiliation(s)
- Jinxin Zhao
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Mei-Ling Han
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yan Zhu
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yu-Wei Lin
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yi-Wen Wang
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Melbourne 3010, Australia
| | - Jing Lu
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Yang Hu
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, Purdue University, Indiana 47907, United States
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne 3010, Australia
| | - Jian Li
- Infection & Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
17
|
Jung KH, Kim YG, Kim CM, Ha HJ, Lee CS, Lee JH, Park HH. Wide-open conformation of UDP-MurNc-tripeptide ligase revealed by the substrate-free structure of MurE from Acinetobacter baumannii. FEBS Lett 2020; 595:275-283. [PMID: 33230844 DOI: 10.1002/1873-3468.14007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
MurE ligase catalyzes the attachment of meso-diaminopimelic acid to the UDP-MurNAc-l -Ala-d -Glu using ATP and producing UDP-MurNAc-l -Ala-d -Glu-meso-A2 pm during bacterial cell wall biosynthesis. Owing to the critical role of this enzyme, MurE is considered an attractive target for antibacterial drugs. Despite extensive studies on MurE ligase, the structural dynamics of its conformational changes are still elusive. In this study, we present the substrate-free structure of MurE from Acinetobacter baumannii, which is an antibiotic-resistant superbacterium that has threatened global public health. The structure revealed that MurE has a wide-open conformation and undergoes wide-open, intermediately closed, and fully closed dynamic conformational transition. Unveiling structural dynamics of MurE will help to understand the working mechanism of this ligase and to design next-generation antibiotics targeting MurE.
Collapse
Affiliation(s)
- Kyoung Ho Jung
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Korea
| | - Chang Min Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Ji Ha
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Korea
| | - Jun Hyuck Lee
- Unit of Research for Practical Application, Korea Polar Research Institute, Incheon, Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Hyun Ho Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Korea.,College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
18
|
MurE inhibitors as antibacterial agents: a review. J INCL PHENOM MACRO 2020. [DOI: 10.1007/s10847-020-01018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Amera GM, Khan RJ, Jha RK, Pathak A, Muthukumaran J, Singh AK. Prioritization of Mur family drug targets against A. baumannii and identification of their homologous proteins through molecular phylogeny, primary sequence, and structural analysis. J Genet Eng Biotechnol 2020; 18:33. [PMID: 32725318 PMCID: PMC7387395 DOI: 10.1186/s43141-020-00048-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Background The World Health Organization (WHO) report stated that Acinetobacter baumannii had been classified as one of the most important pathogenic bacteria causing nosocomial infection in hospital patients due to multi-drug resistance (MDR). It is vital to find out new bacterial drug targets and annotated their structure and function for the exploration of new anti-bacterial agents. The present study utilized a systematic route to prioritize the potential drug targets that belong to Mur family of Acinetobacter baumannii and identify their homologous proteins using a computational approach such as sequence similarity search, multiple sequence alignment, phylogenetic analysis, protein sequence, and protein structure analysis. Results From the results of protein sequence analysis of eight Mur family proteins, they divided into three main enzymatic classes namely transferases (MurG, MurA and MraY), ligases (MurC, MurD, MurE, and MurF), and oxidoreductase (MurB). Based on the results of intra-comparative protein sequence analysis and enzymatic classification, we have chosen MurB, MurE, and MurG as the prioritized drug targets from A. baumannii and subjected them for further detailed studies of inter-species comparison. This inter-species comparison help us to explore the sequential and structural properties of homologous proteins in other species and hence, opens a gateway for new target identification and using common inhibitor for different bacterial species caused by various diseases. The pairwise sequence alignment results between A. baumannii’s MurB with A. calcoaceticus’s MurB, A. baumannii’s MurE with A. seifertii’s MurE, and A. baumannii’s MurG with A. pittii’s MurG showed that every group of the proteins are highly similar with each other and they showed sequence identity of 95.7% and sequence similarity of 97.2%. Conclusion Together with the results of secondary and three-dimensional structure predictions explained that three selected proteins (MurB, MurE, and MurG) from A. baumannii and their related proteins (AcMurB, AsMurE, and ApMurG) belong to mixed αβ class and they are very similar.
Collapse
Affiliation(s)
- Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, 201310, India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, 201310, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, 201310, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, 201310, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, UP, 201310, India.
| |
Collapse
|
20
|
DeMeester KE, Liang H, Zhou J, Wodzanowski KA, Prather BL, Santiago CC, Grimes CL. Metabolic Incorporation of N-Acetyl Muramic Acid Probes into Bacterial Peptidoglycan. ACTA ACUST UNITED AC 2020; 11:e74. [PMID: 31763799 DOI: 10.1002/cpch.74] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells utilize small carbohydrate building blocks to construct peptidoglycan (PG), a highly conserved mesh-like polymer that serves as a protective coat for the cell. PG production has long been a target for antibiotics, and its breakdown is a source for human immune recognition. A key component of bacterial PG, N-acetyl muramic acid (NAM), is a vital element in many synthetically derived immunostimulatory compounds. However, the exact molecular details of these structures and how they are generated remain unknown due to a lack of chemical probes surrounding the NAM core. A robust synthetic strategy to generate bioorthogonally tagged NAM carbohydrate units is implemented. These molecules serve as precursors for PG biosynthesis and recycling. Escherichia coli cells are metabolically engineered to incorporate the bioorthogonal NAM probes into their PG network. The probes are subsequently modified using copper-catalyzed azide-alkyne cycloaddition to install fluorophores directly into the bacterial PG, as confirmed by super-resolution microscopy and high-resolution mass spectrometry. Here, synthetic notes for key elements of this process to generate the sugar probes as well as streamlined user-friendly metabolic labeling strategies for both microbiology and immunological applications are described. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of peracetylated 2-azido glucosamine Basic Protocol 2: Synthesis of 2-azido and 2-alkyne NAM Basic Protocol 3: Synthesis of 3-azido NAM methyl ester Basic Protocol 4: Incorporation of NAM probes into bacterial peptidoglycan Basic Protocol 5: Confirmation of bacterial cell wall remodeling by mass spectrometry.
