1
|
de Cavanagh EMV, Inserra F, Ferder L. Renin-angiotensin system inhibitors positively impact on multiple aging regulatory pathways: Could they be used to protect against human aging? Physiol Rep 2024; 12:e16094. [PMID: 38924381 PMCID: PMC11200104 DOI: 10.14814/phy2.16094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
The renin-angiotensin system (RAS)-a classical blood pressure regulator-largely contributes to healthy organ development and function. Besides, RAS activation promotes age-related changes and age-associated diseases, which are attenuated/abolished by RAS-blockade in several mammalian species. RAS-blockers also increase rodent lifespan. In previous work, we discussed how RAS-blockade downregulates mTOR and growth hormone/IGF-1 signaling, and stimulates AMPK activity (together with klotho, sirtuin, and vitamin D-receptor upregulation), and proposed that at least some of RAS-blockade's aging benefits are mediated through regulation of these intermediaries and their signaling to mitochondria. Here, we included RAS-blockade's impact on other aging regulatory pathways, that is, TGF-ß, NF-kB, PI3K, MAPK, PKC, Notch, and Wnt, all of which affect mitochondria. No direct evidence is available on RAS/RAS-blockade-aging regulatory pathway-mitochondria interactions. However, existing results allow to conjecture that RAS-blockers neutralize mitochondrial dysfunction by acting on the discussed pathways. The reviewed evidence led us to propose that the foundation is laid for conducting clinical trials aimed at testing whether angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARB)-even at subclinical doses-offer the possibility to live longer and in better health. As ACEi and ARB are low cost and well-tolerated anti-hypertension therapies in use for over 35 years, investigating their administration to attenuate/prevent aging effects seems simple to implement.
Collapse
Affiliation(s)
| | - Felipe Inserra
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
- Master of Vascular Mechanics and Arterial Hypertension, Postgraduate DepartmentAustral UniversityPilarArgentina
| | - León Ferder
- Department of MedicineMaimonides UniversityBuenos AiresArgentina
| |
Collapse
|
2
|
Lanahan SM, Wymann MP, Lucas CL. The role of PI3Kγ in the immune system: new insights and translational implications. Nat Rev Immunol 2022; 22:687-700. [PMID: 35322259 PMCID: PMC9922156 DOI: 10.1038/s41577-022-00701-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Over the past two decades, new insights have positioned phosphoinositide 3-kinase-γ (PI3Kγ) as a context-dependent modulator of immunity and inflammation. Recent advances in protein structure determination and drug development have allowed for generation of highly specific PI3Kγ inhibitors, with the first now in clinical trials for several oncology indications. Recently, a monogenic immune disorder caused by PI3Kγ deficiency was discovered in humans and modelled in mice. Human inactivated PI3Kγ syndrome confirms the immunomodulatory roles of PI3Kγ and strengthens newly defined roles of this molecule in modulating inflammatory cytokine release in macrophages. Here, we review the functions of PI3Kγ in the immune system and discuss how our understanding of its potential as a therapeutic target has evolved.
Collapse
Affiliation(s)
- Stephen M Lanahan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Doan TNA, Bianco-Miotto T, Parry L, Winter M. The role of angiotensin II and relaxin in vascular adaptation to pregnancy. Reproduction 2022; 164:R87-R99. [PMID: 36018774 DOI: 10.1530/rep-21-0428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
In brief There is a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular function and can be maintained postpartum. This review outlines the cardiovascular changes that occur in a healthy human and rodent pregnancy, as well as different pathways that are activated by angiotensin II and relaxin that result in blood vessel dilation. Abstract During pregnancy, systemic and uteroplacental blood flow increase to ensure an adequate blood supply that carries oxygen and nutrients from the mother to the fetus. This results in changes to the function of the maternal cardiovascular system. There is also a pregnancy-induced vasodilation of blood vessels, which is known to have a protective effect on cardiovascular health/function. Additionally, there is evidence that the effects of maternal vascular vasodilation are maintained post-partum, which may reduce the risk of developing high blood pressure in the next pregnancy and reduce cardiovascular risk later in life. At both non-pregnant and pregnant stages, vascular endothelial cells produce a number of vasodilators and vasoconstrictors, which transduce signals to the contractile vascular smooth muscle cells to control the dilation and constriction of blood vessels. These vascular cells are also targets of other vasoactive factors, including angiotensin II (Ang II) and relaxin. The binding of Ang II to its receptors activates different pathways to regulate the blood vessel vasoconstriction/vasodilation, and relaxin can interact with some of these pathways to induce vasodilation. Based on the available literature, this review outlines the cardiovascular changes that occur in a healthy human pregnancy, supplemented by studies in rodents. A specific focus is placed on vasodilation of blood vessels during pregnancy; the role of endothelial cells and endothelium-derived vasodilators will also be discussed. Additionally, different pathways that are activated by Ang II and relaxin that result in blood vessel dilation will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Laura Parry
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
PI3K Isoforms in Vascular Biology, A Focus on the Vascular System-Immune Response Connection. Curr Top Microbiol Immunol 2022; 436:289-309. [DOI: 10.1007/978-3-031-06566-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Function, Regulation and Biological Roles of PI3Kγ Variants. Biomolecules 2019; 9:biom9090427. [PMID: 31480354 PMCID: PMC6770443 DOI: 10.3390/biom9090427] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositide 3-kinase (PI3K) γ is the only class IB PI3K member playing significant roles in the G-protein-dependent regulation of cell signaling in health and disease. Originally found in the immune system, increasing evidence suggest a wide array of functions in the whole organism. PI3Kγ occur as two different heterodimeric variants: PI3Kγ (p87) and PI3Kγ (p101), which share the same p110γ catalytic subunit but differ in their associated non-catalytic subunit. Here we concentrate on specific PI3Kγ features including its regulation and biological functions. In particular, the roles of its non-catalytic subunits serving as the main regulators determining specificity of class IB PI3Kγ enzymes are highlighted.
Collapse
|
6
|
Cabrera Zapata LE, Bollo M, Cambiasso MJ. Estradiol-Mediated Axogenesis of Hypothalamic Neurons Requires ERK1/2 and Ryanodine Receptors-Dependent Intracellular Ca 2+ Rise in Male Rats. Front Cell Neurosci 2019; 13:122. [PMID: 31001087 PMCID: PMC6454002 DOI: 10.3389/fncel.2019.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
17β-estradiol (E2) induces axonal growth through extracellular signal-regulated kinase 1 and 2 (ERK1/2)-MAPK cascade in hypothalamic neurons of male rat embryos in vitro, but the mechanism that initiates these events is poorly understood. This study reports the intracellular Ca2+ increase that participates in the activation of ERK1/2 and axogenesis induced by E2. Hypothalamic neuron cultures were established from 16-day-old male rat embryos and fed with astroglia-conditioned media for 48 h. E2-induced ERK phosphorylation was completely abolished by a ryanodine receptor (RyR) inhibitor (ryanodine) and partially attenuated by an L-type voltage-gated Ca2+ channel (L-VGCC) blocker (nifedipine), an inositol-1,4,5-trisphosphate receptor (IP3R) inhibitor (2-APB), and a phospholipase C (PLC) inhibitor (U-73122). We also conducted Ca2+ imaging recording using primary cultured neurons. The results show that E2 rapidly induces an increase in cytosolic Ca2+, which often occurs in repetitive Ca2+ oscillations. This response was not observed in the absence of extracellular Ca2+ or with inhibitory ryanodine and was markedly reduced by nifedipine. E2-induced axonal growth was completely inhibited by ryanodine. In summary, the results suggest that Ca2+ mobilization from extracellular space as well as from the endoplasmic reticulum is necessary for E2-induced ERK1/2 activation and axogenesis. Understanding the mechanisms of brain estrogenic actions might contribute to develop novel estrogen-based therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucas E Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Bollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Gutiérrez A, Contreras C, Sánchez A, Prieto D. Role of Phosphatidylinositol 3-Kinase (PI3K), Mitogen-Activated Protein Kinase (MAPK), and Protein Kinase C (PKC) in Calcium Signaling Pathways Linked to the α 1-Adrenoceptor in Resistance Arteries. Front Physiol 2019; 10:55. [PMID: 30787881 PMCID: PMC6372516 DOI: 10.3389/fphys.2019.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/17/2019] [Indexed: 01/07/2023] Open
Abstract
Insulin resistance plays a key role in the pathogenesis of type 2 diabetes and is also related to other health problems like obesity, hypertension, and metabolic syndrome. Imbalance between insulin vascular actions via the phosphatidylinositol 3-Kinase (PI3K) and the mitogen activated protein kinase (MAPK) signaling pathways during insulin resistant states results in impaired endothelial PI3K/eNOS- and augmented MAPK/endothelin 1 pathways leading to endothelial dysfunction and abnormal vasoconstriction. The role of PI3K, MAPK, and protein kinase C (PKC) in Ca2+ handling of resistance arteries involved in blood pressure regulation is poorly understood. Therefore, we assessed here whether PI3K, MAPK, and PKC play a role in the Ca2+ signaling pathways linked to adrenergic vasoconstriction in resistance arteries. Simultaneous measurements of intracellular calcium concentration ([Ca2+]i) in vascular smooth muscle (VSM) and tension were performed in endothelium-denuded branches of mesenteric arteries from Wistar rats mounted in a microvascular myographs. Responses to CaCl2 were assessed in arteries activated with phenylephrine (PE) and kept in Ca2+-free solution, in the absence and presence of the selective antagonist of L-type Ca2+ channels nifedipine, cyclopiazonic acid (CPA) to block sarcoplasmic reticulum (SR) intracellular Ca2+ release or specific inhibitors of PI3K, ERK-MAPK, or PKC. Activation of α1-adrenoceptors with PE stimulated both intracellular Ca2+ mobilization and Ca2+ entry along with contraction in resistance arteries. Both [Ca2+]i and contractile responses were inhibited by nifedipine while CPA abolished intracellular Ca2+ mobilization and modestly reduced Ca2+ entry suggesting that α1-adrenergic vasoconstriction is largely dependent Ca2+ influx through L-type Ca2+ channel and to a lesser extent through store-operated Ca2+ channels. Inhibition of ERK-MAPK did not alter intracellular Ca2+ mobilization but largely reduced L-type Ca2+ entry elicited by PE without altering vasoconstriction. The PI3K blocker LY-294002 moderately reduced intracellular Ca2+ release, Ca2+ entry and contraction induced by the α1-adrenoceptor agonist, while PKC inhibition decreased PE-elicited Ca2+ entry and to a lesser extent contraction without affecting intracellular Ca2+ mobilization. Under conditions of ryanodine receptor (RyR) blockade to inhibit Ca2+-induced Ca2+-release (CICR), inhibitors of PI3K, ERK-MAPK, or PKC significantly reduced [Ca2+]i increases but not contraction elicited by high K+ depolarization suggesting an activation of L-type Ca2+ entry in VSM independent of RyR. In summary, our results demonstrate that PI3K, ERK-MAPK, and PKC regulate Ca2+ handling coupled to the α1-adrenoceptor in VSM of resistance arteries and related to both contractile and non-contractile functions. These kinases represent potential pharmacological targets in pathologies associated to vascular dysfunction and abnormal Ca2+ handling such as obesity, hypertension and diabetes mellitus, in which these signaling pathways are profoundly impaired.
