1
|
Sundararajan S, Karunakaran K, Muniyan R. Structure based virtual screening and discovery of novel inhibitors against FabD protein of Mycobacterium tuberculosis. J Biomol Struct Dyn 2024; 42:6280-6291. [PMID: 37424186 DOI: 10.1080/07391102.2023.2233622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The highly flexible nature of Mycobacterium tuberculosis (Mtb) can be owed to its tough cell wall and multiple gene interaction system which makes it resistant to frontline TB drugs. Mycolic acids are the key components of the unique cell wall that protects the organism from external threats. Proteins of the fatty acid synthesis pathway are evolutionarily conserved that enables cellular survival in harsh conditions and hence have become attractive targets. Malonyl Co-A Acyl carrier protein transacylase (FabD; MCAT, EC2.3.1.39) is an enzyme in the branching point of the unique and vast fatty acid synthase (FAS-I and FAS-II) systems of Mtb. In the present investigation, in-silico structure based drug discovery with the compounds from an open source library (NPASS) is used for target fishing and employed to understand the interaction with the target protein FabD. The potential hit compounds were filtered using exhaustive docking, considering the binding energy, key residue interaction and drug likeness property. Three compounds from the library namely NPC475074 (Hit 1), NPC260631 (Hit 2) and NPC313985 (Hit 3) with binding energies -14.45, -13.29 and -12.37 respectively were taken for molecular dynamic simulation. The results suggested that Hit 3 (NPC313985) has stable interaction with FabD protein. This article further elaborates the interaction of the identified novel compounds Hit 1 and Hit 3 along with the other known compound (Hit 2) against Mtb FabD protein. The hit compounds identified from this study could be further evaluated against mutated FabD protein and considered for in-vitro evaluation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadhana Sundararajan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Keerthana Karunakaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Chikhale RV, Abdelghani HTM, Deka H, Pawar AD, Patil PC, Bhowmick S. Machine learning assisted methods for the identification of low toxicity inhibitors of Enoyl-Acyl Carrier Protein Reductase (InhA). Comput Biol Chem 2024; 110:108034. [PMID: 38430612 DOI: 10.1016/j.compbiolchem.2024.108034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Tuberculosis (TB) is one of the life-threatening infectious diseases with prehistoric origins and occurs in almost all habitable parts of the world. TB mainly affects the lungs, and its etiological agent is Mycobacterium tuberculosis (Mtb). In 2022, more than 10 million people were infected worldwide, and 1.3 million were children. The current study considered the in-silico and machine learning (ML) approaches to explore the potential anti-TB molecules from the SelleckChem database against Enoyl-Acyl Carrier Protein Reductase (InhA). Initially, the entire database of ∼ 119000 molecules was sorted out through drug-likeness. Further, the molecular docking study was conducted to reduce the chemical space. The standard TB drug molecule's binding energy was considered a threshold, and molecules found with lower affinity were removed for further analyses. Finally, the molecules were checked for the pharmacokinetic and toxicity studies, and compounds found to have acceptable pharmacokinetic parameters and were non-toxic were considered as final promising molecules for InhA. The above approach further evaluated five molecules for ML-based toxicity and synthetic accessibility assessment. Not a single molecule was found toxic and each of them was revealed as easy to synthesise. The complex between InhA and proposed and standard molecules was considered for molecular dynamics simulation. Several statistical parameters showed the stability between InhA and the proposed molecule. The high binding affinity was also found for each of the molecules towards InhA using the MM-GBSA approach. Hence, the above approaches and findings exposed the potentiality of the proposed molecules against InhA.