Collapse
Affiliation(s)
- Kristen E DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - Hai Liang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.,Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland
| | - Junhui Zhou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | | | - Benjamin L Prather
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - Cintia C Santiago
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.,Center for the Study of Organic Compounds, CEDECOR-UNLP-CIC, Department of Chemistry, Faculty of Exact Sciences, National University of La Plata, Buenos Aires, Argentina
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
21
|
Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. Int J Biol Macromol 2020; 150:389-399. [DOI: 10.1016/j.ijbiomac.2020.01.306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 11/20/2022]
|
22
|
Amera GM, Khan RJ, Pathak A, Jha RK, Muthukumaran J, Singh AK. Computer aided ligand based screening for identification of promising molecules against enzymes involved in peptidoglycan biosynthetic pathway from Acinetobacter baumannii. Microb Pathog 2020; 147:104205. [PMID: 32353580 DOI: 10.1016/j.micpath.2020.104205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/30/2022]
Abstract
A. baumannii has been considered as Priority-I as suggested by the World Health Organization (WHO) and the most critical pathogenic microorganism for causing nosocomial infection in imunno-compromised hospital-acquired patients due to multi-drug resistance (MDR). In the current study, we utilized "Computer-aided ligand-based virtual screening approach" for identification of promising molecules against Mur family proteins based on the known inhibitor (Naphthyl Tetronic Acids ((5Z)-3-(4-chlorophenyl)-4-hydroxy-5-(1-naphthylmethylene) furan-2(5H)-one)) of MurB from E. coli. The in-house library was prepared using a similarity search of a known inhibitor (Drug Bank ID: DB07296) against several relevant chemical databases. The molecules obtained from virtual screening of Naphthyl Tetronic Acids in-house library were successively subjected to physicochemical and ADMET screening. After this, the molecules which passed all the filters, subsequently subjected into interaction analysis with the drug target proteins (MurB, MurD, MurE and MurG) of A. baumanni and the results explained that four molecules were promising (CHEMBL468144, DB07296, Enamine_T5956969 and 54723243) for further molecular dynamics simulations. The free and ligand bounded proteins that undergone MD simulation are listed as follows: MurB, MurB-CHEMBL468144, MurB-DB07296, MurE, MurE-54723243, MurE-DB07296, MurD, MurD-Enamine_T5956969, MurD-DB07296, MurG, MurG-CHEMBL468144, and MurG-DB07296. Based on global and essential dynamics analysis, the stability order of molecules towards MurB (CHEMBL468144 > DB07296); MurD (Enamine_T5956969 > DB07296); MurE (54723243 > DB07296) and MurG (CHEMBL468144 > DB07296) indicates that the newly identified molecules are more promising one in comparison with the existing inhibitor. Based on all the docking and MD simulation results, the stability order of the free and ligand bounded protein are as follows; MurB and MurB-ligand complexes > MurD and MurD-ligand complexes > MurG and MurG-ligand complexes > MurE and MurE-ligand complexes. Finally, the selected compounds would be recommended for further experimental investigations and used as promising inhibitors of the infection caused by A. baumannii.
Collapse
Affiliation(s)
- Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, HauzKhas, New Delhi, 110016, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, P.C, 201310, Greater Noida, U.P, India.
| |
Collapse
|
23
|
Jupudi S, Azam MA, Wadhwani A. Synthesis, molecular docking, binding free energy calculation and molecular dynamics simulation studies of benzothiazol-2-ylcarbamodithioates as Staphylococcus aureus MurD inhibitors. J Recept Signal Transduct Res 2020; 39:283-293. [PMID: 31538846 DOI: 10.1080/10799893.2019.1663538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new series of benzothiazol-2-ylcarbamodithioate functional compounds 5a-f has been designed, synthesized and characterized by spectral data. These compounds were screened for their in vitro antibacterial activity against strains of Staphylococcus aureus (NCIM 5021, NCIM 5022 and methicillin-resistant isolate 43300), Bacillus subtilis (NCIM 2545), Escherichia coli (NCIM 2567), Klebsiella pneumoniae (NCIM 2706) and Psudomonas aeruginosa (NCIM 2036). Compounds 5a and 5d exhibited significant activity against all the tested bacterial strains. Specifically, compounds 5a and 5d showed potent activity against K. pneumoniae (NCIM 2706), while compound 5a also displayed potent activity against S. aureus (NCIM 5021). Compound 5d showed minimum IC50 value of 13.37 μM against S. aureus MurD enzyme. Further, the binding interactions of compounds 5a-f in the catalytic pocket have been investigated using the extra-precision molecular docking and binding free energy calculation by MM-GBSA approach. A 30 ns molecular dynamics simulation of 5d/modeled S. aureus MurD enzyme was performed to determine the stability of the predicted binding conformation.
Collapse
Affiliation(s)
- Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , India
| | - Ashish Wadhwani
- Department of Biotechnology, JSS College of Pharmacy , Ooty , India
| |
Collapse
|
24
|
Eniyan K, Rani J, Ramachandran S, Bhat R, Khan IA, Bajpai U. Screening of Antitubercular Compound Library Identifies Inhibitors of Mur Enzymes in Mycobacterium tuberculosis. SLAS DISCOVERY 2019; 25:70-78. [PMID: 31597510 DOI: 10.1177/2472555219881148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The rapid rise in the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (Mtb) mandates the discovery of novel tuberculosis (TB) drugs. Mur enzymes, which are identified as essential proteins in Mtb and catalyze the cytoplasmic steps in the peptidoglycan biosynthetic pathway, are considered potential drug targets. However, none of the clinical drugs have yet been developed against these enzymes. Hence, the aim of this study was to identify novel inhibitors of Mur enzymes in Mycobacterium tuberculosis. We screened an antitubercular compound library of 684 compounds, using MurB and MurE enzymes of the Mtb Mur pathway as drug targets. For experimental validation, the top hits obtained on in silico screening were screened in vitro, using Mtb Mur enzyme-specific assays. In all, seven compounds were found to show greater than 50% inhibition, with the highest inhibition observed at 77%, and the IC50 for these compounds was found to be in the range of 28-50 μM. Compound 5175112 showed the lowest IC50 (28.69 ± 1.17 μM), and on the basis of (1) the binding affinity, (2) the stability of interaction noted on molecular dynamics simulation, and (3) an in vitro assay, MurE appeared to be its target enzyme. We believe that the overall strategy followed in this study and the results obtained are a good starting point for developing Mur enzyme-specific Mtb inhibitors.
