1
|
The Jekyll and Hyde Symbiont: Could Wolbachia Be a Nutritional Mutualist? J Bacteriol 2020; 202:JB.00589-19. [PMID: 31659008 DOI: 10.1128/jb.00589-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The most common intracellular symbiont on the planet-Wolbachia pipientis-is infamous largely for the reproductive manipulations induced in its host. However, more recent evidence suggests that this bacterium may also serve as a nutritional mutualist in certain host backgrounds and for certain metabolites. We performed a large-scale analysis of conserved gene content across all sequenced Wolbachia genomes to infer potential nutrients made by these symbionts. We review and critically evaluate the prior research supporting a beneficial role for Wolbachia and suggest future experiments to test hypotheses of metabolic provisioning.
Collapse
|
2
|
Proteome Remodeling in Response to Sulfur Limitation in " Candidatus Pelagibacter ubique". mSystems 2016; 1:mSystems00068-16. [PMID: 27822545 PMCID: PMC5069961 DOI: 10.1128/msystems.00068-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022] Open
Abstract
The alphaproteobacterium "Candidatus Pelagibacter ubique" strain HTCC1062 and most other members of the SAR11 clade lack genes for assimilatory sulfate reduction, making them dependent on organosulfur compounds that occur naturally in seawater. To investigate how these cells adapt to sulfur limitation, batch cultures were grown in defined medium containing either limiting or nonlimiting amounts of dimethylsulfoniopropionate (DMSP) as the sole sulfur source. Protein and mRNA expression were measured before, during, and after the transition from exponential growth to stationary phase. Two distinct responses were observed, one as DMSP became exhausted and another as the cells acclimated to a sulfur-limited environment. The first response was characterized by increased transcription and translation of all "Ca. Pelagibacter ubique" genes downstream from the previously confirmed S-adenosyl methionine (SAM) riboswitches bhmT, mmuM, and metY. The proteins encoded by these genes were up to 33 times more abundant as DMSP became limiting. Their predicted function is to shunt all available sulfur to methionine. The secondary response, observed during sulfur-limited stationary phase, was a 6- to 10-fold increase in the transcription of the heme c shuttle-encoding gene ccmC and two small genes of unknown function (SAR11_1163 and SAR11_1164). This bacterium's strategy for coping with sulfur stress appears to be intracellular redistribution to support methionine biosynthesis rather than increasing organosulfur import. Many of the genes and SAM riboswitches involved in this response are located in a hypervariable genome region (HVR). One of these HVR genes, ordL, is located downstream from a conserved motif that evidence suggests is a novel riboswitch. IMPORTANCE "Ca. Pelagibacter ubique" is a key driver of marine biogeochemistry cycles and a model for understanding how minimal genomes evolved in free-living anucleate organisms. This study explores the unusual sulfur acquisition strategy that has evolved in these cells, which lack assimilatory sulfate reduction and instead rely on reduced sulfur compounds found in oxic marine environments to meet their cellular quotas. Our findings demonstrate that the sulfur acquisition systems are constitutively expressed but the enzymatic steps leading to the essential sulfur-containing amino acid methionine are regulated by a unique array of riboswitches and genes, many of which are encoded in a rapidly evolving genome region. These findings support mounting evidence that streamlined cells have evolved regulatory mechanisms that minimize transcriptional switching and, unexpectedly, localize essential sulfur acquisition genes in a genome region normally associated with adaption to environmental variation.
Collapse
|
3
|
Khalfaoui-Hassani B, Verissimo AF, Shroff NP, Ekici S, Trasnea PI, Utz M, Koch HG, Daldal F. Biogenesis of Cytochrome c Complexes: From Insertion of Redox Cofactors to Assembly of Different Subunits. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Gurumoorthy P, Ludwig B. Deciphering protein-protein interactions during the biogenesis of cytochrome c oxidase from Paracoccus denitrificans. FEBS J 2014; 282:537-49. [PMID: 25420759 DOI: 10.1111/febs.13160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 02/01/2023]
Abstract
Biogenesis of the mitochondrial cytochrome c oxidase (COX) is a complex process due to its numerous subunits encoded by two genomes, as well as the localization of redox centers deep within the membrane. Here, we have assessed the biogenesis of the homologous aa₃-type oxidase of the soil bacterium Paracoccus denitrificans. First, protein partners were analyzed using various membrane solubilization strategies to show interactions between COX and CtaG, a chaperone implicated in CuB site metallation. Using an unbiased MS approach after immunological pull-down from untreated or cross-linked membranes, we then extend our view towards a hypothetical 'biogenesis complex' by identifying two further metal-inserting chaperones, Surf1c and Sco, together with enzymes catalyzing heme a synthesis. Our study also tentatively supports previous speculation regarding the existence of a predominantly co-translational mechanism for cofactor insertion during COX biogenesis.
Collapse
Affiliation(s)
- Priya Gurumoorthy
- Institute of Biochemistry, Molecular Genetics, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
5
|
Verissimo AF, Daldal F. Cytochrome c biogenesis System I: an intricate process catalyzed by a maturase supercomplex? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:989-98. [PMID: 24631867 DOI: 10.1016/j.bbabio.2014.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/16/2022]
Abstract
Cytochromes c are ubiquitous heme proteins that are found in most living organisms and are essential for various energy production pathways as well as other cellular processes. Their biosynthesis relies on a complex post-translational process, called cytochrome c biogenesis, responsible for the formation of stereo-specific thioether bonds between the vinyl groups of heme b (protoporphyrin IX-Fe) and the thiol groups of apocytochromes c heme-binding site (C1XXC2H) cysteine residues. In some organisms this process involves up to nine (CcmABCDEFGHI) membrane proteins working together to achieve heme ligation, designated the Cytochrome c maturation (Ccm)-System I. Here, we review recent findings related to the Ccm-System I found in bacteria, archaea and plant mitochondria, with an emphasis on protein interactions between the Ccm components and their substrates (apocytochrome c and heme). We discuss the possibility that the Ccm proteins may form a multi subunit supercomplex (dubbed "Ccm machine"), and based on the currently available data, we present an updated version of a mechanistic model for Ccm. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA
| | - Fevzi Daldal
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6019, USA.
| |
Collapse
|
6
|
San Francisco B, Sutherland MC, Kranz RG. The CcmFH complex is the system I holocytochrome c synthetase: engineering cytochrome c maturation independent of CcmABCDE. Mol Microbiol 2014; 91:996-1008. [PMID: 24397552 DOI: 10.1111/mmi.12510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2014] [Indexed: 01/03/2023]
Abstract
Cytochrome c maturation (ccm) in many bacteria, archaea and plant mitochondria requires eight membrane proteins, CcmABCDEFGH, called system I. This pathway delivers and attaches haem covalently to two cysteines (of Cys-Xxx-Xxx-Cys-His) in the cytochrome c. All models propose that CcmFH facilitates covalent attachment of haem to the apocytochrome; namely, that it is the synthetase. However, holocytochrome c synthetase activity has not been directly demonstrated for CcmFH. We report formation of holocytochromes c by CcmFH and CcmG, a periplasmic thioredoxin, independent of CcmABCDE (we term this activity CcmFGH-only). Cytochrome c produced in the absence of CcmABCDE is indistinguishable from cytochrome c produced by the full system I, with a cleaved signal sequence and two covalent bonds to haem. We engineered increased cytochrome c production by CcmFGH-only, with yields approaching those from the full system I. Three conserved histidines in CcmF (TM-His1, TM-His2 and P-His1) are required for activity, as are the conserved cysteine pairs in CcmG and CcmH. Our findings establish that CcmFH is the system I holocytochrome c synthetase. Although we discuss why this engineering would likely not replace the need for CcmABCDE in nature, these results provide unique mechanistic and evolutionary insights into cytochrome c biosynthesis.
