1
|
Zhou D, Lee SH, Li XH, Kim JD, Lee GH, Sim JM, Cui XS. Decreased in Mitochondrial Complex I Subunit NDUFS2 Is Critical for Oocyte Quality During Postovulatory Aging in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:953-961. [PMID: 39226079 DOI: 10.1093/mam/ozae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
The levels of nicotinamide adenine dinucleotide (NADH) dehydrogenase [ubiquinone] iron-sulfur protein 2 (NDUFS2, a subunit of NADH dehydrogenase) decrease in aged tissues, and these reductions may be partly associated with age-related conditions such as Parkinson's disease. Aging leads to many mitochondrial defects, such as biogenesis disruption, dysfunction, defects in the mitochondrial membrane potential, and production of reactive oxygen species, that may be highly related to NDUFS2 expression. The relationship between NDUFS2 and postovulatory oocyte aging in pigs remains unknown. In this study, we investigated changes in NDUFS2 expression during postovulatory aging (POA). Furthermore, NDUFS2 was knocked down via dsRNA microinjection at the MII stage to evaluate the effects on mitochondrial-related processes during POA. The mRNA expression of NDUFS2 decreased significantly after 48-h aging compared with that in fresh oocytes. NDUFS2 knockdown (KD) significantly impaired the maintenance of oocyte morphology and blastocyst development of embryos after POA. The levels of PGC1α (mitochondrial biogenesis-related proteins) decreased significantly after NDUFS2 KD, while the level of GSNOR, a protein denitrosylase, was reduced by NDUFS2 KD after 48 h of aging. These data suggest that NDUFS2 is vital for maintaining the oocyte quality during POA in pigs.
Collapse
Affiliation(s)
- Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- Centre for Embryology and Healthy Development, Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424, Oslo, Norway
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
2
|
Du H, Zhao Y, Wen J, Dai B, Hu G, Zhou Y, Yin Z, Ding N, Li H, Fan J, Nie X, Wang F, Liu Q, Wen Z, Xu G, Wang DW, Chen C. LncRNA DCRT Protects Against Dilated Cardiomyopathy by Preventing NDUFS2 Alternative Splicing by Binding to PTBP1. Circulation 2024; 150:1030-1049. [PMID: 38841852 DOI: 10.1161/circulationaha.123.067861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Dilated cardiomyopathy is characterized by left ventricular dilation and continuous systolic dysfunction. Mitochondrial impairment is critical in dilated cardiomyopathy; however, the underlying mechanisms remain unclear. Here, we explored the cardioprotective role of a heart-enriched long noncoding RNA, the dilated cardiomyopathy repressive transcript (DCRT), in maintaining mitochondrial function. METHODS The DCRT knockout (DCRT-/-) mice and DCRT knockout cells were developed using CRISPR-Cas9 technology. Cardiac-specific DCRT transgenic mice were generated using α-myosin heavy chain promoter. Chromatin coimmunoprecipitation, RNA immunoprecipitation, Western blot, and isoform sequencing were performed to investigate the underlying mechanisms. RESULTS We found that the long noncoding RNA DCRT was highly enriched in the normal heart tissues and that its expression was significantly downregulated in the myocardium of patients with dilated cardiomyopathy. DCRT-/- mice spontaneously developed cardiac dysfunction and enlargement with mitochondrial impairment. DCRT transgene or overexpression with the recombinant adeno-associated virus system in mice attenuated cardiac dysfunction induced by transverse aortic constriction treatment. Mechanistically, DCRT inhibited the third exon skipping of NDUFS2 (NADH dehydrogenase ubiquinone iron-sulfur protein 2) by directly binding to PTBP1 (polypyrimidine tract binding protein 1) in the nucleus of cardiomyocytes. Skipping of the third exon of NDUFS2 induced mitochondrial dysfunction by competitively inhibiting mitochondrial complex I activity and binding to PRDX5 (peroxiredoxin 5) and suppressing its antioxidant activity. Furthermore, coenzyme Q10 partially alleviated mitochondrial dysfunction in cardiomyocytes caused by DCRT reduction. CONCLUSIONS Our study revealed that the loss of DCRT contributed to PTBP1-mediated exon skipping of NDUFS2, thereby inducing cardiac mitochondrial dysfunction during dilated cardiomyopathy development, which could be partially treated with coenzyme Q10 supplementation.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Polypyrimidine Tract-Binding Protein/genetics
- Polypyrimidine Tract-Binding Protein/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Mice
- Alternative Splicing
- Humans
- Mice, Knockout
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Electron Transport Complex I/metabolism
- Electron Transport Complex I/genetics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Male
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondria, Heart/genetics
- Mice, Transgenic
Collapse
Affiliation(s)
- Hengzhi Du
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Yanru Zhao
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Jianpei Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Beibei Dai
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Guo Hu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Yufei Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Zhongwei Yin
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Nan Ding
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Huaping Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Jiahui Fan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Xiang Nie
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Feng Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Qian Liu
- Tongji Hospital, and Department of Forensic Medicine (Q.L.), Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Gang Xu
- Divisions of Cardiology and Nephrology (G.X.), Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| | - Chen Chen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (H.D., Y.Z., J.W., B.D., G.H., Y.Z., Z.Y., N.D., H.L., J.F., X.N., F.W., Z.W., D.W.W., C.C.)
| |
Collapse
|
3
|
Moreno-Domínguez A, Colinas O, Arias-Mayenco I, Cabeza JM, López-Ogayar JL, Chandel NS, Weissmann N, Sommer N, Pascual A, López-Barneo J. Hif1α-dependent mitochondrial acute O 2 sensing and signaling to myocyte Ca 2+ channels mediate arterial hypoxic vasodilation. Nat Commun 2024; 15:6649. [PMID: 39103356 PMCID: PMC11300585 DOI: 10.1038/s41467-024-51023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Vasodilation in response to low oxygen (O2) tension (hypoxic vasodilation) is an essential homeostatic response of systemic arteries that facilitates O2 supply to tissues according to demand. However, how blood vessels react to O2 deficiency is not well understood. A common belief is that arterial myocytes are O2-sensitive. Supporting this concept, it has been shown that the activity of myocyte L-type Ca2+channels, the main ion channels responsible for vascular contractility, is reversibly inhibited by hypoxia, although the underlying molecular mechanisms have remained elusive. Here, we show that genetic or pharmacological disruption of mitochondrial electron transport selectively abolishes O2 modulation of Ca2+ channels and hypoxic vasodilation. Mitochondria function as O2 sensors and effectors that signal myocyte Ca2+ channels due to constitutive Hif1α-mediated expression of specific electron transport subunit isoforms. These findings reveal the acute O2-sensing mechanisms of vascular cells and may guide new developments in vascular pharmacology.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olalla Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José M Cabeza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Juan L López-Ogayar
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Justus-Liebig-University, Giessen, Germany
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
4
|
Mora-Romero B, Capelo-Carrasco N, Pérez-Moreno JJ, Alvarez-Vergara MI, Trujillo-Estrada L, Romero-Molina C, Martinez-Marquez E, Morano-Catalan N, Vizuete M, Lopez-Barneo J, Nieto-Gonzalez JL, Garcia-Junco-Clemente P, Vitorica J, Gutierrez A, Macias D, Rosales-Nieves AE, Pascual A. Microglia mitochondrial complex I deficiency during development induces glial dysfunction and early lethality. Nat Metab 2024; 6:1479-1491. [PMID: 39048800 DOI: 10.1038/s42255-024-01081-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Primary mitochondrial diseases (PMDs) are associated with pediatric neurological disorders and are traditionally related to oxidative phosphorylation system (OXPHOS) defects in neurons. Interestingly, both PMD mouse models and patients with PMD show gliosis, and pharmacological depletion of microglia, the innate immune cells of the brain, ameliorates multiple symptoms in a mouse model. Given that microglia activation correlates with the expression of OXPHOS genes, we studied whether OXPHOS deficits in microglia may contribute to PMDs. We first observed that the metabolic rewiring associated with microglia stimulation in vitro (via IL-33 or TAU treatment) was partially changed by complex I (CI) inhibition (via rotenone treatment). In vivo, we generated a mouse model deficient for CI activity in microglia (MGcCI). MGcCI microglia showed metabolic rewiring and gradual transcriptional activation, which led to hypertrophy and dysfunction in juvenile (1-month-old) and adult (3-month-old) stages, respectively. MGcCI mice presented widespread reactive astrocytes, a decrease of synaptic markers accompanied by an increased number of parvalbumin neurons, a behavioral deficit characterized by prolonged periods of immobility, loss of weight and premature death that was partially rescued by pharmacologic depletion of microglia. Our data demonstrate that microglia development depends on mitochondrial CI and suggest a direct microglial contribution to PMDs.