Collapse
Affiliation(s)
- Alejandro Gutiérrez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Sánchez A, Contreras C, Climent B, Gutiérrez A, Muñoz M, García-Sacristán A, López M, Rivera L, Prieto D. Impaired Ca 2+ handling in resistance arteries from genetically obese Zucker rats: Role of the PI3K, ERK1/2 and PKC signaling pathways. Biochem Pharmacol 2018; 152:114-128. [PMID: 29574066 DOI: 10.1016/j.bcp.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
The impact of obesity on vascular smooth muscle (VSM) Ca2+ handling and vasoconstriction, and its regulation by the phosphatidylinositol 3-kinase (PI3K), mitogen activated protein kinase (MAPK) and protein kinase C (PKC) were assessed in mesenteric arteries (MA) from obese Zucker rats (OZR). Simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and tension were performed in MA from OZR and compared to lean Zucker rats (LZR), and the effects of selective inhibitors of PI3K, ERK-MAPK kinase and PKC were assessed on the functional responses of VSM voltage-dependent L-type Ca2+ channels (CaV1.2). Increases in [Ca2+]i induced by α1-adrenoceptor activation and high K+ depolarization were not different in arteries from LZR and OZR although vasoconstriction was enhanced in OZR. Blockade of the ryanodine receptor (RyR) and of Ca2+ release from the sarcoplasmic reticulum (SR) markedly reduced depolarization-induced Ca2+ responses in arteries from lean but not obese rats, suggesting impaired Ca2+-induced Ca2+ release (CICR) from SR in arteries from OZR. Enhanced Ca2+ influx after treatment with ryanodine was abolished by nifedipine and coupled to up-regulation of CaV1.2 channels in arteries from OZR. Increased activation of ERK-MAPK and up-regulation of PI3Kδ, PKCβ and δ isoforms were associated to larger inhibitory effects of PI3K, MAPK and PKC blockers on VSM L-type channel Ca2+ entry in OZR. Changes in arterial Ca2+ handling in obesity involve SR Ca2+ store dysfunction and enhanced VSM Ca2+ entry through L-type channels, linked to a compensatory up-regulation of CaV1.2 proteins and increased activity of the ERK-MAPK, PI3Kδ and PKCβ and δ, signaling pathways.
Collapse
Affiliation(s)
- Ana Sánchez
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Cristina Contreras
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Belén Climent
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Gutiérrez
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Albino García-Sacristán
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Luis Rivera
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Dolores Prieto
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Abstract
Receptor signaling relays on intracellular events amplified by secondary and tertiary messenger molecules. In cardiomyocytes and smooth muscle cells, cyclic AMP (cAMP) and subsequent calcium (Ca2+) fluxes are the best characterized receptor-regulated signaling events. However, most of receptors able to modify contractility and other intracellular responses signal through a variety of other messengers, and whether these signaling events are interconnected has long remained unclear. For example, the PI3K (phosphoinositide 3-kinase) pathway connected to the production of the lipid second messenger PIP3/PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-trisphosphate) is potentially involved in metabolic regulation, activation of hypertrophy, and survival pathways. Recent studies, highlighted in this review, started to interconnect PI3K pathway activation to Ca2+ signaling. This interdependency, by balancing contractility with metabolic control, is crucial for cells of the cardiovascular system and is emerging to play key roles in disease development. Better understanding of the interplay between Ca2+ and PI3K signaling is, thus, expected to provide new ground for therapeutic intervention. This review explores the emerging molecular mechanisms linking Ca2+ and PI3K signaling in health and disease.
Collapse
Affiliation(s)
- Alessandra Ghigo
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Muriel Laffargue
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Mingchuan Li
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue)
| | - Emilio Hirsch
- From the Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Italy (A.G., M. Li, E.H.); and INSERM U1048, I2MC and Université Toulouse III, France (M. Laffargue).
| |
Collapse
|
10
|
Prolonged AT 1R activation induces Ca V1.2 channel internalization in rat cardiomyocytes. Sci Rep 2017; 7:10131. [PMID: 28860469 PMCID: PMC5578992 DOI: 10.1038/s41598-017-10474-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/10/2017] [Indexed: 12/18/2022] Open
Abstract
The cardiac L-type calcium channel is a multi-subunit complex that requires co-assembling of the pore-forming subunit CaV1.2 with auxiliary subunits CaVα2δ and CaVβ. Its traffic has been shown to be controlled by these subunits and by the activation of various G-protein coupled receptors (GPCR). Here, we explore the consequences of the prolonged activation of angiotensin receptor type 1 (AT1R) over CaV1.2 channel trafficking. Bioluminescence Resonance Energy Transfer (BRET) assay between β-arrestin and L-type channels in angiotensin II-stimulated cells was used to assess the functional consequence of AT1R activation, while immunofluorescence of adult rat cardiomyocytes revealed the effects of GPCR activation on CaV1.2 trafficking. Angiotensin II exposure results in β-arrestin1 recruitment to the channel complex and an apparent loss of CaV1.2 immunostaining at the T-tubules. Accordingly, angiotensin II stimulation causes a decrease in L-type current, Ca2+ transients and myocyte contractility, together with a faster repolarization phase of action potentials. Our results demonstrate that prolonged AT1R activation induces β-arrestin1 recruitment and the subsequent internalization of CaV1.2 channels with a half-dose of AngII on the order of 100 nM, suggesting that this effect depends on local renin-angiotensin system. This novel AT1R-dependent CaV1.2-trafficking modulation likely contributes to angiotensin II-mediated cardiac remodeling.
Collapse
|
11
|
Bernhem K, Krishnan K, Bondar A, Brismar H, Aperia A, Scott L. AT 1-receptor response to non-saturating Ang-II concentrations is amplified by calcium channel blockers. BMC Cardiovasc Disord 2017; 17:126. [PMID: 28514967 PMCID: PMC5436436 DOI: 10.1186/s12872-017-0562-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/09/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Blockers of angiotensin II type 1 receptor (AT1R) and the voltage gated calcium channel 1.2 (CaV1.2) are commonly used for treatment of hypertension. Yet there is little information about the effect of physiological concentrations of angiotensin II (AngII) on AT1R signaling and whether there is a reciprocal regulation of AT1R signaling by CaV1.2. METHODS To elucidate these questions, we have studied the Ca2+ signaling response to physiological and pharmacological AngII doses in HEK293a cells, vascular smooth muscle cells and cardiomyocytes using a Ca2+ sensitive dye as the principal sensor. Intra-cellular calcium recordings were performed in presence and absence of CaV1.2 blockers. Semi-quantitative imaging methods were used to assess the plasma membrane expression of AT1R and G-protein activation. RESULTS Repeated exposure to pharmacological (100 nM) concentrations of AngII caused, as expected, a down-regulation of the Ca2+ response. In contrast, repeated exposure to physiological (1 nM) AngII concentration resulted in an enhancement of the Ca2+ response. The up-regulation of the Ca2+ response to repeated 1 nM AngII doses and the down-regulation of the Ca2+ response to repeated 100 nM Angll doses were not accompanied by a parallel change of the AT1R plasma membrane expression. The Ca2+ response to 1 nM of AngII was amplified in the presence of therapeutic concentrations of the CaV1.2 blockers, nifedipine and verapamil, in vascular smooth muscle cells, cardiomyocytes and HEK293a cells. Amplification of the AT1R response was also observed following inhibition of the calcium permeable transient receptor potential cation channels, suggesting that the activity of AT1R is sensitive to calcium influx. CONCLUSIONS Our findings have implications for the understanding of hyperactivity of the angiotensin system and for use of Ca2+ channel blockers as mono-therapy in hypertension.