Collapse
Affiliation(s)
- Rupesh V Chikhale
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, London, UK
| | - Heba Taha M Abdelghani
- Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hemchandra Deka
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru 560041, India
| | - Atul Darasing Pawar
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru 560041, India
| | - Pritee Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to be University), Pune-Satara Road, Pune, India
| | - Shovonlal Bhowmick
- SilicoScientia Private Limited, Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block, Bengaluru 560041, India.
| |
Collapse
|
3
|
Jeong J, Ahn S, Truong TC, Kim JH, Weerawongwiwat V, Lee JS, Yoon JH, Sukhoom A, Kim W. Description of Mycolicibacterium arenosum sp. nov. Isolated from Coastal Sand on the Yellow Sea Coast. Curr Microbiol 2024; 81:73. [PMID: 38253726 DOI: 10.1007/s00284-023-03587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
A Gram-staining-positive, aerobic, non-spore-forming bacterium was isolated from coastal sand samples from Incheon in the Republic of Korea and designated as strain CAU 1645T. The optimum conditions for growth were observed at 30 °C in growth media containing 1% (w/v) NaCl at pH 9.0. The predominant respiratory quinone was MK-9 and the major fatty acids were C16:0, C17:1 w7c, and summed feature 7. Similarly, the 16S rRNA gene sequence exhibited the highest similarity with Mycolicibacterium bacteremicum DSM 45578T and Mycolicibacterium neoaurum JCM 6365T, both of which exhibited similarity rates of 97.2%. The genomic DNA G+C content was 68.2%. The whole genome of strain CAU 1645T was obtained and annotated with annotation using RAST server. The pan-genome analysis was determined using Prokka, Roary, and Phandango. In the pan-genome analysis, the strain CAU 1645T shared 40 core genes with closely related Mycolicibacterium species, including the AcpM gene, the meromycolate extension acyl carrier protein involved in forming impermeable cell walls in mycobacteria. Therefore, our findings demonstrated that the isolate represents a novel species of the genus Mycolicibacterium, for which we propose the name Mycolicibacterium arenosum sp. nov. The type strain is CAU 1645T (= KCTC 49724T = MCCC 1K07087T).
Collapse
Affiliation(s)
- Jiseon Jeong
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Soyeon Ahn
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Thoi Cong Truong
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Veeraya Weerawongwiwat
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jung-Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ampaitip Sukhoom
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkla, 90110, Thailand
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Alcaraz M, Edwards TE, Kremer L. New therapeutic strategies for Mycobacterium abscessus pulmonary diseases - untapping the mycolic acid pathway. Expert Rev Anti Infect Ther 2023; 21:813-829. [PMID: 37314394 PMCID: PMC10529309 DOI: 10.1080/14787210.2023.2224563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Treatment options against Mycobacterium abscessus infections are very limited. New compounds are needed to cure M. abscessus pulmonary diseases. While the mycolic acid biosynthetic pathway has been largely exploited for the treatment of tuberculosis, this metabolic process has been overlooked in M. abscessus, although it offers many potential drug targets for the treatment of this opportunistic pathogen. AREAS COVERED Herein, the authors review the role of the MmpL3 membrane protein and the enoyl-ACP reductase InhA involved in the transport and synthesis of mycolic acids, respectively. They discuss their importance as two major vulnerable drug targets in M. abscessus and report the activity of MmpL3 and InhA inhibitors. In particular, they focus on NITD-916, a direct InhA inhibitor against M. abscessus, particularly warranted in the context of multidrug resistance. EXPERT OPINION There is an increasing body of evidence validating the mycolic acid pathway as an attractive drug target to be further exploited for M. abscessus lung disease treatments. The NITD-916 studies provide a proof-of-concept that direct inhibitors of InhA are efficient in vitro, in macrophages and in zebrafish. Future work is now required to improve the activity and pharmacological properties of these inhibitors and their evaluation in pre-clinical models.
