1
|
Jepsen L, Sept D. Effects of Nucleotide and End-Dependent Actin Conformations on Polymerization. Biophys J 2020; 119:1800-1810. [PMID: 33080221 DOI: 10.1016/j.bpj.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
The regulation of actin is key for controlled cellular function. Filaments are regulated by actin-binding proteins, but the nucleotide state of actin is also an important factor. From extended molecular dynamics simulations, we find that both nucleotide states of the actin monomer have significantly less twist than their crystal structures and that the ATP monomer is flatter than the ADP form. We also find that the filament's pointed end is flatter than the remainder of the filament and has a conformation distinct from G-actin, meaning that incoming monomers would need to undergo isomerization that would weaken the affinity and slow polymerization. Conversely, the barbed end of the filament takes on a conformation nearly identical to the ATP monomer, enhancing ATP G-actin's ability to polymerize as compared with ADP G-actin. The thermodynamic penalty imposed by differences in isomerization for the ATP and ADP growth at the barbed end exactly matches experimental results.
Collapse
Affiliation(s)
- Lauren Jepsen
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
2
|
Boiero Sanders M, Antkowiak A, Michelot A. Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. Open Biol 2020; 10:200157. [PMID: 32873155 PMCID: PMC7536088 DOI: 10.1098/rsob.200157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The actin cytoskeleton has the particularity of being assembled into many functionally distinct filamentous networks from a common reservoir of monomeric actin. Each of these networks has its own geometrical, dynamical and mechanical properties, because they are capable of recruiting specific families of actin-binding proteins (ABPs), while excluding the others. This review discusses our current understanding of the underlying molecular mechanisms that cells have developed over the course of evolution to segregate ABPs to appropriate actin networks. Segregation of ABPs requires the ability to distinguish actin networks as different substrates for ABPs, which is regulated in three different ways: (1) by the geometrical organization of actin filaments within networks, which promotes or inhibits the accumulation of ABPs; (2) by the identity of the networks' filaments, which results from the decoration of actin filaments with additional proteins such as tropomyosin, from the use of different actin isoforms or from covalent modifications of actin; (3) by the existence of collaborative or competitive binding to actin filaments between two or multiple ABPs. This review highlights that all these effects need to be taken into account to understand the proper localization of ABPs in cells, and discusses what remains to be understood in this field of research.
Collapse
Affiliation(s)
- Micaela Boiero Sanders
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Adrien Antkowiak
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
3
|
Janco M, Dedova I, Bryce NS, Hardeman EC, Gunning PW. Visualizing the in vitro assembly of tropomyosin/actin filaments using TIRF microscopy. Biophys Rev 2020; 12:879-885. [PMID: 32638329 PMCID: PMC7429660 DOI: 10.1007/s12551-020-00720-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
Tropomyosins are elongated alpha-helical proteins that form co-polymers with most actin filaments within a cell and play important roles in the structural and functional diversification of the actin cytoskeleton. How the assembly of tropomyosins along an actin filament is regulated and the kinetics of tropomyosin association with an actin filament is yet to be fully determined. A recent series of publications have used total internal reflection fluorescence (TIRF) microscopy in combination with advanced surface and protein chemistry to visualise the molecular assembly of actin/tropomyosin filaments in vitro. Here, we review the use of the in vitro TIRF assay in the determination of kinetic data on tropomyosin filament assembly. This sophisticated approach has enabled generation of real-time single-molecule data to fill the gap between in vitro bulk assays and in vivo assays of tropomyosin function. The in vitro TIRF assays provide a new foundation for future studies involving multiple actin-binding proteins that will more accurately reflect the physiological protein-protein interactions in cells.
Collapse
Affiliation(s)
- Miro Janco
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Irina Dedova
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nicole S Bryce
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
4
|
Khaitlina S, Tsaplina O, Hinssen H. Cooperative effects of tropomyosin on the dynamics of the actin filament. FEBS Lett 2017; 591:1884-1891. [PMID: 28555876 DOI: 10.1002/1873-3468.12700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/26/2022]
Abstract
Tropomyosin (Tpm) plays an important role in regulating the organisation and functions of the actin cytoskeleton. Here, we describe a new approach to analyse the effects of Tpm on actin dynamics. Using F-actin proteolytically modified within the DNase-binding loop (ECP-actin), we show that Tpm binding almost completely suppresses the increased subunit exchange intrinsic for this F-actin. The effect is both concentration-dependent and cooperative, with half-maximal inhibition observed at about a 1 : 50 Tpm : actin ratio. Tpm decreases not only the number concentration of ECP-actin filaments, but also the rate of the filament subunit exchange. Our data suggest that Tpm regulates the dynamics of actin filaments by an allosteric strengthening of intermonomer contacts in the actin filament, and that this mechanism may be involved in the modulation of cytoskeletal dynamics.
Collapse
Affiliation(s)
| | | | - Horst Hinssen
- Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
5
|
Jepsen L, Kruth KA, Rubenstein PA, Sept D. Two Deafness-Causing Actin Mutations (DFNA20/26) Have Allosteric Effects on the Actin Structure. Biophys J 2016; 111:323-332. [PMID: 27463135 PMCID: PMC4968419 DOI: 10.1016/j.bpj.2016.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022] Open
Abstract
Point mutations in γ-cytoplasmic actin have been shown to result in autosomal-dominant, nonsyndromic, early-onset deafness. Two mutations at the same site, K118M and K118N, provide a unique opportunity to compare the effects of two dissimilar amino acid substitutions that produce a similar phenotype in humans. K118 resides in a helix that runs from K113 to T126, and mutations that alter the position, dynamics, and/or biochemistry of this helix can result in a wide range of pathologies. Using a combination of computational and experimental studies, both employing yeast actin, we find that these mutations at K118 result in changes in the structure and dynamics of the DNase-I loop, alterations in the structure of the H73 loop as well as the side-chain orientations of W79 and W86, changes in nucleotide exchange rates, and significant shifts in the twist of the actin monomer. Interestingly, in the case of K118N, the twist of the monomer is nearly identical to that of the F-actin protomer, and in vitro polymerization assays show that this mutation results in faster polymerization. Taken together, these results indicate that mutations at this site give rise to a series of small changes that can be tolerated in vivo but result in misregulation of actin assembly and dynamics.