Collapse
Affiliation(s)
- Kristoffer Bernhem
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Kalaiselvan Krishnan
- Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Alexander Bondar
- Institute of Chemical Biology and Fundamental Medicine, 630090, Novosibirsk, Russia
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, PO Box 1031, 17121, Solna, Sweden.,Science for Life Laboratory, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Anita Aperia
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, PO Box 1031, 17121, Solna, Sweden.
| | - Lena Scott
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, PO Box 1031, 17121, Solna, Sweden
| |
Collapse
|
12
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Tsvetkov D, Shymanets A, Huang Y, Bucher K, Piekorz R, Hirsch E, Beer-Hammer S, Harteneck C, Gollasch M, Nürnberg B. Better Understanding of Phosphoinositide 3-Kinase (PI3K) Pathways in Vasculature: Towards Precision Therapy Targeting Angiogenesis and Tumor Blood Supply. BIOCHEMISTRY (MOSCOW) 2017; 81:691-9. [PMID: 27449615 DOI: 10.1134/s0006297916070051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intracellular PI3K-AKT-mTOR pathway is involved in regulation of numerous important cell processes including cell growth, differentiation, and metabolism. The PI3Kα isoform has received particular attention as a novel molecular target in gene therapy, since this isoform plays critical roles in tumor progression and tumor blood flow and angiogenesis. However, the role of PI3Kα and other class I isoforms, i.e. PI3Kβ, γ, δ, in the regulation of vascular tone and regional blood flow are largely unknown. We used novel isoform-specific PI3K inhibitors and mice deficient in both PI3Kγ and PI3Kδ (Pik3cg(-/-)/Pik3cd(-/-)) to define the putative contribution of PI3K isoform(s) to arterial vasoconstriction. Wire myography was used to measure isometric contractions of isolated murine mesenteric arterial rings. Phenylephrine-dependent contractions were inhibited by the pan PI3K inhibitors wortmannin (100 nM) and LY294002 (10 µM). These vasoconstrictions were also inhibited by the PI3Kα isoform inhibitors A66 (10 µM) and PI-103 (1 µM), but not by the PI3Kβ isoform inhibitor TGX 221 (100 nM). Pik3cg(-/-)/Pik3cd(-/-)-arteries showed normal vasoconstriction. We conclude that PI3Kα is an important downstream element in vasoconstrictor GPCR signaling, which contributes to arterial vasocontraction via α1-adrenergic receptors. Our results highlight a regulatory role of PI3Kα in the cardiovascular system, which widens the spectrum of gene therapy approaches targeting PI3Kα in cancer cells and tumor angiogenesis and regional blood flow.
Collapse
Affiliation(s)
- D Tsvetkov
- Charité University Medicine Berlin, Experimental and Clinical Research Center, Section Nephrology/Intensive Care, Berlin, 13125, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The Multifaceted Roles of PI3Kγ in Hypertension, Vascular Biology, and Inflammation. Int J Mol Sci 2016; 17:ijms17111858. [PMID: 27834808 PMCID: PMC5133858 DOI: 10.3390/ijms17111858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
PI3Kγ is a multifaceted protein, crucially involved in cardiovascular and immune systems. Several studies described the biological and physiological functions of this enzyme in the regulation of cardiovascular system, while others stressed its role in the modulation of immunity. Although PI3Kγ has been historically investigated for its role in leukocytes, the last decade of research also dedicated efforts to explore its functions in the cardiovascular system. In this review, we report an overview recapitulating how PI3Kγ signaling participates in the regulation of vascular functions involved in blood pressure regulation. Moreover, we also summarize the main functions of PI3Kγ in immune responses that could be potentially important in the interaction with the cardiovascular system. Considering that vascular and immune mechanisms are increasingly emerging as intertwining players in hypertension, PI3Kγ could be an intriguing pathway acting on both sides. The availability of specific inhibitors introduces a perspective of further translational research and clinical approaches that could be exploited in hypertension.
Collapse
|
15
|
Gandhi H, Naik P, Agrawal N, Yadav M. Protective effects of MCR-1329, a dual α1 and angII receptor antagonist, in mineralocorticoid-induced hypertension. Pharmacol Rep 2016; 68:952-9. [PMID: 27371897 DOI: 10.1016/j.pharep.2016.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND With the prototypical structures of losartan and prazosin as the axis of our research, MCR-1329 emerged as a potential designed multiple ligand from a series of compounds designed to possess dual antagonistic activity on the α1 and AT1 receptor. After confirming the activity of MCR-1329 in in vitro and acute in vivo models, the present study was undertaken to determine the efficacy of MCR-1329 in a mammalian test system. METHODS A rat model of deoxycorticosterone acetate (DOCA)-salt induced renal hypertension following unilateral nephrectomy was utilized to determine the effect of MCR-1329. For mechanistic evaluations, MCR-1329 was evaluated on rat aortic strips in vitro and on rat aortic smooth muscle cells to determine the role of MCR-1329 on phosphoinositide 3 kinase (PI3K) signaling. RESULTS Results of the study showed that MCR-1329 prevents development of arterial hypertension. It was also observed that MCR-1329 upheld the intimal structures of major arteries like the thoracic aorta. Acetylcholine (Ach)-mediated relaxation remained intact in arteries from MCR-1329 treated animals. It was observed that MCR-1329 partially prevents Thr-308 phosphorylation of Akt following ligand-mediated receptor stimulation in vascular smooth muscle cells. Addition of LY294002 to the reaction medium caused a near-complete inhibition of Akt-phosphorylation. This suggested that MCR-1329 elicits its antihypertensive role by blocking activation of receptor-mediated PI3K-Akt downstream signaling as well as through preservation of arterial integrity. CONCLUSIONS MCR-1329 has the potential to be evaluated further for clinical development as a potential antihypertensive agent with multiple mechanisms of action.
Collapse
Affiliation(s)
- Hardik Gandhi
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India
| | - Prashant Naik
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India
| | - Nitesh Agrawal
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India
| | - Mangeram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The M. S. University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
16
|
Endothelium-Independent Hypoxic Contraction Is Prevented Specifically by Nitroglycerin via Inhibition of Akt Kinase in Porcine Coronary Artery. Stem Cells Int 2015; 2016:2916017. [PMID: 26839558 PMCID: PMC4709768 DOI: 10.1155/2016/2916017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 11/28/2022] Open
Abstract
Objective. Hypoxia-induced sustained contraction of porcine coronary artery is endothelium-independent and mediated by PI3K/Akt/Rho kinase. Nitroglycerin (NTG) is a vasodilator used to treat angina pectoris and acute heart failure. The present study was to determine the role of NTG in hypoxia-induced endothelium-independent contraction and the underlying mechanism. Methods and Results. Organ chamber technique was used to measure the isometric vessel tension of isolated porcine coronary arteries. Protein levels of phosphorylated and total Akt were determined by western blot. A sustained contraction of porcine coronary arteries induced by hypoxia was significantly reduced by NTG but not by isoproterenol. This contraction was also inhibited by DETA NONOate, 8-Br-cGMP, which can be reversed by ODQ, and Rp-8-Br-PET-cGMPS. The restored contraction was blocked by LY294002. The reduction of Akt-p at Ser-473 by NTG, DETA NONOate, and 8-Br-cGMP was significantly inhibited by ODQ, PKG-I. The decrease in Akt-p level by NTG and 8-Br-cGMP was prevented by calyculin A but not by okadaic acid. Conclusions. These results demonstrated that the endothelium-independent sustained hypoxic vasoconstriction can be prevented by NTG and that the inhibition of PI3K/Akt signaling pathway may be involved.
Collapse
|
17
|
Ballou LM, Lin RZ, Cohen IS. Control of cardiac repolarization by phosphoinositide 3-kinase signaling to ion channels. Circ Res 2015; 116:127-37. [PMID: 25552692 DOI: 10.1161/circresaha.116.303975] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.
Collapse
Affiliation(s)
- Lisa M Ballou
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.)
| | - Richard Z Lin
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.).
| | - Ira S Cohen
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.).
| |
Collapse
|
18
|
Cross Regulation Between cGMP-dependent Protein Kinase and Akt in Vasodilatation of Porcine Pulmonary Artery. J Cardiovasc Pharmacol 2014; 64:452-9. [DOI: 10.1097/fjc.0000000000000137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Liu H, Chen Z, Liu J, Liu L, Gao Y, Dou D. Endothelium-independent hypoxic contraction of porcine coronary arteries may be mediated by activation of phosphoinositide 3-kinase/Akt pathway. Vascul Pharmacol 2014; 61:56-62. [PMID: 24685819 DOI: 10.1016/j.vph.2014.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/02/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway plays an essential role in the regulation of vascular tone. The present study aimed to determine its role in hypoxic coronary vasoconstriction. Isometric tension of isolated porcine coronary arteries was measured with organ chamber technique; the protein levels of phosphorylated and total MLC were examined by Western blotting; the activities of PI3K and Rho kinase were determined by the phosphorylation of their respective target protein Akt and MTPT1. Acute hypoxia induced a rapid contraction followed by a short-term relaxation and then a sustained contraction in porcine coronary arteries. The rapid but not the sustained contraction was abolished by endothelium removal. The sustained contraction was attenuated by inhibitors of PI3K (LY294002) and Akt (Akt-I). The attenuation effect caused by LY294002 was not affected by nifedipine, but was abolished by Y27632, an inhibitor of Rho kinase. The sustained hypoxic contraction was associated with altered phosphorylation of MLC and Akt, which was inhibited by LY294002. The sustained hypoxic contraction was also accompanied with increased phosphorylation of MYPT1, which was inhibited by LY294002 and Y27632. This study demonstrates that sustained hypoxia causes porcine coronary artery to contract in an endothelium-independent manner. An increased PI3K/Akt/Rho kinase signaling may be involved.
