1
|
Rojas-Prats E, Martinez-Gonzalez L, Gil C, Ramírez D, Martinez A. Druggable cavities and allosteric modulators of the cell division cycle 7 (CDC7) kinase. J Enzyme Inhib Med Chem 2024; 39:2301767. [PMID: 38205514 PMCID: PMC10786434 DOI: 10.1080/14756366.2024.2301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cell division cycle 7 kinase (CDC7) has been found overexpressed in many cancer cell lines being also one of the kinases involved in the nuclear protein TDP-43 phosphorylation in vivo. Thus, inhibitors of CDC7 are emerging drug candidates for the treatment of oncological and neurodegenerative unmet diseases. All the known CDC7 inhibitors are ATP-competitives, lacking of selectivity enough for success in clinical trials. As allosteric sites are less conserved among kinase proteins, discovery of allosteric modulators of CDC7 is a great challenge and opportunity in this field.Using different computational approaches, we have here identified new druggable cavities on the human CDC7 structure and subsequently selective CDC7 inhibitors with allosteric modulation mainly targeting the pockets where the interaction between this kinase and its activator DBF4 takes place.
Collapse
Affiliation(s)
- Elisa Rojas-Prats
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
| | - Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de 13 Salud Carlos III, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana Martinez
- Centro de Investigaciones Biológicas -Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de 13 Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Sivakova B, Wagner A, Kretova M, Jakubikova J, Gregan J, Kratochwill K, Barath P, Cipak L. Quantitative proteomics and phosphoproteomics profiling of meiotic divisions in the fission yeast Schizosaccharomyces pombe. Sci Rep 2024; 14:23105. [PMID: 39367033 PMCID: PMC11452395 DOI: 10.1038/s41598-024-74523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
In eukaryotes, chromosomal DNA is equally distributed to daughter cells during mitosis, whereas the number of chromosomes is halved during meiosis. Despite considerable progress in understanding the molecular mechanisms that regulate mitosis, there is currently a lack of complete understanding of the molecular mechanisms regulating meiosis. Here, we took advantage of the fission yeast Schizosaccharomyces pombe, for which highly synchronous meiosis can be induced, and performed quantitative proteomics and phosphoproteomics analyses to track changes in protein expression and phosphorylation during meiotic divisions. We compared the proteomes and phosphoproteomes of exponentially growing mitotic cells with cells harvested around meiosis I, or meiosis II in strains bearing either the temperature-sensitive pat1-114 allele or conditional ATP analog-sensitive pat1-as2 allele of the Pat1 kinase. Comparing pat1-114 with pat1-as2 also allowed us to investigate the impact of elevated temperature (25 °C versus 34 °C) on meiosis, an issue that sexually reproducing organisms face due to climate change. Using TMTpro 18plex labeling and phosphopeptide enrichment strategies, we performed quantification of a total of 4673 proteins and 7172 phosphosites in S. pombe. We found that the protein level of 2680 proteins and the rate of phosphorylation of 4005 phosphosites significantly changed during progression of S. pombe cells through meiosis. The proteins exhibiting changes in expression and phosphorylation during meiotic divisions were represented mainly by those involved in the meiotic cell cycle, meiotic recombination, meiotic nuclear division, meiosis I, centromere clustering, microtubule cytoskeleton organization, ascospore formation, organonitrogen compound biosynthetic process, carboxylic acid metabolic process, gene expression, and ncRNA processing, among others. In summary, our findings provide global overview of changes in the levels and phosphorylation of proteins during progression of S. pombe cells through meiosis at normal and elevated temperatures, laying the groundwork for further elucidation of the functions and importance of specific proteins and their phosphorylation in regulating meiotic divisions in this yeast.
Collapse
Affiliation(s)
- Barbara Sivakova
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Anja Wagner
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria
| | - Miroslava Kretova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia
| | - Juraj Gregan
- Department of Chromosome Biology, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, Vienna, 1090, Austria.
| | - Peter Barath
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 38, Slovakia.
- Medirex Group Academy, Novozamocka 67, Nitra, 949 05, Slovakia.
| | - Lubos Cipak
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 05, Slovakia.
| |
Collapse
|
3
|
Göder A, Maric CA, Rainey MD, O’Connor A, Cazzaniga C, Shamavu D, Cadoret JC, Santocanale C. DBF4, not DRF1, is the crucial regulator of CDC7 kinase at replication forks. J Cell Biol 2024; 223:e202402144. [PMID: 38865090 PMCID: PMC11169917 DOI: 10.1083/jcb.202402144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 05/04/2024] [Indexed: 06/13/2024] Open
Abstract
CDC7 kinase is crucial for DNA replication initiation and is involved in fork processing and replication stress response. Human CDC7 requires the binding of either DBF4 or DRF1 for its activity. However, it is unclear whether the two regulatory subunits target CDC7 to a specific set of substrates, thus having different biological functions, or if they act redundantly. Using genome editing technology, we generated isogenic cell lines deficient in either DBF4 or DRF1: these cells are viable but present signs of genomic instability, indicating that both can independently support CDC7 for bulk DNA replication. Nonetheless, DBF4-deficient cells show altered replication efficiency, partial deficiency in MCM helicase phosphorylation, and alterations in the replication timing of discrete genomic regions. Notably, we find that CDC7 function at replication forks is entirely dependent on DBF4 and not on DRF1. Thus, DBF4 is the primary regulator of CDC7 activity, mediating most of its functions in unperturbed DNA replication and upon replication interference.
Collapse
Affiliation(s)
- Anja Göder
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Michael D. Rainey
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Aisling O’Connor
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Chiara Cazzaniga
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Daniel Shamavu
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - Corrado Santocanale
- Centre for Chromosome Biology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
The yeast Dbf4 Zn 2+ finger domain suppresses single-stranded DNA at replication forks initiated from a subset of origins. Curr Genet 2022; 68:253-265. [PMID: 35147742 PMCID: PMC8976809 DOI: 10.1007/s00294-022-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
Dbf4 is the cyclin-like subunit for the Dbf4-dependent protein kinase (DDK), required for activating the replicative helicase at DNA replication origin that fire during S phase. Dbf4 also functions as an adaptor, targeting the DDK to different groups of origins and substrates. Here we report a genome-wide analysis of origin firing in a budding yeast mutant, dbf4-zn, lacking the Zn2+ finger domain within the C-terminus of Dbf4. At one group of origins, which we call dromedaries, we observe an unanticipated DNA replication phenotype: accumulation of single-stranded DNA spanning ± 5kbp from the center of the origins. A similar accumulation of single-stranded DNA at origins occurs more globally in pri1-m4 mutants defective for the catalytic subunit of DNA primase and rad53 mutants defective for the S phase checkpoint following DNA replication stress. We propose the Dbf4 Zn2+ finger suppresses single-stranded gaps at replication forks emanating from dromedary origins. Certain origins may impose an elevated requirement for the DDK to fully initiate DNA synthesis following origin activation. Alternatively, dbf4-zn may be defective for stabilizing/restarting replication forks emanating from dromedary origins during replication stress.
