1
|
Krivoshey AV, Efremov AA, Matveishina EK, Panova VV, Vrzheshch PV. Simulation of the Level of Prostaglandins in Open Systems under the Action of Nonsteroidal Anti-Inflammatory Drugs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Goltsov A, Swat M, Peskov K, Kosinsky Y. Cycle Network Model of Prostaglandin H Synthase-1. Pharmaceuticals (Basel) 2020; 13:E265. [PMID: 32977592 PMCID: PMC7598269 DOI: 10.3390/ph13100265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
The kinetic model of Prostaglandin H Synthase-1 (PGHS-1) was developed to investigate its complex network kinetics and non-steroidal anti-inflammatory drugs (NSAIDs) efficacy in different in vitro and in vivo conditions. To correctly describe the complex mechanism of PGHS-1 catalysis, we developed a microscopic approach to modelling of intricate network dynamics of 35 intraenzyme reactions among 24 intermediate states of the enzyme. The developed model quantitatively describes interconnection between cyclooxygenase and peroxidase enzyme activities; substrate (arachidonic acid, AA) and reducing cosubstrate competitive consumption; enzyme self-inactivation; autocatalytic role of AA; enzyme activation threshold; and synthesis of intermediate prostaglandin G2 (PGG2) and final prostaglandin H2 (PGH2) products under wide experimental conditions. In the paper, we provide a detailed description of the enzyme catalytic cycle, model calibration based on a series of in vitro kinetic data, and model validation using experimental data on the regulatory properties of PGHS-1. The validated model of PGHS-1 with a unified set of kinetic parameters is applicable for in silico screening and prediction of the inhibition effects of NSAIDs and their combination on the balance of pro-thrombotic (thromboxane) and anti-thrombotic (prostacyclin) prostaglandin biosynthesis in platelets and endothelial cells expressing PGHS-1.
Collapse
Affiliation(s)
- Alexey Goltsov
- Biocybernetics Systems and Technologies Division, Russian Technological University (MIREA), 119454 Moscow, Russia
| | - Maciej Swat
- Simcyp PBPK Modeling and Simulation, Certara, Sheffield S1 2BJ, UK;
| | - Kirill Peskov
- Modeling & Simulation Decisions LLD, 125167 Moscow, Russia; (K.P.); (Y.K.)
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yuri Kosinsky
- Modeling & Simulation Decisions LLD, 125167 Moscow, Russia; (K.P.); (Y.K.)
| |
Collapse
|
3
|
Filimonov IS, Berzova AP, Barkhatov VI, Krivoshey AV, Trushkin NA, Vrzheshch PV. Negative Cooperativity in the Interaction of Prostaglandin H Synthase-1 with the Competitive Inhibitor Naproxen Can Be Described as the Interaction of a Non-competitive Inhibitor with Heterogeneous Enzyme Preparation. BIOCHEMISTRY (MOSCOW) 2018; 83:119-128. [PMID: 29618298 DOI: 10.1134/s0006297918020049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The kinetic mechanism of the interaction of nonsteroidal anti-inflammatory drugs (NSAIDs) with their main pharmacological target, prostaglandin H synthase (PGHS), has not yet been established. We showed that inhibition of PGHS-1 from sheep vesicular glands by naproxen (a representative of NSAIDs) demonstrates a non-competitive character with respect to arachidonic acid and cannot be described within a framework of the commonly used kinetic schemes. However, it can be described by taking into account the negative cooperativity of naproxen binding to the cyclooxygenase active sites of the PGHS-1 homodimer (the first naproxen molecule forms a more stable complex (K1 = 0.1 µM) with the enzyme than the second naproxen molecule (K2 = 9.2 µM)). An apparent non-competitive interaction of PGHS-1 with naproxen is due to slow dissociation of the enzyme-inhibitor complexes. The same experimental data could also be described using commonly accepted kinetic schemes, assuming that naproxen interacts was a mixture of two enzyme species with the inhibition constants Kα = 0.05 µM and Kβ = 18.3 µM. Theoretical analysis and numerical calculations show that the phenomenon of kinetic convergence of these two models has a general nature: when K2 >> K1, the kinetic patterns (for transient kinetics and equilibrium state) generated by the cooperative model could be described by a scheme assuming the presence of two enzyme forms with the inhibition constants Kα = K1/2, Kβ = 2·K2. When K2 << K1, the cooperative model can be presented as a scheme with two inhibitor molecules simultaneously binding to the enzyme with the observed inhibition constant K (K = K1·K2). The assumption on the heterogeneity of the enzyme preparation in relation to its affinity to the inhibitor can be used instead of the assumption on the negative cooperativity of the enzyme-inhibitor interactions for convenient and easy practical description of such phenomena in enzymology, biotechnology, pharmacology, and other fields of science.