Collapse
Affiliation(s)
- Huixia Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Department of Physiology, Heze Medical College, Heze, Shandong, China
| | - Zhengju Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Juan Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
| | - Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
| | - Dou Dou
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China; Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China.
| |
Collapse
|
20
|
Abstract
Phosphoinositides (PIs) make up only a small fraction of cellular phospholipids, yet they control almost all aspects of a cell's life and death. These lipids gained tremendous research interest as plasma membrane signaling molecules when discovered in the 1970s and 1980s. Research in the last 15 years has added a wide range of biological processes regulated by PIs, turning these lipids into one of the most universal signaling entities in eukaryotic cells. PIs control organelle biology by regulating vesicular trafficking, but they also modulate lipid distribution and metabolism via their close relationship with lipid transfer proteins. PIs regulate ion channels, pumps, and transporters and control both endocytic and exocytic processes. The nuclear phosphoinositides have grown from being an epiphenomenon to a research area of its own. As expected from such pleiotropic regulators, derangements of phosphoinositide metabolism are responsible for a number of human diseases ranging from rare genetic disorders to the most common ones such as cancer, obesity, and diabetes. Moreover, it is increasingly evident that a number of infectious agents hijack the PI regulatory systems of host cells for their intracellular movements, replication, and assembly. As a result, PI converting enzymes began to be noticed by pharmaceutical companies as potential therapeutic targets. This review is an attempt to give an overview of this enormous research field focusing on major developments in diverse areas of basic science linked to cellular physiology and disease.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
21
|
Differential regulation of chemotaxis: Role of Gβγ in chemokine receptor-induced cell migration. Cell Signal 2013; 25:729-35. [DOI: 10.1016/j.cellsig.2012.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 01/17/2023]
|
22
|
Abstract
PI3Ks are signaling enzymes engaged by different types of membrane receptors and activated in cardiovascular diseases such as hypertension, atherosclerosis, thrombosis and heart failure. Studies performed on genetically modified animals have provided proof-of-concept that general or isoform-specific blockade of these enzymes can modify disease development and progression. Hence, therapeutic inhibition of PI3Ks with novel pharmacological compounds constitutes a promising area of drug development. In particular, inhibitors of PI3Ks have the potential to reduce blood pressure, restrain the development of atherosclerosis and/or stabilize atherosclerotic plaques, blunt platelet aggregation, prevent left ventricular remodeling and preserve myocardial contractility in heart failure. This review summarizes the rationale of PI3K inhibition in the most prevalent cardiovascular diseases, and the available data on the therapeutic effects of PI3K inhibitors in their preclinical models. Implications for future drug development and human therapy are also discussed.
Collapse
|
23
|
Calcium sensing receptor regulates cardiomyocyte function through nuclear calcium. Cell Biol Int 2013; 36:937-43. [PMID: 22708524 DOI: 10.1042/cbi20110594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nuclear Ca(2+) plays a pivotal role in the regulation of gene expression. IP3 (inositol-1,4,5-trisphosphate) is an important regulator of nuclear Ca(2+). We hypothesized that the CaR (calcium sensing receptor) stimulates nuclear Ca(2+) release through IICR (IP3-induced calcium release) from perinuclear stores. Spontaneous Ca(2+) oscillations and the spark frequency of nuclear Ca(2+) were measured simultaneously in NRVMs (neonatal rat ventricular myocytes) using confocal imaging. CaR-induced nuclear Ca(2+) release through IICR was abolished by inhibition of CaR and IP3Rs (IP3 receptors). However, no effect on the inhibition of RyRs (ryanodine receptors) was detected. The results suggest that CaR specifically modulates nuclear Ca(2+) signalling through the IP(3)R pathway. Interestingly, nuclear Ca(2+) was released from perinuclear stores by CaR activator-induced cardiomyocyte hypertrophy through the Ca(2+)-dependent phosphatase CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) pathway. We have also demonstrated that the activation of the CaR increased the NRVM protein content, enlarged cell size and stimulated CaN expression and NFAT nuclear translocation in NRVMs. Thus, CaR enhances the nuclear Ca(2+) transient in NRVMs by increasing fractional Ca(2+) release from perinuclear stores, which is involved in cardiac hypertrophy through the CaN/NFAT pathway.
Collapse
|
24
|
Abstract
Obesity is caused by chronic positive energy balance because of higher energy intake relative to energy expenditure. Thermogenesis, the capacity of an organism to produce heat, is an important component of energy expenditure. Thus targeting the molecular mechanisms controlling thermogenesis could be an effective strategy for the prevention or treatment of obesity. Thermogenesis is modulated by three major factors: environmental temperature, nutrient quantity and quality, and by systemic inflammation. Obesity is now recognized to be a state of chronic low-grade systemic inflammation, which has been proposed to play a major role in the pathogenesis of obesity and obesity-associated diseases. This review discussed the molecular pathways that are recruited during metabolic inflammation and that are also implicated in the control of thermogenesis and energy balance. It emerges that the complex signalling network recruited during metabolic inflammation exerts a balanced action on the modulation of thermogenesis and energy balance, with some pathways promoting weight gain whereas other pathways have opposite actions. It is thus concluded that immunomodulation of metabolic inflammation, rather than an anti-inflammatory intervention aiming at its suppression, may be a more promising strategy to increase thermogenesis for the treatment or prevention of obesity and its associated diseases.
Collapse
Affiliation(s)
- G Solinas
- Laboratory of Metabolic Stress Biology, Division of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, Fribourg, Switzerland.
| |
Collapse
|
25
|
Cheng WH, Lu PJ, Hsiao M, Hsiao CH, Ho WY, Cheng PW, Lin CT, Hong LZ, Tseng CJ. Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT₁ and Mas receptors to modulate central blood pressure control in the nucleus tractus solitarii. Br J Pharmacol 2012; 166:2024-35. [PMID: 22224457 DOI: 10.1111/j.1476-5381.2012.01832.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE The renin-angiotensin system (RAS) is critical for the control of blood pressure by the CNS. Recently, direct renin inhibitors were approved as antihypertensive agents. However, the signalling mechanism of renin, which regulates blood pressure in the nucleus tractus solitarii (NTS) remains unclear. Here we have investigated the signalling pathways involved in renin-mediated blood pressure regulation, at the NTS. EXPERIMENTAL APPROACH Depressor responses to renin microinjected into the NTS of Wistar-Kyoto rats were elicited in the absence and presence of the endothelial nitric oxide synthase (eNOS)-specific inhibitor, N(5)-(-iminoethyl)-L-ornithine, Akt inhibitor IV and LY294002, a PI3K inhibitor and GP antagonist-2A [G(q) inhibitor]. Lisinopril (angiotensin converting enzyme inhibitor), losartan, valsartan (angiotensin AT(1) receptor antagonists), D-Ala7-Ang-(1-7) (angiotensin-(1-7) receptor antagonist) were used to study the involvement of RAS on renin-induced depressor effects. KEY RESULTS Microinjection of renin into the NTS produced a prominent depressor effect and increased NO production. Pretreatment with G(q) -PI3K-Akt-eNOS pathway-specific inhibitors significantly attenuated the depressor response evoked by renin. Immunoblotting and immunohistochemical studies further showed that inhibition of PI3K significantly blocked renin-induced eNOS-Ser ¹¹⁷ and Akt-Ser⁴⁷³ phosphorylation in situ. In addition, pre-treatment of the NTS with RAS inhibitors attenuated the vasodepressor effects evoked by renin. Microinjection of renin also increased Ras activation in the NTS. CONCLUSIONS AND IMPLICATIONS Taken together, these results suggest renin modulated blood pressure at the NTS by AT₁ and Mas receptor-mediated activation of G(q) and Ras to evoke PI3K-Akt-eNOS signalling.
Collapse
Affiliation(s)
- Wen-Han Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Weiss S, Keren-Raifman T, Oz S, Ben Mocha A, Haase H, Dascal N. Modulation of distinct isoforms of L-type calcium channels by G(q)-coupled receptors in Xenopus oocytes: antagonistic effects of Gβγ and protein kinase C. Channels (Austin) 2012; 6:426-37. [PMID: 22990911 DOI: 10.4161/chan.22016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
L-type voltage dependent Ca(2+) channels (L-VDCCs; Ca(v)1.2) are crucial in cardiovascular physiology. In heart and smooth muscle, hormones and transmitters operating via G(q) enhance L-VDCC currents via essential protein kinase C (PKC) involvement. Heterologous reconstitution studies in Xenopus oocytes suggested that PKC and G(q)-coupled receptors increased L-VDCC currents only in cardiac long N-terminus (NT) isoforms of α(1C), whereas known smooth muscle short-NT isoforms were inhibited by PKC and G(q) activators. We report a novel regulation of the long-NT α(1C) isoform by Gβγ. Gβγ inhibited whereas a Gβγ scavenger protein augmented the G(q)--but not phorbol ester-mediated enhancement of channel activity, suggesting that Gβγ acts upstream from PKC. In vitro binding experiments reveal binding of both Gβγ and PKC to α(1C)-NT. However, PKC modulation was not altered by mutations of multiple potential phosphorylation sites in the NT, and was attenuated by a mutation of C-terminally located serine S1928. The insertion of exon 9a in intracellular loop 1 rendered the short-NT α(1C) sensitive to PKC stimulation and to Gβγ scavenging. Our results suggest a complex antagonistic interplay between G(q)-activated PKC and Gβγ in regulation of L-VDCC, in which multiple cytosolic segments of α(1C) are involved.