Collapse
Affiliation(s)
- Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
| | - Thomas E. Edwards
- UCB BioSciences, Bainbridge Island, WA 98109 USA
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, WA 98109 USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293, Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
5
|
Soni V, Rosenn EH, Venkataraman R. Insights into the central role of N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU) in peptidoglycan metabolism and its potential as a therapeutic target. Biochem J 2023; 480:1147-1164. [PMID: 37498748 DOI: 10.1042/bcj20230173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Several decades after the discovery of the first antibiotic (penicillin) microbes have evolved novel mechanisms of resistance; endangering not only our abilities to combat future bacterial pandemics but many other clinical challenges such as acquired infections during surgeries. Antimicrobial resistance (AMR) is attributed to the mismanagement and overuse of these medications and is complicated by a slower rate of the discovery of novel drugs and targets. Bacterial peptidoglycan (PG), a three-dimensional mesh of glycan units, is the foundation of the cell wall that protects bacteria against environmental insults. A significant percentage of drugs target PG, however, these have been rendered ineffective due to growing drug resistance. Identifying novel druggable targets is, therefore, imperative. Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) is one of the key building blocks in PG production, biosynthesized by the bifunctional enzyme N-acetyl-glucosamine-1-phosphate uridyltransferase (GlmU). UDP-GlcNAc metabolism has been studied in many organisms, but it holds some distinctive features in bacteria, especially regarding the bacterial GlmU enzyme. In this review, we provide an overview of different steps in PG biogenesis, discuss the biochemistry of GlmU, and summarize the characteristic structural elements of bacterial GlmU vital to its catalytic function. Finally, we will discuss various studies on the development of GlmU inhibitors and their significance in aiding future drug discoveries.
Collapse
Affiliation(s)
- Vijay Soni
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, U.S.A
| | - Eric H Rosenn
- Tel Aviv University School of Medicine, Tel Aviv 6997801, Israel
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi 110067, India
| |
Collapse
|
6
|
Williams JT, Abramovitch RB. Molecular Mechanisms of MmpL3 Function and Inhibition. Microb Drug Resist 2023; 29:190-212. [PMID: 36809064 PMCID: PMC10171966 DOI: 10.1089/mdr.2021.0424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Mycobacteria species include a large number of pathogenic organisms such as Mycobacterium tuberculosis, Mycobacterium leprae, and various non-tuberculous mycobacteria. Mycobacterial membrane protein large 3 (MmpL3) is an essential mycolic acid and lipid transporter required for growth and cell viability. In the last decade, numerous studies have characterized MmpL3 with respect to protein function, localization, regulation, and substrate/inhibitor interactions. This review summarizes new findings in the field and seeks to assess future areas of research in our rapidly expanding understanding of MmpL3 as a drug target. An atlas of known MmpL3 mutations that provide resistance to inhibitors is presented, which maps amino acid substitutions to specific structural domains of MmpL3. In addition, chemical features of distinct classes of Mmpl3 inhibitors are compared to provide insights into shared and unique features of varied MmpL3 inhibitors.
Collapse
Affiliation(s)
- John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
de Bernard M, Kaparakis-Liaskos M, D’Elios MM. Editorial: Modulation of the immune system by bacteria: From evasion to therapy. Front Immunol 2023; 13:1112427. [PMID: 36685515 PMCID: PMC9846846 DOI: 10.3389/fimmu.2022.1112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Marina de Bernard
- Department of Biology, University of Padova, Padova, Italy,*Correspondence: Marina de Bernard,
| | - Maria Kaparakis-Liaskos
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Mario Milco D’Elios
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Xu X, Dong B, Peng L, Gao C, He Z, Wang C, Zeng J. Anti-tuberculosis drug development via targeting the cell envelope of Mycobacterium tuberculosis. Front Microbiol 2022; 13:1056608. [PMID: 36620019 PMCID: PMC9810820 DOI: 10.3389/fmicb.2022.1056608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis possesses a dynamic cell envelope, which consists of a peptidoglycan layer, a mycolic acid layer, and an arabinogalactan polysaccharide. This envelope possesses a highly complex and unique structure representing a barrier that protects and assists the growth of M. tuberculosis and allows its adaptation to the host. It regulates the immune response of the host cells, causing their damage. Therefore, the cell envelope of M. tuberculosis is an attractive target for vaccine and drug development. The emergence of multidrug-resistant as well as extensively drug resistant tuberculosis and co-infection with HIV prevented an effective control of this disease. Thus, the discovery and development of new drugs is a major keystone for TB treatment and control. This review mainly summarizes the development of drug enzymes involved in the biosynthesis of the cell wall in M. tuberculosis, and other potential drug targets in this pathway, to provide more effective strategies for the development of new drugs.