Collapse
Affiliation(s)
- Brian San Francisco
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | | | | |
Collapse
|
7
|
Mavridou DAI, Clark MN, Choulat C, Ferguson SJ, Stevens JM. Probing heme delivery processes in cytochrome c biogenesis System I. Biochemistry 2013; 52:7262-70. [PMID: 24044352 PMCID: PMC3806149 DOI: 10.1021/bi400398t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Cytochromes c comprise
a diverse and widespread
family of proteins containing covalently bound heme that are central
to the life of most organisms. In many bacteria and in certain mitochondria,
the synthesis of cytochromes c is performed by a
complex post-translational modification apparatus called System I
(or cytochrome c maturation, Ccm, system). In Escherichia coli, there are eight maturation proteins,
several of which are involved in heme handling, but the mechanism
of heme transfer from one protein to the next is not known. Attachment
of the heme to the apocytochrome occurs via a novel covalent bond
to a histidine residue of the heme chaperone CcmE. The discovery of
a variant maturation system (System I*) has provided a new tool for
studying cytochrome c assembly because the variant
CcmE functions via a cysteine residue in the place of the histidine
of System I. In this work, we use site-directed mutagenesis on both
maturation systems to probe the function of the individual component
proteins as well as their concerted action in transferring heme to
the cytochrome c substrate. The roles of CcmA, CcmC,
CcmE, and CcmF in the heme delivery process are compared between Systems
I and I*. We show that a previously proposed quinone-binding site
on CcmF is not essential for either system. Significant differences
in the heme chemistry involved in the formation of cytochromes c in the variant system add new pieces to the cytochrome c biogenesis puzzle.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
8
|
Mavridou DAI, Ferguson SJ, Stevens JM. Cytochrome c assembly. IUBMB Life 2013; 65:209-16. [PMID: 23341334 DOI: 10.1002/iub.1123] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 11/08/2022]
Abstract
Cytochromes c are central proteins in energy transduction processes by virtue of their functions in electron transfer in respiration and photosynthesis. They have heme covalently attached to a characteristic CXXCH motif via protein-catalyzed post-translational modification reactions. Several systems with diverse constituent proteins have been identified in different organisms and are required to perform the heme attachment and associated functions. The necessary steps are translocation of the apocytochrome polypeptide to the site of heme attachment, transport and provision of heme to the appropriate compartment, reduction and chaperoning of the apocytochrome, and finally, formation of the thioether bonds between heme and two cysteines in the cytochrome. Here we summarize the established classical models for these processes and present recent progress in our understanding of the individual steps within the different cytochrome c biogenesis systems.
Collapse
|
9
|
Verissimo AF, Mohtar MA, Daldal F. The heme chaperone ApoCcmE forms a ternary complex with CcmI and apocytochrome c. J Biol Chem 2013; 288:6272-83. [PMID: 23319598 DOI: 10.1074/jbc.m112.440024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c maturation (Ccm) is a post-translational process that occurs after translocation of apocytochromes c to the positive (p) side of energy-transducing membranes. Ccm is responsible for the formation of covalent bonds between the thiol groups of two cysteines residues at the heme-binding sites of the apocytochromes and the vinyl groups of heme b (protoporphyrin IX-Fe). Among the proteins (CcmABCDEFGHI and CcdA) required for this process, CcmABCD are involved in loading heme b to apoCcmE. The holoCcmE thus formed provides heme b to the apocytochromes. Catalysis of the thioether bonds between the apocytochromes c and heme b is mediated by the heme ligation core complex, which in Rhodobacter capsulatus contains at least the CcmF, CcmH, and CcmI components. In this work we show that the heme chaperone apoCcmE binds to the apocytochrome c and the apocytochrome c chaperone CcmI to yield stable binary and ternary complexes in the absence of heme in vitro. We found that during these protein-protein interactions, apoCcmE favors the presence of a disulfide bond at the apocytochrome c heme-binding site. We also establish using detergent-dispersed membranes that apoCcmE interacts directly with CcmI and CcmH of the heme ligation core complex CcmFHI. Implications of these findings are discussed with respect to heme transfer from CcmE to the apocytochromes c during heme ligation assisted by the core complex CcmFHI.
Collapse
Affiliation(s)
- Andreia F Verissimo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19014-6019, USA
| | | | | |
Collapse
|
10
|
Travaglini-Allocatelli C. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms. SCIENTIFICA 2013; 2013:505714. [PMID: 24455431 PMCID: PMC3884852 DOI: 10.1155/2013/505714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/24/2013] [Indexed: 05/09/2023]
Abstract
Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Department of Biochemical Sciences, University of Rome “Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
- *Carlo Travaglini-Allocatelli:
| |
Collapse
|
11
|
Corvest V, Murrey DA, Hirasawa M, Knaff DB, Guiard B, Hamel PP. The flavoprotein Cyc2p, a mitochondrial cytochrome c assembly factor, is a NAD(P)H-dependent haem reductase. Mol Microbiol 2012; 83:968-80. [PMID: 22257001 DOI: 10.1111/j.1365-2958.2012.07981.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome c assembly requires sulphydryls at the CXXCH haem binding site on the apoprotein and also chemical reduction of the haem co-factor. In yeast mitochondria, the cytochrome haem lyases (CCHL, CC(1) HL) and Cyc2p catalyse covalent haem attachment to apocytochromes c and c(1) . An in vivo indication that Cyc2p controls a reductive step in the haem attachment reaction is the finding that the requirement for its function can be bypassed by exogenous reductants. Although redox titrations of Cyc2p flavin (E(m) = -290 mV) indicate that reduction of a disulphide at the CXXCH site of apocytochrome c (E(m) = -265 mV) is a thermodynamically favourable reaction, Cyc2p does not act as an apocytochrome c or c(1) CXXCH disulphide reductase in vitro. In contrast, Cyc2p is able to catalyse the NAD(P)H-dependent reduction of hemin, an indication that the protein's role may be to control the redox state of the iron in the haem attachment reaction to apocytochromes c. Using two-hybrid analysis, we show that Cyc2p interacts with CCHL and also with apocytochromes c and c(1) . We postulate that Cyc2p, possibly in a complex with CCHL, reduces the haem iron prior to haem attachment to the apoforms of cytochrome c and c(1) .