Collapse
Affiliation(s)
- Kandasamy Eniyan
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Jyoti Rani
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India.,Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Srinivasan Ramachandran
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Rahul Bhat
- Clinical Microbiology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Inshad Ali Khan
- Clinical Microbiology Division, Council of Scientific and Industrial Research-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| |
Collapse
|
25
|
Role of MurT C-Terminal Domain in the Amidation of Staphylococcus aureus Peptidoglycan. Antimicrob Agents Chemother 2019; 63:AAC.00957-19. [PMID: 31358586 DOI: 10.1128/aac.00957-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022] Open
Abstract
Glutamate amidation, a secondary modification of the peptidoglycan, was first identified in Staphylococcus aureus It is catalyzed by the protein products of the murT and gatD genes, which are conserved and colocalized in the genomes of most sequenced Gram-positive bacterial species. The MurT-GatD complex is required for cell viability, full resistance to β-lactam antibiotics, and resistance to human lysozyme and is recognized as an attractive target for new antimicrobials. Great effort has been invested in the study of this step, culminating recently in three independent reports addressing the structural elucidation of the MurT-GatD complex. In this work, we demonstrate through the use of nonstructural approaches the critical and multiple roles of the C-terminal domain of MurT, annotated as DUF1727, in the MurT-GatD enzymatic complex. This domain provides the physical link between the two enzymatic activities and is essential for the amidation reaction. Copurification of recombinant MurT and GatD proteins and bacterial two-hybrid assays support the observation that the MurT-GatD interaction occurs through this domain. Most importantly, we provide in vivo evidence of the effect of substitutions at specific residues in DUF1727 on cell wall peptidoglycan amidation and on the phenotypes of oxacillin resistance and bacterial growth.
Collapse
|
26
|
Hrast M, Rožman K, Ogris I, Škedelj V, Patin D, Sova M, Barreteau H, Gobec S, Grdadolnik SG, Zega A. Evaluation of the published kinase inhibitor set to identify multiple inhibitors of bacterial ATP-dependent mur ligases. J Enzyme Inhib Med Chem 2019; 34:1010-1017. [PMID: 31072165 PMCID: PMC6522912 DOI: 10.1080/14756366.2019.1608981] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The Mur ligases form a series of consecutive enzymes that participate in the intracellular steps of bacterial peptidoglycan biosynthesis. They therefore represent interesting targets for antibacterial drug discovery. MurC, D, E and F are all ATP-dependent ligases. Accordingly, with the aim being to find multiple inhibitors of these enzymes, we screened a collection of ATP-competitive kinase inhibitors, on Escherichia coli MurC, D and F, and identified five promising scaffolds that inhibited at least two of these ligases. Compounds 1, 2, 4 and 5 are multiple inhibitors of the whole MurC to MurF cascade that act in the micromolar range (IC50, 32-368 µM). NMR-assisted binding studies and steady-state kinetics studies performed on aza-stilbene derivative 1 showed, surprisingly, that it acts as a competitive inhibitor of MurD activity towards D-glutamic acid, and additionally, that its binding to the D-glutamic acid binding site is independent of the enzyme closure promoted by ATP.
Collapse
Affiliation(s)
- Martina Hrast
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Kaja Rožman
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia.,b Department of Medicinal Chemistry , University of Minnesota , Minneapolis , MN , USA
| | - Iza Ogris
- c Molecular Structural Dynamics, Theory Department , National Institute of Chemistry , Ljubljana , Slovenia
| | - Veronika Škedelj
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Delphine Patin
- d Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , Gif-Sur-Yvette Cedex , France
| | - Matej Sova
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Hélène Barreteau
- d Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , Gif-Sur-Yvette Cedex , France
| | - Stanislav Gobec
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| | - Simona Golič Grdadolnik
- c Molecular Structural Dynamics, Theory Department , National Institute of Chemistry , Ljubljana , Slovenia
| | - Anamarija Zega
- a Faculty of Pharmacy , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
27
|
Azam MA, Saha N, Jupudi S. An explorative study on Staphylococcus aureus MurE inhibitor: induced fit docking, binding free energy calculation, and molecular dynamics. J Recept Signal Transduct Res 2019; 39:45-54. [PMID: 31162992 DOI: 10.1080/10799893.2019.1605528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Staphylococcus aureus MurE enzyme catalyzes the addition of l-lysine as third residue of the peptidoglycan peptide moiety. Due to the high substrate specificity and its ubiquitous nature among bacteria, MurE enzyme is considered as one of the potential target for the development of new therapeutic agents. In the present work, induced fit docking (IFD), binding free energy calculation, and molecular dynamics (MD) simulation were carried out to elucidate the inhibition potential of 2-thioxothiazolidin-4-one based inhibitor 1 against S. aureus MurE enzyme. The inhibitor 1 formed majority of hydrogen bonds with the central domain residues Asn151, Thr152, Ser180, Arg187, and Lys219. Binding free-energy calculation by MM-GBSA approach showed that van der Waals (ΔGvdW, -57.30 kcal/mol) and electrostatic solvation (ΔGsolv, -36.86 kcal/mol) energy terms are major contributors for the inhibitor binding. Further, 30-ns MD simulation was performed to validate the stability of ligand-protein complex and also to get structural insight into mode of binding. Based on the IFD and MD simulation results, we designed four new compounds D1-D4 with promising binding affinity for the S. aureus MurE enzyme. The designed compounds were subjected to the extra-precision docking and binding free energy was calculated for complexes. Further, a 30-ns MD simulation was performed for D1/4C13 complex.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| | - Niladri Saha
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| | - Srikanth Jupudi
- a Department of Pharmaceutical Chemistry, JSS College of Pharmacy , Ooty , Tamil Nadu , India
| |
Collapse
|
28
|
Structure-based virtual screening to identify inhibitors against Staphylococcus aureus MurD enzyme. Struct Chem 2019. [DOI: 10.1007/s11224-019-01330-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Azam MA, Jupudi S, Saha N, Paul RK. Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:1-20. [PMID: 30406684 DOI: 10.1080/1062936x.2018.1539034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 06/08/2023]
Abstract
The ATP-dependent bacterial MurD enzyme catalyses the formation of the peptide bond between cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine and D-glutamic acid. This is essential for bacterial cell wall peptidoglycan synthesis in both Gram-positive and Gram-negative bacteria. MurD is recognized as an important target for the development of new antibacterial agents. In the present study we prepared the 3D-stucture of the catalytic pocket of the Staphylococcus aureus MurD enzyme by homology modelling. Extra-precision docking, binding free energy calculation by the MM-GBSA approach and a 40 ns molecular dynamics (MD) simulation of 2-thioxothiazolidin-4-one based inhibitor $1 was carried out to elucidate its inhibition potential for the S. aureus MurD enzyme. Molecular docking results showed that Lys19, Gly147, Tyr148, Lys328, Thr330 and Phe431 residues are responsible for the inhibitor-protein complex stabilization. Binding free energy calculation revealed electrostatic solvation and van der Waals energy components as major contributors for the inhibitor binding. The inhibitor-modelled S. aureus protein complex had a stable conformation in response to the atomic flexibility and interaction, when subjected to MD simulation at 40 ns in aqueous solution. We designed some molecules as potent inhibitors of S. aureus MurD, and to validate the stability of the designed molecule D1-modelled protein complex we performed a 20 ns MD simulation. Results obtained from this study can be utilized for the design of potent S. aureus MurD inhibitors.