Collapse
Affiliation(s)
- I S Filimonov
- Lomonosov Moscow State University, International Biotechnological Center, Moscow, 119991, Russia
| | | | | | | | | | | |
Collapse
|
4
|
Szewczuk LM, Penning TM. Co-oxidation by cyclooxygenases. CURRENT PROTOCOLS IN TOXICOLOGY 2013; Chapter 4:Unit4.30. [PMID: 23045015 DOI: 10.1002/0471140856.tx0430s42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclooxygenases (COXs; prostaglandin H(2) synthases) catalyze the bis-dioxygenation of arachidonic acid (AA) to generate prostaglandin (PG) G(2) followed by the peroxidative cleavage of PGG(2) to yield PGH(2), the precursor to all of the vasoactive PGs. These enzymes utilize a Fe-protoporhyrin IX (heme) co-factor to catalyze peroxide bond cleavage, which puts the Fe at a higher oxidation state (Fe(3+) → Fe(5+)). The heme Fe requires two electrons (e(-)) to return to its resting state (Fe(3+)) for the next round of catalysis. Peroxide bond cleavage thus occurs via compound I and compound II, observed for horseradish peroxidase. To return to Fe(3+), electrons come from "co-reductants" and their subsequent oxidation by the enzyme is known as "co-oxidation". The protocols in this unit are aimed at characterizing this side reaction of COXs.
Collapse
|
5
|
Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev 2011; 111:5821-65. [PMID: 21942677 PMCID: PMC3285496 DOI: 10.1021/cr2002992] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- William L Smith
- Department of Biological Chemistry, University of Michigan Medical School, 1150 West Medical Center Drive, 5301 MSRB III, Ann Arbor, Michigan 48109-5606, USA.
| | | | | |
Collapse
|
6
|
Trostchansky A, Bonilla L, Thomas CP, O'Donnell VB, Marnett LJ, Radi R, Rubbo H. Nitroarachidonic acid, a novel peroxidase inhibitor of prostaglandin endoperoxide H synthases 1 and 2. J Biol Chem 2011; 286:12891-900. [PMID: 21266582 PMCID: PMC3075636 DOI: 10.1074/jbc.m110.154518] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prostaglandin endoperoxide H synthase (PGHS) catalyzes the oxidation of arachidonate to prostaglandin H2. We have previously synthesized and chemically characterized nitroarachidonic acid (AANO2), a novel anti-inflammatory signaling mediator. Herein, the interaction of AANO2 with PGHS was analyzed. AANO2 inhibited oxygenase activity of PGHS-1 but not PGHS-2. AANO2 exhibited time- and concentration-dependent inhibition of peroxidase activity in both PGHS-1 and -2. The plot of kobsversus AANO2 concentrations showed a hyperbolic function with kinact = 0.045 s−1 and Ki*app = 0.019 μm for PGHS-1 and kinact = 0.057 s−1 and Ki*app = 0.020 μm for PGHS-2. Kinetic analysis suggests that inactivation of PGHS by AANO2 involves two sequential steps: an initial reversible binding event (described by Ki) followed by a practically irreversible event (Ki*app) leading to an inactivated enzyme. Inactivation was associated with irreversible disruption of heme binding to the protein. The inhibitory effects of AANO2 were selective because other nitro-fatty acids tested, such as nitrooleic acid and nitrolinoleic acid, were unable to inhibit enzyme activity. In activated human platelets, AANO2 significantly decreased PGHS-1-dependent thromboxane B2 formation in parallel with a decrease in platelet aggregation, thus confirming the biological relevance of this novel inhibitory pathway.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
7
|
Prostaglandin H synthase: resolved and unresolved mechanistic issues. Arch Biochem Biophys 2009; 493:103-24. [PMID: 19728984 DOI: 10.1016/j.abb.2009.08.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/25/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022]
Abstract
The cyclooxygenase and peroxidase activities of prostaglandin H synthase (PGHS)-1 and -2 have complex kinetics, with the cyclooxygenase exhibiting feedback activation by product peroxide and irreversible self-inactivation, and the peroxidase undergoing an independent self-inactivation process. The mechanistic bases for these complex, non-linear steady-state kinetics have been gradually elucidated by a combination of structure/function, spectroscopic and transient kinetic analyses. It is now apparent that most aspects of PGHS-1 and -2 catalysis can be accounted for by a branched chain radical mechanism involving a classic heme-based peroxidase cycle and a radical-based cyclooxygenase cycle. The two cycles are linked by the Tyr385 radical, which originates from an oxidized peroxidase intermediate and begins the cyclooxygenase cycle by abstracting a hydrogen atom from the fatty acid substrate. Peroxidase cycle intermediates have been well characterized, and peroxidase self-inactivation has been kinetically linked to a damaging side reaction involving the oxyferryl heme oxidant in an intermediate that also contains the Tyr385 radical. The cyclooxygenase cycle intermediates are poorly characterized, with the exception of the Tyr385 radical and the initial arachidonate radical, which has a pentadiene structure involving C11-C15 of the fatty acid. Oxygen isotope effect studies suggest that formation of the arachidonate radical is reversible, a conclusion consistent with electron paramagnetic resonance spectroscopic observations, radical trapping by NO, and thermodynamic calculations, although moderate isotope selectivity was found for the H-abstraction step as well. Reaction with peroxide also produces an alternate radical at Tyr504 that is linked to cyclooxygenase activation efficiency and may serve as a reservoir of oxidizing equivalent. The interconversions among radicals on Tyr385, on Tyr504, and on arachidonate, and their relationships to regulation and inactivation of the cyclooxygenase, are still under active investigation for both PGHS isozymes.