Collapse
|
5
|
Structural Basis for the Activation and Target Site Specificity of CDC7 Kinase. Structure 2020; 28:954-962.e4. [PMID: 32521228 PMCID: PMC7416108 DOI: 10.1016/j.str.2020.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
CDC7 is an essential Ser/Thr kinase that acts upon the replicative helicase throughout the S phase of the cell cycle and is activated by DBF4. Here, we present crystal structures of a highly active human CDC7-DBF4 construct. The structures reveal a zinc-finger domain at the end of the kinase insert 2 that pins the CDC7 activation loop to motif M of DBF4 and the C lobe of CDC7. These interactions lead to ordering of the substrate-binding platform and full opening of the kinase active site. In a co-crystal structure with a mimic of MCM2 Ser40 phosphorylation target, the invariant CDC7 residues Arg373 and Arg380 engage phospho-Ser41 at substrate P+1 position, explaining the selectivity of the S-phase kinase for Ser/Thr residues followed by a pre-phosphorylated or an acidic residue. Our results clarify the role of DBF4 in activation of CDC7 and elucidate the structural basis for recognition of its preferred substrates. DBF4 activates CDC7 kinase via a two-step mechanism Zinc-finger domain in CDC7 KI2 interacts with DBF4 motif M Invariant CDC7 residues Arg373 and Arg380 engage P+1 substrate site
Collapse
|
6
|
Wu KZL, Wang GN, Fitzgerald J, Quachthithu H, Rainey MD, Cattaneo A, Bachi A, Santocanale C. DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach. Nucleic Acids Res 2016; 44:8786-8798. [PMID: 27407105 PMCID: PMC5062981 DOI: 10.1093/nar/gkw626] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/02/2016] [Indexed: 11/14/2022] Open
Abstract
In eukaryotic cells the CDC7/DBF4 kinase, also known as DBF4-dependent kinase (DDK), is required for the firing of DNA replication origins. CDC7 is also involved in replication stress responses and its depletion sensitises cells to drugs that affect fork progression, including Topoisomerase 2 poisons. Although CDC7 is an important regulator of cell division, relatively few substrates and bona-fide CDC7 phosphorylation sites have been identified to date in human cells. In this study, we have generated an active recombinant CDC7/DBF4 kinase that can utilize bulky ATP analogues. By performing in vitro kinase assays using benzyl-thio-ATP, we have identified TOP2A as a primary CDC7 substrate in nuclear extracts, and serine 1213 and serine 1525 as in vitro phosphorylation sites. We show that CDC7/DBF4 and TOP2A interact in cells, that this interaction mainly occurs early in S-phase, and that it is compromised after treatment with CDC7 inhibitors. We further provide evidence that human DBF4 localises at centromeres, to which TOP2A is progressively recruited during S-phase. Importantly, we found that CDC7/DBF4 down-regulation, as well S1213A/S1525A TOP2A mutations can advance the timing of centromeric TOP2A recruitment in S-phase. Our results indicate that TOP2A is a novel DDK target and have important implications for centromere biology.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Guan-Nan Wang
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Jennifer Fitzgerald
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Huong Quachthithu
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Angela Cattaneo
- IFOM-FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| |
Collapse
|
7
|
Stephenson R, Hosler MR, Gavande NS, Ghosh AK, Weake VM. Characterization of a Drosophila ortholog of the Cdc7 kinase: a role for Cdc7 in endoreplication independent of Chiffon. J Biol Chem 2014; 290:1332-47. [PMID: 25451925 DOI: 10.1074/jbc.m114.597948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine-threonine kinase that phosphorylates components of the pre-replication complex during DNA replication initiation. Cdc7 is highly conserved, and Cdc7 orthologs have been characterized in organisms ranging from yeast to humans. Cdc7 is activated specifically during late G1/S phase by binding to its regulatory subunit, Dbf4. Drosophila melanogaster contains a Dbf4 ortholog, Chiffon, which is essential for chorion amplification in Drosophila egg chambers. However, no Drosophila ortholog of Cdc7 has yet been characterized. Here, we report the functional and biochemical characterization of a Drosophila ortholog of Cdc7. Co-expression of Drosophila Cdc7 and Chiffon is able to complement a growth defect in yeast containing a temperature-sensitive Cdc7 mutant. Cdc7 and Chiffon physically interact and can be co-purified from insect cells. Cdc7 phosphorylates the known Cdc7 substrates Mcm2 and histone H3 in vitro, and Cdc7 kinase activity is stimulated by Chiffon and inhibited by the Cdc7-specific inhibitor XL413. Drosophila egg chamber follicle cells deficient for Cdc7 have a defect in two types of DNA replication, endoreplication and chorion gene amplification. However, follicle cells deficient for Chiffon have a defect in chorion gene amplification but still undergo endocycling. Our results show that Cdc7 interacts with Chiffon to form a functional Dbf4-dependent kinase complex and that Cdc7 is necessary for DNA replication in Drosophila egg chamber follicle cells. Additionally, we show that Chiffon is a member of an expanding subset of DNA replication initiation factors that are not strictly required for endoreplication in Drosophila.
Collapse
Affiliation(s)
| | | | | | - Arun K Ghosh
- Chemistry and Medicinal Chemistry, and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - Vikki M Weake
- From the Departments of Biochemistry and Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
8
|
Sasi NK, Tiwari K, Soon FF, Bonte D, Wang T, Melcher K, Xu HE, Weinreich M. The potent Cdc7-Dbf4 (DDK) kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds. PLoS One 2014; 9:e113300. [PMID: 25412417 PMCID: PMC4239038 DOI: 10.1371/journal.pone.0113300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/23/2014] [Indexed: 12/16/2022] Open
Abstract
Cdc7-Dbf4 kinase or DDK (Dbf4-dependent kinase) is required to initiate DNA replication by phosphorylating and activating the replicative Mcm2-7 DNA helicase. DDK is overexpressed in many tumor cells and is an emerging chemotherapeutic target since DDK inhibition causes apoptosis of diverse cancer cell types but not of normal cells. PHA-767491 and XL413 are among a number of potent DDK inhibitors with low nanomolar IC50 values against the purified kinase. Although XL413 is highly selective for DDK, its activity has not been extensively characterized on cell lines. We measured anti-proliferative and apoptotic effects of XL413 on a panel of tumor cell lines compared to PHA-767491, whose activity is well characterized. Both compounds were effective biochemical DDK inhibitors but surprisingly, their activities in cell lines were highly divergent. Unlike PHA-767491, XL413 had significant anti-proliferative activity against only one of the ten cell lines tested. Since XL413 did not effectively inhibit DDK in multiple cell lines, this compound likely has limited bioavailability. To identify potential leads for additional DDK inhibitors, we also tested the cross-reactivity of ∼400 known kinase inhibitors against DDK using a DDK thermal stability shift assay (TSA). We identified 11 compounds that significantly stabilized DDK. Several inhibited DDK with comparable potency to PHA-767491, including Chk1 and PKR kinase inhibitors, but had divergent chemical scaffolds from known DDK inhibitors. Taken together, these data show that several well-known kinase inhibitors cross-react with DDK and also highlight the opportunity to design additional specific, biologically active DDK inhibitors for use as chemotherapeutic agents.
Collapse
Affiliation(s)
- Nanda Kumar Sasi
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
- Graduate Program in Genetics, Michigan State University, East Lansing, MI, United States of America
| | - Kanchan Tiwari
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
| | - Fen-Fen Soon
- Laboratory of Structural Sciences, VARI, Grand Rapids, MI, United States of America
| | - Dorine Bonte
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
| | - Tong Wang
- Translational Drug Development, Inc. (TD2), Scottsdale, AZ, United States of America
| | - Karsten Melcher
- Laboratory of Structural Biology and Biochemistry, VARI, Grand Rapids, MI, United States of America
| | - H. Eric Xu
- Laboratory of Structural Sciences, VARI, Grand Rapids, MI, United States of America
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute (VARI), Grand Rapids, MI, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Hsk1 (homologue of Cdc7 kinase 1) of the fission yeast is a member of the conserved Cdc7 (cell division cycle 7) kinase family, and promotes initiation of chromosome replication by phosphorylating Mcm (minichromosome maintenance) subunits, essential components for the replicative helicase. Recent studies, however, indicate more diverse roles for Hsk1/Cdc7 in regulation of various chromosome dynamics, including initiation of meiotic recombination, meiotic chromosome segregation, DNA repair, replication checkpoints, centromeric heterochromatin formation and so forth. Hsk1/Cdc7, with its unique target specificity, can now be regarded as an important modulator of various chromosome transactions.