Collapse
Affiliation(s)
- Vincent Corvest
- Departments of Molecular Genetics and Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
12
|
Harvat EM, Daltrop O, Sobott F, Moreau M, Barker PD, Stevens JM, Ferguson SJ. Metal and redox selectivity of protoporphyrin binding to the heme chaperone CcmE. Metallomics 2011; 3:363-8. [DOI: 10.1039/c0mt00085j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Bonnard G, Corvest V, Meyer EH, Hamel PP. Redox processes controlling the biogenesis of c-type cytochromes. Antioxid Redox Signal 2010; 13:1385-401. [PMID: 20214494 DOI: 10.1089/ars.2010.3161] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mitochondria, two mono heme c-type cytochromes are essential electron shuttles of the respiratory chain. They are characterized by the covalent attachment of their heme C to a CXXCH motif in the apoproteins. This post-translational modification occurs in the intermembrane space compartment. Dedicated assembly pathways have evolved to achieve this chemical reaction that requires a strict reducing environment. In mitochondria, two unrelated machineries operate, the rather simple System III in yeast and animals and System I in plants and some protozoans. System I is also found in bacteria and shares some common features with System II that operates in bacteria and plastids. This review aims at presenting how different systems control the chemical requirements for the heme ligation in the compartments where cytochrome c maturation takes place. A special emphasis will be given on the redox processes that are required for the heme attachment reaction onto apocytochromes c.
Collapse
Affiliation(s)
- Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes, CNRS UPR-Université de Strasbourg, France.
| | | | | | | |
Collapse
|
14
|
Richard-Fogal C, Kranz RG. The CcmC:heme:CcmE complex in heme trafficking and cytochrome c biosynthesis. J Mol Biol 2010; 401:350-62. [PMID: 20599545 DOI: 10.1016/j.jmb.2010.06.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
Abstract
A superfamily of integral membrane proteins is characterized by a conserved tryptophan-rich region (called the WWD domain) in an external loop at the inner membrane surface. The three major members of this family (CcmC, CcmF, and CcsBA) are each involved in cytochrome c biosynthesis, yet the function of the WWD domain is unknown. It has been hypothesized that the WWD domain binds heme to present it to an acceptor protein (apoCcmE for CcmC or apocytochrome c for CcmF and CcsBA) such that the heme vinyl group(s) covalently attaches to the acceptors. Alternative proposals suggest that the WWD domain interacts directly with the acceptor protein (e.g., apoCcmE for CcmC). Here, it is shown that CcmC is only trapped with heme when its cognate acceptor protein CcmE is present. It is demonstrated that CcmE only interacts stably with CcmC when heme is present; thus, specific residues in each protein provide sites of interaction with heme to form this very stable complex. For the first time, evidence that the external WWD domain of CcmC interacts directly with heme is presented. Single and multiple substitutions of completely conserved residues in the WWD domain of CcmC alter the spectral properties of heme in the stable CcmC:heme:CcmE complexes. Moreover, some mutations reduce the binding of heme up to 100%. It is likely that endogenously synthesized heme enters the external WWD domain of CcmC either via a channel within this six-transmembrane-spanning protein or from the membrane. The data suggest that a specific heme channel (i.e., heme binding site within membrane spanning helices) is not present in CcmC, in contrast to the CcsBA protein. We discuss the likelihood that it is not important to protect the heme via trafficking in CcmC whereas it is critical in CcsBA.
Collapse
Affiliation(s)
- Cynthia Richard-Fogal
- Department of Biology, Washington University, Campus Box 1137, 1 Brookings Drive, St Louis, MO 63130, USA
| | | |
Collapse
|
15
|
A glimpse into the proteome of phototrophic bacterium Rhodobacter capsulatus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 675:179-209. [PMID: 20532742 DOI: 10.1007/978-1-4419-1528-3_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A first glimpse into the proteome of Rhodobacter capsulatus revealed more than 450 (with over 210 cytoplasmic and 185 extracytoplasmic known as well as 55 unknown) proteins that are identified with high degree of confidence using nLC-MS/MS analyses. The accumulated data provide a solid platform for ongoing efforts to establish the proteome of this species and the cellular locations of its constituents. They also indicate that at least 40 of the identified proteins, which were annotated in genome databases as unknown hypothetical proteins, correspond to predicted translation products that are indeed present in cells under the growth conditions used in this work. In addition, matching the identification labels of the proteins reported between the two available R. capsulatus genome databases (ERGO-light with RRCxxxxx and NT05 with NT05RCxxxx numbers) indicated that 11 such proteins are listed only in the latter database.
Collapse
|
16
|
Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 2009; 73:510-28, Table of Contents. [PMID: 19721088 DOI: 10.1128/mmbr.00001-09] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heme is the prosthetic group for cytochromes, which are directly involved in oxidation/reduction reactions inside and outside the cell. Many cytochromes contain heme with covalent additions at one or both vinyl groups. These include farnesylation at one vinyl in hemes o and a and thioether linkages to each vinyl in cytochrome c (at CXXCH of the protein). Here we review the mechanisms for these covalent attachments, with emphasis on the three unique cytochrome c assembly pathways called systems I, II, and III. All proteins in system I (called Ccm proteins) and system II (Ccs proteins) are integral membrane proteins. Recent biochemical analyses suggest mechanisms for heme channeling to the outside, heme-iron redox control, and attachment to the CXXCH. For system II, the CcsB and CcsA proteins form a cytochrome c synthetase complex which specifically channels heme to an external heme binding domain; in this conserved tryptophan-rich "WWD domain" (in CcsA), the heme is maintained in the reduced state by two external histidines and then ligated to the CXXCH motif. In system I, a two-step process is described. Step 1 is the CcmABCD-mediated synthesis and release of oxidized holoCcmE (heme in the Fe(+3) state). We describe how external histidines in CcmC are involved in heme attachment to CcmE, and the chemical mechanism to form oxidized holoCcmE is discussed. Step 2 includes the CcmFH-mediated reduction (to Fe(+2)) of holoCcmE and ligation of the heme to CXXCH. The evolutionary and ecological advantages for each system are discussed with respect to iron limitation and oxidizing environments.
Collapse
|
17
|
Ahuja U, Kjelgaard P, Schulz BL, Thöny-Meyer L, Hederstedt L. Haem-delivery proteins in cytochrome c maturation System II. Mol Microbiol 2009; 73:1058-71. [PMID: 19682263 DOI: 10.1111/j.1365-2958.2009.06833.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cytochromes of the c-type function on the outer side of the cytoplasmic membrane in bacteria where they also are assembled from apo-cytochrome polypeptide and haem. Two distinctly different systems for cytochrome c maturation are found in bacteria. System I present in Escherichia coli has eight to nine different Ccm proteins. System II is found in Bacillus subtilis and comprises four proteins: CcdA, ResA, ResB and ResC. ResB and ResC are poorly understood polytopic membrane proteins required for cytochrome c synthesis. We have analysed these two B. subtilis proteins produced in E. coli and in the native organism. ResB is shown to bind protohaem IX and haem is found covalently bound to residue Cys-138. Results in B. subtilis suggest that also ResC can bind haem. Our results complement recent findings made with Helicobacter CcsBA supporting the hypothesis that ResBC as a complex translocates haem by attaching it to ResB on the cytoplasmic side of the membrane and then transferring it to an extra-cytoplasmic location in ResC, from where it is made available to the apo-cytochromes.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
A conserved haem redox and trafficking pathway for cofactor attachment. EMBO J 2009; 28:2349-59. [PMID: 19629033 DOI: 10.1038/emboj.2009.189] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 06/15/2009] [Indexed: 01/25/2023] Open
Abstract
A pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control. We discovered an early step in trafficking that involves oxidation of haem (to Fe(3+)), yet the final attachment requires reduced haem (Fe(2+)). Surprisingly, CcmF is a cytochrome b with a haem never before realized, and in vitro, CcmF functions as a quinol:haem oxidoreductase. Thus, this ancient pathway has conserved and orchestrated mechanisms for trafficking, storing and reducing haem, which assure its use for cytochrome c synthesis even in limiting haem (iron) environments and reducing haem in oxidizing environments.