Collapse
Affiliation(s)
- M A Azam
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - S Jupudi
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - N Saha
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| | - R K Paul
- a Department of Pharmaceutical Chemistry , JSS College of Pharmacy, Tamil Nadu (A Constituent College of JSS Academy of Higher Education and Research, Mysuru) , India
| |
Collapse
|
30
|
Structure based in-silico study on UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (MurE) from Acinetobacter baumannii as a drug target against nosocomial infections. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.100216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
31
|
Schubert B, Maddamsetti R, Nyman J, Farhat MR, Marks DS. Genome-wide discovery of epistatic loci affecting antibiotic resistance in Neisseria gonorrhoeae using evolutionary couplings. Nat Microbiol 2018; 4:328-338. [PMID: 30510172 DOI: 10.1038/s41564-018-0309-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022]
Abstract
Genome analysis should allow the discovery of interdependent loci that together cause antibiotic resistance. In practice, however, the vast number of possible epistatic interactions erodes statistical power. Here, we extend an approach that has been successfully used to identify epistatic residues in proteins to infer genomic loci that are strongly coupled. This approach reduces the number of tests required for an epistatic genome-wide association study of antibiotic resistance and increases the likelihood of identifying causal epistasis. We discovered 38 loci and 240 epistatic pairs that influence the minimum inhibitory concentrations of 5 different antibiotics in 1,102 isolates of Neisseria gonorrhoeae that were confirmed in a second dataset of 495 isolates. Many known resistance-affecting loci were recovered; however, the majority of associations occurred in unreported genes, such as murE. About half of the discovered epistasis involved at least one locus previously associated with antibiotic resistance, including interactions between gyrA and parC. Still, many combinations involved unreported loci and genes. While most variation in minimum inhibitory concentrations could be explained by identified loci, epistasis substantially increased explained phenotypic variance. Our work provides a systematic identification of epistasis affecting antibiotic resistance in N. gonorrhoeae and a generalizable approach for epistatic genome-wide association studies.
Collapse
Affiliation(s)
- Benjamin Schubert
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,cBio Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rohan Maddamsetti
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.,Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Jackson Nyman
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
32
|
Folate biosynthesis pathway: mechanisms and insights into drug design for infectious diseases. Future Med Chem 2018; 10:935-959. [PMID: 29629843 DOI: 10.4155/fmc-2017-0168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Folate pathway is a key target for the development of new drugs against infectious diseases since the discovery of sulfa drugs and trimethoprim. The knowledge about this pathway has increased in the last years and the catalytic mechanism and structures of all enzymes of the pathway are fairly understood. In addition, differences among enzymes from prokaryotes and eukaryotes could be used for the design of specific inhibitors. In this review, we show a panorama of progress that has been achieved within the folate pathway obtained in the last years. We explored the structure and mechanism of enzymes, several genetic features, strategies, and approaches used in the design of new inhibitors that have been used as targets in pathogen chemotherapy.
Collapse
|
33
|
Bansal R, Haque MA, Yadav P, Gupta D, Ethayathulla AS, Hassan MI, Kaur P. Estimation of structure and stability of MurE ligase from Salmonella enterica serovar Typhi. Int J Biol Macromol 2018; 109:375-382. [DOI: 10.1016/j.ijbiomac.2017.12.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/13/2017] [Accepted: 12/16/2017] [Indexed: 11/29/2022]
|
34
|
Lin X, Li N, Kudo H, Zhang Z, Li J, Wang L, Zhang W, Takechi K, Takano H. Genes Sufficient for Synthesizing Peptidoglycan are Retained in Gymnosperm Genomes, and MurE from Larix gmelinii can Rescue the Albino Phenotype of Arabidopsis MurE Mutation. PLANT & CELL PHYSIOLOGY 2017; 58:587-597. [PMID: 28158764 DOI: 10.1093/pcp/pcx005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/10/2017] [Indexed: 05/08/2023]
Abstract
The endosymbiotic theory states that plastids are derived from a single cyanobacterial ancestor that possessed a cell wall. Peptidoglycan (PG), the main component of the bacteria cell wall, gradually degraded during plastid evolution. PG-synthesizing Mur genes have been found to be retained in the genomes of basal streptophyte plants, although many of them have been lost from the genomes of angiosperms. The enzyme encoded by bacterial MurE genes catalyzes the formation of the UDP-N-acetylmuramic acid (UDP-MurNAc) tripeptide in bacterial PG biosynthesis. Knockout of the MurE gene in the moss Physcomitrella patens resulted in defects of chloroplast division, whereas T-DNA-tagged mutants of Arabidopsis thaliana for MurE revealed inhibition of chloroplast development but not of plastid division, suggesting that AtMurE is functionally divergent from the bacterial and moss MurE proteins. Here, we could identify 10 homologs of bacterial Mur genes, including MurE, in the recently sequenced genomes of Picea abies and Pinus taeda, suggesting the retention of the plastid PG system in gymnosperms. To investigate the function of gymnosperm MurE, we isolated an ortholog of MurE from the larch, Larix gmelinii (LgMurE) and confirmed its presence as a single copy per genome, as well as its abundant expression in the leaves of larch seedlings. Analysis with a fusion protein combining green fluorescent protein and LgMurE suggested that it localizes in chloroplasts. Cross-species complementation assay with MurE mutants of A. thaliana and P. patens showed that the expression of LgMurE cDNA completely rescued the albefaction defects in A. thaliana but did not rescue the macrochloroplast phenotype in P. patens. The evolution of plastid PG and the mechanism behind the functional divergence of MurE genes are discussed in the context of information about plant genomes at different evolutionary stages.