Collapse
Affiliation(s)
- Sharon Weiss
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | |
Collapse
|
27
|
Shi J, Ju M, Large WA, Albert AP. Pharmacological profile of phosphatidylinositol 3-kinases and related phosphatidylinositols mediating endothelin(A) receptor-operated native TRPC channels in rabbit coronary artery myocytes. Br J Pharmacol 2012; 166:2161-75. [PMID: 22404177 PMCID: PMC3402779 DOI: 10.1111/j.1476-5381.2012.01937.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/27/2012] [Accepted: 02/20/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelin(A) (ET(A) ) receptor-operated canonical transient receptor potential (TRPC) channels mediate Ca²⁺ influx pathways, which are important in coronary artery function. Biochemical pathways linking ET(A) receptor stimulation to TRPC channel opening are unknown. We investigated the involvement of phosphatidylinositol 3-kinases (PI3K) in ET(A) receptor activation of native heteromeric TRPC1/C5/C6 and TRPC3/C7 channels in rabbit coronary artery vascular smooth muscle cells (VSMCs). EXPERIMENTAL APPROACH A pharmacological profile of PI3K was created by studying the effect of pan-PI3K, pan-Class I PI3K and Class I PI3K isoform-selective inhibitors on ET(A) receptor-evoked single TRPC1/C5/C6 and TRPC3/C7 channel activities in cell-attached patches from rabbit freshly isolated coronary artery VSMCs. The action of phosphatidylinositol 3-phosphate- [PI(3)P], 4-phosphate- [PI(4)P] and 5-phosphate- [PI(5)P] containing molecules involved in PI3K-mediated reactions were studied in inside-out patches. Expression of PI3K family members in coronary artery tissue lysates were analysed using quantitative PCR. KEY RESULTS ET(A) receptor-operated TRPC1/C5/C6 and TRPC3/C7 channel activities were inhibited by wortmannin. However, ZSTK474 and AS252424 reduced ET(A) receptor-evoked TRPC1/C5/C6 channel activity but potentiated TRPC3/C7 channel activity. All the PI(3)P-, PI(4)P- and PI(5)P-containing molecules tested induced TRPC1/C5/C6 channel activation, whereas only PI(3)P stimulated TRPC3/C7 channels. CONCLUSIONS AND IMPLICATIONS ET(A) receptor-operated native TRPC1/C5/C6 and TRPC3/C7 channel activities are likely to be mediated by Class I PI3Kγ and Class II/III PI3K isoforms, respectively. ET(A) receptor-evoked and constitutively active PI3Kγ-mediated pathways inhibit TRPC3/C7 channel activation. PI3K-mediated pathways are novel regulators of native TRPC channels in VSMCs, and these signalling cascades are potential pharmacological targets for coronary artery disease.
Collapse
Affiliation(s)
- J Shi
- Pharmacology & Cell Physiology, Division of Biomedical Sciences, St. George's, University of London, London, UK
| | | | | | | |
Collapse
|
28
|
Szekeres M, Nádasy GL, Turu G, Soltész-Katona E, Tóth ZE, Balla A, Catt KJ, Hunyady L. Angiotensin II induces vascular endocannabinoid release, which attenuates its vasoconstrictor effect via CB1 cannabinoid receptors. J Biol Chem 2012; 287:31540-50. [PMID: 22787147 DOI: 10.1074/jbc.m112.346296] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the vascular system angiotensin II (Ang II) causes vasoconstriction via the activation of type 1 angiotensin receptors. Earlier reports have shown that in cellular expression systems diacylglycerol produced during type 1 angiotensin receptor signaling can be converted to 2-arachidonoylglycerol, an important endocannabinoid. Because activation of CB(1) cannabinoid receptors (CB(1)R) induces vasodilation and reduces blood pressure, we have tested the hypothesis that Ang II-induced 2-arachidonoylglycerol release can modulate its vasoconstrictor action in vascular tissue. Rat and mouse skeletal muscle arterioles and mouse saphenous arteries were isolated, pressurized, and subjected to microangiometry. Vascular expression of CB(1)R was demonstrated using Western blot and RT-PCR. In accordance with the functional relevance of these receptors WIN55212, a CB(1)R agonist, caused vasodilation, which was absent in CB(1)R knock-out mice. Inhibition of CB(1)Rs using O2050, a neutral antagonist, enhanced the vasoconstrictor effect of Ang II in wild type but not in CB(1)R knock-out mice. Inverse agonists of CB(1)R (SR141716 and AM251) and inhibition of diacylglycerol lipase using tetrahydrolipstatin also augmented the Ang II-induced vasoconstriction, suggesting that endocannabinoid release modulates this process via CB(1)R activation. This effect was independent of nitric-oxide synthase activity and endothelial function. These data demonstrate that Ang II stimulates vascular endocannabinoid formation, which attenuates its vasoconstrictor effect, suggesting that endocannabinoid release from the vascular wall and CB(1)R activation reduces the vasoconstrictor and hypertensive effects of Ang II.
Collapse
Affiliation(s)
- Mária Szekeres
- Department of Physiology, Semmelweis University, H-1444 Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tyagi S, Sharma S, Budhiraja RD. Effect of phosphatidylinositol 3-kinase-γ inhibitor CAY10505 in hypertension, and its associated vascular endothelium dysfunction in rats. Can J Physiol Pharmacol 2012; 90:881-5. [DOI: 10.1139/y2012-089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study has been designed to investigate the role of phosphatidyl-inositol 3-kinase-γ (PI3Kγ) in deoxycorticosterone acetate salt (DOCA) hypertension induced vascular endothelium dysfunction. Wistar rats were uninephrectomised and DOCA (40 mg·(kg body mass)−1, subcutaneous injection) was administered twice weekly for 6 weeks to produce hypertension. Rats with mean arterial blood pressure ≥ 140 mm Hg (1 mm Hg = 133.322 Pa) were selected as hypertensive. Vascular endothelium dysfunction was assessed in terms of attenuation of acetylcholine-induced endothelium-dependent relaxation (isolated aortic ring preparation), decrease in serum nitrate and (or) nitrite level, as well as reduced level of glutathione and disruption of integrity of vascular endothelium (histopathology). Five weeks of DOCA administration were followed by 7 days of daily administration of PI3Kγ inhibitor (5-[[5-(4-fluorophenyl)-2-furanyl]methylene]-2,4-thiazolidinedione (CAY10505), 0.6 mg·kg−1, per os (p.o.)), atorvastatin (30 mg·kg−1, p.o.), and losartan (25 mg·kg−1, p.o.) (positive control of hypertension), which significantly improved acetylcholine-induced endothelium dependent relaxation, serum nitrate and (or) nitrite level, glutathione level, and the vascular endothelial lining in hypertensive rats.Therefore, it may be concluded that CAY10505, a specific inhibitor of PI3Kγ, improves hypertension-associated vascular endothelial dysfunction. Thus, inhibition of PI3Kγ might be a useful approach in the therapeutics of vascular endothelium dysfunction.
Collapse
Affiliation(s)
- Sandeep Tyagi
- Department of Pharmacology, I.S.F. College of Pharmacy, G.T. Road, Moga-142 001 (Punjab), India
| | - Saurabh Sharma
- Department of Pharmacology, I.S.F. College of Pharmacy, G.T. Road, Moga-142 001 (Punjab), India
| | - Ramji Dass Budhiraja
- Department of Pharmacology, I.S.F. College of Pharmacy, G.T. Road, Moga-142 001 (Punjab), India
| |
Collapse
|
30
|
Carnevale D, Lembo G. PI3K in hypertension: a novel therapeutic target controlling vascular myogenic tone and target organ damage. Cardiovasc Res 2012; 95:403-8. [DOI: 10.1093/cvr/cvs166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Alvin Z, Laurence GG, Coleman BR, Zhao A, Hajj-Moussa M, Haddad GE. Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Can J Physiol Pharmacol 2012; 89:206-15. [PMID: 21423294 DOI: 10.1139/y11-011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart failure can be caused by pro-hypertrophic humoral factors such as angiotensin II (Ang II), which regulates protein kinase activities. The intermingled responses of these kinases lead to the early compensated cardiac hypertrophy, but later to the uncompensated phase of heart failure. We have shown that although beneficial, cardiac hypertrophy is associated with modifications in ion channels that are mainly mediated through mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3K) activation. This study evaluates the control of L-type Ca(2+) current (I(Ca,L)) by the Ang II/PI3K pathway in hypertrophied ventricular myocytes from volume-overload rats using the perforated patch-clamp technique. To assess activation of the I(Ca,L) in cardiomyocytes, voltages of 350 ms in 10 mV increments from a holding potential of -85 mV were applied to cardiocytes, with a pre-pulse to -45 mV for 300 ms. Volume overload-induced hypertrophy reduces I(Ca,L), whereas addition of Ang II alleviates the hypertrophic-induced decrease in a PI3K-dependent manner. Acute administration of Ang II (10(-6) mol/L) to normal adult cardiomyocytes had no effect; however, captopril reduced their basal I(Ca,L). In parallel, captopril regressed the hypertrophy and inverted the Ang II effect on I(Ca,L) seemingly through a PI3K upstream effector. Thus, it seems that regression of cardiac hypertrophy by captopril improved I(Ca,L) partly through PI3K.
Collapse
Affiliation(s)
- Zikiar Alvin
- Department of Physiology and Biophysics, College of Medicine, Howard University, WA 20059, USA
| | | | | | | | | | | |
Collapse
|
32
|
Dou D, Guo Y, Ying L, Liu J, Xu X, Yu X, Gao Y. Inhibition of phosphoinositide 3-kinase potentiates relaxation of porcine coronary arteries induced by nitroglycerin by decreasing phosphodiesterase type 5 activity. Circ J 2011; 76:230-7. [PMID: 22122966 DOI: 10.1253/circj.cj-11-0802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Vessel tension can be modulated by phosphoinositide 3-kinase (PI3K) acting on l-type calcium channel, rho kinase and phosphodiesterase (PDE) type 3 in smooth muscle cells. Inhibition of PI3K could increase the relaxation of porcine coronary arteries to nitroglycerin independent of this pathway, and the aim of the present study was therefore to determine the underlying mechanisms. METHODS AND RESULTS Isolated porcine coronary arteries were dissected from the heart and cut into rings in ice-cold modified Krebs-Ringer bicarbonate buffer. The response of these vessels was studied by using the organ chamber technique; the content of cyclic guanosine monophosphate (cGMP) was determined by using enzyme-linked immunosorbent assay kit; and PI3K and Akt activity were determined by measuring the phosphorylation level of their downstream signaling molecule on Western blot. Inhibition of PI3K with 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002) potentiated the relaxation of porcine coronary arteries to nitroglycerin and nitric oxide (NO), but not to 8-bromo-guanosine 3'5'-cyclic monophosphate, isoproterenol or (R)-(+)-trans-4-(1-Aminoethyl)-N-(4-Pyridyl)cyclohexanecarboxamide dihydrochloride monohydrate (Y27632). Increased relaxation induced by LY294002 was eliminated by Akt1/2 kinase inhibitor (Akt-I: 1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo(4,5-g)quinoxalin-7-yl)phenyl)methyl)-4-piperidinyl)-2H-benzimidazol-2-one trifluoroacetate salt hydrate) or zaprinast, but was not affected by 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, nifedipine or milrinone. Inhibition of Akt caused similar effects as LY294002. Incubation with LY294002 or Akt-I decreased the activity of PI3K and Akt but augmented the elevation of cGMP caused by NO. Enhanced cGMP elevation induced by LY294002 or Akt-I was also eliminated by zaprinast. CONCLUSIONS PI3K-Akt signaling may affect vascular tone through a stimulatory effect on PDE type 5.