Collapse
|
8
|
Filimonov IS, Vrzheshch PV. Molecular oxygen (a substrate of the cyclooxygenase reaction) in the kinetic mechanism of the bifunctional enzyme prostaglandin-H-synthase. BIOCHEMISTRY (MOSCOW) 2007; 72:944-53. [PMID: 17922652 DOI: 10.1134/s0006297907090040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin-H-synthase is a bifunctional enzyme catalyzing conversion of arachidonic acid into prostaglandin H2 as a result of cyclooxygenase and peroxidase reactions. The dependence of the rate of the cyclooxygenase reaction on oxygen concentration in the absence and in the presence of electron donor was determined. A two-dimensional kinetic scheme accounting for independent proceeding and mutual influence of the cyclooxygenase and peroxidase reactions and also for hierarchy of the rates of these reactions was used as a model. In the context of this model, it was shown that there are irreversible stages in the mechanism of the cyclooxygenase reaction between points of substrate donation (between donation of arachidonic acid and the first oxygen molecule and also between donation of two oxygen molecules).
Collapse
Affiliation(s)
- I S Filimonov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | | |
Collapse
|
9
|
Tsaplina LA, Vrzheshch PV. Cyclooxygenase and peroxidase inactivation of prostaglandin-H-synthase during catalysis. BIOCHEMISTRY (MOSCOW) 2007; 72:631-9. [PMID: 17630907 DOI: 10.1134/s0006297907060053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Prostaglandin-H-synthase (PGHS) is a bifunctional enzyme catalyzing cyclooxygenase and peroxidase reactions and undergoing irreversible inactivation during catalysis. A new method for kinetic studies of both PGHS activities in the course of cyclooxygenase as well as peroxidase reactions and also preincubation with hydroperoxides is suggested. It is shown that peroxidase activity is retained after complete cyclooxygenase inactivation and cyclooxygenase activity is retained after complete peroxidase inactivation. Two-stage cyclooxygenase inactivation occurs on preincubation of PGHS with hydrogen peroxide. Studies on inactivation under various conditions indicate that chemical mechanisms of cyclooxygenase and peroxidase inactivation are different. The data allow development of kinetic models.
Collapse
Affiliation(s)
- L A Tsaplina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
| | | |
Collapse
|
10
|
Liu J, Seibold SA, Rieke CJ, Song I, Cukier RI, Smith WL. Prostaglandin Endoperoxide H Synthases. J Biol Chem 2007; 282:18233-18244. [PMID: 17462992 DOI: 10.1074/jbc.m701235200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclooxygenase (COX) activity of prostaglandin endoperoxide H synthases (PGHSs) converts arachidonic acid and O2 to prostaglandin G2 (PGG2). PGHS peroxidase (POX) activity reduces PGG2 to PGH2. The first step in POX catalysis is formation of an oxyferryl heme radical cation (Compound I), which undergoes intramolecular electron transfer forming Intermediate II having an oxyferryl heme and a Tyr-385 radical required for COX catalysis. PGHS POX catalyzes heterolytic cleavage of primary and secondary hydroperoxides much more readily than H2O2, but the basis for this specificity has been unresolved. Several large amino acids form a hydrophobic "dome" over part of the heme, but when these residues were mutated to alanines there was little effect on Compound I formation from H2O2 or 15-hydroperoxyeicosatetraenoic acid, a surrogate substrate for PGG2. Ab initio calculations of heterolytic bond dissociation energies of the peroxyl groups of small peroxides indicated that they are almost the same. Molecular Dynamics simulations suggest that PGG2 binds the POX site through a peroxyl-iron bond, a hydrogen bond with His-207 and van der Waals interactions involving methylene groups adjoining the carbon bearing the peroxyl group and the protoporphyrin IX. We speculate that these latter interactions, which are not possible with H2O2, are major contributors to PGHS POX specificity. The distal Gln-203 four residues removed from His-207 have been thought to be essential for Compound I formation. However, Q203V PGHS-1 and PGHS-2 mutants catalyzed heterolytic cleavage of peroxides and exhibited native COX activity. PGHSs are homodimers with each monomer having a POX site and COX site. Cross-talk occurs between the COX sites of adjoining monomers. However, no cross-talk between the POX and COX sites of monomers was detected in a PGHS-2 heterodimer comprised of a Q203R monomer having an inactive POX site and a G533A monomer with an inactive COX site.