Collapse
Affiliation(s)
- Xiaofei Lin
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ningning Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Hiromi Kudo
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
| | - Zhe Zhang
- College of Biological Science, China Agriculture University, Beijing, 100083, China
| | - Jinyu Li
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Li Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Wenbo Zhang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010019, China
| | - Katsuaki Takechi
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
| | - Hiroyoshi Takano
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan
- Institute of Pulsed Power Science, Kumamoto University, Kumamoto, 860-8555 Japan
| |
Collapse
|
35
|
Optimization of phage λ promoter strength for synthetic small regulatory RNA-based metabolic engineering. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-016-0245-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Mahamad Maifiah MH, Cheah SE, Johnson MD, Han ML, Boyce JD, Thamlikitkul V, Forrest A, Kaye KS, Hertzog P, Purcell AW, Song J, Velkov T, Creek DJ, Li J. Global metabolic analyses identify key differences in metabolite levels between polymyxin-susceptible and polymyxin-resistant Acinetobacter baumannii. Sci Rep 2016; 6:22287. [PMID: 26924392 PMCID: PMC4770286 DOI: 10.1038/srep22287] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 02/11/2016] [Indexed: 02/07/2023] Open
Abstract
Multidrug-resistant Acinetobacter baumannii presents a global medical crisis and polymyxins are used as the last-line therapy. This study aimed to identify metabolic differences between polymyxin-susceptible and polymyxin-resistant A. baumannii using untargeted metabolomics. The metabolome of each A. baumannii strain was measured using liquid chromatography-mass spectrometry. Multivariate and univariate statistics and pathway analyses were employed to elucidate metabolic differences between the polymyxin-susceptible and -resistant A. baumannii strains. Significant differences were identified between the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii strains. The lipopolysaccharide (LPS) deficient, polymyxin-resistant 19606R showed perturbation in specific amino acid and carbohydrate metabolites, particularly pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle intermediates. Levels of nucleotides were lower in the LPS-deficient 19606R. Furthermore, 19606R exhibited a shift in its glycerophospholipid profile towards increased abundance of short-chain lipids compared to the parent polymyxin-susceptible ATCC 19606. In contrast, in a pair of clinical isolates 03-149.1 (polymyxin-susceptible) and 03-149.2 (polymyxin-resistant, due to modification of lipid A), minor metabolic differences were identified. Notably, peptidoglycan biosynthesis metabolites were significantly depleted in both of the aforementioned polymyxin-resistant strains. This is the first comparative untargeted metabolomics study to show substantial differences in the metabolic profiles of the polymyxin-susceptible and -resistant A. baumannii.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Soon-Ee Cheah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Matthew D. Johnson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Mei-Ling Han
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - John D. Boyce
- Department of Microbiology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Visanu Thamlikitkul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alan Forrest
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7569, USA
| | - Keith S. Kaye
- Detroit Medical Centre and Wayne State University, University Health Centre, Detroit, MI, 48201, USA
| | - Paul Hertzog
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Darren J. Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jian Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
37
|
Patin D, Turk S, Barreteau H, Mainardi JL, Arthur M, Gobec S, Mengin-Lecreulx D, Blanot D. Unusual substrate specificity of the peptidoglycan MurE ligase from Erysipelothrix rhusiopathiae. Biochimie 2015; 121:209-18. [PMID: 26700151 DOI: 10.1016/j.biochi.2015.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/06/2015] [Indexed: 01/23/2023]
Abstract
Erysipelothrix rhusiopathiae is a Gram-positive bacterium pathogenic to many species of birds and mammals, including humans. The main feature of its peptidoglycan is the presence of l-alanine at position 3 of the peptide stem. In the present work, we cloned the murE gene from E. rhusiopathiae and purified the corresponding protein as His6-tagged form. Enzymatic assays showed that E. rhusiopathiae MurE was indeed an l-alanine-adding enzyme. Surprisingly, it was also able, although to a lesser extent, to add meso-diaminopimelic acid, the amino acid found at position 3 in many Gram-negative bacteria, Bacilli and Mycobacteria. Sequence alignment of MurE enzymes from E. rhusiopathiae and Escherichia coli revealed that the DNPR motif that is characteristic of meso-diaminopimelate-adding enzymes was replaced by HDNR. The role of the latter motif in the interaction with l-alanine and meso-diaminopimelic acid was demonstrated by site-directed mutagenesis experiments and the construction of a homology model. The overexpression of the E. rhusiopathiae murE gene in E. coli resulted in the incorporation of l-alanine at position 3 of the peptide part of peptidoglycan.
Collapse
Affiliation(s)
- Delphine Patin
- Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198 CEA/CNRS/Université Paris-Sud, 91405 Orsay, France.