Collapse
|
10
|
Yamada M, Watanabe K, Mistrik M, Vesela E, Protivankova I, Mailand N, Lee M, Masai H, Lukas J, Bartek J. ATR-Chk1-APC/CCdh1-dependent stabilization of Cdc7-ASK (Dbf4) kinase is required for DNA lesion bypass under replication stress. Genes Dev 2014; 27:2459-72. [PMID: 24240236 PMCID: PMC3841735 DOI: 10.1101/gad.224568.113] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cdc7 kinase regulates DNA replication. However, its role in DNA repair and recombination is poorly understood. Here we describe a pathway that stabilizes the human Cdc7-ASK (activator of S-phase kinase; also called Dbf4), its regulation, and its function in cellular responses to compromised DNA replication. Stalled DNA replication evoked stabilization of the Cdc7-ASK (Dbf4) complex in a manner dependent on ATR-Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosome(Cdh1) (APC/C(Cdh1)) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/C(Cdh1) through degradation of Cdh1 upon replication block, thereby stabilizing APC/C(Cdh1) substrates, including Cdc7-ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4) with RAD18 disables foci formation by RAD18 and hinders chromatin loading of translesion DNA polymerase η. These findings define a novel mechanism that orchestrates replication checkpoint signaling and ubiquitin-proteasome machinery with the DNA damage bypass pathway to guard against replication collapse under conditions of replication stress.
Collapse
Affiliation(s)
- Masayuki Yamada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Le AH, Mastro TL, Forsburg SL. The C-terminus of S. pombe DDK subunit Dfp1 is required for meiosis-specific transcription and cohesin cleavage. Biol Open 2013; 2:728-38. [PMID: 23862021 PMCID: PMC3711041 DOI: 10.1242/bio.20135173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 11/24/2022] Open
Abstract
The DDK complex is a conserved kinase complex, consisting of a catalytic subunit, Hsk1 (Cdc7), and its regulatory subunit Dfp1 (Dbf4). This kinase is essential for DNA replication. In this work, we show that dfp1-r35, which truncates the Dfp1 C-terminus zinc finger, causes severe meiotic defects, including reduced spore viability, reduced formation of programmed double strand breaks, altered expression of meiotic genes, and disrupted chromosome segregation. There is a high frequency of dyad formation. Mutants are also defective in the phosphorylation and degradation of the meiotic cohesion, Rec8, resulting in a failure to proceed through the MII division. These defects are more pronounced in a haploid meiosis model than in a normal diploid meiosis. Thus, several critical meiotic functions are linked specifically to the C-terminus of Dfp1, which may target specific substrates for phosphorylation by Hsk1.
Collapse
Affiliation(s)
- Anh-Huy Le
- Program in Molecular and Computational Biology, University of Southern California , Los Angeles, CA 90089-2910 , USA
| | | | | |
Collapse
|
12
|
Matthews LA, Guarné A. Dbf4: the whole is greater than the sum of its parts. Cell Cycle 2013; 12:1180-8. [PMID: 23549174 PMCID: PMC3674083 DOI: 10.4161/cc.24416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/22/2013] [Indexed: 12/29/2022] Open
Abstract
Together with cyclin-dependent kinases, the Dbf4-dependent kinase (DDK) is essential to activate the Mcm2-7 helicase and, hence, initiate DNA replication in eukaryotes. Beyond its role as the regulatory subunit of the DDK complex, the Dbf4 protein also regulates the activity of other cell cycle kinases to mediate the checkpoint response and prevent premature mitotic exit under stress. Two features that are unusual in DNA replication proteins characterize Dbf4. The first is its evolutionary divergence; the second is how its conserved motifs are combined to form distinct functional units. This structural plasticity appears to be at odds with the conserved functions of Dbf4. In this review, we summarize recent genetic, biochemical and structural work delineating the multiple interactions mediated by Dbf4 and its various functions during the cell cycle. We also discuss how the limited sequence conservation of Dbf4 may be an advantage to regulate the activities of multiple cell cycle kinases.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | |
Collapse
|
13
|
Hughes S, Elustondo F, Di Fonzo A, Leroux FG, Wong AC, Snijders AP, Matthews SJ, Cherepanov P. Crystal structure of human CDC7 kinase in complex with its activator DBF4. Nat Struct Mol Biol 2012; 19:1101-7. [PMID: 23064647 DOI: 10.1038/nsmb.2404] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/07/2012] [Indexed: 11/09/2022]
Abstract
CDC7 is a serine/threonine kinase that is essential for the initiation of eukaryotic DNA replication. CDC7 activity is controlled by its activator, DBF4. Here we present crystal structures of human CDC7-DBF4 in complex with a nucleotide or ATP-competing small molecules, revealing the active and inhibited forms of the kinase, respectively. DBF4 wraps around CDC7, burying approximately 6,000 Å(2) of hydrophobic molecular surface in a bipartite interface. The effector domain of DBF4, containing conserved motif C, is essential and sufficient to support CDC7 kinase activity by binding to the kinase N-terminal lobe and stabilizing its canonical αC helix. DBF4 motif M latches onto the C-terminal lobe of the kinase, acting as a tethering domain. Our results elucidate the structural basis for binding to and activation of CDC7 by DBF4 and provide a framework for the design of more potent and specific CDC7 inhibitors.
Collapse
Affiliation(s)
- Siobhan Hughes
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, Potters Bar, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lalle M, Camerini S, Cecchetti S, Sayadi A, Crescenzi M, Pozio E. Interaction Network of the 14-3-3 Protein in the Ancient Protozoan Parasite Giardia duodenalis. J Proteome Res 2012; 11:2666-83. [DOI: 10.1021/pr3000199] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic
and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Serena Camerini
- Department
of Cell Biology and
Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Serena Cecchetti
- Department
of Cell Biology and
Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ahmed Sayadi
- Department
of Biochemical Sciences
“A. Rossi-Fanelli”, University of Rome “Sapienza”, 00185 Rome, Italy
| | - Marco Crescenzi
- Department
of Cell Biology and
Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Edoardo Pozio
- Department of Infectious, Parasitic
and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
15
|
Matthews LA, Jones DR, Prasad AA, Duncker BP, Guarné A. Saccharomyces cerevisiae Dbf4 has unique fold necessary for interaction with Rad53 kinase. J Biol Chem 2011; 287:2378-87. [PMID: 22130670 DOI: 10.1074/jbc.m111.233973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dbf4 is a conserved eukaryotic protein that functions as the regulatory subunit of the Dbf4-dependent kinase (DDK) complex. DDK plays essential roles in DNA replication initiation and checkpoint activation. During the replication checkpoint, Saccharomyces cerevisiae Dbf4 is phosphorylated in a Rad53-dependent manner, and this, in turn, inhibits initiation of replication at late origins. We have determined the minimal region of Dbf4 required for the interaction with the checkpoint kinase Rad53 and solved its crystal structure. The core of this fragment of Dbf4 folds as a BRCT domain, but it includes an additional N-terminal helix unique to Dbf4. Mutation of the residues that anchor this helix to the domain core abolish the interaction between Dbf4 and Rad53, indicating that this helix is an integral element of the domain. The structure also reveals that previously characterized Dbf4 mutants with checkpoint phenotypes destabilize the domain, indicating that its structural integrity is essential for the interaction with Rad53. Collectively, these results allow us to propose a model for the association between Dbf4 and Rad53.
Collapse
Affiliation(s)
- Lindsay A Matthews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | | | | | | |
Collapse
|
16
|
Lindvall M, McBride C, McKenna M, Gesner TG, Yabannavar A, Wong K, Lin S, Walter A, Shafer CM. 3D Pharmacophore Model-Assisted Discovery of Novel CDC7 Inhibitors. ACS Med Chem Lett 2011; 2:720-3. [PMID: 24900258 DOI: 10.1021/ml200029w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/15/2011] [Indexed: 01/22/2023] Open
Abstract
A ligand-based 3D pharmacophore model for serine/threonine kinase CDC7 inhibition was created and successfully applied in the discovery of novel 2-(heteroaryl)-6,7-dihydrothieno[3,2-c]pyridin-4(5H)-ones. The pharmacophore model provided a hypothesis for lead generation missed by docking to a homology model. Medicinal chemistry exploration of the series revealed clear structure-activity relationships consistent with the pharmacophore model and pointed to further optimization opportunities.