Collapse
Affiliation(s)
- Bella Mora-Romero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Nicolas Capelo-Carrasco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Juan J Pérez-Moreno
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - María I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Bonn, Germany
| | - Laura Trujillo-Estrada
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Carmen Romero-Molina
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilio Martinez-Marquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Noelia Morano-Catalan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Jose Lopez-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jose L Nieto-Gonzalez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Pablo Garcia-Junco-Clemente
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Antonia Gutierrez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biología Celular, Genética y Fisiología, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - David Macias
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Chermakani P, Gowri P, Mahesh Kumar S, Sundaresan P. Exploring mito-nuclear genetic factors in Leber's hereditary optic neuropathy: insights from comprehensive profiling of unique cases. EXCLI JOURNAL 2023; 22:1077-1091. [PMID: 38054206 PMCID: PMC10694345 DOI: 10.17179/excli2023-6297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/06/2023] [Indexed: 12/07/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial complex I disorder and causes inexorable painless vision loss. Recent studies from India reported that a significant proportion of LHON patients lack primary mitochondrial DNA mutations, suggesting that alternative genetic factors contribute to disease development. Therefore, this study investigated the genetic profile of LHON-affected individuals in order to understand the role of mito-nuclear genetic factors in LHON. A total of thirty probands displaying symptoms consistent with LHON have undergone whole mitochondrial and whole exome sequencing. Interestingly, whole mtDNA sequencing revealed primary mtDNA mutations in 30 % of the probands (n=9), secondary mtDNA mutations in 40 % of the probands (n=12) and no mitochondrial changes in 30 % of individuals (n=9). Further, WES analysis determined pathogenic mutations in 11 different nuclear genes, especially in cases with secondary mtDNA mutations (n=6) or no mtDNA mutations (n=6). These findings provide valuable insight into LHON genetic predisposition, particularly in cases lacking primary mtDNA mutations. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Prakash Chermakani
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | - Poigaialwar Gowri
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| | | | - Periasamy Sundaresan
- Department of Molecular Genetics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
- Department of Molecular Biology, Aravind Medical Research Foundation - Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
6
|
Moreno-Domínguez A, Colinas O, Smani T, Ureña J, López-Barneo J. Acute oxygen sensing by vascular smooth muscle cells. Front Physiol 2023; 14:1142354. [PMID: 36935756 PMCID: PMC10020353 DOI: 10.3389/fphys.2023.1142354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
An adequate supply of oxygen (O2) is essential for most life forms on earth, making the delivery of appropriate levels of O2 to tissues a fundamental physiological challenge. When O2 levels in the alveoli and/or blood are low, compensatory adaptive reflexes are produced that increase the uptake of O2 and its distribution to tissues within a few seconds. This paper analyzes the most important acute vasomotor responses to lack of O2 (hypoxia): hypoxic pulmonary vasoconstriction (HPV) and hypoxic vasodilation (HVD). HPV affects distal pulmonary (resistance) arteries, with its homeostatic role being to divert blood to well ventilated alveoli to thereby optimize the ventilation/perfusion ratio. HVD is produced in most systemic arteries, in particular in the skeletal muscle, coronary, and cerebral circulations, to increase blood supply to poorly oxygenated tissues. Although vasomotor responses to hypoxia are modulated by endothelial factors and autonomic innervation, it is well established that arterial smooth muscle cells contain an acute O2 sensing system capable of detecting changes in O2 tension and to signal membrane ion channels, which in turn regulate cytosolic Ca2+ levels and myocyte contraction. Here, we summarize current knowledge on the nature of O2 sensing and signaling systems underlying acute vasomotor responses to hypoxia. We also discuss similarities and differences existing in O2 sensors and effectors in the various arterial territories.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Olaia Colinas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Tarik Smani
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- *Correspondence: José López-Barneo,
| |
Collapse
|
7
|
Alkhaldi HA, Vik SB. Analysis of compound heterozygous and homozygous mutations found in peripheral subunits of human respiratory Complex I, NDUFS1, NDUFS2, NDUFS8 and NDUFV1, by modeling in the E. coli enzyme. Mitochondrion 2023; 68:87-104. [PMID: 36462614 PMCID: PMC9805526 DOI: 10.1016/j.mito.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Respiratory Complex I (NADH:ubiquinone oxidoreductase) is composed of 45 subunits, seven mitochondrially-encoded and 38 imported. Mutations in the nuclearly-encoded subunits have been regularly discovered in humans in recent years, and many lead to cardiomyopathy, Leigh Syndrome, and early death. From the literature, we have identified mutations at 17 different sites and constructed 31 mutants in a bacterial model system. Many of these mutations, found in NDUFS1, NDUFS2, NDUFS8, and NDUFV1, map to subunit interfaces, and we hypothesized that they would disrupt assembly of Complex I. The mutations were constructed in the homologous E. coli genes, nuoG, nuoCD, nuoI and nuoF, respectively, and expressed from a plasmid containing all Complex I genes. Membrane vesicles were prepared and rates of deamino-NADH oxidase activity measured, which indicated a range of reduced activity. Some mutants were also analyzed using recently developed assays of assembly, time-delayed expression, and co-immunoprecipitation, which showed that assembly was disrupted. With compound heterozygotes, we determined which mutation was more deleterious. Construction of alanine mutations allowed us to distinguish between phenotypes that were caused by loss of the original amino acid or introduction of the mutant residue.
Collapse
Affiliation(s)
- Hind A Alkhaldi
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | - Steven B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA.
| |
Collapse
|
8
|
Steinhilper R, Höff G, Heider J, Murphy BJ. Structure of the membrane-bound formate hydrogenlyase complex from Escherichia coli. Nat Commun 2022; 13:5395. [PMID: 36104349 PMCID: PMC9474812 DOI: 10.1038/s41467-022-32831-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 01/30/2023] Open
Abstract
The prototypical hydrogen-producing enzyme, the membrane-bound formate hydrogenlyase (FHL) complex from Escherichia coli, links formate oxidation at a molybdopterin-containing formate dehydrogenase to proton reduction at a [NiFe] hydrogenase. It is of intense interest due to its ability to efficiently produce H2 during fermentation, its reversibility, allowing H2-dependent CO2 reduction, and its evolutionary link to respiratory complex I. FHL has been studied for over a century, but its atomic structure remains unknown. Here we report cryo-EM structures of FHL in its aerobically and anaerobically isolated forms at resolutions reaching 2.6 Å. This includes well-resolved density for conserved loops linking the soluble and membrane arms believed to be essential in coupling enzymatic turnover to ion translocation across the membrane in the complex I superfamily. We evaluate possible structural determinants of the bias toward hydrogen production over its oxidation and describe an unpredicted metal-binding site near the interface of FdhF and HycF subunits that may play a role in redox-dependent regulation of FdhF interaction with the complex. New cryo-EM structures of the formate hydrogenlyase complex from the model bacterium E. coli clarify how electrons and protons move through the complex and are combined to make H2 gas. The complex shows important similarities and differences to related bioenergetic complexes across the tree of life.
Collapse
|
9
|
Grba DN, Blaza JN, Bridges HR, Agip ANA, Yin Z, Murai M, Miyoshi H, Hirst J. Cryo-electron microscopy reveals how acetogenins inhibit mitochondrial respiratory complex I. J Biol Chem 2022; 298:101602. [PMID: 35063503 PMCID: PMC8861642 DOI: 10.1016/j.jbc.2022.101602] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial complex I (NADH:ubiquinone oxidoreductase), a crucial enzyme in energy metabolism, captures the redox potential energy from NADH oxidation/ubiquinone reduction to create the proton motive force used to drive ATP synthesis in oxidative phosphorylation. High-resolution single-particle electron cryo-EM analyses have provided detailed structural knowledge of the catalytic machinery of complex I, but not of the molecular principles of its energy transduction mechanism. Although ubiquinone is considered to bind in a long channel at the interface of the membrane-embedded and hydrophilic domains, with channel residues likely involved in coupling substrate reduction to proton translocation, no structures with the channel fully occupied have yet been described. Here, we report the structure (determined by cryo-EM) of mouse complex I with a tight-binding natural product acetogenin inhibitor, which resembles the native substrate, bound along the full length of the expected ubiquinone-binding channel. Our structure reveals the mode of acetogenin binding and the molecular basis for structure-activity relationships within the acetogenin family. It also shows that acetogenins are such potent inhibitors because they are highly hydrophobic molecules that contain two specific hydrophilic moieties spaced to lock into two hydrophilic regions of the otherwise hydrophobic channel. The central hydrophilic section of the channel does not favor binding of the isoprenoid chain when the native substrate is fully bound but stabilizes the ubiquinone/ubiquinol headgroup as it transits to/from the active site. Therefore, the amphipathic nature of the channel supports both tight binding of the amphipathic inhibitor and rapid exchange of the ubiquinone/ubiquinol substrate and product.
Collapse
Affiliation(s)
- Daniel N Grba
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - James N Blaza
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Hannah R Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Ahmed-Noor A Agip
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Zhan Yin
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Gu J, Liu T, Guo R, Zhang L, Yang M. The coupling mechanism of mammalian mitochondrial complex I. Nat Struct Mol Biol 2022; 29:172-182. [PMID: 35145322 DOI: 10.1038/s41594-022-00722-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023]
Abstract
Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4-3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone-NADH and rotenone-NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI.