Collapse
Affiliation(s)
- Dou Dou
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Carnevale D, Vecchione C, Mascio G, Esposito G, Cifelli G, Martinello K, Landolfi A, Selvetella G, Grieco P, Damato A, Franco E, Haase H, Maffei A, Ciraolo E, Fucile S, Frati G, Mazzoni O, Hirsch E, Lembo G. PI3Kγ inhibition reduces blood pressure by a vasorelaxant Akt/L-type calcium channel mechanism. Cardiovasc Res 2011; 93:200-9. [PMID: 22038741 DOI: 10.1093/cvr/cvr288] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS The lipid and protein kinase phosphoinositide 3-kinase γ (PI3Kγ) is abundantly expressed in inflammatory cells and in the cardiovascular tissue. In recent years, its role in inflammation and in cardiac function and remodelling has been unravelled, highlighting the beneficial effects of its pharmacological inhibition. Furthermore, a role for PI3Kγ in the regulation of vascular tone has been emphasized. However, the impact of this signalling in the control of blood pressure is still poorly understood. Our study investigated the effect of a selective inhibition of PI3Kγ, obtained by using two independent small molecules, on blood pressure. Moreover, we dissected the molecular mechanisms involved in control of contraction of resistance arteries by PI3Kγ. METHODS AND RESULTS We showed that inhibition of PI3Kγ reduced blood pressure in normotensive and hypertensive mice in a concentration-dependent fashion. This effect was dependent on enhanced vasodilatation, documented in vivo by decreased peripheral vascular resistance, and ex vivo by vasorelaxing effects on isolated resistance vessels. The vasorelaxation induced by PI3Kγ inhibition relied on blunted pressure-induced Akt phosphorylation and a myogenic contractile response. Molecular insights revealed that PI3Kγ inhibition affected smooth muscle L-type calcium channel current density and calcium influx by impairing plasma membrane translocation of the α1C L-type calcium channel subunit responsible for channel open-state probability. CONCLUSION Overall our findings suggest that PI3Kγ inhibition could be a novel tool to modulate calcium influx in vascular smooth muscle cells, thus relaxing resistance arteries and lowering blood pressure.
Collapse
Affiliation(s)
- Daniela Carnevale
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
PI3Kγ within a nonhematopoietic cell type negatively regulates diet-induced thermogenesis and promotes obesity and insulin resistance. Proc Natl Acad Sci U S A 2011; 108:E854-63. [PMID: 21949398 DOI: 10.1073/pnas.1106698108] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Obesity is associated with a chronic low-grade inflammation, and specific antiinflammatory interventions may be beneficial for the treatment of type 2 diabetes and other obesity-related diseases. The lipid kinase PI3Kγ is a central proinflammatory signal transducer that plays a major role in leukocyte chemotaxis, mast cell degranulation, and endothelial cell activation. It was also reported that PI3Kγ activity within hematopoietic cells plays an important role in obesity-induced inflammation and insulin resistance. Here, we show that protection from insulin resistance, metabolic inflammation, and fatty liver in mice lacking functional PI3Kγ is largely consequent to their leaner phenotype. We also show that this phenotype is largely based on decreased fat gain, despite normal caloric intake, consequent to increased energy expenditure. Furthermore, our data show that PI3Kγ action on diet-induced obesity depends on PI3Kγ activity within a nonhematopoietic compartment, where it promotes energetic efficiency for fat mass gain. We also show that metabolic modulation by PI3Kγ depends on its lipid kinase activity and might involve kinase-independent signaling. Thus, PI3Kγ is an unexpected but promising drug target for the treatment of obesity and its complications.
Collapse
|
35
|
Pemberton JG, Stafford JL, Yu Y, Chang JP. Differential involvement of phosphoinositide 3-kinase in gonadotrophin-releasing hormone actions in gonadotrophs and somatotrophs of goldfish, Carassius auratus. J Neuroendocrinol 2011; 23:660-74. [PMID: 21649760 DOI: 10.1111/j.1365-2826.2011.02172.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In goldfish, two endogenous gonadotrophin-releasing hormones (GnRHs) [salmon (s)GnRH and chicken (c)GnRH-II] control maturational gonadotrophin-II [lutenising hormone (LH)] and growth hormone (GH) secretion via Ca(2+)-dependent intracellular signalling pathways. We investigated the involvement of phosphoinositide 3-kinase (PI3K) in GnRH-evoked LH and GH release and associated intracellular Ca(2+) increases ([Ca(2+)](i) ) in goldfish gonadotrophs and somatotrophs. Immunoreactive PI3K p85α, the predominant regulatory subunit for class IA PI3Ks, was detected in goldfish pituitary tissue extracts and both endogenous GnRH isoforms increased phosphorylation of PI3K p85α in excised pituitary fragments. sGnRH- and cGnRH-II-elicited LH release responses from primary cultures of pituitary cells and [Ca(2+)](i) increases in identified gonadotrophs were significantly reduced in the presence of PI3K inhibitors wortmannin (100 nm) and LY294002 (10 μm). Unexpectedly, wortmannin and LY294002 inhibited GnRH-evoked GH release but only attenuated the [Ca(2+)](i) response in identified somatotrophs to cGnRH-II, and not sGnRH. On the other hand, Ca(2+) ionophore-evoked LH and GH secretion remained unaltered in the presence of the PI3K inhibitors, suggesting that general decreases in the releasable hormone pool or sensitivity to [Ca(2+)](i) changes did not underlie the ability of wortmannin and LY294002 to reduce the actions of GnRH. These results provide the first evidence for the presence and involvement of PI3K in GnRH-induced LH and GH release in any primary pituitary cell system. In gonadotrophs, the inhibitory action of PI3K on both sGnRH and cGnRH-II involves the attenuation of their evoked [Ca(2+)](i); in contrast, GnRH isoform-specific effects occur in somatotrophs.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Pinho JF, Medeiros MAA, Capettini LSA, Rezende BA, Campos PP, Andrade SP, Cortes SF, Cruz JS, Lemos VS. Phosphatidylinositol 3-kinase-δ up-regulates L-type Ca2+ currents and increases vascular contractility in a mouse model of type 1 diabetes. Br J Pharmacol 2011; 161:1458-71. [PMID: 20942845 DOI: 10.1111/j.1476-5381.2010.00955.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Vasculopathies represent the main cause of morbidity and mortality in diabetes. Vascular malfunctioning in diabetes is associated with abnormal vasoconstriction and Ca(2+) handling by smooth muscle cells (SMC). Phosphatidylinositol 3-kinases (PI3K) are key mediators of insulin action and have been shown to modulate the function of voltage-dependent L-type Ca(2+) channels (Ca(V) 1.2). In the present work, we investigated the involvement of PI3K signalling in regulating Ca(2+) current through Ca(V) 1.2 (I(Ca,L) ) and vascular dysfunction in a mouse model of type I diabetes. EXPERIMENTAL APPROACH Changes in isometric tension were recorded on myograph. Ca(2+) currents in freshly dissociated mice aortic SMCs were measured using the whole-cell patch-clamp technique. Antisense techniques were used to knock-down the PI3Kδ isoform. KEY RESULTS Contractile responses to phenylephrine and KCl were strongly enhanced in diabetic aorta independent of a functional endothelium. The magnitude of phenylephrine-induced I(Ca,L) was also greatly augmented. PI3Kδ expression, but not PI3Kα, PI3Kβ, PI3Kγ, was increased in diabetic aortas and treatment of vessels with a selective PI3Kδ inhibitor normalized I(Ca,L) and contractile response of diabetic vessels. Moreover, knock-down of PI3Kδin vivo decreased PI3Kδ expression and normalized I(Ca,L) and contractile response of diabetic vessels ex vivo. CONCLUSIONS AND IMPLICATIONS Phosphatidylinositol 3-kinase δ was essential to the increased vascular contractile response in our model of type I diabetes. PI3Kδ signalling was up-regulated and most likely accounted for the increased I(Ca,L,) leading to increased vascular contractility. Blockade of PI3Kδ may represent a novel therapeutic approach to treat vascular dysfunction in diabetic patients.