Collapse
Affiliation(s)
- Jiayan Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Steve A Seibold
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Caroline J Rieke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Inseok Song
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Robert I Cukier
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - William L Smith
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
11
|
Wu G, Rogge CE, Wang JS, Kulmacz RJ, Palmer G, Tsai AL. Oxyferryl heme and not tyrosyl radical is the likely culprit in prostaglandin H synthase-1 peroxidase inactivation. Biochemistry 2007; 46:534-42. [PMID: 17209563 PMCID: PMC2851183 DOI: 10.1021/bi061859h] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostaglandin H synthase-1 (PGHS-1) is a bifunctional heme protein catalyzing both a peroxidase reaction, in which peroxides are converted to alcohols, and a cyclooxygenase reaction, in which arachidonic acid is converted into prostaglandin G2. Reaction of PGHS-1 with peroxide forms Intermediate I, which has an oxyferryl heme and a porphyrin radical. An intramolecular electron transfer from Tyr385 to Intermediate I forms Intermediate II, which contains two oxidants: an oxyferryl heme and the Tyr385 radical required for cyclooxygenase catalysis. Self-inactivation of the peroxidase begins with Intermediate II, but it has been unclear which of the two oxidants is involved. The kinetics of tyrosyl radical, oxyferryl heme, and peroxidase inactivation were examined in reactions of PGHS-1 reconstituted with heme or mangano protoporphyrin IX with a lipid hydroperoxide, 15-hydroperoxyeicosatetraenoic acid (15-HPETE), and ethyl hydrogen peroxide (EtOOH). Tyrosyl radical formation was significantly faster with 15-HPETE than with EtOOH and roughly paralleled oxyferryl heme formation at low peroxide levels. However, the oxyferryl heme intensity decayed much more rapidly than the tyrosyl radical intensity at high peroxide levels. The rates of reactions for PGHS-1 reconstituted with MnPPIX were approximately an order of magnitude slower, and the initial species formed displayed a wide singlet (WS) radical, rather than the wide doublet radical observed with PGHS-1 reconstituted with heme. Inactivation of the peroxidase activity during the reaction of PGHS-1 with EtOOH or 15-HPETE correlated with oxyferryl heme decay, but not with changes in tyrosyl radical intensity or EPR line shape, indicating that the oxyferryl heme, and not the tyrosyl radical, is responsible for the self-destructive peroxidase side reactions. Computer modeling to a minimal mechanism was consistent with oxyferryl heme being the source of peroxidase inactivation.
Collapse
Affiliation(s)
- Gang Wu
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Corina E. Rogge
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Jinn-Shyan Wang
- School of Medicine, Fu Jen Catholic University, Taipei Hisen, Taiwan 24205
| | - Richard J. Kulmacz
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
| | - Graham Palmer
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Ah-Lim Tsai
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030
- To whom correspondence should be addressed: Division of Hematology, University of Texas Health Science Center, P.O. Box 20708, Houston, TX 77225. Telephone: (713) 500-6771. Fax: (713) 500-6810.
| |
Collapse
|
12
|
Bingham S, Beswick PJ, Blum DE, Gray NM, Chessell IP. The role of the cylooxygenase pathway in nociception and pain. Semin Cell Dev Biol 2006; 17:544-54. [PMID: 17071117 DOI: 10.1016/j.semcdb.2006.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cycloxygenase (COX) pathways have long been targeted for the treatment of inflammatory pain, initially through the use of NSAIDs. With the demonstration of two major COX isoforms, COX-1 and COX-2, involved in the production of prostanoids, but with different distribution and regulation, selective COX-2 inhibitors have been developed. This review covers factors influencing COX enzyme activity, the role of their products in the development and maintenance of pain and discusses recent safety concerns of COX-2 inhibitors.