Collapse
Affiliation(s)
- Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Beijing, China. .,SUSTech Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, China.
| |
Collapse
|
11
|
Abstract
Oxygen (O2) is essential for life and therefore the supply of sufficient O2 to the tissues is a major physiological challenge. In mammals, a deficit of O2 (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O2 by the lungs and its distribution throughout the body. The prototypical acute O2-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O2-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O2 sensing and signaling. We focus on recent data supporting a "mitochondria-to-membrane signaling" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O2-sensing and signaling role in a wide variety of cells is also discussed.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
12
|
Bentley RET, Hindmarch CCT, Dunham-Snary KJ, Snetsinger B, Mewburn JD, Thébaud A, Lima PDA, Thébaud B, Archer SL. The molecular mechanisms of oxygen-sensing in human ductus arteriosus smooth muscle cells: A comprehensive transcriptome profile reveals a central role for mitochondria. Genomics 2021; 113:3128-3140. [PMID: 34245829 PMCID: PMC10659099 DOI: 10.1016/j.ygeno.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/22/2023]
Abstract
The ductus arteriosus (DA) connects the fetal pulmonary artery and aorta, diverting placentally oxygenated blood from the developing lungs to the systemic circulation. The DA constricts in response to increases in oxygen (O2) with the first breaths, resulting in functional DA closure, with anatomic closure occurring within the first days of life. Failure of DA closure results in persistent patent ductus arteriosus (PDA), a common complication of extreme preterm birth. The DA's response to O2, though modulated by the endothelium, is intrinsic to the DA smooth muscle cells (DASMC). DA constriction is mediated by mitochondrial-derived reactive oxygen species, which increase in proportion to arterial partial pressure of oxygen (PaO2). The resulting redox changes inhibit voltage-gated potassium channels (Kv) leading to cell depolarization, calcium influx and DASMC constriction. To date, there has not been an unbiased assessment of the human DA O2-sensors using transcriptomics, nor are there known molecular mechanisms which characterize DA closure. DASMCs were isolated from DAs obtained from 10 term infants at the time of congenital heart surgery. Cells were purified by flow cytometry, negatively sorting using CD90 and CD31 to eliminate fibroblasts or endothelial cells, respectively. The purity of the DASMC population was confirmed by positive staining for α-smooth muscle actin, smoothelin B and caldesmon. Cells were grown for 96 h in hypoxia (2.5% O2) or normoxia (19% O2) and confocal imaging with Cal-520 was used to determine oxygen responsiveness. An oxygen-induced increase in intracellular calcium of 18.1% ± 4.4% and SMC constriction (-27% ± 1.5% shortening) occurred in all cell lines within five minutes. RNA sequencing of the cells grown in hypoxia and normoxia revealed significant regulation of 1344 genes (corrected p < 0.05). We examined these genes using Gene Ontology (GO). This unbiased assessment of altered gene expression indicated significant enrichment of the following GOterms: mitochondria, cellular respiration and transcription. The top regulated biologic process was generation of precursor metabolites and energy. The top regulated cellular component was mitochondrial matrix. The top regulated molecular function was transcription coactivator activity. Multiple members of the NADH-ubiquinone oxidoreductase (NDUF) family are upregulated in human DASMC (hDASMC) following normoxia. Several of our differentially regulated transcripts are encoded by genes that have been associated with genetic syndromes that have an increased incidence of PDA (Crebb binding protein and Histone Acetyltransferase P300). This first examination of the effects of O2 on human DA transcriptomics supports a putative role for mitochondria as oxygen sensors.
Collapse
Affiliation(s)
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Brooke Snetsinger
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Jeffrey D Mewburn
- Department of Biomedical and Molecular Science, Queen's University, Canada
| | - Arthur Thébaud
- Department of Kinesiology and Health Studies, Queen's University, Canada
| | - Patricia D A Lima
- QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada
| | - Bernard Thébaud
- Ottawa Hospital Research Institute, Regenerative Medicine Program, Ottawa, Ontario, Canada; Department of Pediatrics, Division of Neonatology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada; QCPU, Queen's Cardiopulmonary Unit, Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Canada.
| |
Collapse
|
13
|
Poor Person's pH Simulation of Membrane Proteins. Methods Mol Biol 2021. [PMID: 34302678 DOI: 10.1007/978-1-0716-1468-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
pH conditions are central to the functioning of all biomolecules. However, implications of pH changes are nontrivial on a molecular scale. Though a rigorous microscopic definition of pH exists, its implementation in classical molecular dynamics (MD) simulations is cumbersome, and more so in large integral membrane systems. In this chapter, an integrative pipeline is described that combines Multi-Conformation Continuum Electrostatics (MCCE) computations with MD simulations to capture the effect of transient protonation states on the coupled conformational changes in transmembrane proteins. The core methodologies are explained, and all the software required to set up this pipeline are outlined with their key parameters. All associated analyses of structure and function are provided using two case studies, namely those of bioenergetic complexes: NADH dehydrogenase (complex I) and Vo domain of V-type ATPase. The hybrid MCCE-MD pipeline has allowed the discovery of hydrogen bond networks, ligand binding pathways, and disease-causing mutations.
Collapse
|
14
|
Yu H, Schut GJ, Haja DK, Adams MWW, Li H. Evolution of complex I-like respiratory complexes. J Biol Chem 2021; 296:100740. [PMID: 33957129 PMCID: PMC8165549 DOI: 10.1016/j.jbc.2021.100740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022] Open
Abstract
The modern-day respiratory complex I shares a common ancestor with the membrane-bound hydrogenase (MBH) and membrane-bound sulfane sulfur reductase (MBS). MBH and MBS use protons and sulfur as their respective electron sinks, which helped to conserve energy during early life in the Proterozoic era when the Earth's atmosphere was low in oxygen. MBH and MBS likely evolved from an integration of an ancestral, membrane-embedded, multiple resistance and pH antiporter and a soluble redox-active module encompassing a [NiFe] hydrogenase. In this review, we discuss how the structures of MBH, MBS, multiple resistance and pH, photosynthetic NADH dehydrogenase-like complex type-1, and complex I, which have been determined recently, thanks to the advent of high-resolution cryo-EM, have significantly improved our understanding of the catalytic reaction mechanisms and the evolutionary relationships of the respiratory complexes.
Collapse
Affiliation(s)
- Hongjun Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Domink K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan, USA.
| |
Collapse
|
15
|
A conserved arginine residue is critical for stabilizing the N2 FeS cluster in mitochondrial complex I. J Biol Chem 2021; 296:100474. [PMID: 33640456 PMCID: PMC8042128 DOI: 10.1016/j.jbc.2021.100474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase), the first enzyme of the electron-transport chain, captures the free energy released by NADH oxidation and ubiquinone reduction to translocate protons across an energy-transducing membrane and drive ATP synthesis during oxidative phosphorylation. The cofactor that transfers the electrons directly to ubiquinone is an iron–sulfur cluster (N2) located in the NDUFS2/NUCM subunit. A nearby arginine residue (R121), which forms part of the second coordination sphere of the N2 cluster, is known to be posttranslationally dimethylated but its functional and structural significance are not known. Here, we show that mutations of this arginine residue (R121M/K) abolish the quinone-reductase activity, concomitant with disappearance of the N2 signature from the electron paramagnetic resonance (EPR) spectrum. Analysis of the cryo-EM structure of NDUFS2-R121M complex I at 3.7 Å resolution identified the absence of the cubane N2 cluster as the cause of the dysfunction, within an otherwise intact enzyme. The mutation further induced localized disorder in nearby elements of the quinone-binding site, consistent with the close connections between the cluster and substrate-binding regions. Our results demonstrate that R121 is required for the formation and/or stability of the N2 cluster and highlight the importance of structural analyses for mechanistic interpretation of biochemical and spectroscopic data on complex I variants.
Collapse
|
16
|
Ortega-Sáenz P, Moreno-Domínguez A, Gao L, López-Barneo J. Molecular Mechanisms of Acute Oxygen Sensing by Arterial Chemoreceptor Cells. Role of Hif2α. Front Physiol 2020; 11:614893. [PMID: 33329066 PMCID: PMC7719705 DOI: 10.3389/fphys.2020.614893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/03/2020] [Indexed: 01/28/2023] Open
Abstract
Carotid body glomus cells are multimodal arterial chemoreceptors able to sense and integrate changes in several physical and chemical parameters in the blood. These cells are also essential for O2 homeostasis. Glomus cells are prototypical peripheral O2 sensors necessary to detect hypoxemia and to elicit rapid compensatory responses (hyperventilation and sympathetic activation). The mechanisms underlying acute O2 sensing by glomus cells have been elusive. Using a combination of mouse genetics and single-cell optical and electrophysiological techniques, it has recently been shown that activation of glomus cells by hypoxia relies on the generation of mitochondrial signals (NADH and reactive oxygen species), which modulate membrane ion channels to induce depolarization, Ca2+ influx, and transmitter release. The special sensitivity of glomus cell mitochondria to changes in O2 tension is due to Hif2α-dependent expression of several atypical mitochondrial subunits, which are responsible for an accelerated oxidative metabolism and the strict dependence of mitochondrial complex IV activity on O2 availability. A mitochondrial-to-membrane signaling model of acute O2 sensing has been proposed, which explains existing data and provides a solid foundation for future experimental tests. This model has also unraveled new molecular targets for pharmacological modulation of carotid body activity potentially relevant in the treatment of highly prevalent medical conditions.
Collapse
Affiliation(s)
- Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alejandro Moreno-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
17
|
Yu H, Haja DK, Schut GJ, Wu CH, Meng X, Zhao G, Li H, Adams MWW. Structure of the respiratory MBS complex reveals iron-sulfur cluster catalyzed sulfane sulfur reduction in ancient life. Nat Commun 2020; 11:5953. [PMID: 33230146 PMCID: PMC7684303 DOI: 10.1038/s41467-020-19697-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters. The sulfur-reducing enzyme MBS and the hydrogen-gas evolving MBH are the evolutionary link between the ancestor Mrp antiporter and the mitochondrial respiratory complex I. Here, the authors characterise MBS from the hyperthermophilic archaeon Pyrococcus furiosus, solve its cryo-EM structure and discuss the structural evolution from Mrp to MBH and MBS and to the modern-day complex I.