Collapse
|
19
|
|
20
|
Hamel P, Corvest V, Giegé P, Bonnard G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:125-38. [DOI: 10.1016/j.bbamcr.2008.06.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|
21
|
Stevens JM, Ferguson SJ. Cytochrome c Biogenesis. EcoSal Plus 2008; 3. [PMID: 26443743 DOI: 10.1128/ecosalplus.3.6.3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Indexed: 06/05/2023]
Abstract
Escherichia coli employs several c-type cytochromes, which are found in the periplasm or on the periplasmic side of the cytoplasmic membrane; they are used for respiration under different growth conditions. All E. colic-type cytochromes are multiheme cytochromes; E. coli does not have a monoheme cytochrome c of the kind found in mitochondria. The attachment of heme to cytochromes c occurs in the periplasm, and so the apoprotein must be transported across the cytoplasmic membrane; this step is mediated by the Sec system, which transports unfolded proteins across the membrane. The protein CcmE has been found to bind heme covalently via a single bond and then transfer the heme to apocytochromes. It should be mentioned that far less complex systems for cytochrome c biogenesis exist in other organisms and that enterobacteria do not function as a representative model system for the process in general, although plant mitochondria use the Ccm system found in E. coli. The variety and distribution of cytochromes and their biogenesis systems reflect their significance and centrality in cellular bioenergetics, though the necessity for and origin of the diverse biogenesis systems are enigmatic.
Collapse
|
22
|
Rayapuram N, Hagenmuller J, Grienenberger JM, Bonnard G, Giegé P. The three mitochondrial encoded CcmF proteins form a complex that interacts with CCMH and c-type apocytochromes in Arabidopsis. J Biol Chem 2008; 283:25200-25208. [PMID: 18644794 DOI: 10.1074/jbc.m802621200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three reading frames called ccmF(N1), ccmF(N2), and ccmF(c) are found in the mitochondrial genome of Arabidopsis. These sequences are similar to regions of the bacterial gene ccmF involved in cytochrome c maturation. ccmF genes are always absent from animal and fungi genomes but are found in mitochondrial genomes of land plant and several evolutionary distant eukaryotes. In Arabidopsis, ccmF(N2) despite the absence of a classical initiation codon is not a pseudo gene. The 3 ccmF genes of Arabidopsis are expressed at the protein level. Their products are integral proteins of the mitochondrial inner membrane with in total 11 to 13 predicted transmembrane helices. The conserved WWD domain of CcmF(N2) is localized in the inter membrane space. The 3 CcmF proteins are all detected in a high molecular mass complex of 500 kDa by Blue Native PAGE. Direct interaction between CcmF(N2) and both CcmF(N1) and CcmF(C) is shown with the yeast two-hybrid split ubiquitin system, but no interaction is observed between CcmF(N1) and CcmF(C). Similarly, interaction is detected between CcmF(N2) and apocytochrome c but also with apocytochrome c(1). Finally, CcmF(N1) and CcmF(N2) both interact with CCMH previously shown to interact as well with cytochrome c. This strengthens the hypothesis that CcmF and CCMH make a complex that performs the assembly of heme with c-type apocytochromes in plant mitochondria.
Collapse
Affiliation(s)
- Naganand Rayapuram
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du général Zimmer, 67084 Strasbourg, France
| | - Jérémie Hagenmuller
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du général Zimmer, 67084 Strasbourg, France
| | - Jean Michel Grienenberger
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du général Zimmer, 67084 Strasbourg, France
| | - Géraldine Bonnard
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du général Zimmer, 67084 Strasbourg, France
| | - Philippe Giegé
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
23
|
Ahuja U, Rozhkova A, Glockshuber R, Thöny-Meyer L, Einsle O. Helix swapping leads to dimerization of the N-terminal domain of the c-type cytochrome maturation protein CcmH from Escherichia coli. FEBS Lett 2008; 582:2779-86. [PMID: 18625227 DOI: 10.1016/j.febslet.2008.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/19/2008] [Accepted: 07/05/2008] [Indexed: 11/25/2022]
Abstract
In the process of cytochrome c maturation, heme groups are covalently attached to reduced cysteines of specific heme-binding motifs (CXXCH) in an apocytochrome c sequence. In Escherichia coli, the CcmH protein maintains apo-protein cysteines in a reduced state prior to heme attachment. We have purified and biophysically, as well as structurally characterized the soluble, N-terminal domain of E. coli CcmH that carries the functionally relevant LRCXXC-motif. In contrast to a recently presented structure of the homologous domain from Pseudomonas aeruginosa, the E. coli protein forms a tightly interlinked dimer by swapping its N-terminal helix between two monomers. We propose that an altered environment of the functional motif may help to discern between the two redox partners CcmG and apocytochrome c.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
24
|
Onder O, Turkarslan S, Sun D, Daldal F. Overproduction or absence of the periplasmic protease DegP severely compromises bacterial growth in the absence of the dithiol: disulfide oxidoreductase DsbA. Mol Cell Proteomics 2008; 7:875-90. [PMID: 18174153 PMCID: PMC2401338 DOI: 10.1074/mcp.m700433-mcp200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 12/31/2007] [Indexed: 02/05/2023] Open
Abstract
Facultative phototrophic bacterium Rhodobacter capsulatus DsbA-null mutants are proficient in photosynthesis but are defective in respiration especially in enriched growth medium at 35 degrees C. They also exhibit severe pleiotropic phenotypes extending from motility defects to osmofragility and oxidative stresses. In this work, using a combined proteomics and molecular genetics approach, we demonstrated that the respiratory defect of R. capsulatus DsbA-null mutants originates from the overproduction of the periplasmic protease DegP, which renders them temperature-sensitive for growth. The DsbA-null mutants reverted frequently to overcome this growth defect by decreasing, but not completely eliminating, their DegP activity. In agreement with these findings, we showed that overproduction of DegP abolishes the newly restored respiratory growth ability of the revertants in all growth media. Structural localizations of the reversion mutations in DegP revealed the regions and amino acids that are important for its protease-chaperone activity. Remarkably although R. capsulatus DsbA-null or DegP-null mutants were viable, DegP-null DsbA-null double mutants were lethal at all growth temperatures. This is unlike Escherichia coli, and it indicates that in the absence of DsbA some DegP activity is required for survival of R. capsulatus. Absence of a DegQ protease homologue in some bacteria together with major structural variations among the DegP homologues, including a critical disulfide bond-bearing region, correlates well with the differences seen between various species like R. capsulatus and E. coli. Our findings illustrate the occurrence of two related but distinct periplasmic protease families in bacterial species.
Collapse
Affiliation(s)
- Ozlem Onder
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19014-6019, USA
| | | | | | | |
Collapse
|
25
|
Ferguson SJ, Stevens JM, Allen JWA, Robertson IB. Cytochrome c assembly: a tale of ever increasing variation and mystery? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:980-4. [PMID: 18423368 DOI: 10.1016/j.bbabio.2008.03.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 03/18/2008] [Indexed: 01/23/2023]
Abstract
Formation of cytochromes c requires a deceptively simple post-translational modification, the formation of two thioether bonds (or rarely one) between the thiol groups of two cysteine residues found in a CXXCH motif (with some occasional variations) and the vinyl groups of heme. There are three partially characterised systems for facilitating this post-translational modification; within these systems there is also variation. In addition, there are clear indications for two other distinct systems. Here some of the current issues in understanding the systems are analysed.