Collapse
Affiliation(s)
- Lauren Jepsen
- Bioinformatics Graduate Program, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Karina A Kruth
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
6
|
Khaitlina SY. Tropomyosin as a Regulator of Actin Dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:255-91. [PMID: 26315888 DOI: 10.1016/bs.ircmb.2015.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tropomyosin is a major regulatory protein of contractile systems and cytoskeleton, an actin-binding protein that positions laterally along actin filaments and modulates actin-myosin interaction. About 40 tropomyosin isoforms have been found in a variety of cytoskeleton systems, not necessarily connected with actin-myosin interaction and contraction. Involvement of specific tropomyosin isoforms in the regulation of key cell processes was shown, and specific features of tropomyosin genes and protein structure have been investigated with molecular biology and genetics approaches. However, the mechanisms underlying the effects of tropomyosin on cytoskeleton dynamics are still unclear. As tropomyosin is primarily an F-actin-binding protein, it is important to understand how it interacts both with actin and actin-binding proteins functioning in muscles and cytoskeleton to regulate actin dynamics. This review focuses on biochemical data on the effects of tropomyosin on actin assembly and dynamics, as well as on the modulation of these effects by actin-binding proteins. The data indicate that tropomyosin can efficiently regulate actin dynamics via allosteric conformational changes within actin filaments.
Collapse
Affiliation(s)
- Sofia Yu Khaitlina
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
7
|
Abstract
Nephrotic syndrome (NS) is characterized by heavy proteinuria, hypoalbuminemia, and edema. The underlying causes of NS are diverse and are tied to inheritable and environmental factors. A common diagnostic marker for NS is effacement of podocyte foot processes. The formation and maintenance of foot processes are under the control of many signalling molecules including Rho-GTPases. Our knowledge of Rho-GTPases is based largely on the functions of three prototypic members: RhoA, Rac1, and Cdc42. In the event of podocyte injury, the rearrangement to the actin cytoskeleton is orchestrated largely by this family of proteins. The importance of maintaining proper actin dynamics in podocytes has led to much investigation as to how Rho-GTPases and their regulatory molecules form and maintain foot processes as a critical component of the kidney’s filtration barrier. Modern sequencing techniques have allowed for the identification of novel disease causing mutations in genes such as ARHGDIA, encoding Rho-GDIα. Continued use of whole exome sequencing has the potential to lead to the identification of new mutations in genes encoding Rho-GTPases or their regulatory proteins. Expanding our knowledge of the dynamic regulation of the actin network by Rho-GTPases in podocytes will pave the way for effective therapeutic options for NS patients.
Collapse
|
8
|
The other side of the coin: functional and structural versatility of ADF/cofilins. Eur J Cell Biol 2014; 93:238-51. [PMID: 24836399 DOI: 10.1016/j.ejcb.2013.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/20/2023] Open
Abstract
Several cellular processes rely on the fine tuning of actin cytoskeleton. A central component in the regulation of this cellular machinery is the ADF-H domain proteins. Despite sharing the same domain, ADF-H domain proteins produce a diverse functional landscape in the regulation of the actin cytoskeleton. Recent findings emphasize that the functional and structural features of these proteins can differ not only between ADF-H families but even within the same family. The structural and evolutional background of this functional diversity is poorly understood. This review focuses on the specific functional characteristics of ADF-H domain proteins and how these features can be linked to structural differences in the ADF-H domain and also to different conformational transitions in actin. In the light of recent discoveries we pay special attention to the ADF/cofilin proteins to find tendencies along which the functional and structural diversification is governed through the evolution.
Collapse
|
9
|
McCullough BR, Grintsevich EE, Chen CK, Kang H, Hutchison AL, Henn A, Cao W, Suarez C, Martiel JL, Blanchoin L, Reisler E, De La Cruz EM. Cofilin-linked changes in actin filament flexibility promote severing. Biophys J 2011; 101:151-9. [PMID: 21723825 DOI: 10.1016/j.bpj.2011.05.049] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/20/2011] [Accepted: 05/24/2011] [Indexed: 11/25/2022] Open
Abstract
The actin regulatory protein, cofilin, increases the bending and twisting elasticity of actin filaments and severs them. It has been proposed that filaments partially decorated with cofilin accumulate stress from thermally driven shape fluctuations at bare (stiff) and decorated (compliant) boundaries, thereby promoting severing. This mechanics-based severing model predicts that changes in actin filament compliance due to cofilin binding affect severing activity. Here, we test this prediction by evaluating how the severing activities of vertebrate and yeast cofilactin scale with the flexural rigidities determined from analysis of shape fluctuations. Yeast actin filaments are more compliant in bending than vertebrate actin filaments. Severing activities of cofilactin isoforms correlate with changes in filament flexibility. Vertebrate cofilin binds but does not increase the yeast actin filament flexibility, and does not sever them. Imaging of filament thermal fluctuations reveals that severing events are associated with local bending and fragmentation when deformations attain a critical angle. The critical severing angle at boundaries between bare and cofilin-decorated segments is smaller than in bare or fully decorated filaments. These measurements support a cofilin-severing mechanism in which mechanical asymmetry promotes local stress accumulation and fragmentation at boundaries of bare and cofilin-decorated segments, analogous to failure of some nonprotein materials.