Collapse
Affiliation(s)
- Hongjun Yu
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Xing Meng
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Gongpu Zhao
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA
| | - Huilin Li
- Structural Biology Program, Van Andel Institute, Grand Rapids, MI, USA.
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Namin HH, Zhurov V, Spenler J, Grbić M, Grbić V, Scott IM. Resistance to pyridaben in Canadian greenhouse populations of two-spotted spider mites, Tetranychus urticae (Koch). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104677. [PMID: 32980052 DOI: 10.1016/j.pestbp.2020.104677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Two-spotted spider mite (TSSM) Tetranychus urticae (Koch) is an important agricultural pest that causes considerable yield losses to over 150 field and greenhouse crops. Mitochondrial electron transport inhibitors (METI) acaricides are commonly used to control mite species in commercial Canadian greenhouses. Development of resistance to METIs in TSSM populations have been reported worldwide, but not until recently in Canada. The objectives of this study were to: 1) monitor the acaricide-susceptibility in greenhouse TSSM populations, and 2) investigate the resistance to pyridaben, a METI acaricide, in greenhouse resistant and pyridaben-selected (SRS) mite strains. The increased mortality to the pyridaben sub-lethal concentration (LC30) when SRS mites were exposed to piperonyl butoxide (PBO), a general cytochrome P450 monooxygenase inhibitor, and higher P450 activity compared to the greenhouse strain (RS) mites, indicated that P450s may be at least partially responsible for the resistance. The molecular mechanisms of target site insensitivity-mediated resistance in the pyridaben resistant strain of TSSM were investigated by comparing the DNA sequence of NADH dehydrogenase subunits TYKY and PSST, NADH-ubiquinone oxidoreductase chain 1 and 5 (ND1, ND5) and the NADH-ubiquinone oxidoreductase subunit 49 kDa from SRS to the reference strain (SS) and RS. Despite a number of nucleotide substitutions, none correlated with the pyridaben resistance. Understanding the underlying mechanisms of TSSM adaptation to acaricides is an essential part of resistance management strategy in any IPM program. The findings of this study will encourage growers to apply acaricides with different modes of action to reduce the rate at which acaricide resistance will occur in greenhouse TSSM populations.
Collapse
Affiliation(s)
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Jeremy Spenler
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Ian M Scott
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada.
| |
Collapse
|
19
|
Gupta C, Khaniya U, Chan CK, Dehez F, Shekhar M, Gunner MR, Sazanov L, Chipot C, Singharoy A. Charge Transfer and Chemo-Mechanical Coupling in Respiratory Complex I. J Am Chem Soc 2020; 142:9220-9230. [PMID: 32347721 DOI: 10.1021/jacs.9b13450] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mitochondrial respiratory chain, formed by five protein complexes, utilizes energy from catabolic processes to synthesize ATP. Complex I, the first and the largest protein complex of the chain, harvests electrons from NADH to reduce quinone, while pumping protons across the mitochondrial membrane. Detailed knowledge of the working principle of such coupled charge-transfer processes remains, however, fragmentary due to bottlenecks in understanding redox-driven conformational transitions and their interplay with the hydrated proton pathways. Complex I from Thermus thermophilus encases 16 subunits with nine iron-sulfur clusters, reduced by electrons from NADH. Here, employing the latest crystal structure of T. thermophilus complex I, we have used microsecond-scale molecular dynamics simulations to study the chemo-mechanical coupling between redox changes of the iron-sulfur clusters and conformational transitions across complex I. First, we identify the redox switches within complex I, which allosterically couple the dynamics of the quinone binding pocket to the site of NADH reduction. Second, our free-energy calculations reveal that the affinity of the quinone, specifically menaquinone, for the binding-site is higher than that of its reduced, menaquinol form-a design essential for menaquinol release. Remarkably, the barriers to diffusive menaquinone dynamics are lesser than that of the more ubiquitous ubiquinone, and the naphthoquinone headgroup of the former furnishes stronger binding interactions with the pocket, favoring menaquinone for charge transport in T. thermophilus. Our computations are consistent with experimentally validated mutations and hierarchize the key residues into three functional classes, identifying new mutation targets. Third, long-range hydrogen-bond networks connecting the quinone-binding site to the transmembrane subunits are found to be responsible for proton pumping. Put together, the simulations reveal the molecular design principles linking redox reactions to quinone turnover to proton translocation in complex I.
Collapse
Affiliation(s)
- Chitrak Gupta
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.,Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, City University of New York, New York, New York 10017, United States
| | - Chun Kit Chan
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | - Mrinal Shekhar
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M R Gunner
- Department of Physics, City College of New York, New York, New York 10031, United States.,Department of Physics, City University of New York, New York, New York 10017, United States
| | - Leonid Sazanov
- Institute of Science and Technology, 3400 Klosterneuburg, Austria
| | - Christophe Chipot
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,University of Lorraine, Nancy 54000, France
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States.,Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
20
|
Ishibashi T. Therapeutic Efficacy of Molecular Hydrogen: A New Mechanistic Insight. Curr Pharm Des 2020; 25:946-955. [PMID: 31057105 PMCID: PMC6806612 DOI: 10.2174/1381612825666190506123038] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/25/2019] [Indexed: 02/02/2023]
Abstract
Background: Molecular hydrogen (H2) is now recognized as a therapeutic gas for the treatment of numerous diseases including neurodegenerative diseases, metabolic disorders, and inflammatory diseases. Non-polar, neutral H2 is assumed to have health benefits facilitated by its passive diffusion across the human body immediately after administration and is considered a safe therapeutic inert gas that does not interfere with physiological enzymatic reactions. The effects of H2 on mammalian cells are assumed to be based on non-enzymatic reactions with Reactive Oxygen Species (ROS) exhibiting extremely high reactivity. However, many reports on therapeutic applications of H2 have the limitation to regard H2 only as a scavenger for the hydroxyl radical and peroxynitrite. Methods: Apart from this proposed principle, a new possible mechanism of H2 activation and consumption in mammalian cells is considered in this review, which is specifically focused on the mitochondrial complex I that has a close evolutionary relationship with energy-converting, membrane-bound [NiFe]-hydrogenases (MBH). Notably, the possibility that H2 may function as both electron and proton donor in the ubiquinone-binding chamber of complex I is discussed. Results: H2 is proposed to act as the rectifier of the mitochondrial electron flow in the disordered or pathological state when the accumulation of electrons leads to ROS production, specifically during the re-supply of O2 after hypoxia in the mitochondria. Conclusion: Furthermore, H2 is proposed to convert the quinone intermediates to the fully reduced ubiquinol, thereby increasing the antioxidant capacity of the quinone pool as well as preventing the generation of ROS.
Collapse
Affiliation(s)
- Toru Ishibashi
- Department of Rheumatology, Orthopaedic Surgery and Health Care, Huis Ten Bosch Satellite H2 Clinic Hakata, Fukuoka, Japan
| |
Collapse
|
21
|
Dunham-Snary KJ, Wu D, Potus F, Sykes EA, Mewburn JD, Charles RL, Eaton P, Sultanian RA, Archer SL. Ndufs2, a Core Subunit of Mitochondrial Complex I, Is Essential for Acute Oxygen-Sensing and Hypoxic Pulmonary Vasoconstriction. Circ Res 2019; 124:1727-1746. [PMID: 30922174 DOI: 10.1161/circresaha.118.314284] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
RATIONALE Hypoxic pulmonary vasoconstriction (HPV) optimizes systemic oxygen delivery by matching ventilation to perfusion. HPV is intrinsic to pulmonary artery smooth muscle cells (PASMCs). Hypoxia dilates systemic arteries, including renal arteries. Hypoxia is sensed by changes in mitochondrial-derived reactive oxygen species, notably hydrogen peroxide (H2O2) ([H2O2]mito). Decreases in [H2O2]mito elevate pulmonary vascular tone by increasing intracellular calcium ([Ca2+]i) through reduction-oxidation regulation of ion channels. Although HPV is mimicked by the Complex I inhibitor, rotenone, the molecular identity of the O2 sensor is unknown. OBJECTIVE To determine the role of Ndufs2 (NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 2), Complex I's rotenone binding site, in pulmonary vascular oxygen-sensing. METHODS AND RESULTS Mitochondria-conditioned media from pulmonary and renal mitochondria isolated from normoxic and chronically hypoxic rats were infused into an isolated lung bioassay. Mitochondria-conditioned media from normoxic lungs contained more H2O2 than mitochondria-conditioned media from chronic hypoxic lungs or kidneys and uniquely attenuated HPV via a catalase-dependent mechanism. In PASMC, acute hypoxia decreased H2O2 within 112±7 seconds, followed, within 205±34 seconds, by increased intracellular calcium concentration, [Ca2+]i. Hypoxia had no effects on [Ca2+]i in renal artery SMC. Hypoxia decreases both cytosolic and mitochondrial H2O2 in PASMC while increasing cytosolic H2O2 in renal artery SMC. Ndufs2 expression was greater in PASMC versus renal artery SMC. Lung Ndufs2 cysteine residues became reduced during acute hypoxia and both hypoxia and reducing agents caused functional inhibition of Complex I. In PASMC, siNdufs2 (cells/tissue treated with Ndufs2 siRNA) decreased normoxic H2O2, prevented hypoxic increases in [Ca2+]i, and mimicked aspects of chronic hypoxia, including decreasing Complex I activity, elevating the nicotinamide adenine dinucleotide (NADH/NAD+) ratio and decreasing expression of the O2-sensitive ion channel, Kv1.5. Knocking down another Fe-S center within Complex I (Ndufs1, NADH [nicotinamide adenine dinucleotide] dehydrogenase [ubiquinone] iron-sulfur protein 1) or other mitochondrial subunits proposed as putative oxygen sensors (Complex III's Rieske Fe-S center and COX4i2 [cytochrome c oxidase subunit 4 isoform 2] in Complex IV) had no effect on hypoxic increases in [Ca2+]i. In vivo, siNdufs2 significantly decreased hypoxia- and rotenone-induced constriction while enhancing phenylephrine-induced constriction. CONCLUSIONS Ndufs2 is essential for oxygen-sensing and HPV.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Danchen Wu
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - François Potus
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Edward A Sykes
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Jeffrey D Mewburn
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.)