Collapse
Affiliation(s)
- Stuart J Ferguson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
26
|
Abstract
The system I cytochrome c biogenesis pathway requires CcmD, a small polypeptide of 69 residues in Escherichia coli. Here it is shown that CcmD is a component of the CcmABC ATP-binding cassette transporter complex. CcmD is not necessary for the CcmC-dependent transfer of heme to CcmE in the periplasm or for interaction of CcmE with CcmABC. CcmD is absolutely required for the release of holo-CcmE from the CcmABCD complex. Evidence is presented that the topology of CcmD in the cytoplasmic membrane is the N terminus outside and the C terminus inside with one transmembrane domain.
Collapse
|
27
|
Giegé P, Grienenberger J, Bonnard G. Cytochrome c biogenesis in mitochondria. Mitochondrion 2008; 8:61-73. [DOI: 10.1016/j.mito.2007.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 08/21/2007] [Accepted: 10/02/2007] [Indexed: 01/04/2023]
|
28
|
Lee JH, Harvat EM, Stevens JM, Ferguson SJ, Saier MH. Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2164-81. [PMID: 17706591 DOI: 10.1016/j.bbamem.2007.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 03/22/2007] [Accepted: 04/24/2007] [Indexed: 11/20/2022]
Abstract
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.
Collapse
Affiliation(s)
- Jong-Hoon Lee
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
29
|
Christensen O, Harvat EM, Thöny-Meyer L, Ferguson SJ, Stevens JM. Loss of ATP hydrolysis activity by CcmAB results in loss of c-type cytochrome synthesis and incomplete processing of CcmE. FEBS J 2007; 274:2322-32. [PMID: 17419738 DOI: 10.1111/j.1742-4658.2007.05769.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The proteins CcmA and CcmB have long been known to be essential for cytochrome c maturation in Escherichia coli. We have purified a complex of these proteins, and found it to have ATP hydrolysis activity. CcmA, which has the features of a soluble ATP hydrolysis subunit, is found in a membrane-bound complex only when CcmB is present in the membrane. Mutation of the Walker A motif in CcmA(K40D) results in loss of the in vitro ATPase activity and in loss of cytochrome c biogenesis in vivo. The same mutation does not prevent covalent attachment of heme to the heme chaperone CcmE, but holo-CcmE is, for some unidentified reason, incompetent for heme transfer to an apocytochrome c or for release into the periplasm as a soluble variant. Addition of exogenous heme to heme-permeable E. coli with a ccmA deletion did not restore cytochrome c production. Our results suggest a role for CcmAB in the handling of heme by CcmE, which is chemically complex and involves an unusual histidine-heme covalent bond.
Collapse
Affiliation(s)
- Olaf Christensen
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Feissner RE, Richard-Fogal CL, Frawley ER, Kranz RG. ABC transporter-mediated release of a haem chaperone allows cytochromecbiogenesis. Mol Microbiol 2006; 61:219-31. [PMID: 16824107 DOI: 10.1111/j.1365-2958.2006.05221.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels. The mechanism involves an ATP-binding cassette (ABC) transporter that is required for release of the periplasmic haem chaperone CcmE to the last step of cytochrome c assembly. This ABC transporter is composed of the ABC subunit CcmA, and two membrane proteins, CcmB and CcmC. In the absence of CcmA or CcmB, holo(haem)CcmE binds to CcmC in a stable dead-end complex, indicating high affinity binding of haem to CcmC. Expression of CcmA and CcmB facilitates formation of the CcmA2B1C1 complex and ATP-dependent release of holoCcmE. We propose that the CcmA2B1C1 complex represents a new subgroup within the ABC transporter superfamily that functions to release a chaperone.
Collapse
Affiliation(s)
- Robert E Feissner
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive, St. Louis, MO 63130, USA
| | | | | | | |
Collapse
|
31
|
Stevens JM, Uchida T, Daltrop O, Kitagawa T, Ferguson SJ. Dynamic Ligation Properties of the Escherichia coli Heme Chaperone CcmE to Non-covalently Bound Heme. J Biol Chem 2006; 281:6144-51. [PMID: 16373344 DOI: 10.1074/jbc.m508765200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytochrome c maturation protein CcmE is an essential membrane-anchored heme chaperone involved in the post-translational covalent attachment of heme to c-type cytochromes in Gram-negative bacteria such as Escherichia coli. Previous in vitro studies have shown that CcmE can bind heme both covalently (via a histidine residue) and non-covalently. In this work we present results on the latter form of heme binding to a soluble form of CcmE. Examination of a number of site-directed mutants of E. coli CcmE by resonance Raman spectroscopy has identified ligands of the heme iron and provided insight into the initial steps of heme binding by CcmE before it binds the heme covalently. The heme binding histidine (His-130) appears to ligate the heme iron in the ferric oxidation state, but two other residues ligate the iron in the ferrous form, thereby freeing His-130 to undergo covalent attachment to a heme vinyl group. It appears that the heme ligation in the non-covalent form is different from that in the holo-form, suggesting that a change in ligation could act as a trigger for the formation of the covalent bond and showing the dynamic and oxidation state-sensitive ligation properties of CcmE.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Stevens JM, Uchida T, Daltrop O, Ferguson SJ. Covalent cofactor attachment to proteins: cytochrome c biogenesis. Biochem Soc Trans 2005; 33:792-5. [PMID: 16042600 DOI: 10.1042/bst0330792] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Haem (Fe-protoporphyrin IX) is a cofactor found in a wide variety of proteins. It confers diverse functions, including electron transfer, the binding and sensing of gases, and many types of catalysis. The majority of cofactors are non-covalently attached to proteins. There are, however, some proteins in which the cofactor binds covalently and one of the major protein classes characterized by covalent cofactor attachment is the c-type cytochromes. The characteristic haem-binding mode of c-type cytochromes requires the formation of two covalent bonds between two cysteine residues in the protein and the two vinyl groups of haem. Haem attachment is a complex post-translational process that, in bacteria such as Escherichia coli, occurs in the periplasmic space and involves the participation of many proteins. Unexpectedly, it has been found that the haem chaperone CcmE (cytochrome c maturation), which is an essential intermediate in the process, also binds haem covalently before transferring the haem to apocytochromes. A single covalent bond is involved and occurs between a haem vinyl group and a histidine residue of CcmE. Several in vitro and in vivo studies have provided insight into the function of this protein and into the overall process of cytochrome c biogenesis.