Collapse
Affiliation(s)
- Brannon R McCullough
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Tsai FC, Pai MH, Chiu CC, Chou CM, Hsieh MS. Denervation dynamically regulates integrin alpha7 signaling pathways and microscopic structures in rats. THE JOURNAL OF TRAUMA 2011; 70:220-7. [PMID: 21268308 DOI: 10.1097/ta.0b013e3181e4d558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Peripheral nerve injury causes serious problems in orthopedic and plastic surgeries. Cell adhesion molecules such as integrin alpha7 provoke cell binding and signaling pathways within myofibers. Expression profiles of integrin alpha7 signaling pathways and the molecule's microscopic structure were assessed to investigate the long-term dynamic changes in denervated rat skeletal muscle. METHODS A denervated rat skeletal muscle model was established by severing the sciatic nerve for 1 week, 2 weeks, 4 weeks, 8 weeks, 12 weeks, 20 weeks, and 26 weeks. Molecular expressions were investigated by mRNA and Western blot. The structural alterations were detected by immunohistochemistry, scanning electron microscopy, and transmission electron microscopy. RESULTS The denervated muscle atrophy presented the following dynamic molecular alterations: an initial increase around postdenervation in week (PIW) 8 and then a subsequent decay of integrin alpha7, integrin downstream signaling pathway (Ras or Raf or, ERK1/2), Akt, cleaved caspase-3, fast myosin heavy chain (MHC), beta actin, and RhoA. We demonstrated that the expressions of multiple signaling molecules were highly upregulated at PIW 8 (p<0.01). Scanning electron microscopy findings of the surface textures of myofibers showed more severe damage at PIW 8 and subsequently became smoother. Inner structures of myofibers separated with discontinuity on transmission electron microscopy examinations. CONCLUSION Our novel finding showed that time-series alterations of integrin alpha7 signaling molecules and surface microstructures in the long-term denervated rat skeletal muscle are biphasic and coherently dynamic. Persisted p-Akt elevation suggested that denervated muscle may regenerate if reinnervation or other treatment was performed.
Collapse
MESH Headings
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/physiology
- Blotting, Western
- Female
- Integrin alpha Chains/biosynthesis
- Integrin alpha Chains/physiology
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Muscle Denervation
- Muscle Fibers, Skeletal/diagnostic imaging
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/innervation
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Polymerase Chain Reaction
- Rats
- Signal Transduction/physiology
- Ultrasonography
Collapse
Affiliation(s)
- Feng-Chou Tsai
- Center for Mathematical Biology, Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, and Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Ti SC, Pollard TD. Purification of actin from fission yeast Schizosaccharomyces pombe and characterization of functional differences from muscle actin. J Biol Chem 2010; 286:5784-92. [PMID: 21148484 DOI: 10.1074/jbc.m110.199794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fission yeast Schizosaccharomyces pombe is an important genetic model organism for studying the mechanisms of endocytosis and cytokinesis. However, most work on the biochemical properties of fission yeast actin-binding proteins has been done with skeletal muscle actin for matters of convenience. When simulations of mathematical models of the mechanism of endocytosis were compared with events in live cells, some of the reactions appeared to be much faster than observed in biochemical experiments with muscle actin. Here, we used gelsolin affinity chromatography to purify actin from fission yeast. S. pombe actin shares many properties with skeletal muscle actin but has higher intrinsic nucleotide exchange rate, faster trimer nucleus formation, faster phosphate dissociation rate from polymerized actin, and faster nucleation of actin filaments with Arp2/3 complex. These properties close the gap between the biochemistry and predictions made by mathematical models of endocytosis in S. pombe cells.
Collapse
Affiliation(s)
- Shih-Chieh Ti
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
12
|
Hild G, Bugyi B, Nyitrai M. Conformational dynamics of actin: effectors and implications for biological function. Cytoskeleton (Hoboken) 2010; 67:609-29. [PMID: 20672362 PMCID: PMC3038201 DOI: 10.1002/cm.20473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 07/15/2010] [Indexed: 12/30/2022]
Abstract
Actin is a protein abundant in many cell types. Decades of investigations have provided evidence that it has many functions in living cells. The diverse morphology and dynamics of actin structures adapted to versatile cellular functions is established by a large repertoire of actin-binding proteins. The proper interactions with these proteins assume effective molecular adaptations from actin, in which its conformational transitions play essential role. This review attempts to summarise our current knowledge regarding the coupling between the conformational states of actin and its biological function.