| | - Rebecca L Charles
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Philip Eaton
- British Heart Foundation Centre of Excellence, King´s College London, The Rayne Institute, St Thomas' Hospital, London, United Kingdom (R.L.C., P.E.)
| | - Richard A Sultanian
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada (R.A.S.)
| | - Stephen L Archer
- From the Department of Medicine, Queen's University, Kingston, ON, Canada (K.J.D.-S., D.W., F.P., E.A.S., J.D.M., S.L.A.).,Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, ON, Canada (S.L.A.)
| |
Collapse
|
22
|
Affiliation(s)
- Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Department of Pediatrics, Radboud University Medical Center, Geert Grooteplein-Zuid 10, Route 772, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
23
|
|
24
|
Prabhakar NR, Peng YJ, Nanduri J. Recent advances in understanding the physiology of hypoxic sensing by the carotid body. F1000Res 2018; 7. [PMID: 30631432 PMCID: PMC6284772 DOI: 10.12688/f1000research.16247.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2018] [Indexed: 01/05/2023] Open
Abstract
Hypoxia resulting from reduced oxygen (O
2) levels in the arterial blood is sensed by the carotid body (CB) and triggers reflex stimulation of breathing and blood pressure to maintain homeostasis. Studies in the past five years provided novel insights into the roles of heme oxygenase-2 (HO-2), a carbon monoxide (CO)-producing enzyme, and NADH dehydrogenase Fe-S protein 2, a subunit of the mitochondrial complex I, in hypoxic sensing by the CB. HO-2 is expressed in type I cells, the primary O2-sensing cells of the CB, and binds to O
2 with low affinity. O
2-dependent CO production from HO-2 mediates hypoxic response of the CB by regulating H
2S generation. Mice lacking NDUFS2 show that complex I-generated reactive oxygen species acting on K
+ channels confer type I cell response to hypoxia. Whether these signaling pathways operate synergistically or independently remains to be studied.
Collapse
Affiliation(s)
- Nanduri R Prabhakar
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, 60637, USA
| | - Ying-Jie Peng
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, 60637, USA
| | - Jayasri Nanduri
- Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
25
|
Gao L, Ortega-Sáenz P, López-Barneo J. Acute oxygen sensing-Role of metabolic specifications in peripheral chemoreceptor cells. Respir Physiol Neurobiol 2018; 265:100-111. [PMID: 30172779 DOI: 10.1016/j.resp.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 12/30/2022]
Abstract
Acute oxygen sensing is essential for humans under hypoxic environments or pathologic conditions. This is achieved by the carotid body (CB), the key arterial chemoreceptor, along with other peripheral chemoreceptor organs, such as the adrenal medulla (AM). Although it is widely accepted that inhibition of K+ channels in the plasma membrane of CB cells during acute hypoxia results in the activation of cardiorespiratory reflexes, the molecular mechanisms by which the hypoxic signal is detected to modulate ion channel activity are not fully understood. Using conditional knockout mice lacking mitochondrial complex I (MCI) subunit NDUFS2, we have found that MCI generates reactive oxygen species and pyridine nucleotides, which signal K+ channels during acute hypoxia. Comparing the transcriptomes from CB and AM, which are O2-sensitive, with superior cervical ganglion, which is practically O2-insensitive, we have found that CB and AM contain unique metabolic gene expression profiles. The "signature metabolic profile" and their biophysical characteristics could be essential for acute O2 sensing by chemoreceptor cells.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
26
|
Gamiz-Hernandez AP, Jussupow A, Johansson MP, Kaila VRI. Terminal Electron-Proton Transfer Dynamics in the Quinone Reduction of Respiratory Complex I. J Am Chem Soc 2017; 139:16282-16288. [PMID: 29017321 PMCID: PMC6300313 DOI: 10.1021/jacs.7b08486] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complex I functions as a redox-driven proton pump in aerobic respiratory chains. By reducing quinone (Q), complex I employs the free energy released in the process to thermodynamically drive proton pumping across its membrane domain. The initial Q reduction step plays a central role in activating the proton pumping machinery. In order to probe the energetics, dynamics, and molecular mechanism for the proton-coupled electron transfer process linked to the Q reduction, we employ here multiscale quantum and classical molecular simulations. We identify that both ubiquinone (UQ) and menaquinone (MQ) can form stacking and hydrogen-bonded interactions with the conserved Q-binding-site residue His-38 and that conformational changes between these binding modes modulate the Q redox potentials and the rate of electron transfer (eT) from the terminal N2 iron-sulfur center. We further observe that, while the transient formation of semiquinone is not proton-coupled, the second eT process couples to a semiconcerted proton uptake from conserved tyrosine (Tyr-87) and histidine (His-38) residues within the active site. Our calculations indicate that both UQ and MQ have low redox potentials around -260 and -230 mV, respectively, in the Q-binding site, respectively, suggesting that release of the Q toward the membrane is coupled to an energy transduction step that could thermodynamically drive proton pumping in complex I.
Collapse
Affiliation(s)
- Ana P Gamiz-Hernandez
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Alexander Jussupow
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Mikael P Johansson
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany.,Department of Chemistry, University of Helsinki , P.O. Box 55, Helsinki FI-00014, Finland
| | - Ville R I Kaila
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| |
Collapse
|
27
|
Gao L, González-Rodríguez P, Ortega-Sáenz P, López-Barneo J. Redox signaling in acute oxygen sensing. Redox Biol 2017; 12:908-915. [PMID: 28476010 PMCID: PMC5426049 DOI: 10.1016/j.redox.2017.04.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/24/2017] [Accepted: 04/24/2017] [Indexed: 11/22/2022] Open
Abstract
Acute oxygen (O2) sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB) is the main peripheral chemoreceptor, which contains excitable and O2-sensitive glomus cells with O2-regulated ion channels. Upon exposure to acute hypoxia, inhibition of K+ channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O2 sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K+ channels. We propose that the structural substrates for acute O2 sensing in CB glomus cells are “O2-sensing microdomains” formed by mitochondria and neighboring K+ channels in the plasma membrane. Acute O2 sensing by peripheral chemoreceptors depends on K+ channels. Mitochondrial complex I function is required for acute O2 sensing. Reactive oxygen species inhibits background K+ channels during acute hypoxia. Pyridine nucleotides may signal voltage-gated K+ channels during acute hypoxia.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain.
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain.
| |
Collapse
|
28
|
Bajda S, Dermauw W, Panteleri R, Sugimoto N, Douris V, Tirry L, Osakabe M, Vontas J, Van Leeuwen T. A mutation in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:79-90. [PMID: 27919778 DOI: 10.1016/j.ibmb.2016.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/25/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
The acaricidal compounds pyridaben, tebufenpyrad and fenpyroximate are frequently used in the control of phytophagous mites such as Tetranychus urticae, and are referred to as Mitochondrial Electron Transport Inhibitors, acting at the quinone binding pocket of complex I (METI-I acaricides). Because of their very frequent use, resistance evolved fast more than 20 years ago, and is currently wide-spread. Increased activity of P450 monooxygenases has been often associated with resistance, but target-site based resistance mechanisms were never reported. Here, we report the discovery of a mutation (H92R) in the PSST homologue of complex I in METI-I resistant T. urticae strains. The position of the mutation was studied using the high-resolution crystal structure of Thermus thermophilus, and was located in a stretch of amino acids previously photo-affinity labeled by fenpyroximate. Selection experiments with a strain segregating for the mutant allele, together with marker-assisted back-crossing of the mutation in a susceptible background, confirmed the involvement of the mutation in METI-I resistance. Additionally, an independent genetic mapping approach; QTL analysis identified the genomic region of pyridaben resistance, which included the PSST gene. Last, we used CRISPR-Cas9 genome editing tools to introduce the mutation in the Drosophila PSST homologue.