Collapse
Affiliation(s)
- Mika Lindvall
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Christopher McBride
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Maureen McKenna
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Thomas G. Gesner
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Asha Yabannavar
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Kent Wong
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Song Lin
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Annette Walter
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Cynthia M. Shafer
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| |
Collapse
|
17
|
A synthetic human kinase can control cell cycle progression in budding yeast. G3-GENES GENOMES GENETICS 2011; 1:317-25. [PMID: 22384342 PMCID: PMC3276143 DOI: 10.1534/g3.111.000430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/03/2011] [Indexed: 01/15/2023]
Abstract
The DDK kinase complex, composed of Cdc7 and Dbf4, is required for S-phase progression. The two component proteins show different degrees of sequence conservation between human and yeast. Here, we determine that Saccharomyces cerevisiae bearing human CDC7 and DBF4 grows comparably to cells with yeast DDK under standard growth conditions. HsDrf1 (a second human Dbf4-like protein) does not support growth, suggesting that HsDbf4 is the true ortholog of ScDbf4. Both human subunits are required to complement yeast cdc7Δ or dbf4Δ due to the inability of human Cdc7 or Dbf4 to interact with the corresponding yeast protein. Flow cytometry indicates normal cell cycle progression for yeast containing human DDK. However, yeast containing human DDK is sensitive to long-term exposure to hydroxyurea and fails to sporulate, suggesting that human DDK substitutes for some, but not all, of yeast DDK's functions. We mapped the region of Cdc7 required for species-specific function of DDK to the C-terminus of Cdc7 by substituting the yeast C-terminal 55 amino acid residues in place of the equivalent human residues. The resulting hybrid protein supported growth of a cdc7Δ strain only in the presence of ScDBF4. The strain supported by the hybrid CDC7 was not sensitive to HU and formed tetrads. Together, our data indicate that DDK's targeting of its essential substrate is conserved between species, whereas the interactions within DDK are species specific.
Collapse
|
18
|
Kitamura R, Fukatsu R, Kakusho N, Cho YS, Taniyama C, Yamazaki S, Toh GT, Yanagi K, Arai N, Chang HJ, Masai H. Molecular mechanism of activation of human Cdc7 kinase: bipartite interaction with Dbf4/activator of S phase kinase (ASK) activation subunit stimulates ATP binding and substrate recognition. J Biol Chem 2011; 286:23031-43. [PMID: 21536671 DOI: 10.1074/jbc.m111.243311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc7 is a serine/threonine kinase conserved from yeasts to human and is known to play a key role in the regulation of initiation at each replication origin. Its catalytic function is activated via association with the activation subunit Dbf4/activator of S phase kinase (ASK). It is known that two conserved motifs of Dbf4/ASK are involved in binding to Cdc7, and both are required for maximum activation of Cdc7 kinase. Cdc7 kinases possess unique kinase insert sequences (kinase insert I-III) that are inserted at defined locations among the conserved kinase domains. However, precise mechanisms of Cdc7 kinase activation are largely unknown. We have identified two segments on Cdc7, DAM-1 (Dbf4/ASK interacting motif-1; amino acids 448-457 near the N terminus of kinase insert III) and DAM-2 (C-terminal 10-amino acid segment), that interact with motif-M and motif-C of ASK, respectively, and are essential for kinase activation by ASK. The C-terminal 143-amino acid polypeptide (432-574) containing DAM-1 and DAM-2 can interact with Dbf4/ASK. Characterization of the purified ASK-free Cdc7 and Cdc7-ASK complex shows that ATP binding of the Cdc7 catalytic subunit requires Dbf4/ASK. However, the "minimum" Cdc7, lacking the entire kinase insert II and half of kinase insert III, binds to ATP and shows autophosphorylation activity in the absence of ASK. However, ASK is still required for phosphorylation of exogenous substrates by the minimum Cdc7. These results indicate bipartite interaction between Cdc7 and Dbf4/ASK subunits facilitates ATP binding and substrate recognition by the Cdc7 kinase.
Collapse
Affiliation(s)
- Ryo Kitamura
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matsumoto S, Shimmoto M, Kakusho N, Yokoyama M, Kanoh Y, Hayano M, Russell P, Masai H. Hsk1 kinase and Cdc45 regulate replication stress-induced checkpoint responses in fission yeast. Cell Cycle 2010; 9:4627-37. [PMID: 21099360 DOI: 10.4161/cc.9.23.13937] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In fission yeast, replication fork arrest activates the replication checkpoint effector kinase Cds1(Chk2/Rad53) through the Rad3(ATR/Mec1)-Mrc1(Claspin) pathway. Hsk1, the Cdc7 homologue of fission yeast required for efficient initiation of DNA replication, is also required for Cds1 activation. Hsk1 kinase activity is required for induction and maintenance of Mrc1 hyperphosphorylation, which is induced by replication fork block and mediated by Rad3. Rad3 kinase activity does not change in an hsk1 temperature-sensitive mutant, and Hsk1 kinase activity is not affected by rad3 mutation. Hsk1 kinase vigorously phosphorylates Mrc1 in vitro, predominantly at non-SQ/TQ sites, but this phosphorylation does not seem to affect the Rad3 action on Mrc1. Interestingly, the replication stress-induced activation of Cds1 and hyperphosphorylation of Mrc1 is almost completely abrogated in an initiation-defective mutant of cdc45, but not in an mcm2 or polε mutant. The results suggest that Hsk1-mediated loading of Cdc45 onto replication origins may play important roles in replication stress-induced checkpoint.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Saunders DG, Aves SJ, Talbot NJ. Cell cycle-mediated regulation of plant infection by the rice blast fungus. THE PLANT CELL 2010; 22:497-507. [PMID: 20190078 PMCID: PMC2845407 DOI: 10.1105/tpc.109.072447] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/04/2010] [Accepted: 02/08/2010] [Indexed: 05/21/2023]
Abstract
To gain entry to plants, many pathogenic fungi develop specialized infection structures called appressoria. Here, we demonstrate that appressorium morphogenesis in the rice blast fungus Magnaporthe oryzae is tightly regulated by the cell cycle. Shortly after a fungus spore lands on the rice (Oryza sativa) leaf surface, a single round of mitosis always occurs in the germ tube. We found that initiation of infection structure development is regulated by a DNA replication-dependent checkpoint. Genetic intervention in DNA synthesis, by conditional mutation of the Never-in-Mitosis 1 gene, prevented germ tubes from developing nascent infection structures. Cellular differentiation of appressoria, however, required entry into mitosis because nimA temperature-sensitive mutants, blocked at mitotic entry, were unable to develop functional appressoria. Arresting the cell cycle after mitotic entry, by conditional inactivation of the Blocked-in-Mitosis 1 gene or expression of stabilized cyclinB-encoding alleles, did not impair appressorium differentiation, but instead prevented these cells from invading plant tissue. When considered together, these data suggest that appressorium-mediated plant infection is coordinated by three distinct cell cycle checkpoints that are necessary for establishment of plant disease.
Collapse
Affiliation(s)
| | | | - Nicholas J. Talbot
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
21
|
Hughes S, Jenkins V, Dar MJ, Engelman A, Cherepanov P. Transcriptional co-activator LEDGF interacts with Cdc7-activator of S-phase kinase (ASK) and stimulates its enzymatic activity. J Biol Chem 2009; 285:541-54. [PMID: 19864417 DOI: 10.1074/jbc.m109.036491] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lens epithelium-derived growth factor (LEDGF) is an important co-factor of human immunodeficiency virus DNA integration; however, its cellular functions are poorly characterized. We now report identification of the Cdc7-activator of S-phase kinase (ASK) heterodimer as a novel interactor of LEDGF. Both kinase subunits co-immunoprecipitated with endogenous LEDGF from human cell extracts. Truncation analyses identified the integrase-binding domain of LEDGF as essential and minimally sufficient for the interaction with Cdc7-ASK. Reciprocally, the interaction required autophosphorylation of the kinase and the presence of 50 C-terminal residues of ASK. The kinase phosphorylated LEDGF in vitro, with Ser-206 being the major target, and LEDGF phosphorylated at this residue could be detected during S phase of the cell cycle. LEDGF potently stimulated the enzymatic activity of Cdc7-ASK, increasing phosphorylation of MCM2 in vitro by more than 10-fold. This enzymatic stimulation as well as phosphorylation of LEDGF depended on the protein-protein interaction. Intriguingly, removing the C-terminal region of ASK, involved in the interaction with LEDGF, resulted in a hyperactive kinase. Our results indicate that the interaction with LEDGF relieves autoinhibition of Cdc7-ASK kinase, imposed by the C terminus of ASK.