Collapse
Affiliation(s)
- Gábor Hild
- Department of Biophysics, University of Pécs, Faculty of Medicine, Pécs, Szigeti str. 12, H-7624, Hungary
| | | | | |
Collapse
|
13
|
Wen KK, McKane M, Stokasimov E, Fields J, Rubenstein PA. A potential yeast actin allosteric conduit dependent on hydrophobic core residues val-76 and trp-79. J Biol Chem 2010; 285:21185-94. [PMID: 20442407 DOI: 10.1074/jbc.m110.121426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intramolecular allosteric interactions responsible for actin conformational regulation are largely unknown. Previous work demonstrated that replacing yeast actin Val-76 with muscle actin Ile caused decreased nucleotide exchange. Residue 76 abuts Trp-79 in a six-residue linear array beginning with Lys-118 on the surface and ending with His-73 in the nucleotide cleft. To test if altering the degree of packing of these two residues would affect actin dynamics, we constructed V76I, W79F, and W79Y single mutants as well as the Ile-76/Phe-79 and Ile-76/Tyr-79 double mutants. Tyr or Phe should decrease crowding and increase protein flexibility. Subsequent introduction of Ile should restore packing and dampen changes. All mutants showed decreased growth in liquid medium. W79Y alone was severely osmosensitive and exhibited vacuole abnormalities. Both properties were rescued by Ile-76. Phe-79 or Tyr decreased the thermostability of actin and increased its nucleotide exchange rate. These effects, generally greater for Tyr than for Phe, were reversed by introduction of Ile-76. HD exchange showed that the mutations caused propagated conformational changes to all four subdomains. Based on results from phosphate release and light-scattering assays, single mutations affected polymerization in the order of Ile, Phe, and Tyr from least to most. Introduction of Ile-76 partially rescued the polymerization defects caused by either Tyr-79 or Phe-79. Thus, alterations in crowding of the 76-79 residue pair can strongly affect actin conformation and behavior, and these results support the theory that the amino acid array in which they are located may play a central role in actin regulation.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
14
|
Bergeron SE, Zhu M, Thiem SM, Friderici KH, Rubenstein PA. Ion-dependent polymerization differences between mammalian beta- and gamma-nonmuscle actin isoforms. J Biol Chem 2010; 285:16087-95. [PMID: 20308063 DOI: 10.1074/jbc.m110.110130] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
beta- and gamma-nonmuscle actins differ by 4 amino acids at or near the N terminus and distant from polymerization interfaces. beta-Actin contains an Asp(1)-Asp(2)-Asp(3) and Val(10) whereas gamma-actin has a Glu(1)-Glu(2)-Glu(3) and Ile(10). Despite these small changes, conserved across mammals, fish, and birds, their differential localization in the same cell suggests they may play different roles reflecting differences in their biochemical properties. To test this hypothesis, we established a baculovirus-driven expression system for producing these actins in isoform-pure populations although contaminated with 20-25% insect actin. Surprisingly, Ca-gamma-actin exhibits a slower monomeric nucleotide exchange rate, a much longer nucleation phase, and a somewhat slower elongation rate than beta-actin. In the Mg-form, this difference between the two is much smaller. Ca-gamma-actin depolymerizes half as fast as does beta-actin. Mixing experiments with Ca-actins reveal the two will readily co-polymerize. In the Ca-form, phosphate release from polymerizing beta-actin occurs much more rapidly and extensively than polymerization, whereas phosphate release lags behind polymerization with gamma-actin. Phosphate release during treadmilling is twice as fast with beta- as with gamma-actin. With Mg-actin in the initial stages, phosphate release for both actins correlates much more closely with polymerization. Calcium bound in the high affinity binding site of gamma-actin may cause a selective energy barrier relative to beta-actin that retards the equilibration between G- and F-monomer conformations resulting in a slower polymerizing actin with greater filament stability. This difference may be particularly important in sites such as the gamma-actin-rich cochlear hair cell stereocilium where local mm calcium concentrations may exist.
Collapse
Affiliation(s)
- Sarah E Bergeron
- Department of Biochemistry, Roy A and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
15
|
Yates SP, Loncar A, Dawson JF. Actin polymerization is controlled by residue size at position 204. Biochem Cell Biol 2010; 87:853-65. [PMID: 19935871 DOI: 10.1139/o09-039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous work has shown that purified double mutant A204C/C374A yeast actin is polymerization-deficient in vitro under physiological concentrations. To understand the importance of the 204 residue in subdomain 4, a series of actin proteins with a single mutation at this position were created with Cys-374 retained. Only yeast expressing A204G-, A204S-, or A204C-actin were viable. The A204G and A204S strains were sensitive to cold temperature and hyperosmolarity, whereas the A204C strain showed more profound effects on growth under these conditions. Cells expressing A204C-actin exhibited anomalies previously observed for A204C/C374A actin, including abnormal actin structures. A204G- and A204S-actin proteins had 12- and 13-fold increased critical concentrations, respectively, relative to wild-type. Only at very high concentrations could A204C actin polymerize when ATP was bound; when hydrolyzed, the ADP-containing A204C filaments depolymerized, demonstrating a profound difference in critical concentration between ATP and ADP states with A204C actin. A correlation between size of the residue substituted at position 204 and energy minimization of actin filament models was observed. We propose that the region surrounding residue 204 is involved in interactions that change depending on the phosphorylation state of the bound nucleotide that might reflect different conformations of F-actin subunits.
Collapse
Affiliation(s)
- Susan P Yates
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
16
|
|
17
|
Noguchi TQP, Gomibuchi Y, Murakami K, Ueno H, Hirose K, Wakabayashi T, Uyeda TQP. Dominant negative mutant actins identified in flightless Drosophila can be classified into three classes. J Biol Chem 2009; 285:4337-47. [PMID: 19933578 DOI: 10.1074/jbc.m109.059881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Strongly dominant negative mutant actins, identified by An and Mogami (An, H. S., and Mogami, K. (1996) J. Mol. Biol. 260, 492-505), in the indirect flight muscle of Drosophila impaired its flight, even when three copies of the wild-type gene were present. Understanding how these strongly dominant negative mutant actins disrupt the function of wild-type actin would provide useful information about the molecular mechanism by which actin functions in vivo. Here, we expressed and purified six of these strongly dominant negative mutant actins in Dictyostelium and classified them into three groups based on their biochemical phenotypes. The first group, G156D, G156S, and G268D actins, showed impaired polymerization and a tendency to aggregate under conditions favoring polymerization. G63D actin of the second group was also unable to polymerize but, unlike those in the first group, remained soluble under polymerizing conditions. Kinetic analyses using G63D actin or G63D actin.gelsolin complexes suggested that the pointed end surface is defective, which would alter the polymerization kinetics of wild-type actin when mixed and could affect formation of thin filament structures in indirect flight muscle. The third group, R95C and E226K actins, was normal in terms of polymerization, but their motility on heavy meromyosin surfaces in the presence of tropomyosin-troponin indicated altered sensitivity to Ca(2+). Cofilaments in which R95C or E226K actins were copolymerized with a 3-fold excess of wild-type actin also showed altered Ca(2+) sensitivity in the presence of tropomyosin-troponin.