Collapse
Affiliation(s)
- J M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | |
Collapse
|
33
|
Ahuja U, Thöny-Meyer L. The membrane anchors of the heme chaperone CcmE and the periplasmic thioredoxin CcmG are functionally important. FEBS Lett 2005; 580:216-22. [PMID: 16364305 DOI: 10.1016/j.febslet.2005.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 11/23/2005] [Accepted: 12/02/2005] [Indexed: 11/24/2022]
Abstract
The cytochrome c maturation system of Escherichia coli contains two monotopic membrane proteins with periplasmic, functional domains, the heme chaperone CcmE and the thioredoxin CcmG. We show in a domain swap experiment that the membrane anchors of these proteins can be exchanged without drastic loss of function in cytochrome c maturation. By contrast, the soluble periplasmic forms produced with a cleavable OmpA signal sequence have low biological activity. Both the chimerical CcmE (CcmG'-'E) and the soluble periplasmic CcmE produce low levels of holo-CcmE and thus are impaired in their heme receiving capacity. Also, both forms of CcmE can be co-precipitated with CcmC, thus restricting the site of interaction of CcmE with CcmC to the C-terminal periplasmic domain. However, the low level of holo-CcmE formed in the chimera is transferred efficiently to cytochrome c, indicating that heme delivery from CcmE does not involve the membrane anchor.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
34
|
Braun M, Thöny-Meyer L. Cytochrome c maturation and the physiological role of c-type cytochromes in Vibrio cholerae. J Bacteriol 2005; 187:5996-6004. [PMID: 16109941 PMCID: PMC1196146 DOI: 10.1128/jb.187.17.5996-6004.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed.
Collapse
Affiliation(s)
- Martin Braun
- Institut für Mikrobiologie, ETH Hönggerberg, Wolfgang-Pauli-Str. 10, 8093 Zürich, Switzerland.
| | | |
Collapse
|
35
|
Harvat EM, Stevens JM, Redfield C, Ferguson SJ. Functional Characterization of the C-terminal Domain of the Cytochrome c Maturation Protein CcmE. J Biol Chem 2005; 280:36747-53. [PMID: 16129669 DOI: 10.1074/jbc.m508355200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CcmE is a heme chaperone involved in the periplasmic maturation of c-type cytochromes in many bacteria and plant mitochondria. It binds heme covalently and subsequently transfers it to the apo form of cytochromes c. To examine the role of the C-terminal domain of CcmE in the binding of heme, in vitro heme binding to the apo form of a truncated (immediately before Pro-136) version of the periplasmic domain of the heme chaperone from Escherichia coli was studied. Removal of the C-terminal domain dramatically altered the ligation of non-covalently bound heme in CcmE' (the soluble form lacking the membrane anchor) but only slightly affected its affinity for protoporphyrin IX and 8-anilino-1-naphthalenesulfonate. This finding has significant mechanistic implications for in vivo holo-CcmE formation and indicates that the C-terminal region is not required for the recruitment and docking of heme into its binding site but is likely to contain amino acid(s) involved in heme iron axial coordination. Removal of the C-domain significantly impaired in vivo heme binding to CcmE and conversion of apocytochrome to holoprotein by a similar factor, suggesting that the C-terminal domain of the chaperone is primarily involved in heme binding to CcmE rather than in heme transfer to the apo cytochrome.
Collapse
Affiliation(s)
- Edgar M Harvat
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
36
|
Bouhenni R, Gehrke A, Saffarini D. Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon. Appl Environ Microbiol 2005; 71:4935-7. [PMID: 16085900 PMCID: PMC1183303 DOI: 10.1128/aem.71.8.4935-4937.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A modified mariner transposon, miniHimar RB1, was generated to mutagenize cells of the metal-reducing bacterium Shewanella oneidensis. The use of this transposon led to the isolation of stable mutants and allowed rapid identification of disrupted genes. Fifty-eight mutants, including BG104 and BG148 with transposon insertions in the cytochrome c maturation genes ccmC and ccmF1, respectively, were analyzed. Both mutants were deficient in anaerobic respiration and cytochrome c production.
Collapse
Affiliation(s)
- R Bouhenni
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 3209 N. Maryland Ave., Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
37
|
Meyer EH, Giegé P, Gelhaye E, Rayapuram N, Ahuja U, Thöny-Meyer L, Grienenberger JM, Bonnard G. AtCCMH, an essential component of the c-type cytochrome maturation pathway in Arabidopsis mitochondria, interacts with apocytochrome c. Proc Natl Acad Sci U S A 2005; 102:16113-8. [PMID: 16236729 PMCID: PMC1276046 DOI: 10.1073/pnas.0503473102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The maturation of c-type cytochromes requires the covalent ligation of the heme cofactor to reduced cysteines of the CXXCH motif of apocytochromes. In contrast to mitochondria of other eukaryotes, plant mitochondria follow a pathway close to that found in alpha- and gamma-proteobacteria. We identified a nuclear-encoded protein, AtCCMH, the Arabidopsis thaliana ortholog of bacterial CcmH/CycL proteins. In bacteria, CcmH and the thioredoxin CcmG are components of a periplasmic thio-reduction pathway proposed to maintain the apocytochrome c cysteines in a reduced state. AtCCMH is located exclusively in mitochondria. AtCCMH is an integral protein of the inner membrane with the conserved RCXXC motif facing the intermembrane space. Reduction assays show that the cysteine thiols in the RCXXC motif of AtCCMH can form a disulfide bond that can be reduced by enzymatic thiol reductants. A reduced form of AtCCMH can reduce the intra-disulfide bridge of a model peptide of apocytochrome c. When expressed in Escherichia coli, AtCCMH coimmunoprecipitates with the bacterial CcmF, a proposed component of the heme lyase. Blue-native PAGE of mitochondrial membrane complexes reveals the colocalization of AtCCMH and AtCcmF(N2) in a 500-kDa complex. Yeast two-hybrid assays show an interaction between the AtCCMH intermembrane space domain and A. thaliana apocytochrome c. A. thaliana ccmh/ccmh knockout plants show lethality at the torpedo stage of embryogenesis. Our results show that AtCCMH is an essential mitochondrial protein with characteristics consistent with its proposed apocytochrome c-reducing and heme lyase function.