Collapse
Affiliation(s)
- Sharon Bingham
- Neurology and Gastrointestinal CEDD, GlaxoSmithKline, Coldharbour Road, Harlow, Essex CM19 5AW, UK.
| | | | | | | | | |
Collapse
|
13
|
Deeb RS, Hao G, Gross SS, Lainé M, Qiu JH, Resnick B, Barbar EJ, Hajjar DP, Upmacis RK. Heme catalyzes tyrosine 385 nitration and inactivation of prostaglandin H2 synthase-1 by peroxynitrite. J Lipid Res 2006; 47:898-911. [PMID: 16470026 DOI: 10.1194/jlr.m500384-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mechanism by which the inflammatory enzyme prostaglandin H(2) synthase-1 (PGHS-1) deactivates remains undefined. This study aimed to determine the stabilizing parameters of PGHS-1 and identify factors leading to deactivation by nitric oxide species (NO(x)). Purified PGHS-1 was stabilized when solubilized in beta-octylglucoside (rather than Tween-20 or CHAPS) and when reconstituted with hemin chloride (rather than hematin). Peroxynitrite (ONOO(-)) activated the peroxidase site of PGHS-1 independently of the cyclooxygenase site. After ONOO(-) exposure, holoPGHS-1 could not metabolize arachidonic acid and was structurally compromised, whereas apoPGHS-1 retained full activity once reconstituted with heme. After incubation of holoPGHS-1 with ONOO(-), heme absorbance was diminished but to a lesser extent than the loss in enzymatic function, suggesting the contribution of more than one process to enzyme inactivation. Hydroperoxide scavengers improved enzyme activity, whereas hydroxyl radical scavengers provided no protection from the effects of ONOO(-). Mass spectral analyses revealed that tyrosine 385 (Tyr 385) is a target for nitration by ONOO(-) only when heme is present. Multimer formation was also observed and required heme but could be attenuated by arachidonic acid substrate. We conclude that the heme plays a role in catalyzing Tyr 385 nitration by ONOO(-) and the demise of PGHS-1.
Collapse
Affiliation(s)
- Ruba S Deeb
- Department of Pathology and Laboratory Medicine, Center of Vascular Biology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kulmacz RJ. Regulation of cyclooxygenase catalysis by hydroperoxides. Biochem Biophys Res Commun 2005; 338:25-33. [PMID: 16115608 DOI: 10.1016/j.bbrc.2005.08.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2005] [Accepted: 08/09/2005] [Indexed: 11/23/2022]
Abstract
Activation of cyclooxygenase catalysis in prostaglandin H synthase-1 and -2 by peroxide-dependent formation of a tyrosyl radical is emerging as an important part of regulating cellular production of bioactive prostanoids. This review discusses the mechanism of tyrosyl radical formation and the influence of peroxide, fatty acid, peroxidase cosubstrate, and protein structure on the activation process and cyclooxygenase catalysis.
Collapse
Affiliation(s)
- Richard J Kulmacz
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Chou DS, Hsiao G, Shen MY, Tsai YJ, Chen TF, Sheu JR. ESR spin trapping of a carbon-centered free radical from agonist-stimulated human platelets. Free Radic Biol Med 2005; 39:237-48. [PMID: 15964515 DOI: 10.1016/j.freeradbiomed.2005.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Revised: 02/21/2005] [Accepted: 03/10/2005] [Indexed: 01/14/2023]
Abstract
Several free radical intermediates formed during synthesis of prostaglandin H synthase (PGHS) catalyze the biosynthesis of prostaglandins from arachidonic acid (AA). We attempted to directly detect free radical intermediates of PGHS in cells. Studies were carried out using human platelets, which possess significant PGHS activity. Electron spin resonance (ESR) spectra showed a g = 2.005 signal radical, which was formed by the incubation of collagen, thrombin, AA, and a variety of peroxides with human platelets. The ESR spectra obtained using 5,5-dimethyl-1 pyrroline N-oxide (DMPO) and alpha-phenyl N-tert.-butylnitron (PBN) were typical of an immobilized nitroxide. Extensive Pronase digestion of both the DMPO and PBN adducts allowed us to deduce that it was a carbon-centered radical. The formation of this radical was inhibited by potassium cyanide and by desferroxamine. Peroxides stimulated formation of the g = 2.005 signal radical and inhibited platelet aggregation induced by AA. PGHS cosubstrates increased the intensity of the radical signal but inhibited platelet aggregation induced by AA. Both S-nitro-L-glutathione and reduced glutathione quenched the g = 2.005 radical but could not restore platelet aggregatory activity. These results suggest that the carbon-centered radical is a self-destructing free radical formed during peroxide-mediated deactivation of PGHS in human platelets.