Collapse
Affiliation(s)
- Taro Q P Noguchi
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Wen KK, Rubenstein PA. Differential regulation of actin polymerization and structure by yeast formin isoforms. J Biol Chem 2009; 284:16776-16783. [PMID: 19386598 DOI: 10.1074/jbc.m109.006981] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The budding yeast formins, Bnr1 and Bni1, behave very differently with respect to their interactions with muscle actin. However, the mechanisms underlying these differences are unclear, and these formins do not interact with muscle actin in vivo. We use yeast wild type and mutant actins to further assess these differences between Bnr1 and Bni1. Low ionic strength G-buffer does not promote actin polymerization. However, Bnr1, but not Bni1, causes the polymerization of pyrene-labeled Mg-G-actin in G-buffer into single filaments based on fluorometric and EM observations. Polymerization by Bnr1 does not occur with Ca-G-actin. By cosedimentation, maximum filament formation occurs at a Bnr1:actin ratio of 1:2. The interaction of Bnr1 with pyrene-labeled S265C Mg-actin yields a pyrene excimer peak, from the cross-strand interaction of pyrene probes, which only occurs in the context of F-actin. In F-buffer, Bnr1 promotes much faster yeast actin polymerization than Bni1. It also bundles the F-actin in contrast to the low ionic strength situation where only single filaments form. Thus, the differences previously observed with muscle actin are not actin isoform-specific. The binding of both formins to F-actin saturate at an equimolar ratio, but only about 30% of each formin cosediments with F-actin. Finally, addition of Bnr1 but not Bni1 to pyrene-labeled wild type and S265C Mg-F actins enhanced the pyrene- and pyrene-excimer fluorescence, respectively, suggesting Bnr1 also alters F-actin structure. These differences may facilitate the ability of Bnr1 to form the actin cables needed for polarized delivery of nutrients and organelles to the growing yeast bud.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- From the Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Peter A Rubenstein
- From the Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
19
|
Stokasimov E, McKane M, Rubenstein PA. Role of intermonomer ionic bridges in the stabilization of the actin filament. J Biol Chem 2008; 283:34844-54. [PMID: 18945676 DOI: 10.1074/jbc.m804419200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Filament formation is required for most of the functions of actin. However, the intermonomer interactions that stabilize F-actin have not been elucidated because of a lack of an F-actin crystal structure. The Holmes muscle actin model suggests that an ionic interaction between Arg-39 of one monomer and Glu-167 of an adjacent monomer in the same strand contributes to this stabilization. Yeast actin has an Ala-167 instead. F-actin molecular dynamics modeling predicts another interaction between Arg-39 of one monomer and Asp-275 of an opposing strand monomer. In Toxoplasma gondii actin, which forms short stubby filaments, the Asp-275 equivalent is replaced by Arg leading to a potential filament-destabilizing charge-charge repulsion. Using yeast actin, we tested the effect of A167E as a potential stabilizer and A167R and D275R as potential filament disruptors. All mutations caused abnormal growth and mitochondrial malfunction. A167E and D275R actins polymerize normally and form relatively normal appearing filaments. A167R nucleates filaments more slowly and forms filament bundles. The R39D/A167R double mutant, which re-establishes an ionic bond in the opposite orientation, reverses this polymerization and bundling defect. Stoichiometric amounts of yeast cofilin have little effect on wild-type and A167E filaments. However, D275R and A167R actin depolymerization is profound with cofilin. Although our results suggest that disruption of an interaction between Arg-39 and Asp-275 is not sufficient to cause fragmentation, it suggests that it changes filament stability thereby disposing it for enhanced cofilin depolymerizing effects. Ala-167 results demonstrate the in vivo and in vitro importance of another potential Arg-39 ionic interaction.
Collapse
Affiliation(s)
- Ema Stokasimov
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
20
|
Kapoor P, Sahasrabuddhe AA, Kumar A, Mitra K, Siddiqi MI, Gupta CM. An unconventional form of actin in protozoan hemoflagellate, Leishmania. J Biol Chem 2008; 283:22760-73. [PMID: 18539603 DOI: 10.1074/jbc.m800213200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leishmania actin was cloned, overexpressed in baculovirus-insect cell system, and purified to homogeneity. The purified protein polymerized optimally in the presence of Mg2+ and ATP, but differed from conventional actins in its following properties: (i) it did not polymerize in the presence of Mg2+ alone, (ii) it polymerized in a restricted range of pH 7.0-8.5, (iii) its critical concentration for polymerization was found to be 3-4-fold lower than of muscle actin, (iv) it predominantly formed bundles rather than single filaments at pH 8.0, (v) it displayed considerably higher ATPase activity during polymerization, (vi) it did not inhibit DNase-I activity, and (vii) it did not bind the F-actin-binding toxin phalloidin or the actin polymerization disrupting agent Latrunculin B. Computational and molecular modeling studies revealed that the observed unconventional behavior of Leishmania actin is related to the diverged amino acid stretches in its sequence, which may lead to changes in the overall charge distribution on its solvent-exposed surface, ATP binding cleft, Mg2+ binding sites, and the hydrophobic loop that is involved in monomer-monomer interactions. Phylogenetically, it is related to ciliate actins, but to the best of our knowledge, no other actin with such unconventional properties has been reported to date. It is therefore suggested that actin in Leishmania may serve as a novel target for design of new antileishmanial drugs.