Collapse
Affiliation(s)
- Siobhan Hughes
- Division of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom and
| | | | | | | | | |
Collapse
|
22
|
Budding yeast Dbf4 sequences required for Cdc7 kinase activation and identification of a functional relationship between the Dbf4 and Rev1 BRCT domains. Genetics 2009; 183:1269-82. [PMID: 19822727 DOI: 10.1534/genetics.109.110155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cdc7-Dbf4 is a two-subunit kinase required for initiating DNA replication. The Dbf4 regulatory subunit is required for Cdc7 kinase activity. Previous studies have shown that the C termini of Dbf4 orthologs encode a single (putative) C(2)H(2) zinc (Zn) finger, referred to as "motif C." By mutational analysis we show that the Zn finger is not required for the essential function of Dbf4. However, deletion and point mutants altering conserved Zn-finger residues exhibit a substantially slowed S-phase, DNA damage sensitivity, and a hypo-mutagenic phenotype following UV irradiation. Using two-hybrid and biochemical assays, we show that the Dbf4 Zn finger interacts with Cdc7 and stimulates its kinase activity. However, a separable Dbf4 region also mediates an interaction with Cdc7 such that only the loss of both Cdc7-interacting regions results in lethality. In contrast, an N-terminal BRCT-like domain is not required for induced mutagenesis nor does it interact with Cdc7. By making chimeric Dbf4 proteins that contain known BRCT domains in Saccharomyces cerevisiae, we show that the BRCT domain from Rev1, a translesion DNA polymerase, can uniquely substitute for the Dbf4 BRCT domain. Thus, we have mapped regions on budding yeast Dbf4 required for binding and activating Cdc7 kinase. Our data also suggest that the Dbf4 and Rev1 BRCT domains interact with a common protein or structure, although the precise function of both domains and their binding partners remains elusive.
Collapse
|
23
|
Matthews LA, Duong A, Prasad AA, Duncker BP, Guarné A. Crystallization and preliminary X-ray diffraction analysis of motif N from Saccharomyces cerevisiae Dbf4. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:890-4. [PMID: 19724125 PMCID: PMC2795593 DOI: 10.1107/s1744309109029376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 07/23/2009] [Indexed: 11/10/2022]
Abstract
The Cdc7-Dbf4 complex plays an instrumental role in the initiation of DNA replication and is a target of replication-checkpoint responses in Saccharomyces cerevisiae. Cdc7 is a conserved serine/threonine kinase whose activity depends on association with its regulatory subunit, Dbf4. A conserved sequence near the N-terminus of Dbf4 (motif N) is necessary for the interaction of Cdc7-Dbf4 with the checkpoint kinase Rad53. To understand the role of the Cdc7-Dbf4 complex in checkpoint responses, a fragment of Saccharomyces cerevisiae Dbf4 encompassing motif N was isolated, overproduced and crystallized. A complete native data set was collected at 100 K from crystals that diffracted X-rays to 2.75 A resolution and structure determination is currently under way.
Collapse
Affiliation(s)
- Lindsay A. Matthews
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Andrew Duong
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Ajai A. Prasad
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Bernard P. Duncker
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alba Guarné
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
24
|
Bruck I, Kaplan D. Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J Biol Chem 2009; 284:28823-31. [PMID: 19692334 DOI: 10.1074/jbc.m109.039123] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 alone binds weakly to Mcm2, suggesting that Dbf4 recruits Cdc7 to phosphorylate Mcm2. DDK phosphorylates two serine residues of Mcm2 near the N terminus of the protein, Ser-164 and Ser-170. Expression of mcm2-S170A is lethal to yeast cells that lack endogenous MCM2 (mcm2Delta); however, this lethality is rescued in cells harboring the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Mcm2 is required for cell growth.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
25
|
Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 2:255-64. [PMID: 19920912 PMCID: PMC2761190 DOI: 10.2147/dddt.s4303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Identification of novel molecular targets is critical in development of new and efficient cancer therapies. Kinases are one of the most common drug targets with a potential for cancer therapy. Cell cycle progression is regulated by a number of kinases, some of which are being developed to treat cancer. Cdc7 is a serine-threonine kinase originally discovered in budding yeast, which has been shown to be necessary to initiate the S phase. Inhibition of Cdc7 in cancer cells retards the progression of the S phase, accumulates DNA damage, and induces p53-independent cell death, but the same treatment in normal cells does not significantly affect of less than viability. Low-molecular-weight compounds that inhibit Cdc7 kinase with an IC50 10 nM have been identified, and shown to be effective in the inhibition of tumor growth in animal models. Thus Cdc7 kinase can be recognized as a novel molecular target for cancer therapy.
Collapse
|
26
|
Kakusho N, Taniyama C, Masai H. Identification of Stimulators and Inhibitors of Cdc7 Kinase in Vitro. J Biol Chem 2008; 283:19211-8. [DOI: 10.1074/jbc.m803113200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Martin L. The Replicon Initiation Burst Released by Reoxygenation of Hypoxic T24 Cells is Accompanied by Changes of MCM2 and Cdc7. BMB Rep 2007; 40:805-13. [DOI: 10.5483/bmbrep.2007.40.5.805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Marchetti MA, Weinberger M, Murakami Y, Burhans WC, Huberman JA. Production of reactive oxygen species in response to replication stress and inappropriate mitosis in fission yeast. J Cell Sci 2006; 119:124-31. [PMID: 16371652 PMCID: PMC1582148 DOI: 10.1242/jcs.02703] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previous studies have indicated that replication stress can trigger apoptosis-like cell death, accompanied (where tested) by production of reactive oxygen species (ROS), in mammalian cells and budding yeast (Saccharomyces cerevisiae). In mammalian cells, inappropriate entry into mitosis also leads to cell death. Here, we report similar responses in fission yeast (Schizosaccharomyces pombe). We used ROS- and death-specific fluorescent stains to measure the effects of mutations in replication initiation and checkpoint genes in fission yeast on the frequencies of ROS production and cell death. We found that certain mutant alleles of each of the four tested replication initiation genes caused elevated ROS and cell death. Where tested, these effects were not enhanced by checkpoint-gene mutations. Instead, when cells competent for replication but defective in both the replication and damage checkpoints were treated with hydroxyurea, which slows replication fork movement, the frequencies of ROS production and cell death were greatly increased. This was a consequence of elevated CDK activity, which permitted inappropriate entry into mitosis. Thus, studies in fission yeast are likely to prove helpful in understanding the pathways that lead from replication stress and inappropriate mitosis to cell death in mammalian cells.
Collapse
Affiliation(s)
| | - Martin Weinberger
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Yota Murakami
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Shogoinkawahara-machi, Sakyo-ku, Kyoto 606-8507, Japan
| | - William C Burhans
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Authors for correspondence (e-mail: , )
| | - Joel A Huberman
- Department of Cancer Genetics and
- Authors for correspondence (e-mail: , )
| |
Collapse
|
29
|
Ogino K, Hirota K, Matsumoto S, Takeda T, Ohta K, Arai KI, Masai H. Hsk1 kinase is required for induction of meiotic dsDNA breaks without involving checkpoint kinases in fission yeast. Proc Natl Acad Sci U S A 2006; 103:8131-6. [PMID: 16698922 PMCID: PMC1472441 DOI: 10.1073/pnas.0602498103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Indexed: 11/18/2022] Open
Abstract
Cdc7 kinase, conserved through evolution, is known to be essential for mitotic DNA replication. The role of Cdc7 in meiotic recombination was suggested in Saccharomyces cerevisiae, but its precise role has not been addressed. Here, we report that Hsk1, the Cdc7-related kinase in Schizosaccharomyces pombe, plays a crucial role during meiosis. In a hsk1 temperature-sensitive strain (hsk1-89), meiosis is arrested with one nucleus state before meiosis I in most of the cells and meiotic recombination frequency is reduced by one order of magnitude, whereas premeiotic DNA replication is delayed but is apparently completed. Strikingly, formation of meiotic dsDNA breaks (DSBs) are largely impaired in the mutant, and Hsk1 kinase activity is essential for these processes. Deletion of all three checkpoint kinases, namely Cds1, Chk1, and Mek1, does not restore DSB formation, meiosis, or Cdc2 activation, which is suppressed in hsk1-89, suggesting that these aberrations are not caused by known checkpoint pathways but that Hsk1 may regulate DSB formation and meiosis. Whereas transcriptional induction of some rec genes and horsetail movement are normal, chromatin remodeling at ade6-M26, a recombination hotspot, which is prerequisite for subsequent DSB formation at this locus, is not observed in hsk1-89. These results indicate unique and essential roles of Hsk1 kinase in the initiation of meiotic recombination and meiosis.