Collapse
Affiliation(s)
- Sabina Bajda
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090 GE Amsterdam, The Netherlands
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium
| | - Rafaela Panteleri
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece
| | - Naoya Sugimoto
- Kyoto University, Graduate School of Agriculture, Laboratory of Ecological Information, Kyoto 606-8502, Japan
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Department of Biology, University of Crete, 71409 Heraklion, Greece
| | - Luc Tirry
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium
| | - Masahiro Osakabe
- Kyoto University, Graduate School of Agriculture, Laboratory of Ecological Information, Kyoto 606-8502, Japan
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13 Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | - Thomas Van Leeuwen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424, 1090 GE Amsterdam, The Netherlands; Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Coupure Links 653, Ghent University, B-9000 Ghent, Belgium.
| |
Collapse
|
29
|
Wirth C, Brandt U, Hunte C, Zickermann V. Structure and function of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:902-14. [PMID: 26921811 DOI: 10.1016/j.bbabio.2016.02.013] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Ulrich Brandt
- Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, The Netherlands; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany.
| | - Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, Frankfurt am Main, Germany; Cluster of Excellence Frankfurt "Macromolecular Complexes, Goethe-University, Germany.
| |
Collapse
|
30
|
Oxygen-sensing by arterial chemoreceptors: Mechanisms and medical translation. Mol Aspects Med 2016; 47-48:90-108. [DOI: 10.1016/j.mam.2015.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
|
31
|
López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 2016; 310:C629-42. [PMID: 26764048 DOI: 10.1152/ajpcell.00265.2015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxygen (O2) is fundamental for cell and whole-body homeostasis. Our understanding of the adaptive processes that take place in response to a lack of O2(hypoxia) has progressed significantly in recent years. The carotid body (CB) is the main arterial chemoreceptor that mediates the acute cardiorespiratory reflexes (hyperventilation and sympathetic activation) triggered by hypoxia. The CB is composed of clusters of cells (glomeruli) in close contact with blood vessels and nerve fibers. Glomus cells, the O2-sensitive elements in the CB, are neuron-like cells that contain O2-sensitive K(+)channels, which are inhibited by hypoxia. This leads to cell depolarization, Ca(2+)entry, and the release of transmitters to activate sensory fibers terminating at the respiratory center. The mechanism whereby O2modulates K(+)channels has remained elusive, although several appealing hypotheses have been postulated. Recent data suggest that mitochondria complex I signaling to membrane K(+)channels plays a fundamental role in acute O2sensing. CB activation during exposure to low Po2is also necessary for acclimatization to chronic hypoxia. CB growth during sustained hypoxia depends on the activation of a resident population of stem cells, which are also activated by transmitters released from the O2-sensitive glomus cells. These advances should foster further studies on the role of CB dysfunction in the pathogenesis of highly prevalent human diseases.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
32
|
Degli Esposti M. Genome Analysis of Structure-Function Relationships in Respiratory Complex I, an Ancient Bioenergetic Enzyme. Genome Biol Evol 2015; 8:126-47. [PMID: 26615219 PMCID: PMC4758237 DOI: 10.1093/gbe/evv239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Respiratory complex I (NADH:ubiquinone oxidoreductase) is a ubiquitous bioenergetic enzyme formed by over 40 subunits in eukaryotes and a minimum of 11 subunits in bacteria. Recently, crystal structures have greatly advanced our knowledge of complex I but have not clarified the details of its reaction with ubiquinone (Q). This reaction is essential for bioenergy production and takes place in a large cavity embedded within a conserved module that is homologous to the catalytic core of Ni-Fe hydrogenases. However, how a hydrogenase core has evolved into the protonmotive Q reductase module of complex I has remained unclear. This work has exploited the abundant genomic information that is currently available to deduce structure-function relationships in complex I that indicate the evolutionary steps of Q reactivity and its adaptation to natural Q substrates. The results provide answers to fundamental questions regarding various aspects of complex I reaction with Q and help re-defining the old concept that this reaction may involve two Q or inhibitor sites. The re-definition leads to a simplified classification of the plethora of complex I inhibitors while throwing a new light on the evolution of the enzyme function.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Italian Institute of Technology, Genova, Italy Center for Genomic Sciences, UNAM, Cuernavaca, Mexico
| |
Collapse
|
33
|
Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P, García-Pergañeda A, Pascual A, Ortega-Sáenz P, López-Barneo J. Oxygen Sensing by Arterial Chemoreceptors Depends on Mitochondrial Complex I Signaling. Cell Metab 2015; 22:825-37. [PMID: 26437605 DOI: 10.1016/j.cmet.2015.09.004] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/17/2015] [Accepted: 09/08/2015] [Indexed: 12/30/2022]
Abstract
O2 sensing is essential for mammalian homeostasis. Peripheral chemoreceptors such as the carotid body (CB) contain cells with O2-sensitive K(+) channels, which are inhibited by hypoxia to trigger fast adaptive cardiorespiratory reflexes. How variations of O2 tension (PO2) are detected and the mechanisms whereby these changes are conveyed to membrane ion channels have remained elusive. We have studied acute O2 sensing in conditional knockout mice lacking mitochondrial complex I (MCI) genes. We inactivated Ndufs2, which encodes a protein that participates in ubiquinone binding. Ndufs2-null mice lose the hyperventilatory response to hypoxia, although they respond to hypercapnia. Ndufs2-deficient CB cells have normal functions and ATP content but are insensitive to changes in PO2. Our data suggest that chemoreceptor cells have a specialized succinate-dependent metabolism that induces an MCI state during hypoxia, characterized by the production of reactive oxygen species and accumulation of reduced pyridine nucleotides, which signal neighboring K(+) channels.
Collapse
Affiliation(s)
- M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - C Oscar Pintado
- Centro de Producción y Experimentación Animal, Universidad de Sevilla, Calle San Fernando, 4, 41004 Seville, Spain
| | - Ignacio Arias-Mayenco
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Paula García-Flores
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Antonio García-Pergañeda
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuan, 4, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Campus Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot, s/n, 41013 Seville, Spain.
| |
Collapse
|
34
|
Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, Brandt U. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 2015; 347:44-9. [PMID: 25554780 DOI: 10.1126/science.1259859] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders. We report the x-ray structure of mitochondrial complex I at a resolution of 3.6 to 3.9 angstroms, describing in detail the central subunits that execute the bioenergetic function. A continuous axis of basic and acidic residues running centrally through the membrane arm connects the ubiquinone reduction site in the hydrophilic arm to four putative proton-pumping units. The binding position for a substrate analogous inhibitor and blockage of the predicted ubiquinone binding site provide a model for the "deactive" form of the enzyme. The proposed transition into the active form is based on a concerted structural rearrangement at the ubiquinone reduction site, providing support for a two-state stabilization-change mechanism of proton pumping.
Collapse
Affiliation(s)
- Volker Zickermann
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany. Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany.
| | - Christophe Wirth
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Hamid Nasiri
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Karin Siegmund
- Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, 60438 Frankfurt am Main, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Ulrich Brandt
- Cluster of Excellence Frankfurt "Macromolecular Complexes," Goethe-University, 60438 Frankfurt am Main, Germany. Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
35
|
Sinha PK, Castro-Guerrero N, Patki G, Sato M, Torres-Bacete J, Sinha S, Miyoshi H, Matsuno-Yagi A, Yagi T. Conserved amino acid residues of the NuoD segment important for structure and function of Escherichia coli NDH-1 (complex I). Biochemistry 2015; 54:753-64. [PMID: 25545070 PMCID: PMC4310626 DOI: 10.1021/bi501403t] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The NuoD segment (homologue of mitochondrial
49 kDa subunit) of
the proton-translocating NADH:quinone oxidoreductase (complex I/NDH-1)
from Escherichia coli is in the hydrophilic domain
and bears many highly conserved amino acid residues. The three-dimensional
structural model of NDH-1 suggests that the NuoD segment, together
with the neighboring subunits, constitutes a putative quinone binding
cavity. We used the homologous DNA recombination technique to clarify
the role of selected key amino acid residues of the NuoD segment.
Among them, residues Tyr273 and His224 were considered candidates
for having important interactions with the quinone headgroup. Mutant
Y273F retained partial activity but lost sensitivity to capsaicin-40.
Mutant H224R scarcely affected the activity, suggesting that this
residue may not be essential. His224 is located in a loop near the
N-terminus of the NuoD segment (Gly217–Phe227) which is considered
to form part of the quinone binding cavity. In contrast to the His224
mutation, mutants G217V, P218A, and G225V almost completely lost the
activity. One region of this loop is positioned close to a cytosolic
loop of the NuoA subunit in the membrane domain, and together they
seem to be important in keeping the quinone binding cavity intact.
The structural role of the longest helix in the NuoD segment located
behind the quinone binding cavity was also investigated. Possible
roles of other highly conserved residues of the NuoD segment are discussed.
Collapse
Affiliation(s)
- Prem Kumar Sinha
- Deparment of Molecular and Experimental Medicine, and ‡Department of Cell and Molecular Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, MEM256, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Friedrich T. On the mechanism of respiratory complex I. J Bioenerg Biomembr 2014; 46:255-68. [PMID: 25022766 DOI: 10.1007/s10863-014-9566-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/03/2014] [Indexed: 02/08/2023]
Abstract
The energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy and X-ray crystallography revealed the two-part structure of the enzyme complex. A peripheral arm extending into the aqueous phase catalyzes the electron transfer reaction. Accordingly, this arm contains the redox-active cofactors, namely one flavin mononucleotide (FMN) and up to ten iron-sulfur (Fe/S) clusters. A membrane arm embedded in the lipid bilayer catalyzes proton translocation by a yet unknown mechanism. The binding site of the substrate (ubi) quinone is located at the interface of the two arms. The oxidation of one NADH is coupled with the translocation of four protons across the membrane. In this review, the binding of the substrates, the intramolecular electron transfer, the role of individual Fe/S clusters and the mechanism of proton translocation are discussed in the light of recent data obtained from our laboratory.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Institut für Biochemie, Albert-Ludwigs-Universität, Albertstr. 21, 79104, Freiburg, Germany,
| |
Collapse
|
37
|
How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase. Biochem J 2014; 458:449-58. [PMID: 24428762 PMCID: PMC3940037 DOI: 10.1042/bj20131520] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His229 from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His229 was observed to lie close to a buried glutamic acid (Glu73), which is conserved in oxygen-tolerant hydrogenases. His229 and Glu73 of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His229 or Glu73 with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His229 has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu73could play a supporting role in fine-tuning the chemistry of His229 to enable this function. A hydrogenase consists of two subunits: a large and a small subunit. In the present study, amino acids from the large subunit were found to influence a cofactor in the small subunit, such that they help to confer oxygen-tolerance to the enzyme.