Collapse
Affiliation(s)
- J F Pinho
- Department of Physiology and Biophysics, ICB, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
López RM, Pérez T, Castillo C, Castillo EF. Effects induced by inhibitors of the phosphatidylinositol 3-kinase/Akt and nitric oxide synthase/guanylyl cyclase pathways on the isometric contraction in rat aorta: a comparative study. Fundam Clin Pharmacol 2011; 25:313-22. [DOI: 10.1111/j.1472-8206.2010.00833.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ruth M López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, CP 11340, México, DF, México
| | | | | | | |
Collapse
|
38
|
Ko ML, Shi L, Grushin K, Nigussie F, Ko GYP. Circadian profiles in the embryonic chick heart: L-type voltage-gated calcium channels and signaling pathways. Chronobiol Int 2011; 27:1673-96. [PMID: 20969517 DOI: 10.3109/07420528.2010.514631] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circadian clocks exist in the heart tissue and modulate multiple physiological events, from cardiac metabolism to contractile function and expression of circadian oscillator and metabolic-related genes. Ample evidence has demonstrated that there are endogenous circadian oscillators in adult mammalian cardiomyocytes. However, mammalian embryos cannot be entrained independently to light-dark (LD) cycles in vivo without any maternal influence, but circadian genes are well expressed and able to oscillate in embryonic stages. The authors took advantage of using chick embryos that are independent of maternal influences to investigate whether embryonic hearts could be entrained under LD cycles in ovo. The authors found circadian regulation of L-type voltage-gated calcium channels (L-VGCCs), the ion channels responsible for the production of cardiac muscle contraction in embryonic chick hearts. The mRNA levels and protein expression of VGCCα1C and VGCCα1D are under circadian control, and the average L-VGCC current density is significantly larger when cardiomyocytes are recorded during the night than day. The phosphorylation states of several kinases involved in insulin signaling and cardiac metabolism, including extracellular signal-regulated kinase (Erk), stress-activated protein kinase (p38), protein kinase B (Akt), and glycogen synthase kinase-3β (GSK-3β), are also under circadian control. Both Erk and p38 have been implicated in regulating cardiac contractility and in the development of various pathological states, such as cardiac hypertrophy and heart failure. Even though both Erk and phosphoinositide 3-kinase (PI3K)-Akt signaling pathways participate in complex cellular processes regarding physiological or pathological states of cardiomyocytes, the circadian oscillators in the heart regulate these pathways independently, and both pathways contribute to the circadian regulation of L-VGCCs.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
39
|
Hohenester S, Gates A, Wimmer R, Beuers U, Anwer MS, Rust C, Webster CRL. Phosphatidylinositol-3-kinase p110γ contributes to bile salt-induced apoptosis in primary rat hepatocytes and human hepatoma cells. J Hepatol 2010; 53:918-26. [PMID: 20675006 PMCID: PMC2949543 DOI: 10.1016/j.jhep.2010.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Glycochenodeoxycholate (GCDC) and taurolithocholate (TLC) are hepatotoxic and cholestatic bile salts, whereas tauroursodeoxycholate (TUDC) is cytoprotective and anticholestatic. Yet they all act, in part, through phosphatidylinositol-3-kinase(PI3K)-dependent mechanisms ("PI3K-paradox"). Hepatocytes express three catalytic PI3K Class I isoforms (p110α/β/γ), specific functions of which, in liver, are unclear. In other cell types, p110γ is associated with detrimental effects. To shed light on the PI3K enigma, we determined whether hydrophobic and hydrophilic bile salts differentially activate distinct p110 isoforms in hepatocytes, and whether p110γ mediates bile salt-induced hepatocyte cell death. METHODS Isoform-specific PI3K activity assays were established to determine isoform activation by bile salts in rat hepatocytes. Activation of Akt and JNK was determined by immunoblotting. Following stimulation with hydrophobic bile salts, hepatocellular apoptosis was determined morphologically after Hoechst staining and by analysis of caspase-3/-7 activity or caspase-3 cleavage. Activity or expression of PI3K p110γ was inhibited pharmacologically (AS604850) or by knock-down using specific siRNA. RESULTS All bile salts tested activated p110β, while p110α was activated by TUDC and GCDC. Intriguingly, only hydrophobic bile salts activated p110γ. Inhibition of p110γ attenuated GCDC-induced Akt- and JNK-activation, but did not alter TUDC- or cAMP-induced Akt-signaling in rat hepatocytes. Inhibition or knock-down of p110γ markedly attenuated hydrophobic bile salt-induced apoptosis in rat hepatocytes and human hepatoma cell lines but did not alter Fas-, tumor necrosis factor α- and etoposide-induced apoptosis. Depletion of Ca(++) prevented GCDC-induced toxicity in rat hepatocytes but did not affect GCDC-induced Akt- and JNK-activation. CONCLUSIONS PI3K p110γ is activated by hydrophobic, but not hydrophilic bile salts. Bile salt-induced hepatocyte apoptosis is partly mediated via a PI3K p110γ dependent signaling pathway, potentially involving JNK.
Collapse
Affiliation(s)
- Simon Hohenester
- Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Liang W, Oudit GY, Patel MM, Shah AM, Woodgett JR, Tsushima RG, Ward ME, Backx PH. Role of phosphoinositide 3-kinase {alpha}, protein kinase C, and L-type Ca2+ channels in mediating the complex actions of angiotensin II on mouse cardiac contractility. Hypertension 2010; 56:422-9. [PMID: 20696985 DOI: 10.1161/hypertensionaha.109.149344] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although angiotensin II (Ang II) plays an important role in heart disease associated with pump dysfunction, its direct effects on cardiac pump function remain controversial. We found that after Ang II infusion, the developed pressure and +dP/dt(max) in isolated Langendorff-perfused mouse hearts showed a complex temporal response, with a rapid transient decrease followed by an increase above baseline. Similar time-dependent changes in cell shortening and L-type Ca(2+) currents were observed in isolated ventricular myocytes. Previous studies have established that Ang II signaling involves phosphoinositide 3-kinases (PI3K). Dominant-negative inhibition of PI3Kalpha in the myocardium selectively eliminated the rapid negative inotropic action of Ang II (inhibited by approximately 90%), whereas the loss of PI3Kgamma had no effect on the response to Ang II. Consistent with a link between PI3Kalpha and protein kinase C (PKC), PKC inhibition (with GF 109203X) reduced the negative inotropic effects of Ang II by approximately 50%. Although PI3Kalpha and PKC activities are associated with glycogen synthase kinase-3beta and NADPH oxidase, genetic ablation of either glycogen synthase kinase-3beta or p47(phox) (an essential subunit of NOX2-NADPH oxidase) had no effect on the inotropic actions of Ang II. Our results establish that Ang II has complex temporal effects on contractility and L-type Ca(2+) channels in normal mouse myocardium, with the negative inotropic effects requiring PI3Kalpha and PKC activities.
Collapse
Affiliation(s)
- Wenbin Liang
- Room 68, Fitzgerald building, 150 College Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dhingra R, Kirshenbaum LA. Negative inotropy by angiotensin II is mediated via phosphoinositide 3-kinase alpha-protein kinase C-coupled signaling pathway. Hypertension 2010; 56:349-50. [PMID: 20696991 DOI: 10.1161/hypertensionaha.110.156158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Ko ML, Jian K, Shi L, Ko GYP. Phosphatidylinositol 3 kinase-Akt signaling serves as a circadian output in the retina. J Neurochem 2009; 108:1607-20. [PMID: 19166512 DOI: 10.1111/j.1471-4159.2009.05931.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The daily rhythm of L-type voltage-gated calcium channels (L-VGCCs) is part of the cellular mechanism underlying the circadian regulation of retina physiology and function. However, it is not completely understood how the circadian clock regulates L-VGCC current amplitudes without affecting channel gating properties. The phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway has been implicated in many vital cellular functions especially in trophic factor-induced ion channel trafficking and membrane insertion. Here, we report that PI3K-Akt signaling participates in the circadian phase-dependent modulation of L-VGCCs. We found that there was a circadian regulation of Akt phosphorylation on Thr308 that peaked at night. Inhibition of PI3K or Akt significantly decreased L-VGCC current amplitudes and the expression of membrane-bound L-VGCCalpha1D subunit only at night but not during the subjective day. Photoreceptors transfected with a dominant negative Ras had significantly less expression of phosphorylated Akt and L-VGCCalpha1D subunit compared with non-transfected photoreceptors. Interestingly, both PI3K-Akt and extracellular signal-related kinase were downstream of Ras, and they appeared to be parallel and equally important pathways to regulate L-VGCC rhythms. Inhibition of either pathway abolished the L-VGCC rhythm indicating that there were multiple mechanisms involved in the circadian regulation of L-VGCC rhythms in retina photoreceptors.
Collapse
Affiliation(s)
- Michael L Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|
43
|
Chevalier M, Mironneau C, Macrez N, Quignard J. Intracellular Ca2+ oscillations induced by over-expressed CaV3.1 T-type Ca2+ channels in NG108-15 cells. Cell Calcium 2008; 44:592-603. [DOI: 10.1016/j.ceca.2008.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/04/2008] [Accepted: 04/28/2008] [Indexed: 11/29/2022]
|
44
|
Morello F, Perino A, Hirsch E. Phosphoinositide 3-kinase signalling in the vascular system. Cardiovasc Res 2008; 82:261-71. [PMID: 19038971 DOI: 10.1093/cvr/cvn325] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are protein and lipid kinases activated by different classes of membrane receptors, including G-protein coupled and tyrosine kinase receptors. Several lines of evidence have uncovered specific roles for distinct PI3K isoforms in the vascular system in both physiology and disease. The present review will summarize and discuss the most recent advances regarding PI3K-Akt signalling in endothelial cells, vascular smooth muscle cells, platelets, and inflammatory cells involved in the atherosclerotic process. Of interest, the development of novel isoform-selective PI3K inhibitor drugs offers a unique opportunity to selectively and differentially target PI3K-driven pathways in the vascular system and may give rise to new strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Fulvio Morello
- Molecular Biotechnology Center, University of Torino, via Nizza 52, 10126 Torino, Italy
| | | | | |
Collapse
|
45
|
Tada T, Nawata J, Wang H, Onoue N, Zhulanqiqige D, Ito K, Sugimura K, Fukumoto Y, Shimokawa H. Enhanced pulsatile pressure accelerates vascular smooth muscle migration: implications for atherogenesis of hypertension. Cardiovasc Res 2008; 80:346-53. [DOI: 10.1093/cvr/cvn211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
46
|
Iravanian S, Dudley SC. The renin-angiotensin-aldosterone system (RAAS) and cardiac arrhythmias. Heart Rhythm 2008; 5:S12-7. [PMID: 18456194 DOI: 10.1016/j.hrthm.2008.02.025] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Indexed: 12/19/2022]
Abstract
The role of the renin-angiotensin-aldosterone system (RAAS) in many cardiovascular disorders, including hypertension, cardiac hypertrophy, and atherosclerosis, is well established, whereas its relationship with cardiac arrhythmias is a new area of investigation. Atrial fibrillation and malignant ventricular tachyarrhythmias, especially in the setting of cardiac hypertrophy or failure, seem to be examples of RAAS-related arrhythmias because treatment with RAAS modulators, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and mineralocorticoid receptor blockers, reduces the incidence of these arrhythmias. RAAS has a multitude of electrophysiological effects and can potentially cause arrhythmia through a variety of mechanisms. We review new experimental results that suggest that RAAS has proarrhythmic effects on membrane and sarcoplasmic reticulum ion channels and that increased oxidative stress is likely contributing to the increased arrhythmic incidence. A summary of ongoing clinical trials that will address the clinical usefulness of RAAS modulators for prevention or treatment of arrhythmias is presented.