Collapse
Affiliation(s)
- Etienne H Meyer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Stevens JM, Gordon EH, Ferguson SJ. Overproduction of CcmABCDEFGH restores cytochrome c maturation in a DsbD deletion strain of E. coli: another route for reductant? FEBS Lett 2004; 576:81-5. [PMID: 15474015 DOI: 10.1016/j.febslet.2004.08.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 08/24/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
The multidomain transmembrane protein DsbD is essential for cytochrome c maturation (Ccm) in Escherichia coli and transports reductant to the otherwise oxidising environment of the bacterial periplasm. The Ccm proteins ABCDEFGH are also essential and we show that the overproduction of these proteins can unexpectedly complement for the absence of DsbD in a deletion strain by partially restoring the production of an exogenous c-type cytochrome under aerobic and anaerobic conditions. This suggests that one or more of the Ccm proteins can provide reductant to the periplasm. The Ccm proteins do not, however, restore the normal disulfide mis-isomerisation phenotype of the deletion strain, as shown by assay of the multidisulfide-bonded enzyme urokinase.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|
39
|
Ahuja U, Thöny-Meyer L. CcmD is involved in complex formation between CcmC and the heme chaperone CcmE during cytochrome c maturation. J Biol Chem 2004; 280:236-43. [PMID: 15513913 DOI: 10.1074/jbc.m410912200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CcmD is a small membrane protein involved in heme delivery to the heme chaperone CcmE during cytochrome c maturation. Here we show that it physically interacts with CcmE and CcmC, another essential component of the heme delivery system. We demonstrate the formation of a ternary complex consisting of CcmCDE. A deletion analysis of individual domains revealed that the central hydrophobic domain is essential for its function. Moreover, the C-terminal, cytoplasmic domain seems to require a net positive charge to be functional. Our topology analysis indicates that CcmD is an integral interfacial membrane protein with its N and C termini extruding into the cytoplasmic side of the membrane. Interactions of CcmD with either ferrochelatase, the last heme biosynthetic enzyme, or directly with heme were not detectable. We postulate a function for CcmD in protein-protein interaction or membrane protein assembly required for the heme delivery process.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
40
|
Crow A, Acheson RM, Le Brun NE, Oubrie A. Structural Basis of Redox-coupled Protein Substrate Selection by the Cytochrome c Biosynthesis Protein ResA. J Biol Chem 2004; 279:23654-60. [PMID: 15047692 DOI: 10.1074/jbc.m402823200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational maturation of cytochromes c involves the covalent attachment of heme to the Cys-Xxx-Xxx-Cys-His motif of the apo-cytochrome. For this process, the two cysteines of the motif must be in the reduced state. In bacteria, this is achieved by dedicated, membrane-bound thiol-disulfide oxidoreductases with a high reducing power, which are essential components of cytochrome c maturation systems and are also linked to cellular disulfide-bond formation machineries. Here we report high-resolution structures of oxidized and reduced states of a soluble, functional domain of one such oxidoreductase, ResA, from Bacillus subtilis. The structures elucidate the structural basis of the protein's high reducing power and reveal the largest redox-coupled conformational changes observed to date in any thioredoxin-like protein. These redox-coupled changes alter the protein surface and illustrate how the redox state of ResA predetermines to which substrate it binds. Furthermore, a polar cavity, present only in the reduced state, may confer specificity to recognize apo-cytochrome c. The described features of ResA are likely to be general for bacterial cytochrome c maturation systems.
Collapse
Affiliation(s)
- Allister Crow
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
41
|
Cinege G, Kereszt A, Kertész S, Balogh G, Dusha I. The roles of different regions of the CycH protein in c-type cytochrome biogenesis in Sinorhizobium meliloti. Mol Genet Genomics 2004; 271:171-9. [PMID: 14758542 DOI: 10.1007/s00438-003-0968-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Accepted: 12/02/2003] [Indexed: 11/26/2022]
Abstract
Cytochrome c heme lyases encoded by the Sinorhizobium meliloti cycHJKL operon are responsible for generating the covalent bond between the heme prosthetic group and apocytochromes c. The CycH protein with its presumably membrane-associated N-terminal and periplasmic C-terminal parts is thought to be responsible for binding apocytochrome and presenting it to the heme ligation machinery. We propose that these two modules of CycH play roles in different functions of the protein. The N-terminal 96 amino acids represent an active subdomain of the protein, which is able to complement the protoporphyrin IX (PPIX) accumulation phenotype of the cycH mutant strain AT342, suggesting that it is involved in the final steps of heme C biosynthesis. Furthermore, three tetratricopeptide (TPR) domains have been identified in the C-terminal periplasmic region of the CycH protein. TPR domains are known to mediate protein-protein interactions. Each of these CycH domains is absolutely required for protein function, since plasmid constructs carrying cycH genes with in-frame TPR deletions were not able to complement cycH mutants for their nitrate reductase (Rnr-) and nitrogen-fixing (Fix-) phenotypes. We also found that the 309-amino acid N-terminal portion of the CycH, which includes all the TPR domains, is able to mediate the assembly of the c-type cytochromes required for the Rnr+ phenotype. In contrast, only the full-length protein confers the ability to fix nitrogen.
Collapse
Affiliation(s)
- G Cinege
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, PO Box 521, 6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
42
|
Ahuja U, Thöny-Meyer L. Dynamic features of a heme delivery system for cytochrome C maturation. J Biol Chem 2003; 278:52061-70. [PMID: 14532274 DOI: 10.1074/jbc.m310077200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, heme is delivered to cytochrome c in a process involving eight proteins encoded by the ccmABCDEFGH operon. Heme is transferred to the periplasmic heme chaperone CcmE by CcmC and from there to apocytochrome c. The role of CcmC was investigated by random as well as site-directed mutagenesis. Important amino acids were all located in periplasmic domains of the CcmC protein that has six membrane-spanning helices. Besides the tryptophan-rich motif and two conserved histidines, new residues were identified as functionally important. Mutants G111S and H184Y had a clear defect in CcmC-CcmE interaction, did not transfer heme to CcmE, and lacked c-type cytochromes. Conversely, mutants D47N, R55P, and S176Y were affected neither in interaction with nor in delivery of heme to CcmE but produced less than 10% c-type cytochromes. A strain carrying a CcmCE fusion had a similar phenotype, suggesting that CcmC is important not only for heme transfer to CcmE but also for its delivery to cytochrome c. Co-immunoprecipitation of CcmC with CcmF was not detectable although CcmE co-precipitated individually with CcmC and CcmF. This contradicts the idea of CcmCEF supercomplex formation. Our results favor a model that predicts CcmE to shuttle between CcmC and CcmF for heme delivery.
Collapse
Affiliation(s)
- Umesh Ahuja
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
43
|
Abstract
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.
Collapse
Affiliation(s)
- Michael Bott
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | | |
Collapse
|
44
|
Enggist E, Thöny-Meyer L. The C-terminal flexible domain of the heme chaperone CcmE is important but not essential for its function. J Bacteriol 2003; 185:3821-7. [PMID: 12813076 PMCID: PMC161577 DOI: 10.1128/jb.185.13.3821-3827.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CcmE is a heme chaperone active in the cytochrome c maturation pathway of Escherichia coli. It first binds heme covalently to strictly conserved histidine H130 and subsequently delivers it to apo-cytochrome c. The recently solved structure of soluble CcmE revealed a compact core consisting of a beta-barrel and a flexible C-terminal domain with a short alpha-helical turn. In order to elucidate the function of this poorly conserved domain, CcmE was truncated stepwise from the C terminus. Removal of all 29 amino acids up to crucial histidine 130 did not abolish heme binding completely. For detectable transfer of heme to type c cytochromes, only one additional residue, D131, was required, and for efficient cytochrome c maturation, the seven-residue sequence (131)DENYTPP(137) was required. When soluble forms of CcmE were expressed in the periplasm, the C-terminal domain had to be slightly longer to allow detection of holo-CcmE. Soluble full-length CcmE had low activity in cytochrome c maturation, indicating the importance of the N-terminal membrane anchor for the in vivo function of CcmE.