| | - Samo Turk
- Fakulteta za Farmacijo, Univerza v Ljubljani, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Hélène Barreteau
- Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198 CEA/CNRS/Université Paris-Sud, 91405 Orsay, France
| | - Jean-Luc Mainardi
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Centre de Recherche des Cordeliers, Equipe 12, INSERM U1138, 75006 Paris, France; Université Pierre et Marie Curie - Paris 6, UMR S1138, 15 Rue de l'Ecole de Médecine, 75006 Paris, France; Université Paris-Descartes, Sorbonne Paris Cité, UMR S1138, 75006 Paris, France
| | - Michel Arthur
- Laboratoire de Recherche Moléculaire sur les Antibiotiques, Centre de Recherche des Cordeliers, Equipe 12, INSERM U1138, 75006 Paris, France; Université Pierre et Marie Curie - Paris 6, UMR S1138, 15 Rue de l'Ecole de Médecine, 75006 Paris, France; Université Paris-Descartes, Sorbonne Paris Cité, UMR S1138, 75006 Paris, France
| | - Stanislav Gobec
- Fakulteta za Farmacijo, Univerza v Ljubljani, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Dominique Mengin-Lecreulx
- Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198 CEA/CNRS/Université Paris-Sud, 91405 Orsay, France
| | - Didier Blanot
- Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198 CEA/CNRS/Université Paris-Sud, 91405 Orsay, France
| |
Collapse
|
38
|
Henrich E, Ma Y, Engels I, Münch D, Otten C, Schneider T, Henrichfreise B, Sahl HG, Dötsch V, Bernhard F. Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of the Lipid II Synthesis Pathway. J Biol Chem 2015; 291:2535-46. [PMID: 26620564 DOI: 10.1074/jbc.m115.664292] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Screening of new compounds directed against key protein targets must continually keep pace with emerging antibiotic resistances. Although periplasmic enzymes of bacterial cell wall biosynthesis have been among the first drug targets, compounds directed against the membrane-integrated catalysts are hardly available. A promising future target is the integral membrane protein MraY catalyzing the first membrane associated step within the cytoplasmic pathway of bacterial peptidoglycan biosynthesis. However, the expression of most MraY homologues in cellular expression systems is challenging and limits biochemical analysis. We report the efficient production of MraY homologues from various human pathogens by synthetic cell-free expression approaches and their subsequent characterization. MraY homologues originating from Bordetella pertussis, Helicobacter pylori, Chlamydia pneumoniae, Borrelia burgdorferi, and Escherichia coli as well as Bacillus subtilis were co-translationally solubilized using either detergent micelles or preformed nanodiscs assembled with defined membranes. All MraY enzymes originating from Gram-negative bacteria were sensitive to detergents and required nanodiscs containing negatively charged lipids for obtaining a stable and functionally folded conformation. In contrast, the Gram-positive B. subtilis MraY not only tolerates detergent but is also less specific for its lipid environment. The MraY·nanodisc complexes were able to reconstitute a complete in vitro lipid I and lipid II forming pipeline in combination with the cell-free expressed soluble enzymes MurA-F and with the membrane-associated protein MurG. As a proof of principle for future screening platforms, we demonstrate the inhibition of the in vitro lipid II biosynthesis with the specific inhibitors fosfomycin, feglymycin, and tunicamycin.
Collapse
Affiliation(s)
- Erik Henrich
- From the Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J. W. Goethe-University, 60438 Frankfurt-am-Main, Germany
| | - Yi Ma
- From the Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J. W. Goethe-University, 60438 Frankfurt-am-Main, Germany, the School of Bioscience and Bioengineering, South China University of Technology, 510006 Guangzhou, China,
| | - Ina Engels
- the Institute for Pharmaceutical Microbiology, University of Bonn, Germany, and the German Centre for Infection Research (DZIF), partner site Cologne-Bonn, 53115 Bonn, Germany
| | - Daniela Münch
- the Institute for Pharmaceutical Microbiology, University of Bonn, Germany, and
| | - Christian Otten
- the Institute for Pharmaceutical Microbiology, University of Bonn, Germany, and
| | - Tanja Schneider
- the Institute for Pharmaceutical Microbiology, University of Bonn, Germany, and the German Centre for Infection Research (DZIF), partner site Cologne-Bonn, 53115 Bonn, Germany
| | - Beate Henrichfreise
- the Institute for Pharmaceutical Microbiology, University of Bonn, Germany, and
| | - Hans-Georg Sahl
- the Institute for Pharmaceutical Microbiology, University of Bonn, Germany, and the German Centre for Infection Research (DZIF), partner site Cologne-Bonn, 53115 Bonn, Germany
| | - Volker Dötsch
- From the Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J. W. Goethe-University, 60438 Frankfurt-am-Main, Germany
| | - Frank Bernhard
- From the Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J. W. Goethe-University, 60438 Frankfurt-am-Main, Germany,
| |
Collapse
|
39
|
van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F, Brun YV, VanNieuwenhze MS, Kartal B, van Niftrik L. Anammox Planctomycetes have a peptidoglycan cell wall. Nat Commun 2015; 6:6878. [PMID: 25962786 PMCID: PMC4432595 DOI: 10.1038/ncomms7878] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
Abstract
Planctomycetes are intriguing microorganisms that apparently lack peptidoglycan, a structure that controls the shape and integrity of almost all bacterial cells. Therefore, the planctomycetal cell envelope is considered exceptional and their cell plan uniquely compartmentalized. Anaerobic ammonium-oxidizing (anammox) Planctomycetes play a key role in the global nitrogen cycle by releasing fixed nitrogen back to the atmosphere as N2. Here using a complementary array of state-of-the-art techniques including continuous culturing, cryo-transmission electron microscopy, peptidoglycan-specific probes and muropeptide analysis, we show that the anammox bacterium Kuenenia stuttgartiensis contains peptidoglycan. On the basis of the thickness, composition and location of peptidoglycan in K. stuttgartiensis, we propose to redefine Planctomycetes as Gram-negative bacteria. Our results demonstrate that Planctomycetes are not an exception to the universal presence of peptidoglycan in bacteria. Planctomycetes are unusual bacteria with complex intracellular compartments and an apparent lack of peptidoglycan in their cell walls. Here, van Teeseling et al. show that the cell wall of an anammox planctomycete does contain peptidoglycan, and propose to redefine planctomycetes as Gram-negative bacteria.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Rob J Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| | - Erkin Kuru
- Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå SE-90187, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå SE-90187, Sweden
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | - Boran Kartal
- 1] Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands [2] Department of Biochemistry and Microbiology, Laboratory of Microbiology, Gent University, Gent 9000, Belgium
| | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University, Nijmegen 6525AJ, The Netherlands
| |
Collapse
|
40
|
Moraes GL, Gomes GC, Monteiro de Sousa PR, Alves CN, Govender T, Kruger HG, Maguire GEM, Lamichhane G, Lameira J. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis (Edinb) 2015; 95:95-111. [PMID: 25701501 DOI: 10.1016/j.tube.2015.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) is the second leading cause of human mortality from infectious diseases worldwide. The WHO reported 1.3 million deaths and 8.6 million new cases of TB in 2012. Mycobacterium tuberculosis (M. tuberculosis), the infectious bacteria that causes TB, is encapsulated by a thick and robust cell wall. The innermost segment of the cell wall is comprised of peptidoglycan, a layer that is required for survival and growth of the pathogen. Enzymes that catalyse biosynthesis of the peptidoglycan are essential and are therefore attractive targets for discovery of novel antibiotics as humans lack similar enzymes making it possible to selectively target bacteria only. In this paper, we have reviewed the structures and functions of enzymes GlmS, GlmM, GlmU, MurA, MurB, MurC, MurD, MurE and MurF from M. tuberculosis that are involved in peptidoglycan biosynthesis. In addition, we report homology modelled 3D structures of those key enzymes from M. tuberculosis of which the structures are still unknown. We demonstrated that natural substrates can be successfully docked into the active sites of the GlmS and GlmU respectively. It is therefore expected that the models and the data provided herein will facilitate translational research to develop new drugs to treat TB.