Collapse
Affiliation(s)
- Shahriar Iravanian
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
47
|
Schoenwaelder SM, Ono A, Sturgeon S, Chan SM, Mangin P, Maxwell MJ, Turnbull S, Mulchandani M, Anderson K, Kauffenstein G, Rewcastle GW, Kendall J, Gachet C, Salem HH, Jackson SP. Identification of a unique co-operative phosphoinositide 3-kinase signaling mechanism regulating integrin alpha IIb beta 3 adhesive function in platelets. J Biol Chem 2007; 282:28648-28658. [PMID: 17673465 DOI: 10.1074/jbc.m704358200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoinositide (PI) 3-kinases play an important role in regulating the adhesive function of a variety of cell types through affinity modulation of integrins. Two type I PI 3-kinase isoforms (p110 beta and p110 gamma) have been implicated in G(i)-dependent integrin alpha(IIb)beta(3) regulation in platelets, however, the mechanisms by which they coordinate their signaling function remains unknown. By employing isoform-selective PI 3-kinase inhibitors and knock-out mouse models we have identified a unique mechanism of PI 3-kinase signaling co-operativity in platelets. We demonstrate that p110 beta is primarily responsible for G(i)-dependent phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) production in ADP-stimulated platelets and is linked to the activation of Rap1b and AKT. In contrast, defective integrin alpha(IIb)beta(3) activation in p110 gamma(-/-) platelets was not associated with alterations in the levels of PI(3,4)P(2) or active Rap1b/AKT. Analysis of the effects of active site pharmacological inhibitors confirmed that p110 gamma principally regulated integrin alpha(IIb)beta(3) activation through a non-catalytic signaling mechanism. Inhibition of the kinase function of PI 3-kinases, combined with deletion of p110 gamma, led to a major reduction in integrin alpha(IIb)beta(3) activation, resulting in a profound defect in platelet aggregation, hemostatic plug formation, and arterial thrombosis. These studies demonstrate a kinase-independent signaling function for p110 gamma in platelets. Moreover, they demonstrate that the combined catalytic and non-catalytic signaling function of p110 beta and p110 gamma is critical for P2Y(12)/G(i)-dependent integrin alpha(IIb)beta(3) regulation. These findings have potentially important implications for the rationale design of novel antiplatelet therapies targeting PI 3-kinase signaling pathways.
Collapse
Affiliation(s)
- Simone M Schoenwaelder
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Akiko Ono
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Sharelle Sturgeon
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Siew Mei Chan
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Pierre Mangin
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Mhairi J Maxwell
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Shannon Turnbull
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Megha Mulchandani
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Karen Anderson
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Gilles Kauffenstein
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Gordon W Rewcastle
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1020, New Zealand
| | - Jackie Kendall
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1020, New Zealand
| | | | - Hatem H Salem
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004
| | - Shaun P Jackson
- Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Education Precinct (AMREP), 89 Commercial Road, Melbourne, Victoria, Australia 3004.
| |
Collapse
|
48
|
Li Y, Day ML, O'Neill C. Autocrine activation of ion currents in the two-cell mouse embryo. Exp Cell Res 2007; 313:2786-94. [PMID: 17583695 DOI: 10.1016/j.yexcr.2007.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 05/16/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The actions of autocrine ligands are required for the normal development of the preimplantation embryo in vitro. These ligands act as survival factors for the preimplantation stage embryo. One autocrine ligand, paf (1-o-alkyl-2-acetyl-sn-gylcero-3-phosphocholine), induced a dihydropyridine-sensitive calcium transient in the zygote and two-cell embryo, and these transients were required for the normal preimplantation stage survival. Paf induces an influx of external calcium through a dihydropyridine-sensitive channel. Dihydropyridine-sensitive currents are voltage-regulated, yet to date there is no evidence of membrane voltage depolarization in the two-cell embryo. To define the paf-induced calcium influx we have examined the response of the membrane potential and ion currents to paf in two-cell embryos. An initial response to paf challenge was the expression of an ion current (-15.6+/-1.6 pA) that was dependent upon extracellular calcium, was not voltage-gated but was dihydropyridine (nifedipine)-sensitive. This calcium current was followed (91+/-6 s after paf) by a net outward current (284+/-59 pA) that was composed of 4,4'-diisothiocyanatostilbene-2,2'-disulfonate-sensitive (anion channel blocker) and tetraethylammonium chloride-sensitive (K(+) channel blocker) currents. This current corresponded temporally with a marked paf-induced transient hyperpolarization of the membrane potential (-8.4+/-1.2 mV) that was dependent upon the generation of the calcium transient. The results directly demonstrate the activation of a voltage-independent calcium current in response to paf and show for the first time the expression of an afterhyperpolarization that occurs as a response to the calcium transient.
Collapse
Affiliation(s)
- Yan Li
- Discipline of Physiology, University of Sydney, Australia
| | | | | |
Collapse
|
49
|
Abstract
Pulsatile neuropeptide secretion is associated with burst firing patterns; however, intracellular signaling cascades leading to bursts remain unclear. We explored mechanisms underlying burst firing in oxytocin (OT) neurons in the supraoptic nucleus in brain slices from lactating rats. Application of 10 pm OT for 30 min or progressively rising OT concentrations from 1 to 100 pm induced burst firing in OT neurons in patch-clamp recordings. Burst generation was blocked by OT antagonist and ionotropic glutamate receptor blockers or tetanus toxin. Blocking G-protein activation with suramin or intracellular GDP-beta-S, but not intracellularly administered antibody against the OT-receptor (OTR) C terminus, blocked bursts. Moreover, pretreatment of slices with pertussis toxin, an inhibitor of G(i/o)-proteins, did not block OT-evoked bursts, suggesting that G(i)/G(o) activation is unnecessary for burst generation. Thus, we further examined G alpha(q/11)-associated signaling pathways in OT-evoked bursts. Inhibition of phospholipase C or RhoA/Rho kinase did not block bursts. Activation of G betagamma subunits using myristoylated G betagamma-binding peptide (mSIRK) caused bursts, whereas intracellularly loaded antibody against G beta subunit blocked OT-evoked bursts. Blocking Src family kinase, but not phosphatidylinositol 3-kinase, occluded OT-evoked bursts. Similar to the effects of OT on EPSCs, mSIRK inhibited tonic EPSCs and elicited EPSC clustering. Finally, suckling caused dissociation of OTRs and G beta subunits from G alpha(q/11) subunits shown by coimmunoprecipitation and immunocytochemistry, supporting crucial roles for OTRs and G betagamma subunits in the milk-ejection reflex. We conclude that G betagamma subunits play a dominant role in burst firing evoked by applied OT or by suckling.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, California 92521, USA.
| | | |
Collapse
|
50
|
Rakotoarisoa L, Carricaburu V, Leblanc C, Mironneau C, Mironneau J, Macrez N. Angiotensin II-induced delayed stimulation of phospholipase C gamma1 requires activation of both phosphatidylinositol 3-kinase gamma and tyrosine kinase in vascular myocytes. J Cell Mol Med 2007; 10:734-48. [PMID: 16989733 PMCID: PMC3933155 DOI: 10.1111/j.1582-4934.2006.tb00433.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In vascular smooth muscles, angiotensin II (AII) has been reported to activate phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K). We investigated the time-dependent effects of AII on both phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and inositol phosphates (InsPs) accumulation in permeabilized microsomes from rat portal vein smooth muscle in comparison with those of noradrenaline (NA). AII stimulated an early production of PtdInsP3 (within 30 s) followed by a delayed production of InsPs (within 3-5 min), in contrast to NA which activated only a fast production of InsPs. The use of pharmacological inhibitors and antibodies raised against the PI3K and PLC isoforms expressed in portal vein smooth muscle showed that AII specifically activated PI3Kδ and that this isoform was involved in the AII-induced stimulation of InsPs accumulation. NA-induced InsPs accumulation depended on PLCβ1 activation whereas AII-induced InsPs accumulation depended on PLCγ1 activation. AII-induced PLCδ1 activation required both tyrosine kinase and PI3Kδ since genistein and tyrphostin B48 (inhibitors of tyrosine kinase), LY294002 and wortmannin (inhibitors of PI3K) and anti-PI3Kδ antibody abolished AII-induced stimulation of InsPs accumulation. Increased tyrosine phosphorylation of PLCβ1 was only detected for long-lasting applications of AII and was suppressed by genistein. These data indicate that activation of both PI3Kβ and tyrosine kinase is a prerequisite for AII-induced stimulation of PLCβ1 in vascular smooth muscle and suggest that the sequential activation of the three enzymes may be responsible for the slow and long-lasting contraction induced by AII.
Collapse
Affiliation(s)
- Lala Rakotoarisoa
- Laboratoire de Signalisation et Interactions Cellulaires, Université de Bordeaux, Bordeaux, France
| | | | | | | | | | | |
Collapse
|