Collapse
Affiliation(s)
- Elisabeth Enggist
- Institut für Mikrobiologie, Departement Biologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
45
|
Stevens JM, Daltrop O, Higham CW, Ferguson SJ. Interaction of heme with variants of the heme chaperone CcmE carrying active site mutations and a cleavable N-terminal His tag. J Biol Chem 2003; 278:20500-6. [PMID: 12657624 DOI: 10.1074/jbc.m212925200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytochrome c maturation in the periplasms of many bacteria requires the heme chaperone CcmE, which binds heme covalently both in vivo and in vitro via a histidine residue before transferring the heme to apocytochromes c. To investigate the mechanism and specificity of heme attachment to CcmE, we have mutated the conserved histidine 130 of a soluble C-terminally His-tagged version of CcmE (CcmEsol-C-His6) from Escherichia coli to alanine or cysteine. Remarkably, covalent bond formation with heme occurs with the protein carrying the cysteine mutation, and the process occurs both in vivo and in vitro. The yield of holo-H130C CcmEsol-C-His6 produced in vivo is low compared with the wild type. In vitro heme attachment occurs only under reducing conditions. We demonstrate the involvement of one of the heme vinyl groups and a side chain at residue 130 in the bond formation by showing that in vitro attachment does not occur either with the heme analogue mesoheme or when alanine is present at residue 130. These results have implications for the mechanism of heme attachment to the histidine of CcmE. In vitro, CcmEsol lacking a His tag binds 8-anilino-1-naphthalenesulphonate and heme, the latter both noncovalently and via a covalent bond from the histidine side chain, similarly to the tagged proteins, thus countering a recent proposal that the His tag causes the heme binding. However, the His tag does appear to enhance the rate of in vitro covalent heme binding and to affect the heme ligation in the ferric b-type cytochrome form.
Collapse
Affiliation(s)
- Julie M Stevens
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
46
|
Feissner R, Xiang Y, Kranz RG. Chemiluminescent-based methods to detect subpicomole levels of c-type cytochromes. Anal Biochem 2003; 315:90-4. [PMID: 12672416 DOI: 10.1016/s0003-2697(02)00658-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A variety of luminol-based substrates and either an autoradiographic film or a charge-coupled device (CCD) imaging system were used for chemiluminescence detection of c-type cytochromes. The Pierce Femto peroxidase substrate was at least 10 times more sensitive when using film than the highly cited 3,3('),5,5(')-tetramethylbenzidine (benzidine derivative) staining method and 50 times more sensitive when using a CCD imaging system. Film or CCD imaging result in highly sensitive and quantitative signals. The quantitative detection of c-type cytochromes from single colonies or from less than 1ml of a bacterial culture is possible.
Collapse
Affiliation(s)
- Robert Feissner
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
47
|
Dreyfuss BW, Hamel PP, Nakamoto SS, Merchant S. Functional analysis of a divergent system II protein, Ccs1, involved in c-type cytochrome biogenesis. J Biol Chem 2003; 278:2604-13. [PMID: 12427747 DOI: 10.1074/jbc.m208652200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ccs1 gene, encoding a highly divergent novel component of a system II type c-type cytochrome biogenesis pathway, is encoded by the previously defined CCS1 locus in Chlamydomonas reinhardtii. phoA and lacZalpha bacterial topological reporters were used to deduce a topological model of the Synechocystis sp. 6803 Ccs1 homologue, CcsB. CcsB, and therefore by analogy Ccs1, possesses a large soluble lumenal domain at its C terminus that is tethered in the thylakoid membrane by three closely spaced transmembrane domains in the N-terminal portion of the protein. Molecular analysis of ccs1 alleles reveals that the entire C-terminal soluble domain is essential for Ccs1 function and that a stromal loop appears to be important in vivo, at least for maintenance of Ccs1. Site-directed mutational analysis reveals that a single histidine (His(274)) within the last transmembrane domain, preceding the large lumenal domain, is required for c-type cytochrome assembly, whereas an invariant cysteine residue (Cys(199)) is shown to be non-essential. Ccs1 is proposed to interact with other Ccs components based on its reduced accumulation in ccs2, ccs3, ccs4, and ccsA strains.
Collapse
Affiliation(s)
- Beth Welty Dreyfuss
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
48
|
Hamel PP, Dreyfuss BW, Xie Z, Gabilly ST, Merchant S. Essential histidine and tryptophan residues in CcsA, a system II polytopic cytochrome c biogenesis protein. J Biol Chem 2003; 278:2593-603. [PMID: 12427766 DOI: 10.1074/jbc.m208651200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three distinct systems (I, II, and III) for catalysis of heme attachment to c-type apocytochromes are known. The CcsA and Ccs1 proteins are required in system II for the assembly of bacterial and plastid cytochromes c. A tryptophan-rich signature motif (WWD), also occurring in CcmC and CcmF found in system I, and three histidinyl residues, all strictly conserved in CcsA suggest a function in heme handling. Topological analysis of plastid CcsA in bacteria using the PhoA and LacZalpha reporters placed the WWD motif, the conserved residues His(212) and His(347) on the lumen side of the membrane, whereas His(309) was assigned a location on the stromal side. Functional analysis of CcsA through site-directed mutagenesis enabled the designation of the initiation codon of the ccsA gene and established the functional importance of the WWD signature motif and the absolute requirement of all three histidines for the assembly of plastid c-type cytochromes. In a ccsA mutant, a 200-kDa Ccs1-containing complex is absent from solubilized thylakoid membranes, suggesting that CcsA operates together with Ccs1. We propose a model where the WWD motif and histidine residues function in relaying heme from stroma to lumen and we postulate the existence of a cytochrome c assembly machinery containing CcsA, Ccs1 and additional components.
Collapse
Affiliation(s)
- Patrice P Hamel
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
49
|
Enggist E, Schneider MJ, Schulz H, Thöny-Meyer L. Biochemical and mutational characterization of the heme chaperone CcmE reveals a heme binding site. J Bacteriol 2003; 185:175-83. [PMID: 12486054 PMCID: PMC141962 DOI: 10.1128/jb.185.1.175-183.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CcmE is a heme chaperone that binds heme transiently in the periplasm of Escherichia coli and delivers it to newly synthesized and exported c-type cytochromes. The chemical nature of the covalent bond between heme and H130 is not known. We have purified soluble histidine-tagged CcmE and present its spectroscopic characteristics in the visible range. Alanine scanning mutagenesis of conserved amino acids revealed that H130 is the only residue found to be strictly required for heme binding and delivery. Mutation of the hydrophobic amino acids F37, F103, L127, and Y134 to alanine affected CcmE more than mutation of charged and polar residues. Our data are in agreement with the recently solved nuclear magnetic resonance structure of apo-CcmE (PDB code 1LIZ) and suggest that heme is bound to a hydrophobic platform at the surface of the protein and then attached to H130 by a covalent bond. Replacement of H130 with cysteine led to the formation of a covalent bond between heme and C130 at a low level. However, the H130C mutant CcmE was not active in cytochrome c maturation. Isolation and characterization of the heme-binding peptides obtained after a tryptic digest of wild-type and H130C CcmE support the hypothesis that heme is bound covalently at a vinyl group.
Collapse
Affiliation(s)
- Elisabeth Enggist
- Departement Biologie, Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
50
|
O'Brian MR, Thöny-Meyer L. Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 2002; 46:257-318. [PMID: 12073655 DOI: 10.1016/s0065-2911(02)46006-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Haems are involved in many cellular processes in prokaryotes and eukaryotes. The biosynthetic pathway leading to haem formation is, with few exceptions, well-conserved, and is controlled in accordance with cellular function. Here, we review the biosynthesis of haem and its regulation in prokaryotes. In addition, we focus on a modification of haem for cytochrome c biogenesis, a complex process that entails both transport between cellular compartments and a specific thioether linkage between the haem moiety and the apoprotein. Finally, a whole genome analysis from 63 prokaryotes indicates intriguing exceptions to the universality of the haem biosynthetic pathway and helps define new frontiers for future study.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|