Collapse
Affiliation(s)
- Gleiciane Leal Moraes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Guelber Cardoso Gomes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Paulo Robson Monteiro de Sousa
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Gyanu Lamichhane
- Johns Hopkins University School of Medicine, Taskforce to Study Resistance Emergence & Antimicrobial Development Technology, 1503 E. Jefferson St, Baltimore, MD 21231, USA
| | - Jerônimo Lameira
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil.
| |
Collapse
|
41
|
Rahman MA, Noore MS, Hasan MA, Ullah MR, Rahman MH, Hossain MA, Ali Y, Islam MS. Identification of potential drug targets by subtractive genome analysis of Bacillus anthracis A0248: An in silico approach. Comput Biol Chem 2014; 52:66-72. [DOI: 10.1016/j.compbiolchem.2014.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 01/18/2023]
|
42
|
Kouidmi I, Levesque RC, Paradis-Bleau C. The biology of Mur ligases as an antibacterial target. Mol Microbiol 2014; 94:242-53. [DOI: 10.1111/mmi.12758] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Imène Kouidmi
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| | - Roger C. Levesque
- Institut de biologie intégrative et des systèmes; Université Laval; Montreal Quebec Canada
| | - Catherine Paradis-Bleau
- Department of Microbiology, Infectiology and Immunology; Université de Montreal; Montreal Quebec Canada
| |
Collapse
|
43
|
Jöst C, Nitsche C, Scholz T, Roux L, Klein CD. Promiscuity and selectivity in covalent enzyme inhibition: a systematic study of electrophilic fragments. J Med Chem 2014; 57:7590-9. [PMID: 25148591 DOI: 10.1021/jm5006918] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covalent ligand-target interactions offer significant pharmacological advantages. However, off-target reactivity of the reactive groups, which usually have electrophilic properties, must be minimized, and the selectivity of irreversible inhibitors is a crucial requirement. We therefore performed a systematic study to determine the selectivity of several electrophilic groups that can be used as building blocks for covalently binding ligands. Six reactive groups with modulated electrophilicity were combined with 11 nonreactive moieties, resulting in a small combinatorial library of 72 fragment-like compounds. These compounds were screened against a group of 11 enzyme targets to assess their selectivity and their potential for promiscuous binding to proteins. The assay results showed a considerably lower degree of promiscuity than initially expected, even for those members of the screening collection that contain supposedly highly reactive electrophiles.
Collapse
Affiliation(s)
- Christian Jöst
- Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University , Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
44
|
Cha SS, An YJ, Jeong CS, Yu JH, Chung KM. ATP-binding mode including a carbamoylated lysine and two Mg(2+) ions, and substrate-binding mode in Acinetobacter baumannii MurF. Biochem Biophys Res Commun 2014; 450:1045-50. [PMID: 24978312 DOI: 10.1016/j.bbrc.2014.06.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/22/2014] [Indexed: 11/24/2022]
Abstract
MurF adds d-Ala-d-Ala dipeptide to UDP-N-acetylmuramyl-l-Ala-γ-d-Glu-m-DAP (or l-Lys) in an ATP-dependent manner, which is the last step in the biosynthesis of monomeric precursor of peptidoglycan. Here we report crystal structures of two MurF-ATP complexes: the MurF-ATP complex and the MurF-ATP-UDP complex. The ATP-binding mode revealed by the crystal structure of the MurF-ATP complex confirms the previous biochemical demonstration that a carbamoylated lysine and two Mg(2+) ions are required for enzyme activity of MurF. The UDP-MurF interactions observed in the crystal structure of the MurF-ATP-UDP complex depict the characteristic substrate-binding mode of MurF. The emergence and dissemination of multidrug-resistant Acinetobacter baumannii strains are great threats to public health. Therefore, the structural information on A. baumannii MurF as a validated target for drug discovery will provide a framework to develop antibacterial agents against multidrug-resistant A. baumannii infections as well as to understand the reaction mechanism of MurF.
Collapse
Affiliation(s)
- Sun-Shin Cha
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea; Department of Convergence Study on the Ocean Science and Technology, Ocean Science and Technology School, Pusan 606-791, Republic of Korea; Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon 305-333, Republic of Korea.
| | - Young Jun An
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
| | - Chang-Sook Jeong
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan 426-744, Republic of Korea
| | - Jeong Hee Yu
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju 561-756, Republic of Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju 561-756, Republic of Korea; Institute for Medical Science, Chonbuk National University Medical School, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
45
|
Perdih A, Hrast M, Barreteau H, Gobec S, Wolber G, Solmajer T. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF). Bioorg Med Chem 2014; 22:4124-34. [PMID: 24953950 DOI: 10.1016/j.bmc.2014.05.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/23/2014] [Indexed: 12/24/2022]
Abstract
Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Andrej Perdih
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia; Institute of Pharmacy, Freie Universität Berlin, Königin Luise-Strasse 2+4, 14195 Berlin, Germany.
| | - Martina Hrast
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1001 Ljubljana, Slovenia
| | - Hélène Barreteau
- Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1001 Ljubljana, Slovenia
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin Luise-Strasse 2+4, 14195 Berlin, Germany
| | - Tom Solmajer
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|
46
|
Combination of site directed mutagenesis and secondary structure analysis predicts the amino acids essential for stability of M. leprae MurE. Interdiscip Sci 2014; 6:40-7. [PMID: 24464703 DOI: 10.1007/s12539-014-0185-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 03/22/2013] [Accepted: 04/23/2013] [Indexed: 10/25/2022]
Abstract
The life-threatening infections caused by Mycobacterium leprae (Mle) remain a major challenge in developing countries as well as globe and there is a need to design potent anti-leprosy drugs. In our previous studies, ATP-dependent Mle-MurE ligase involved in biosynthesis of peptidoglycan was identified as one of the common drug targets, homology modeled and reported. In this work in silico site directed mutagenesis study was carried out on the homology modeled Mle-MurE ligase. This predicted the amino acids essential for stability. In addition, the distribution of these residues in different secondary structures and in active sites was analyzed. Finally, the role of the conserved residues in stability and function was analyzed. The availability of Mle-MurE ligase built model together with insights gained from stability studies and docking studies will promote the rational design of potent and selective Mle-MurE ligase inhibitors as anti-leprosy therapeutics.