Collapse
|
38
|
Babot M, Birch A, Labarbuta P, Galkin A. Characterisation of the active/de-active transition of mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1083-92. [PMID: 24569053 PMCID: PMC4331042 DOI: 10.1016/j.bbabio.2014.02.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022]
Abstract
Oxidation of NADH in the mitochondrial matrix of aerobic cells is catalysed by mitochondrial complex I. The regulation of this mitochondrial enzyme is not completely understood. An interesting characteristic of complex I from some organisms is the ability to adopt two distinct states: the so-called catalytically active (A) and the de-active, dormant state (D). The A-form in situ can undergo de-activation when the activity of the respiratory chain is limited (i.e. in the absence of oxygen). The mechanisms and driving force behind the A/D transition of the enzyme are currently unknown, but several subunits are most likely involved in the conformational rearrangements: the accessory subunit 39 kDa (NDUFA9) and the mitochondrially encoded subunits, ND3 and ND1. These three subunits are located in the region of the quinone binding site. The A/D transition could represent an intrinsic mechanism which provides a fast response of the mitochondrial respiratory chain to oxygen deprivation. The physiological role of the accumulation of the D-form in anoxia is most probably to protect mitochondria from ROS generation due to the rapid burst of respiration following reoxygenation. The de-activation rate varies in different tissues and can be modulated by the temperature, the presence of free fatty acids and divalent cations, the NAD+/NADH ratio in the matrix, the presence of nitric oxide and oxygen availability. Cysteine-39 of the ND3 subunit, exposed in the D-form, is susceptible to covalent modification by nitrosothiols, ROS and RNS. The D-form in situ could react with natural effectors in mitochondria or with pharmacological agents. Therefore the modulation of the re-activation rate of complex I could be a way to ameliorate the ischaemia/reperfusion damage. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira. The potential mechanism of complex I A/D transition is discussed. An —SH group exposed in the D-form is susceptible to covalent modification. The role of A/D transition in tissue response to ischaemia is proposed.
Collapse
Affiliation(s)
- Marion Babot
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Amanda Birch
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Paola Labarbuta
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alexander Galkin
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
39
|
Welte C, Deppenmeier U. Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:1130-47. [PMID: 24333786 DOI: 10.1016/j.bbabio.2013.12.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 12/16/2022]
Abstract
Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change coupled to methanogenesis from acetate is only -36kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing ferredoxin will be discussed in depth. Membrane bound electron transport is connected to energy conservation by proton or sodium ion translocating enzymes (F420H2 dehydrogenase, Rnf complex, Ech hydrogenase, methanophenazine-reducing hydrogenase and heterodisulfide reductase). The resulting electrochemical ion gradient constitutes the driving force for adenosine triphosphate synthesis. Methanogenesis, electron transport, and the structure of key enzymes are discussed in this review leading to a concept of how aceticlastic methanogens make a living. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Cornelia Welte
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany; Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Uwe Deppenmeier
- Institute of Microbiology and Biotechnology, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany.
| |
Collapse
|
40
|
Abstract
Complex I (NADH:ubiquinone oxidoreductase) is crucial for respiration in many aerobic organisms. In mitochondria, it oxidizes NADH from the tricarboxylic acid cycle and β-oxidation, reduces ubiquinone, and transports protons across the inner membrane, contributing to the proton-motive force. It is also a major contributor to cellular production of reactive oxygen species. The redox reaction of complex I is catalyzed in the hydrophilic domain; it comprises NADH oxidation by a flavin mononucleotide, intramolecular electron transfer along a chain of iron-sulfur clusters, and ubiquinone reduction. Redox-coupled proton translocation in the membrane domain requires long-range energy transfer through the protein complex, and the molecular mechanisms that couple the redox and proton-transfer half-reactions are currently unknown. This review evaluates extant data on the mechanisms of energy transduction and superoxide production by complex I, discusses contemporary mechanistic models, and explores how mechanistic studies may contribute to understanding the roles of complex I dysfunctions in human diseases.
Collapse
Affiliation(s)
- Judy Hirst
- Medical Research Council Mitochondrial Biology Unit, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
41
|
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 2013; 494:443-8. [PMID: 23417064 PMCID: PMC3672946 DOI: 10.1038/nature11871] [Citation(s) in RCA: 595] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/21/2012] [Indexed: 02/05/2023]
Abstract
Complex I is the first and largest enzyme of the respiratory chain and has a central role in cellular energy production through the coupling of NADH:ubiquinone electron transfer to proton translocation. It is also implicated in many common human neurodegenerative diseases. Here, we report the first crystal structure of the entire, intact complex I (from Thermus thermophilus) at 3.3 Å resolution. The structure of the 536-kDa complex comprises 16 different subunits, with a total of 64 transmembrane helices and 9 iron-sulphur clusters. The core fold of subunit Nqo8 (ND1 in humans) is, unexpectedly, similar to a half-channel of the antiporter-like subunits. Small subunits nearby form a linked second half-channel, which completes the fourth proton-translocation pathway (present in addition to the channels in three antiporter-like subunits). The quinone-binding site is unusually long, narrow and enclosed. The quinone headgroup binds at the deep end of this chamber, near iron-sulphur cluster N2. Notably, the chamber is linked to the fourth channel by a 'funnel' of charged residues. The link continues over the entire membrane domain as a flexible central axis of charged and polar residues, and probably has a leading role in the propagation of conformational changes, aided by coupling elements. The structure suggests that a unique, out-of-the-membrane quinone-reaction chamber enables the redox energy to drive concerted long-range conformational changes in the four antiporter-like domains, resulting in translocation of four protons per cycle.
Collapse
Affiliation(s)
- Rozbeh Baradaran
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | |
Collapse
|
42
|
Efremov RG, Sazanov LA. The coupling mechanism of respiratory complex I — A structural and evolutionary perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1785-95. [DOI: 10.1016/j.bbabio.2012.02.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/09/2012] [Accepted: 02/14/2012] [Indexed: 11/27/2022]
|
43
|
Verkhovskaya M, Bloch DA. Energy-converting respiratory Complex I: on the way to the molecular mechanism of the proton pump. Int J Biochem Cell Biol 2012; 45:491-511. [PMID: 22982742 DOI: 10.1016/j.biocel.2012.08.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
In respiring organisms the major energy transduction flux employs the transmembrane electrochemical proton gradient as a physical link between exergonic redox reactions and endergonic ADP phosphorylation. Establishing the gradient involves electrogenic, transmembrane H(+) translocation by the membrane-embedded respiratory complexes. Among others, Complex I (NADH:ubiquinone oxidoreductase) is the most structurally complex and functionally enigmatic respiratory enzyme; its molecular mechanism is as yet unknown. Here we highlight recent progress and discuss the catalytic events during Complex I turnover in relation to their role in energy conversion and to the enzyme structure.