Collapse
Affiliation(s)
| | - Kouji Hirota
- Genetic System Regulation Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan; and
| | | | - Tadayuki Takeda
- Computational and Experimental Systems Biology Group, The Institute of Physical and Chemical Research (RIKEN), Genomic Sciences Center, Yokohama, Kanagawa 230-0045, Japan
| | - Kunihiro Ohta
- Genetic System Regulation Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan; and
| | - Ken-ichi Arai
- Department of Integrated Life Science, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan
| | | |
Collapse
|
30
|
Gabrielse C, Miller CT, McConnell KH, DeWard A, Fox CA, Weinreich M. A Dbf4p BRCA1 C-terminal-like domain required for the response to replication fork arrest in budding yeast. Genetics 2006; 173:541-55. [PMID: 16547092 PMCID: PMC1526507 DOI: 10.1534/genetics.106.057521] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dbf4p is an essential regulatory subunit of the Cdc7p kinase required for the initiation of DNA replication. Cdc7p and Dbf4p orthologs have also been shown to function in the response to DNA damage. A previous Dbf4p multiple sequence alignment identified a conserved approximately 40-residue N-terminal region with similarity to the BRCA1 C-terminal (BRCT) motif called "motif N." BRCT motifs encode approximately 100-amino-acid domains involved in the DNA damage response. We have identified an expanded and conserved approximately 100-residue N-terminal region of Dbf4p that includes motif N but is capable of encoding a single BRCT-like domain. Dbf4p orthologs diverge from the BRCT motif at the C terminus but may encode a similar secondary structure in this region. We have therefore called this the BRCT and DBF4 similarity (BRDF) motif. The principal role of this Dbf4p motif was in the response to replication fork (RF) arrest; however, it was not required for cell cycle progression, activation of Cdc7p kinase activity, or interaction with the origin recognition complex (ORC) postulated to recruit Cdc7p-Dbf4p to origins. Rad53p likely directly phosphorylated Dbf4p in response to RF arrest and Dbf4p was required for Rad53p abundance. Rad53p and Dbf4p therefore cooperated to coordinate a robust cellular response to RF arrest.
Collapse
Affiliation(s)
- Carrie Gabrielse
- Laboratory of Chromosome Replication, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | |
Collapse
|
31
|
Matsumoto S, Ogino K, Noguchi E, Russell P, Masai H. Hsk1-Dfp1/Him1, the Cdc7-Dbf4 kinase in Schizosaccharomyces pombe, associates with Swi1, a component of the replication fork protection complex. J Biol Chem 2005; 280:42536-42. [PMID: 16263721 DOI: 10.1074/jbc.m510575200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The protein kinase Hsk1 is essential for DNA replication in Schizosaccharomyces pombe. It associates with Dfp1/Him1 to form an active complex equivalent to the Cdc7-Dbf4 protein kinase in Saccharomyces cerevisiae. Swi1 and Swi3 are subunits of the replication fork protection complex in S. pombe that is homologous to the Tof1-Csm3 complex in S. cerevisiae. The fork protection complex helps to preserve the integrity of stalled replication forks and is important for activation of the checkpoint protein kinase Cds1 in response to fork arrest. Here we describe physical and genetic interactions involving Swi1 and Hsk1-Dfp1/Him1. Dfp1/Him1 was identified in a yeast two-hybrid screen with Swi1. Hsk1 and Dfp1/Him1 both co-immunoprecipitate with Swi1. Swi1 is required for growth of a temperature-sensitive hsk1 (hsk1ts) mutant at its semi-permissive temperature. Hsk1ts cells accumulate Rad22 (Rad52 homologue) DNA repair foci at the permissive temperature, as previously observed in swi1 cells, indicating that abnormal single-stranded DNA regions form near the replication fork in hsk1ts cells. hsk1ts cells were also unable to properly delay S-phase progression in the presence of a DNA alkylating agent and were partially defective in mating type switching. These data suggest that Hsk1-Dfp1/Him1 and Swi1-Swi3 complexes have interrelated roles in stabilization of arrested replication forks.
Collapse
Affiliation(s)
- Seiji Matsumoto
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | |
Collapse
|
32
|
Varrin AE, Prasad AA, Scholz RP, Ramer MD, Duncker BP. A mutation in Dbf4 motif M impairs interactions with DNA replication factors and confers increased resistance to genotoxic agents. Mol Cell Biol 2005; 25:7494-504. [PMID: 16107698 PMCID: PMC1190303 DOI: 10.1128/mcb.25.17.7494-7504.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dbf4/Cdc7 is required for DNA replication in Saccharomyces cerevisiae and appears to be a target in the S-phase checkpoint. Previously, a 186-amino-acid Dbf4 region that mediates interactions with both the origin recognition complex and Rad53 was identified. We now show this domain also mediates the association between Dbf4 and Mcm2, a key Dbf4/Cdc7 phosphorylation target. Two conserved sequences, the N and M motifs, have been identified within this Dbf4 region. Removing motif M (Dbf4DeltaM) impairs the ability of Dbf4 to support normal cell cycle progression and abrogates the Dbf4-Mcm2 association but has no effect on the Dbf4-Rad53 interaction. In contrast, deleting motif N (Dbf4DeltaN) does not affect the essential function of Dbf4, disrupts the Dbf4-Rad53 interaction, largely preserves the Dbf4-Mcm2 association, and renders the cells hypersensitive to genotoxic agents. Surprisingly, Dbf4DeltaM interacts strongly with Orc2, while Dbf4DeltaN does not. The DBF4 allele dna52-1 was cloned and sequenced, revealing a single point mutation within the M motif. This mutant is unable to maintain interactions with either Mcm2 or Orc2 at the semipermissive temperature of 30 degrees C, while the interaction with Rad53 is preserved. Furthermore, this mutation confers increased resistance to genotoxic agents, which we propose is more likely due to a role for Dbf4 in the resumption of fork progression following checkpoint-induced arrest than prevention of late origin firing. Thus, the alteration of the M motif may facilitate the role of Dbf4 as a checkpoint target.
Collapse
Affiliation(s)
- Angela E Varrin
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
33
|
Yamashita N, Kim JM, Koiwai O, Arai KI, Masai H. Functional analyses of mouse ASK, an activation subunit for Cdc7 kinase, using conditional ASK knockout ES cells. Genes Cells 2005; 10:551-63. [PMID: 15938714 DOI: 10.1111/j.1365-2443.2005.00857.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ASK (activator of S phase kinase) is an activation subunit for mammalian Cdc7 kinase. We have generated mutant ES cell lines in which ASK can be conditionally inactivated. Upon loss of the ASK genes, the mutant ES cells rapidly cease cell growth. In keeping with its expected roles in activation of the essential S phase kinase, DNA synthesis is arrested and significant cell death is eventually induced in ASK-deficient cells, demonstrating essential roles of ASK for viability of ES cells. Using these mutant cells, we have set up a system where ASK molecules can be functionally dissected. In keeping with previous results from yeasts, conserved motif-M and motif-C were shown to be essential for in vivo functions of ASK, whereas a long C-terminal tail, found only in ASK-related molecules in higher eukaryotes, is not required. Unexpectedly, the motif-N, related to the BRCT motif and dispensable for viability in yeasts, is essential for the viability of ES cells. Further characterization reveals that motif-N is required for the maximum phosphorylation of MCM in cells, whereas the autophosphorylation activity of Cdc7 is not significantly affected by its loss. These results may suggest that motif-N of ASK may facilitate recruitment of substrates for Cdc7 kinase.