Collapse
Affiliation(s)
- Prabodh Kapoor
- Division of Molecular and Structural Biology, Central Drug Research Institute, Lucknow-226001, India
| | | | | | | | | | | |
Collapse
|
21
|
Wen KK, McKane M, Houtman JCD, Rubenstein PA. Control of the ability of profilin to bind and facilitate nucleotide exchange from G-actin. J Biol Chem 2008; 283:9444-53. [PMID: 18223293 DOI: 10.1074/jbc.m709806200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major factor in profilin regulation of actin cytoskeletal dynamics is its facilitation of G-actin nucleotide exchange. However, the mechanism of this facilitation is unknown. We studied the interaction of yeast (YPF) and human profilin 1 (HPF1) with yeast and mammalian skeletal muscle actins. Homologous pairs (YPF and yeast actin, HPF1 and muscle actin) bound more tightly to one another than heterologous pairs. However, with saturating profilin, HPF1 caused a faster etheno-ATP exchange with both yeast and muscle actins than did YPF. Based on the -fold change in ATP exchange rate/K(d), however, the homologous pairs are more efficient than the heterologous pairs. Thus, strength of binding of profilin to actin and nucleotide exchange rate are not tightly coupled. Actin/HPF interactions were entropically driven, whereas YPF interactions were enthalpically driven. Hybrid yeast actins containing subdomain 1 (sub1) or subdomain 1 and 2 (sub12) muscle actin residues bound more weakly to YPF than did yeast actin (K(d) = 2 microm versus 0.6 microm). These hybrids bound even more weakly to HPF than did yeast actin (K(d) = 5 microm versus 3.2 microm). sub1/YPF interactions were entropically driven, whereas the sub12/YPF binding was enthalpically driven. Compared with WT yeast actin, YPF binding to sub1 occurred with a 5 times faster k(off) and a 2 times faster k(on). sub12 bound with a 3 times faster k(off) and a 1.5 times slower k(on). Profilin controls the energetics of its interaction with nonhybrid actin, but interactions between actin subdomains 1 and 2 affect the topography of the profilin binding site.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
22
|
Bean GJ, Amann KJ. Polymerization properties of the Thermotoga maritima actin MreB: roles of temperature, nucleotides, and ions. Biochemistry 2008; 47:826-35. [PMID: 18095710 PMCID: PMC2562234 DOI: 10.1021/bi701538e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MreB is a bacterial orthologue of actin that affects cell shape, polarity, and chromosome segregation. Although a significant body of work has explored its cellular functions, we know very little about the biochemical behavior of MreB. We have cloned, overexpressed in Escherichia coli, and purified untagged MreB1 from Thermotoga maritima. We have characterized the conditions that regulate its monomer-to-polymer assembly reaction, the critical concentrations of that reaction, the manner in which MreB uses nucleotides, its stability, and the structure of the assembled polymer. MreB requires a bound purine nucleotide for polymerization and rapidly hydrolyzes it following assembly. MreB assembly contains two distinct components, one that does not require divalent cations and one that does, which may comprise the nucleation and elongation phases of assembly, respectively. MreB assembly is strongly favored by increasing temperature or protein concentration but inhibited differentially by high concentrations of monovalent salts. The polymerization rate increases and the bulk critical concentration decreases with increasing temperature, but in contrast to previous reports, MreB is capable of polymerizing across a broad range of temperatures. MreB polymers are shorter and stiffer and scatter more light than eukaryotic actin filaments. Due to rapid ATP hydrolysis and phosphate release, we suggest that most assembled MreB in cells is in the ADP-bound state. Because of only moderate differences between the ATP and ADP critical concentrations, treadmilling may occur, but we do not predict dynamic instability in cells. Because of the relatively low cellular concentration of MreB and the observed structural properties of the polymer, a single MreB assembly may exist in cells.
Collapse
Affiliation(s)
- Greg J. Bean
- Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Kurt J. Amann
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
- Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
23
|
Actin hydrophobic loop 262-274 and filament nucleation and elongation. J Mol Biol 2007; 375:793-801. [PMID: 18037437 DOI: 10.1016/j.jmb.2007.10.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 10/15/2007] [Accepted: 10/28/2007] [Indexed: 11/21/2022]
Abstract
The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently with the use of the yeast mutant actin L180C/L269C/C374A, in which the hydrophobic loop could be locked in a "parked" conformation by a disulfide bond between C180 and C269. Such a cross-linked globular actin monomer does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin, to assist with actin nucleation, and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not individually, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin, the helical twist of filamentous actin (F-actin) changes by approximately 5 degrees per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin and a change of twist by approximately 1 degrees per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics in both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors.
Collapse
|
24
|
Okreglak V, Drubin DG. Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. ACTA ACUST UNITED AC 2007; 178:1251-64. [PMID: 17875745 PMCID: PMC2064657 DOI: 10.1083/jcb.200703092] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cofilin is the major mediator of actin filament turnover in vivo. However, the molecular mechanism of cofilin recruitment to actin networks during dynamic actin-mediated processes in living cells and cofilin's precise in vivo functions have not been determined. In this study, we analyzed the dynamics of fluorescently tagged cofilin and the role of cofilin-mediated actin turnover during endocytosis in Saccharomyces cerevisiae. In living cells, cofilin is not necessary for actin assembly on endocytic membranes but is recruited to molecularly aged adenosine diphosphate actin filaments and is necessary for their rapid disassembly. Defects in cofilin function alter the morphology of actin networks in vivo and reduce the rate of actin flux through actin networks. The consequences of decreasing actin flux are manifested by decreased but not blocked endocytic internalization at the plasma membrane and defects in late steps of membrane trafficking to the vacuole. These results suggest that cofilin-mediated actin filament flux is required for the multiple steps of endocytic trafficking.
Collapse
Affiliation(s)
- Voytek Okreglak
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
25
|
McKane M, Wen KK, Meyer A, Rubenstein PA. Effect of the substitution of muscle actin-specific subdomain 1 and 2 residues in yeast actin on actin function. J Biol Chem 2006; 281:29916-28. [PMID: 16882670 DOI: 10.1074/jbc.m602251200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle and yeast actins display distinct behavioral characteristics. To better understand the allosteric interactions that regulate actin function, we created a muscle/yeast hybrid actin containing a muscle-specific outer domain (subdomains 1 and 2) and a yeast inner domain (subdomains 3 and 4). Actin with muscle subdomain 1 and the two yeast N-terminal negative charges supported viability. The four negative charge muscle N terminus in a muscle subdomain 1 background caused death, but in the same background actin with three N-terminal acidic residues (3Ac/Sub1) led to sick but viable cells. Addition of three muscle subdomain 2 residues (3Ac/Sub12) produced no further deleterious effects. These hybrid actins caused depolarized cytoskeletons, abnormal vacuoles, and mitochondrial and endocytosis defects. 3Ac/Sub1 G-actin exchanged bound epsilonATP more slowly than wild type actin, and the exchange rate for 3Ac/Sub12 was even slower, similar to that for muscle actin. The mutant actins polymerized faster and produced less stable and shorter filaments than yeast actin, the opposite of that expected for muscle actin. Unlike wild type actin, in the absence of unbound ATP, polymerization led to ADP-F-actin, which rapidly depolymerized. Like yeast actin, the hybrid actins activated muscle myosin S1 ATPase activity only about one-eighth as well as muscle actin, despite having essentially a muscle actin-specific myosin-binding site. Finally, the hybrid actins behaved abnormally in a yeast Arp2/3-dependent polymerization assay. Our results demonstrate a unique sensitivity of yeast to actin N-terminal negative charge density. They also provide insight into the role of each domain in the control of the various functions of actin.