Collapse
|
47
|
Sheng J, Huang L, Zhu X, Cai J, Xu Z. Reconstitution of the peptidoglycan cytoplasmic precursor biosynthetic pathway in cell-free system and rapid screening of antisense oligonucleotides for Mur enzymes. Appl Microbiol Biotechnol 2014; 98:1785-94. [PMID: 24389752 DOI: 10.1007/s00253-013-5467-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022]
Abstract
Bacterial peptidoglycan is the cell wall component responsible for various biological activities. Its cytoplasmic precursor UDP-N-acetylmuramyl pentapeptide is biosynthesized by the first six enzymes of peptidoglycan synthetic pathways (Mur enzymes), which are all proved to be important targets for antibiotic screening. In our present work, the genes encoding Mur enzymes from Escherichia coli were co-expressed in the cell-free protein synthesis (CFPS) system, and the activities of Mur enzymes derived from CFPS system were validated by the synthesis of the final product UDP-N-acetylmuramyl pentapeptide. Then this in vitro reconstituted Mur biosynthetic pathway was used to screen a panel of specific antisense oligonucleotides for MurA and MurB. The selected oligonucleotides were proved to eliminate the expression of Mur enzymes, and thus inhibit the Mur biosynthetic pathway. The present work not only developed a rapid method to reconstruct and regulate a biosynthetic pathway in vitro, but also may provide insight into the development of novel antibiotics targeting on peptidoglycan biosynthetic pathway.
Collapse
Affiliation(s)
- Jiayuan Sheng
- Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, 310027, China
| | | | | | | | | |
Collapse
|
48
|
Ruane KM, Lloyd AJ, Fülöp V, Dowson CG, Barreteau H, Boniface A, Dementin S, Blanot D, Mengin-Lecreulx D, Gobec S, Dessen A, Roper DI. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. J Biol Chem 2013; 288:33439-48. [PMID: 24064214 PMCID: PMC3829189 DOI: 10.1074/jbc.m113.508135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of the peptidoglycan stem pentapeptide requires the insertion of both l and d amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Å resolution in the presence of ADP and the reaction product, UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between l-lysine and d,l-diaminopimelic acid, the predominant amino acid that replaces l-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of l-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for l-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic l-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.
Collapse
Affiliation(s)
- Karen M Ruane
- From the School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Favini-Stabile S, Contreras-Martel C, Thielens N, Dessen A. MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ Microbiol 2013; 15:3218-28. [DOI: 10.1111/1462-2920.12171] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/27/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Sandy Favini-Stabile
- Institut de Biologie Structurale (IBS); Université Grenoble I; Grenoble France
- Commissariat à l'Energie Atomique (CEA); Grenoble France
- Centre National de la Recherche Scientifique (CNRS); Grenoble France
| | - Carlos Contreras-Martel
- Institut de Biologie Structurale (IBS); Université Grenoble I; Grenoble France
- Commissariat à l'Energie Atomique (CEA); Grenoble France
- Centre National de la Recherche Scientifique (CNRS); Grenoble France
| | - Nicole Thielens
- Institut de Biologie Structurale (IBS); Université Grenoble I; Grenoble France
- Commissariat à l'Energie Atomique (CEA); Grenoble France
- Centre National de la Recherche Scientifique (CNRS); Grenoble France
| | - Andréa Dessen
- Institut de Biologie Structurale (IBS); Université Grenoble I; Grenoble France
- Commissariat à l'Energie Atomique (CEA); Grenoble France
- Centre National de la Recherche Scientifique (CNRS); Grenoble France
- Brazilian National Laboratory for Biosciences (LNBio); CNPEM; Campinas São Paulo Brazil
| |
Collapse
|
50
|
Wu WL, Liao JH, Lin GH, Lin MH, Chang YC, Liang SY, Yang FL, Khoo KH, Wu SH. Phosphoproteomic analysis reveals the effects of PilF phosphorylation on type IV pilus and biofilm formation in Thermus thermophilus HB27. Mol Cell Proteomics 2013; 12:2701-13. [PMID: 23828892 DOI: 10.1074/mcp.m113.029330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Thermus thermophilus HB27 is an extremely thermophilic eubacteria with a high frequency of natural competence. This organism is therefore often used as a thermophilic model to investigate the molecular basis of type IV pili-mediated functions, such as the uptake of free DNA, adhesion, twitching motility, and biofilm formation, in hot environments. In this study, the phosphoproteome of T. thermophilus HB27 was analyzed via a shotgun approach and high-accuracy mass spectrometry. Ninety-three unique phosphopeptides, including 67 in vivo phosphorylated sites on 53 phosphoproteins, were identified. The distribution of Ser/Thr/Tyr phosphorylation sites was 57%/36%/7%. The phosphoproteins were mostly involved in central metabolic pathways and protein/cell envelope biosynthesis. According to this analysis, the ATPase motor PilF, a type IV pili-related component, was first found to be phosphorylated on Thr-368 and Ser-372. Through the point mutation of PilF, mimic phosphorylated mutants T368D and S372E resulted in nonpiliated and nontwitching phenotypes, whereas nonphosphorylated mutants T368V and S372A displayed piliation and twitching motility. In addition, mimic phosphorylated mutants showed elevated biofilm-forming abilities with a higher initial attachment rate, caused by increasing exopolysaccharide production. In summary, the phosphorylation of PilF might regulate the pili and biofilm formation associated with exopolysaccharide production.
Collapse
Affiliation(s)
- Wan-Ling Wu
- Institute of Biochemical Sciences, College of Life Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|