Collapse
Affiliation(s)
- Duen-Suey Chou
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | | | |
Collapse
|
16
|
Rouzer CA, Marnett LJ. Glycerylprostaglandin synthesis by resident peritoneal macrophages in response to a zymosan stimulus. J Biol Chem 2005; 280:26690-700. [PMID: 15917246 DOI: 10.1074/jbc.m501021200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclooxygenase (COX)-2 oxygenates arachidonic acid (AA) and 2-arachidonylglycerol (2-AG) to endoperoxides, which are subsequently transformed to prostaglandins (PGs) and glycerylprostaglandins (PG-Gs). PG-G formation has not been demonstrated in intact cells treated with a physiological agonist. Resident peritoneal macrophages, which express COX-1, were pretreated with lipopolysaccharide to induce COX-2. Addition of zymosan caused release of 2-AG and production of the glyceryl esters of PGE2 and PGI2 over 60 min. The total quantity of PG-Gs (16 +/- 6 pmol/10(7) cells) was much lower than that of the corresponding PGs produced from AA (21,000 +/- 7,000 pmol/10(7) cells). The differences in PG-G and PG production were partially explained by differences in the amounts of 2-AG and AA released in response to zymosan. The selective COX-2 inhibitor, SC236, reduced PG-G and PG production by 49 and 17%, respectively, indicating a significant role for COX-1 in PG-G and especially PG synthesis. Time course studies indicated that COX-2-dependent oxygenation rapidly declined 20 min after zymosan addition. When exogenous 2-AG was added to macrophages, a substantial portion was hydrolyzed to AA and converted to PGs; 1 microm 2-AG yielded 820 +/- 200 pmol of PGs/10(7) cells and 78 +/- 41 pmol of PG-Gs/10(7) cells. SC236 reduced PG-G and PG production from exogenous 2-AG by 88 and 76%, respectively, indicating a more significant role for COX-2 in the utilization of exogenous substrate. In conclusion, lipopolysaccharide-pretreated macrophages produce PG-Gs from endogenous 2-AG during zymosan phagocytosis, but PG-G formation is limited by substrate hydrolysis and inactivation of COX-2.
Collapse
Affiliation(s)
- Carol A Rouzer
- Department of Biochemistry, the Vanderbilt Institute of Chemical Biology, the Center in Molecular Toxicology, Nashville, TN 37232-0146, USA
| | | |
Collapse
|
17
|
Ouellet M, Aitken SM, English AM, Percival MD. Aromatic hydroxamic acids and hydrazides as inhibitors of the peroxidase activity of prostaglandin H2 synthase-2. Arch Biochem Biophys 2004; 431:107-18. [PMID: 15464732 DOI: 10.1016/j.abb.2004.07.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 07/29/2004] [Indexed: 11/28/2022]
Abstract
The cyclooxygenase activity of the bifunctional enzyme prostaglandin H(2) synthase-2 (PGHS-2) is the target of non-steroidal anti-inflammatory drugs. Inhibition of the peroxidase activity of PGHS has been less studied. Using Soret absorption changes, the binding of aromatic hydroxamic acids to the peroxidase site of PGHS-2 was examined to investigate the structural determinants of inhibition. Typical of mammalian peroxidases, the K(d) for benzhydroxamic acid (42mM) is much greater than that for salicylhydroxamic acid (475microM). Binding of the hydroxamic acid tepoxalin (25microM) resulted in only minor Soret changes. However, tepoxalin is an efficient reducing cosubstrate, indicating that it is an alternative electron donor rather than an inhibitor of the peroxidase activity. Aromatic hydrazides are metabolically activated inhibitors of peroxidases. 2-Naphthoichydrazide (2-NZH) caused the time- and concentration-dependent inhibition of both PGHS-2 peroxidase and cyclooxygenase activities. H(2)O(2) was required for the inactivation of both PGHS-2 activities and indomethacin (which binds at the cyclooxygenase site) did not affect the peroxidase inhibitory potency of 2-NZH. A series of aromatic hydrazides were found to be potent inhibitors of PGHS-2 peroxidase activity with IC(50) values in the 6-100microM range for 13 of the 18 hydrazides examined. Selective inhibition of PGHS-2 over myeloperoxidase and horseradish peroxidase isozyme C was increased by certain ring substitutions. In particular, a chloro group para to the hydrazide moiety increased the PGHS-2 selectivity relative to both myeloperoxidase and horseradish peroxidase isozyme C.