Collapse
Affiliation(s)
- Melissa McKane
- Department of Biochemistry, Roy A. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | | | | | | |
Collapse
|
26
|
Schmitz S, Grainger M, Howell S, Calder LJ, Gaeb M, Pinder JC, Holder AA, Veigel C. Malaria Parasite Actin Filaments are Very Short. J Mol Biol 2005; 349:113-25. [PMID: 15876372 DOI: 10.1016/j.jmb.2005.03.056] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 03/17/2005] [Accepted: 03/21/2005] [Indexed: 11/19/2022]
Abstract
A novel form of actomyosin regulation has recently been proposed in which the polymerisation of new actin filaments regulates apicomplexan parasite motility. Here, we identified actin I in the merozoites of Plasmodium falciparum by mass spectrometry. The only post-translational modification is acetylation of the N terminus (acetyl-Gly-Glu-actin), while methylation of histidine 73, a common modification for actin, is absent. Results obtained with anti-actin antibodies suggest that, in contrast to a previous report, there is no actin-ubiquitin conjugate in merozoites. About half of the extracted monomeric actin polymerised and actin filaments could be sedimented at 500,000g. In contrast, centrifugation at 100,000g, conditions commonly used to sediment filamentous actin, yielded very little F-actin. In a functional characterisation using an in vitro motility assay, actin filaments moved over myosin at a velocity indistinguishable from that of rabbit skeletal actin. Filament length, however, was too short to be resolved by conventional fluorescence microscopy. On electron micrographs an average filament length of approximately 100nm was determined. We also identified by mass spectrometry proteins co-purifying with filamentous actin, which are potential actin-binding proteins. Our results demonstrate differences in actin filament dynamics for an apicomplexan parasite, which could be due to specific properties of the actin and/or actin-regulatory proteins.
Collapse
Affiliation(s)
- Stephan Schmitz
- Division of Physical Biochemistry, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wen KK, Rubenstein PA. Acceleration of yeast actin polymerization by yeast Arp2/3 complex does not require an Arp2/3-activating protein. J Biol Chem 2005; 280:24168-74. [PMID: 15857833 DOI: 10.1074/jbc.m502024200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arp2/3 complex creates filament branches leading to an enhancement in the rate of actin polymerization. Work with Arp complexes from different sources indicated that it was inactive by itself, required an activating factor such as the Wiskott-Aldrich syndrome protein (WASP), and might exhibit a preference for ATP or ADP-P(i) actin. However, with yeast actin, P(i) release is almost concurrent with polymerization, eliminating the presence of an ADP-P(i) cap. We thus investigated the ability of the yeast Arp2/3 complex (yArp2/3) to facilitate yeast actin polymerization in the presence and absence of the Arp2/3-activating factor Las17p WA. yArp2/3 significantly accelerates yeast actin but not muscle actin polymerization in the absence of Las17p WA. The addition of Las17p WA further enhances yeast actin polymerization by yArp2/3 and allows the complex to now assist muscle actin polymerization. This actin isoform difference is not observed with bovine Arp2/3 complex, because the neural WASP VCA fragment is required for polymerization of both actins. Observation of individual branching filaments showed that Las17p WA increased the persistence of filament branches. Compared with wild type actin, the V159N mutant actin, proposed to be more ATP-like in behavior, exhibited an enhanced rate of polymerization in the presence of the yArp2/3 complex. yArp2/3 caused a significant rate of P(i) release prior to observation of an increase in filament mass but while branched structures were present. Thus, yeast F-actin can serve as a primary yArp2/3-activating factor, indicating that a newly formed yeast actin filament has a topology, unlike that of muscle actin, that is recognized specifically by yArp2/3.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, Roy A., and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
28
|
Abstract
With yeast actin, contrary to other actins, filament formation, ATP hydrolysis, and Pi release are concurrent at low actin concentrations, the condition usually employed to assess actin polymerization. This observation leads to a question concerning the conformation of the filament barbed end that might be recognized by specific actin-binding proteins. To try to detect possible new actin polymer conformations that might be intermediate in the pathway leading to mature F-actin, we monitored the change in intrinsic tryptophan fluorescence of yeast and muscle actins polymerized at pH 6 to accelerate the rate of filament formation. This allowed temporal resolution of the Pi release process from the slower process of polymerization. With both actins, we detected a biphasic instead of the usual monophasic fluorescence change, a rapid decrease that tracks with filament formation followed by a slower rebound (the second phase). This second phase postpolymerization conformational change requires Pi release and occurs nearly coincident with its release. The addition of Pi causes this second phase response to disappear, and the inclusion of Pi during polymerization prevents its appearance. At pH 7.5, with higher yeast actin concentrations to accelerate polymerization, a two-phase fluorescence change is also observed. In this case, the second phase change lags substantially behind Pi release. Pi release could also be resolved from polymer formation. V159N yeast actin, hypothesized previously as remaining in a postpolymerization ATP-like state, exhibits the same two-phase intrinsic tryptophan fluorescence behavior as wild-type yeast actin. Together, these observations demonstrate the presence of an intermediate filament state between ADP-Pi and mature ADP-F-actin.