Collapse
Affiliation(s)
- Nobuyuki Yamashita
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | |
Collapse
|
34
|
Brott BK, Sokol SY. A Vertebrate Homolog of the Cell Cycle Regulator Dbf4 Is an Inhibitor of Wnt Signaling Required for Heart Development. Dev Cell 2005; 8:703-15. [PMID: 15866161 DOI: 10.1016/j.devcel.2005.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 01/24/2005] [Accepted: 02/11/2005] [Indexed: 11/21/2022]
Abstract
Early stages of vertebrate heart development have been linked to Wnt signaling. Here we show in both gain- and loss-of-function experiments that XDbf4, a known regulator of Cdc7 kinase, is an inhibitor of the canonical Wnt signaling pathway. Depletion of endogenous XDbf4 protein did not disturb gastrulation movements or early organizer genes but resulted in embryos with morphologically defective heart and eyes and suppressed cardiac markers. These markers were restored by overexpressed XDbf4, or an XDbf4 mutant that inhibits Wnt signaling but lacks the ability to regulate Cdc7. This indicates that the function of XDbf4 in heart development is independent of its role in the cell cycle. Moreover, our data suggest that XDbf4 acts through the physical and functional interaction with Frodo, a context-dependent regulator of Wnt signaling. These findings establish an unexpected function for a vertebrate Dbf4 homolog and demonstrate the requirement for Wnt inhibition in early cardiac specification.
Collapse
Affiliation(s)
- Barbara K Brott
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
35
|
Yoshizawa-Sugata N, Ishii A, Taniyama C, Matsui E, Arai KI, Masai H. A second human Dbf4/ASK-related protein, Drf1/ASKL1, is required for efficient progression of S and M phases. J Biol Chem 2005; 280:13062-70. [PMID: 15668232 DOI: 10.1074/jbc.m411653200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cdc7-Dbf4 kinase is conserved through evolution and regulates initiation and progression of DNA replication. In human, ASK/hsDbf4 binds and activates huCdc7 during S phase and this kinase complex is essential for DNA replication and cell proliferation. Drf1/ASKL1, a second human Dbf4/ASK-related protein, shares three conserved Dbf4 motifs previously identified on all of the Dbf4-related molecules. Drf1/ASKL1 can bind and activate huCdc7, and Cdc7-ASKL1 complex phosphorylates MCM2. ASKL1 transcription and protein levels oscillate during cell cycle and increase at late S to G2/M phases. The protein is detected predominantly in the nuclear-soluble fraction but not in the chromatin-bound fraction. Inhibition of Drf1/ASKL1 expression by siRNA results in attenuation of cell growth and in the increase of late S and G2/M phase population. siRNA treatment on synchronized cell population revealed that S phase progression is delayed when ASKL1 protein level is decreased. S phase delay may be linked to replication fork block, because increased levels of gammaH2AX and activated form of Chk2 are detected with ASKL1 siRNA in the absence of any additional DNA damages. Furthermore, mitotic progression is retarded in ASKL1 or Cdc7 siRNA-treated cells. Our results suggest that ASKL1 in a complex with Cdc7 may play a role in normal progression of both S and M phases.
Collapse
Affiliation(s)
- Naoko Yoshizawa-Sugata
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Jares P, Luciani MG, Blow JJ. A Xenopus Dbf4 homolog is required for Cdc7 chromatin binding and DNA replication. BMC Mol Biol 2004; 5:5. [PMID: 15222894 PMCID: PMC446192 DOI: 10.1186/1471-2199-5-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 06/28/2004] [Indexed: 11/10/2022] Open
Abstract
Background Early in the cell cycle a pre-replicative complex (pre-RC) is assembled at each replication origin. This process involves the sequential assembly of the Origin Recognition Complex (ORC), Cdc6, Cdt1 and the MiniChromosome Maintenance (Mcm2-7) proteins onto chromatin to license the origin for use in the subsequent S phase. Licensed origins must then be activated by S phase-inducing cyclin-dependent kinases (S-CDKs) and the Dbf4/Cdc7 kinase. Results We have cloned a Xenopus homologue of Dbf4 (XDbf4), the sequence of which confirms the results of Furukhori et al. We have analysed the role of XDbf4 in DNA replication using cell-free extracts of Xenopus eggs. Our results indicate that XDbf4 is the regulatory subunit of XCdc7 required for DNA replication. We show that XDbf4 binds to chromatin during interphase, but unlike XCdc7, its chromatin association is independent of pre-RC formation, occurring in the absence of licensing, XCdc6 and XORC. Moreover, we show that the binding of XCdc7 to chromatin is dependent on the presence of XDbf4, whilst under certain circumstances XDbf4 can bind to chromatin in the absence of XCdc7. We provide evidence that the chromatin binding of XDbf4 that occurs in the absence of licensing depends on checkpoint activation. Conclusions We have identified XDbf4 as a functional activator of XCdc7, and show that it is required to recruit XCdc7 to chromatin. Our results also suggest that XCdc7 and XDbf4 are differentially regulated, potentially responding to different cell cycle signals.
Collapse
Affiliation(s)
- Pedro Jares
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
- Genomics Unit, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - M Gloria Luciani
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
37
|
Yanow SK, Gold DA, Yoo HY, Dunphy WG. Xenopus Drf1, a regulator of Cdc7, displays checkpoint-dependent accumulation on chromatin during an S-phase arrest. J Biol Chem 2003; 278:41083-92. [PMID: 12897072 DOI: 10.1074/jbc.m307144200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have cloned a Xenopus Dbf4-related factor named Drf1 and characterized this protein by using Xenopus egg extracts. Drf1 forms an active complex with the kinase Cdc7. However, most of the Cdc7 in egg extracts is not associated with Drf1, which raises the possibility that some or all of the remaining Cdc7 is bound to another Dbf4-related protein. Immunodepletion of Drf1 does not prevent DNA replication in egg extracts. Consistent with this observation, Cdc45 can still associate with chromatin in Drf1-depleted extracts, albeit at significantly reduced levels. Nonetheless, Drf1 displays highly regulated binding to replicating chromatin. Treatment of egg extracts with aphidicolin results in a substantial accumulation of Drf1 on chromatin. This accumulation is blocked by addition of caffeine and by immunodepletion of either ATR or Claspin. These observations suggest that the increased binding of Drf1 to aphidicolin-treated chromatin is an active process that is mediated by a caffeine-sensitive checkpoint pathway containing ATR and Claspin. Abrogation of this pathway also leads to a large increase in the binding of Cdc45 to chromatin. This increase is substantially reduced in the absence of Drf1, which suggests that regulation of Drf1 might be involved in the suppression of Cdc45 loading during replication arrest. We also provide evidence that elimination of this checkpoint causes resumed initiation of DNA replication in both Xenopus tissue culture cells and egg extracts. Taken together, these observations argue that Drf1 is regulated by an intra-S-phase checkpoint mechanism that down-regulates the loading of Cdc45 onto chromatin containing DNA replication blocks.