Collapse
Affiliation(s)
- Marina Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
44
|
Ransac S, Heiske M, Mazat JP. From in silico to in spectro kinetics of respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1958-69. [PMID: 22510388 DOI: 10.1016/j.bbabio.2012.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/12/2022]
Abstract
An enzyme's activity is the consequence of its structure. The stochastic approach we developed to study the functioning of the respiratory complexes is based upon their 3D structure and their physical and chemical properties. Consequently it should predict their kinetic properties. In this paper we compare the predictions of our stochastic model derived for the complex I with a number of experiments performed with a large range of complex I substrates and products. A good fit was found between the experiments and the prediction of our stochastic approach. We show that, due to the spatial separation of the two half redox reactions (NADH/NAD and Q/QH(2)), the kinetics cannot necessarily obey a simple mechanism (ordered or ping-pong for instance). A plateau in the kinetics is observed at high substrates concentrations, well evidenced in the double reciprocal plots, which is explained by the limiting rate of quinone reduction as compared with the oxidation of NADH at the other end of complex I. Moreover, we show that the set of the seven redox reactions in between the two half redox reactions (NADH/NAD and Q/QH(2)) acts as an electron buffer. An inhibition of complex I activity by quinone is observed at high concentration of this molecule, which cannot be explained by a simple stochastic model based on the known structure. We hypothesize that the distance between the catalytic site close to N2 (iron/sulfur redox center that transfers electrons to quinone) and the membrane forces the quinone/quinol to take several positions in between these sites. We represent these possible positions by an extra site necessarily occupied by the quinone/quinol molecules on their way to the redox site. With this hypothesis, we are able to fit the kinetic experiments over a large range of substrates and products concentrations. The slow rate constants derived for the transition between the two sites could be an indication of a conformational change of the enzyme during the quinone/quinol movement. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Stéphane Ransac
- Institute of Biochemistry and Genetics of the Cell, Bordeaux cedex, France
| | | | | |
Collapse
|
45
|
Angerer H, Nasiri HR, Niedergesäß V, Kerscher S, Schwalbe H, Brandt U. Tracing the tail of ubiquinone in mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1776-84. [PMID: 22484275 DOI: 10.1016/j.bbabio.2012.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 03/20/2012] [Accepted: 03/21/2012] [Indexed: 12/01/2022]
Abstract
Mitochondrial complex I (proton pumping NADH:ubiquinone oxidoreductase) is the largest and most complicated component of the respiratory electron transfer chain. Despite its central role in biological energy conversion the structure and function of this membrane integral multiprotein complex is still poorly understood. Recent insights into the structure of complex I by X-ray crystallography have shown that iron-sulfur cluster N2, the immediate electron donor for ubiquinone, resides about 30Å above the membrane domain and mutagenesis studies suggested that the active site for the hydrophobic substrate is located next to this redox-center. To trace the path for the hydrophobic tail of ubiquinone when it enters the peripheral arm of complex I, we performed an extensive structure/function analysis of complex I from Yarrowia lipolytica monitoring the interaction of site-directed mutants with five ubiquinone derivatives carrying different tails. The catalytic activity of a subset of mutants was strictly dependent on the presence of intact isoprenoid moieties in the tail. Overall a consistent picture emerged suggesting that the tail of ubiquinone enters through a narrow path at the interface between the 49-kDa and PSST subunits. Most notably we identified a set of methionines that seems to form a hydrophobic gate to the active site reminiscent to the M-domains involved in the interaction with hydrophobic targeting sequences with the signal recognition particle of the endoplasmic reticulum. Interestingly, two of the amino acids critical for the interaction with the ubiquinone tail are different in bovine complex I and we could show that one of these exchanges is responsible for the lower sensitivity of Y. lipolytica complex I towards the inhibitor rotenone. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
Affiliation(s)
- Heike Angerer
- Goethe-University, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Bridges HR, Bill E, Hirst J. Mössbauer spectroscopy on respiratory complex I: the iron-sulfur cluster ensemble in the NADH-reduced enzyme is partially oxidized. Biochemistry 2011; 51:149-58. [PMID: 22122402 PMCID: PMC3254188 DOI: 10.1021/bi201644x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In mitochondria, complex I (NADH:quinone oxidoreductase)
couples
electron transfer to proton translocation across an energy-transducing
membrane. It contains a flavin mononucleotide to oxidize NADH, and
an unusually long series of iron–sulfur (FeS) clusters that
transfer the electrons to quinone. Understanding electron transfer
in complex I requires spectroscopic and structural data to be combined
to reveal the properties of individual clusters and of the ensemble.
EPR studies on complex I from Bos taurus have established
that five clusters (positions 1, 2, 3, 5, and 7 along the seven-cluster
chain extending from the flavin) are (at least partially) reduced
by NADH. The other three clusters, positions 4 and 6 plus a cluster
on the other side of the flavin, are not observed in EPR spectra from
the NADH-reduced enzyme: they may remain oxidized, have unusual or
coupled spin states, or their EPR signals may be too fast relaxing.
Here, we use Mössbauer spectroscopy on 57Fe-labeled
complex I from the mitochondria of Yarrowia lipolytica to show that the cluster ensemble is only partially reduced in the
NADH-reduced enzyme. The three EPR-silent clusters are oxidized, and
only the terminal 4Fe cluster (position 7) is fully reduced. Together
with the EPR analyses, our results reveal an alternating profile of
higher and lower potential clusters between the two active sites in
complex I; they are not consistent with the consensus picture of a
set of isopotential clusters. The implications for intramolecular
electron transfer along the extended chain of cofactors in complex
I are discussed.
Collapse
Affiliation(s)
- Hannah R Bridges
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | | | | |
Collapse
|
47
|
Pätsi J, Maliniemi P, Pakanen S, Hinttala R, Uusimaa J, Majamaa K, Nyström T, Kervinen M, Hassinen IE. LHON/MELAS overlap mutation in ND1 subunit of mitochondrial complex I affects ubiquinone binding as revealed by modeling in Escherichia coli NDH-1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:312-8. [PMID: 22079202 DOI: 10.1016/j.bbabio.2011.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
Abstract
Defects in complex I due to mutations in mitochondrial DNA are associated with clinical features ranging from single organ manifestation like Leber hereditary optic neuropathy (LHON) to multiorgan disorders like mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome. Specific mutations cause overlap syndromes combining several phenotypes, but the mechanisms of their biochemical effects are largely unknown. The m.3376G>A transition leading to p.E24K substitution in ND1 with LHON/MELAS phenotype was modeled here in a homologous position (NuoH-E36K) in the Escherichia coli enzyme and it almost totally abolished complex I activity. The more conservative mutation NuoH-E36Q resulted in higher apparent K(m) for ubiquinone and diminished inhibitor sensitivity. A NuoH homolog of the m.3865A>G transition, which has been found concomitantly in the overlap syndrome patient with the m.3376G>A, had only a minor effect. Consequences of a primary LHON-mutation m.3460G>A affecting the same extramembrane loop as the m.3376G>A substitution were also studied in the E. coli model and were found to be mild. The results indicate that the overlap syndrome-associated m.3376G>A transition in MTND1 is the pathogenic mutation and m.3865A>G transition has minor, if any, effect on presentation of the disease. The kinetic effects of the NuoH-E36Q mutation suggest its proximity to the putative ubiquinone binding domain in 49kD/PSST subunits. In all, m.3376G>A perturbs ubiquinone binding, a phenomenon found in LHON, and decreases the activity of fully assembled complex I as in MELAS.
Collapse
Affiliation(s)
- Jukka Pätsi
- Department of Medical Biochemistry and Molecular Biology, University of Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bis-THF motif of acetogenin binds to the third matrix-side loop of ND1 subunit in mitochondrial NADH-ubiquinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1170-6. [DOI: 10.1016/j.bbabio.2011.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 11/17/2022]
|
49
|
Albracht SPJ, Meijer AJ, Rydström J. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. J Bioenerg Biomembr 2011; 43:541-64. [PMID: 21882037 DOI: 10.1007/s10863-011-9381-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/03/2011] [Indexed: 12/20/2022]
Abstract
Mammalian NADH:ubiquinone oxidoreductase (Complex I) in the mitochondrial inner membrane catalyzes the oxidation of NADH in the matrix. Excess NADH reduces nine of the ten prosthetic groups of the enzyme in bovine-heart submitochondrial particles with a rate of at least 3,300 s⁻¹. This results in an overall NADH→O₂ rate of ca. 150 s⁻¹. It has long been known that the bovine enzyme also has a specific reaction site for NADPH. At neutral pH excess NADPH reduces only three to four of the prosthetic groups in Complex I with a rate of 40 s⁻¹ at 22 °C. The reducing equivalents remain essentially locked in the enzyme because the overall NADPH→O₂ rate (1.4 s⁻¹) is negligible. The physiological significance of the reaction with NADPH is still unclear. A number of recent developments has revived our thinking about this enigma. We hypothesize that Complex I and the Δp-driven nicotinamide nucleotide transhydrogenase (Nnt) co-operate in an energy-dependent attenuation of the hydrogen-peroxide generation by Complex I. This co-operation is thought to be mediated by the NADPH/NADP⁺ ratio in the vicinity of the NADPH site of Complex I. It is proposed that the specific H₂O₂ production by Complex I, and the attenuation of it, is of importance for apoptosis, autophagy and the survival mechanism of a number of cancers. Verification of this hypothesis may contribute to a better understanding of the regulation of these processes.
Collapse
Affiliation(s)
- Simon P J Albracht
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
50
|
Kayser EB, Suthammarak W, Morgan PG, Sedensky MM. Isoflurane selectively inhibits distal mitochondrial complex I in Caenorhabditis elegans. Anesth Analg 2011; 112:1321-9. [PMID: 21467554 DOI: 10.1213/ane.0b013e3182121d37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Complex I of the electron transport chain (ETC) is a possible target of volatile anesthetics (VAs). Complex I enzymatic activities are inhibited by VAs, and dysfunction of complex I can lead to hypersensitivity to VAs in worms and in people. Mutant analysis in Caenorhabditis (C.) elegans suggests that VAs may specifically interfere with complex I function at the binding site for its substrate ubiquinone. We hypothesized that isoflurane inhibits electron transport by competing with ubiquinone for binding to complex I. METHODS Wildtype and mutant C. elegans were used to study the effects of isoflurane on isolated mitochondria. Enzymatic activities of the ETC were assayed and dose-response curves determined using established techniques. Two-dimensional native gels of mitochondrial proteins were performed after exposure of mitochondria to isoflurane. RESULTS Complex I is the most sensitive component of the ETC to isoflurane inhibition; however, the proximal portion of complex I (the flavoprotein) is relatively insensitive to isoflurane. Isoflurane and quinone do not compete for a common binding site on complex I. The absolute rate of complex I enzymatic activity in vitro does not predict immobilization of the animal by isoflurane. Isoflurane had no measurable effect on stability of mitochondrial supercomplexes. Reduction of ubiquinone by complex I displayed positive cooperative kinetics not disrupted by isoflurane. CONCLUSIONS Isoflurane directly inhibits complex I at a site distal to the flavoprotein subcomplex. However, we have excluded our original hypothesis that isoflurane and ubiquinone compete for a common hydrophobic binding site on complex I. In addition, immobilization of the nematode by isoflurane is not due to limiting absolute amounts of complex I electron transport as measured in isolated mitochondria.
Collapse
Affiliation(s)
- Ernst-Bernhard Kayser
- Department of Anesthesiology, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101-1304, USA.
| | | | | | | |
Collapse
|