Collapse
Affiliation(s)
- Marc Ouellet
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe-Claire-Dorval, Que., Canada H9R 4P8
| | | | | | | |
Collapse
|
18
|
Hazelton WD, Tien JH, Donato VW, Sparks R, Ulrich CM. Prostaglandin H synthases: members of a class of quasi-linear threshold switches. Biochem Pharmacol 2004; 68:423-32. [PMID: 15242809 DOI: 10.1016/j.bcp.2004.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
Prostaglandin H synthase (PTGS or COX) enzymes catalyze rate-limiting steps in the synthesis of potent prostanoids, including various prostaglandins, thromboxane, and prostacyclin. Mechanisms that have evolved for regulating prostanoid biosynthesis reflect a tension between achieving a rapid but measured response to cellular signals while minimizing spurious activation by signal noise. We found through mathematical modeling that the PTGS enzymes can be thought of as regulatory switches with approximately linear output above an adjustable threshold. In vivo synthesis allows continuous production while signal remains above threshold. Different isoforms show specific adaptions reflecting their physiological roles as constitutive or inducible enzymes. Mathematical modeling helps explain how these adaptations enable the PTGS1 and PTGS2 enzymes to maintain their physiological roles while avoiding potentially damaging consequences.
Collapse
Affiliation(s)
- William D Hazelton
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M2 B500 Seattle, WA 98109-1024, USA.
| | | | | | | | | |
Collapse
|
19
|
Yu MK, Moos PJ, Cassidy P, Wade M, Fitzpatrick FA. Conditional Expression of 15-Lipoxygenase-1 Inhibits the Selenoenzyme Thioredoxin Reductase. J Biol Chem 2004; 279:28028-35. [PMID: 15123685 DOI: 10.1074/jbc.m313939200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenoenzyme thioredoxin reductase regulates redox-sensitive proteins involved in inflammation and carcinogenesis, including ribonucleotide reductase, p53, NFkappaB, and others. Little is known about endogenous cellular factors that modulate thioredoxin reductase activity. Here we report that several metabolites of 15-lipoxygenase-1 inhibit purified thioredoxin reductase in vitro. 15(S)-Hydroperoxy-5,8,11-cis-13-trans-eicosatetraenoic acid, a metastable hydroperoxide generated by 15-lipoxygenase-1, and 4-hydroxy-2-nonenal, its non-enzymatic rearrangement product inhibit thioredoxin reductase with IC(50) = 13 +/- 1.5 microm and 1 +/- 0.2 microm, respectively. Endogenously generated metabolites of 15-lipoxygenase-1 also inhibit thioredoxin reductase in HEK-293 cells that harbor a 15-LOX-1 gene under the control of an inducible promoter complex. Conditional, highly selective induction of 15-lipoxygenase-1 caused an inhibition of ribonucleotide reductase activity, cell cycle arrest in G(1), impairment of anchorage-independent growth, and accumulation of the pro-apoptotic protein BAX. All of these responses are consistent with inhibition of thioredoxin reductase via 15-lipoxygenase-1 overexpression. In contrast, metabolites of 5-lipoxygenase were poor inhibitors of isolated thioredoxin reductase, and the overexpression of 5-lipoxygenase did not inhibit thioredoxin reductase or cause a G cell cycle arrest. The influences of 15-lipoxygenase-1 on (1)inflammation, cell growth, and survival may be attributable, in part, to inhibition of thioredoxin reductase and several redox-sensitive processes subordinate to thioredoxin reductase.
Collapse
Affiliation(s)
- Margaret K Yu
- Department of Internal Medicine, The Huntsman Cancer Institute, University of Utah Health Sciences, Salt Lake City, UT 84112-0555, USA
| | | | | | | | | |
Collapse
|
20
|
Rouzer CA, Marnett LJ. Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chem Rev 2003; 103:2239-304. [PMID: 12797830 DOI: 10.1021/cr000068x] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carol A Rouzer
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt Ingram Comprehensive Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
21
|
Smith WL, Song I. The enzymology of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat 2002; 68-69:115-28. [PMID: 12432913 DOI: 10.1016/s0090-6980(02)00025-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We summarize the enzymological properties of prostaglandin endoperoxide H synthases (PGHs)-1 and -2, the enzymes that catalyze the committed step in prostaglandin biosynthesis. These isoenzymes are closely related structurally and mechanistically. Each catalyzes a peroxidase and a cyclooxygenase reaction at spatially separate but neighboring, electronically interrelated active sites. The peroxidase is necessary to activate the cyclooxygenase; oxidation of the heme group of the peroxidase by peroxide leads to oxidation of a cyclooxygenase active site tyrosine. The tyrosine radical abstracts hydrogen from arachidonic acid to form an arachidonate radical which reacts sequentially with two oxygen molecules forming the intermediate product PGG2. PGG2 is then reduced by the peroxidase activity to PGH2. Based on the crystal structure of PGHS-1 arachidonate complex, it is now possible to envision how arachidonate is bound and oxygenation occurs. Recently, it has become possible to distinguish kinetically between the cyclooxygenase and peroxidase suicide inactivation reactions.