Collapse
Affiliation(s)
- Stephanie K Yanow
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
38
|
Sato N, Sato M, Nakayama M, Saitoh R, Arai KI, Masai H. Cell cycle regulation of chromatin binding and nuclear localization of human Cdc7-ASK kinase complex. Genes Cells 2003; 8:451-63. [PMID: 12694534 DOI: 10.1046/j.1365-2443.2003.00647.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND During the course of DNA replication, regulation of cellular localization and chromatin binding of involved factors plays critical roles. Cdc7 kinase is required for DNA replication and its kinase activity is cell cycle-regulated by its activation subunit Dbf4/ASK. In mammals, it is not known at which time point during the cell cycle Cdc7 and Dbf4/ASK proteins are imported into nuclei and loaded on to chromatin. RESULTS We have constructed a series of truncation and deletion derivatives of ASK and expressed them as fusion proteins with GFP in mammalian cells. Both Dbf4-motif-M and -C conserved in Dbf4/ASK protein family are required for huCdc7 kinase activation. Two stretches of amino acid sequences, NLS1 (P346KKKRIK) and NLS2 (K201RVGSGAQKTRTGRLKK), are important for ASK nuclear localization. In stable transformants expressing GFP-fused full-length ASK under the tetracycline inducible promoter, GFP-ASK protein accumulates in nuclei at the telophase, but its binding to chromatin does not reach a maximum until late G1, whereas huCdc7 is imported into nuclei and binds to chromatin at early G1. An important substrate of Cdc7-ASK at the G1/S transition is likely to be MCM. Indeed, over-expression of both huCdc7 and ASK results in the elevated phosphorylation of endogenous MCM2 protein, as manifested by appearance of the mobility-shifted form on SDS-PAGE, but does not cause any significant effects on cell cycle progression. CONCLUSIONS Nuclear localization and chromatin binding of endogenous huCdc7 and GFP-ASK expressed during the post-mitotic phase are independently regulated. Although GFP-ASK is presumably imported into nuclei through its two nuclear localization signals at telophase, it may require additional signals for chromatin binding, the level of which increases at late G1 phase.
Collapse
Affiliation(s)
- Noriko Sato
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Duncker BP, Shimada K, Tsai-Pflugfelder M, Pasero P, Gasser SM. An N-terminal domain of Dbf4p mediates interaction with both origin recognition complex (ORC) and Rad53p and can deregulate late origin firing. Proc Natl Acad Sci U S A 2002; 99:16087-92. [PMID: 12441400 PMCID: PMC138569 DOI: 10.1073/pnas.252093999] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Dbf4Cdc7 kinase acts at the level of individual origins to promote the initiation of DNA replication. We demonstrate through both immunoprecipitation and two-hybrid assays that a domain comprising the first 296 aa of Dbf4p interacts with Orc2p and Orc3p subunits of the origin recognition complex (ORC). Given that the activation of Rad53 kinase in response to the DNA replication checkpoint leads to the release of Dbf4p from an ORC-containing chromatin fraction, we also examined interaction between Dbf4p and Rad53p. This same domain of Dbf4p binds specifically to the forkhead homology-associated (FHA) domains of Rad53p. Cell cycle arrest in G(2)M, provoked by the overexpression of the Dbf4 domain, is suppressed in a rad53 mutant. Moreover, its overexpression perturbs the regulation of late, but not early, origin firing in wild-type cells after treatment with hydroxyurea.
Collapse
Affiliation(s)
- Bernard P Duncker
- Department of Molecular Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Yamada M, Sato N, Taniyama C, Ohtani K, Arai KI, Masai H. A 63-base pair DNA segment containing an Sp1 site but not a canonical E2F site can confer growth-dependent and E2F-mediated transcriptional stimulation of the human ASK gene encoding the regulatory subunit for human Cdc7-related kinase. J Biol Chem 2002; 277:27668-81. [PMID: 12015319 DOI: 10.1074/jbc.m202884200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc7-Dbf4 kinase complexes, conserved widely in eukaryotes, play essential roles in initiation and progression of the S phase. Cdc7 kinase activity fluctuates during cell cycle, and this is mainly the result of oscillation of expression of the Dbf4 subunit. Therefore, it is crucial to understand the mechanisms of regulation of Dbf4 expression. We have isolated and characterized the promoter region of the human ASK gene encoding Dbf4-related regulatory subunit for human Cdc7 kinase. We have identified a 63-base pair ASK promoter segment, which is sufficient for mediating growth stimulation. This minimal promoter segment (MP), containing an Sp1 site but no canonical E2F site, can be activated by ectopic E2F expression as well. Within the 63-base pair region, the Sp1 site as well as other elements are essential for stimulation by growth signals and by E2F, whereas an AT-rich sequence proximal to the coding region may serve as an element required for suppression in quiescence. Gel shift assays in the presence of an antibody demonstrate the presence of E2F1 in the protein-DNA complexes generated on the MP segment. However, the complex formation on MP was not competed by a DHFR promoter fragment, known to bind to E2F, nor by a consensus E2F binding oligonucleotide. Gel shift assays with point mutant MP fragments indicate that a non-canonical E2F site in the middle of this segment is critical for generation of the E2F complex. Our results suggest that E2F regulates the ASK promoter through an atypical mode of recognition of the target site.
Collapse
Affiliation(s)
- Masayuki Yamada
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Fung AD, Ou J, Bueler S, Brown GW. A conserved domain of Schizosaccharomyces pombe dfp1(+) is uniquely required for chromosome stability following alkylation damage during S phase. Mol Cell Biol 2002; 22:4477-90. [PMID: 12052858 PMCID: PMC133926 DOI: 10.1128/mcb.22.13.4477-4490.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 01/31/2002] [Accepted: 03/25/2002] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.
Collapse
Affiliation(s)
- Amy D Fung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
42
|
Montagnoli A, Bosotti R, Villa F, Rialland M, Brotherton D, Mercurio C, Berthelsen J, Santocanale C. Drf1, a novel regulatory subunit for human Cdc7 kinase. EMBO J 2002; 21:3171-81. [PMID: 12065429 PMCID: PMC126049 DOI: 10.1093/emboj/cdf290] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Studies in model organisms have contributed to elucidate multiple levels at which regulation of eukaryotic DNA replication occurs. Cdc7, an evolutionarily conserved serine-threonine kinase, plays a pivotal role in linking cell cycle regulation to genome duplication, being essential for the firing of DNA replication origins. Binding of the cell cycle-regulated subunit Dbf4 to Cdc7 is necessary for in vitro kinase activity. This binding is also thought to be the key regulatory event that controls Cdc7 activity in cells. Here, we describe a novel human protein, Drf1, related to both human and yeast Dbf4. Drf1 is a nuclear cell cycle-regulated protein, it binds to Cdc7 and activates the kinase. Therefore, human Cdc7, like cyclin-dependent kinases, can be activated by alternative regulatory subunits. Since the Drf1 gene is either absent or not yet identified in the genome of model organisms such as yeast and Drosophila, these findings introduce a new level of complexity in the regulation of DNA replication of the human genome.
Collapse
Affiliation(s)
| | - R. Bosotti
- Department of Pharmacology and
Department of Biology, DRO-Oncology, Pharmacia Corp., 20014 Nerviano, Italy Corresponding author e-mail:
| | - F. Villa
- Department of Pharmacology and
Department of Biology, DRO-Oncology, Pharmacia Corp., 20014 Nerviano, Italy Corresponding author e-mail:
| | | | | | | | - J. Berthelsen
- Department of Pharmacology and
Department of Biology, DRO-Oncology, Pharmacia Corp., 20014 Nerviano, Italy Corresponding author e-mail:
| | - C. Santocanale
- Department of Pharmacology and
Department of Biology, DRO-Oncology, Pharmacia Corp., 20014 Nerviano, Italy Corresponding author e-mail:
| |
Collapse
|
43
|
Masai H, Arai KI. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 2002; 190:287-96. [PMID: 11857444 DOI: 10.1002/jcp.10070] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication results from the action of a staged set of highly regulated processes. Among the stages of DNA replication, initiation is the key point at which all the G1 regulatory signals culminate. Cdc7 kinase is the critical regulator for the ultimate firing of the origins of initiation. Cdc7, originally identified in budding yeast and later in higher eukaryotes, forms a complex with a Dbf4-related regulatory subunit to generate an active kinase. Genetic evidence in mammals demonstrates essential roles for Cdc7 in mammalian DNA replication. Mini-chromosome maintenance protein (MCM) is the major physiological target of Cdc7. Genetic studies in yeasts indicate additional roles of Cdc7 in meiosis, checkpoint responses, maintenance of chromosome structures, and repair. The interplay between Cdc7 and Cdk, another kinase essential for the S phase, is also discussed.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| | | |
Collapse
|