Collapse
Affiliation(s)
- Keith E Bryan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
29
|
Yarmola EG, Bubb MR. Effects of profilin and thymosin beta4 on the critical concentration of actin demonstrated in vitro and in cell extracts with a novel direct assay. J Biol Chem 2004; 279:33519-27. [PMID: 15184365 DOI: 10.1074/jbc.m404392200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The free actin concentration at steady state, Ac, is a variable that determines how actin regulatory proteins influence the extent of actin polymerization. We describe a novel method employing fluorescence anisotropy to directly measure Ac in any sample after the addition of a trace amount of labeled thymosin beta4 or thymosin beta4 peptide. Using this assay, we confirm earlier theoretical work on the helical polymerization of actin and confirm the effects of actin filament-stabilizing drugs and capping proteins on Ac, thereby validating the assay. We also confirm a controversial prior observation that profilin lowers the critical concentration of Mg2+-actin. A general mechanism is proposed to explain this effect, and the first quantitative dose-response curve for the effect of profilin on Ac facilitates its evaluation. This mechanism also predicts the effect of profilin on critical concentration in the presence of the limited amount of capping protein, which is the condition often found in cells, and the effect of profilin on critical concentration in cell extracts is demonstrated for the first time. Additionally, nonlinear effects of thymosin beta4 on the steady state amount of F-actin are explained by the observed changes in Ac. This assay has potential in vivo applications that complement those demonstrated in vitro.
Collapse
Affiliation(s)
- Elena G Yarmola
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | |
Collapse
|
30
|
Wong WW, Gerson JH, Rubenstein PA, Reisler E. Thin filament regulation and ionic interactions between the N-terminal region in actin and troponin. Biophys J 2002; 83:2726-32. [PMID: 12414705 PMCID: PMC1302357 DOI: 10.1016/s0006-3495(02)75282-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The N-terminal region in actin has been shown to interact with both myosin and troponin (Tn) during the cross-bridge cycle and in regulation. To study the role of this region in regulation, we used yeast actin mutants with increased and decreased numbers of acidic residues. The mutants included D24A/D25A, with Asp(24) and Asp(25) replaced with alanines; DNEQ, with the substitution of Asp(2) and Glu(4) with their amide analogs; and 4Ac, with Glu(3) and Asp(4) inserted in lieu of Ser(3). In the in vitro motility assay, using reconstituted regulated thin filaments, the sliding speeds of DNEQ, D24A/D25A, and 4Ac were similar at all pCa values. Thus, Ca(2+)-sensitivity of the thin filaments and the inhibitory function of TnI appear to be insensitive to changes in charge (+/-2) at the N-terminus of actin, suggesting little, if any, role of that actin region in regulation. A Ca(2+)-independent conformational change in that region was detected upon troponin binding to actin-Tm via an increase in the fluorescence of a pyrene probe attached to another yeast actin mutant that we used (Cys(1)).
Collapse
Affiliation(s)
- Wenise W Wong
- Department of Chemistry and Biochemistry, Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Because of the apparently greater conformational flexibility of yeast versus muscle actin and the ability of other members in the actin protein superfamily to efficiently use both ATP and GTP, we assessed the ability of yeast actin to function with GTP. Etheno-ATP exchange studies showed that the binding of GTP to yeast actin is about 1/9 as tight as that of ATP in contrast to the 1/1,240 ratio for muscle actin. Proteolysis of GTP-bound G-yeast actin suggests that the conformation of subdomain 2 is very much like that of ATP-bound actin, but CD studies show that GTP-bound actin is less thermostable than ATP-bound actin. GTP-actin polymerizes with an apparent critical concentration of 1.5 microm, higher than that of ATP-actin (0.3 microm) although filament structures observed by electron microscopy were similar. Yeast actin hydrolyzes GTP in a polymerization-dependent manner, and GTP-bound F-actin decorates with the myosin S1. Conversion of Phe(306) in the nucleotide binding site to the Tyr found in muscle actin raised the nucleotide discrimination ratio from the 1/9 of wild-type actin to 1/125. This result agrees with modeling that predicts that removal of the Tyr hydroxyl will create a space for the C2 amino group of the GTP guanine.
Collapse
Affiliation(s)
- Kuo-Kuang Wen
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
32
|
Yao X, Nguyen V, Wriggers W, Rubenstein PA. Regulation of yeast actin behavior by interaction of charged residues across the interdomain cleft. J Biol Chem 2002; 277:22875-82. [PMID: 11940592 DOI: 10.1074/jbc.m201685200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
His(73) participates in the regulation of the nucleotide binding cleft conformation in yeast actin. Earlier molecular dynamics studies suggested that Asp(184) interacts with His(73) thereby stabilizing a "closed-cleft" G-actin. However, beta-actin in the open-cleft state shows a closer interaction of His(73) with Asp(179) than with Asp(184). We have thus assessed the relative importance of Asp(184) and Asp(179) on yeast actin stability and function. Neutral substitutions at 184 or 179 alone had little adverse effect on the monomer and polymerization behavior of actin. Arg or His at 184 in H73E actin partially rescued the monomeric properties of H73E actin, as demonstrated by near-normal thermostability and wild-type (WT)-like protease digestion patterns. ATP exchange was still considerably faster than with WT-actin although slower than that of H73E alone. However, polymerization of H73E/D184R and H73E/D184H is worse than with H73E alone. Conversely, D179R rescued all monomeric properties of H73E to near WT values and largely restored polymerization rate and filament thermostability. These results and new simulations of G-actin in the "open" state underscore the importance of the His(73)-Asp(179) interaction and suggest that the open and not the closed state of yeast actin may be favored in the absence of the methyl group of His(73).
Collapse
Affiliation(s)
- Xiaoyi Yao
- Department of Biochemistry, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
33
|
Current awareness on yeast. Yeast 2001. [PMID: 11746606 DOI: 10.1002/yea.691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|