Collapse
Affiliation(s)
- William L Smith
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, USA.
| | | |
Collapse
|
22
|
Valderrama B, Ayala M, Vazquez-Duhalt R. Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes. CHEMISTRY & BIOLOGY 2002; 9:555-65. [PMID: 12031662 DOI: 10.1016/s1074-5521(02)00149-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As the number of industrial applications for proteins continues to expand, the exploitation of protein engineering becomes critical. It is predicted that protein engineering can generate enzymes with new catalytic properties and create desirable, high-value, products at lower production costs. Peroxidases are ubiquitous enzymes that catalyze a variety of oxygen-transfer reactions and are thus potentially useful for industrial and biomedical applications. However, peroxidases are unstable and are readily inactivated by their substrate, hydrogen peroxide. Researchers rely on the powerful tools of molecular biology to improve the stability of these enzymes, either by protecting residues sensitive to oxidation or by devising more efficient intramolecular pathways for free-radical allocation. Here, we discuss the catalytic cycle of peroxidases and the mechanism of the suicide inactivation process to establish a broad knowledge base for future rational protein engineering.
Collapse
Affiliation(s)
- Brenda Valderrama
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, AP 510-3 Cuernavaca, Morelos 62250, México.
| | | | | |
Collapse
|
23
|
Sathyanarayanan PV, Poovaiah BW. Autophosphorylation-dependent inactivation of plant chimeric calcium/calmodulin-dependent protein kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2457-63. [PMID: 12027883 DOI: 10.1046/j.1432-1033.2002.02904.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chimeric calcium/calmodulin dependent protein kinase (CCaMK) is characterized by the presence of a visinin-like Ca(2+)-binding domain unlike other known calmodulin- dependent kinases. Ca(2+)-Binding to the visinin-like domain leads to autophosphorylation and changes in the affinity for calmodulin [Sathyanarayanan P.V., Cremo C.R. & Poovaiah B.W. (2000) J. Biol. Chem. 275, 30417-30422]. Here, we report that the Ca(2+)-stimulated autophosphorylation of CCaMK results in time-dependent loss of enzyme activity. This time-dependent loss of activity or self-inactivation due to autophosphorylation is also dependent on reaction pH and ATP concentration. Inactivation of the enzyme resulted in the formation of a sedimentable enzyme due to self-association. Specifically, autophosphorylation in the presence of 200 microm ATP at pH 7.5 resulted in the formation of a sedimentable enzyme with a 33% loss in enzyme activity. Under similar conditions at pH 6.5, the enzyme lost 67% of its activity and at pH 8.5, 84% enzyme activity was lost. Furthermore, autophosphorylation at either acidic or alkaline reaction pH lead to the formation of a sedimentable enzyme. Transmission electron microscopic studies on autophosphorylated kinase revealed particles that clustered into branched complexes. The autophosphorylation of wild-type kinase in the presence of AMP-PNP (an unhydrolyzable ATP analog) or the autophosphorylation-site mutant, T267A, did not show formation of branched complexes under the electron microscope. Autophosphorylation- dependent self-inactivation may be a mechanism of modulating the signal transduction pathway mediated by CCaMK.
Collapse
Affiliation(s)
- P V Sathyanarayanan
- Laboratory of Plant Molecular Biology and Physiology, Department of Horticulture, Washington State University, Pullman, WA 99164-6414, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- R P Pesavento
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
25
|
Song I, Ball TM, Smith WL. Different suicide inactivation processes for the peroxidase and cyclooxygenase activities of prostaglandin endoperoxide H synthase-1. Biochem Biophys Res Commun 2001; 289:869-75. [PMID: 11735127 DOI: 10.1006/bbrc.2001.6071] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostaglandin endoperoxide H synthases (PGHSs)-1 and -2 have a cyclooxygenase (COX) activity involved in forming prostaglandin G2 (PGG2) from arachidonic acid and an associated peroxidase (POX) activity that reduces PGG2 to PGH2. Suicide inactivation processes are observed for both POX and COX reactions. Here we report COX reaction conditions for PGHS-1 under which complete COX inactivation occurs but with > or = 60% retention of POX activity. The rates of POX inactivation were compared for native oPGHS-1 versus Y385F oPGHS-1, a mutant that cannot form the Tyr385 radical of COX Intermediate II; the rates were the same for both native and Y385F oPGHS-1. Our data indicate that a COX Intermediate II/acyl or product complex is the precursor in COX inactivation. However, another species, probably an Intermediate II-like species but with a radical centered on a tyrosine other than Tyr385, is the immediate precursor for POX inactivation.
Collapse
Affiliation(s)
- I Song
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|