Collapse
Affiliation(s)
- Xinyue Xu
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Baoyu Dong
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Peng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chao Gao
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiqun He
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC CC Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Paik S, Kim KT, Kim IS, Kim YJ, Kim HJ, Choi S, Kim HJ, Jo EK. Mycobacterial acyl carrier protein suppresses TFEB activation and upregulates miR-155 to inhibit host defense. Front Immunol 2022; 13:946929. [PMID: 36248815 PMCID: PMC9559204 DOI: 10.3389/fimmu.2022.946929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterial acyl carrier protein (AcpM; Rv2244), a key protein involved in Mycobacterium tuberculosis (Mtb) mycolic acid production, has been shown to suppress host cell death during mycobacterial infection. This study reports that mycobacterial AcpM works as an effector to subvert host defense and promote bacterial growth by increasing microRNA (miRNA)-155-5p expression. In murine bone marrow-derived macrophages (BMDMs), AcpM protein prevented transcription factor EB (TFEB) from translocating to the nucleus in BMDMs, which likely inhibited transcriptional activation of several autophagy and lysosomal genes. Although AcpM did not suppress autophagic flux in BMDMs, AcpM reduced Mtb and LAMP1 co-localization indicating that AcpM inhibits phagolysosomal fusion during Mtb infection. Mechanistically, AcpM boosted the Akt-mTOR pathway in BMDMs by upregulating miRNA-155-5p, a SHIP1-targeting miRNA. When miRNA-155-5p expression was inhibited in BMDMs, AcpM-induced increased intracellular survival of Mtb was suppressed. In addition, AcpM overexpression significantly reduced mycobacterial clearance in C3HeB/FeJ mice infected with recombinant M. smegmatis strains. Collectively, our findings point to AcpM as a novel mycobacterial effector to regulate antimicrobial host defense and a potential new therapeutic target for Mtb infection.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| | - Kyeong Tae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - In Soo Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seunga Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Seungwha Paik, ; Eun-Kyeong Jo,
| |
Collapse
|
10
|
Li M, Huang Q, Zhang W, Cao Y, Wang Z, Zhao Z, Zhang X, Zhang J. A Novel Acyl-AcpM-Binding Protein Confers Intrinsic Sensitivity to Fatty Acid Synthase Type II Inhibitors in Mycobacterium smegmatis. Front Microbiol 2022; 13:846722. [PMID: 35444621 PMCID: PMC9014085 DOI: 10.3389/fmicb.2022.846722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
The fatty acid synthase type II (FAS-II) multienzyme system is the main target of drugs to inhibit mycolic acid synthesis in mycobacterium. Meromycolate extension acyl carrier protein (AcpM) serves as the carrier of fatty acyl chain shuttling among the individual FAS-II components during the progression of fatty acid elongation. In this paper, MSMEG_5634 in Mycobacterium smegmatis was determined to be a helix-grip structure protein with a deep hydrophobic pocket, preferring to form a complex with acyl-AcpM containing a fatty acyl chain at the C36-52 length, which is the medium product of FAS-II. MSMEG_5634 interacted with FAS-II components and presented relative accumulation at the cellular pole. By forming the MSMEG_5634/acyl-AcpM complex, which is free from FAS-II, MSMEG_5634 could transport acyl-AcpM away from FAS-II. Deletion of the MSMEG_5634 gene in M. smegmatis resulted in a mutant with decreased sensitivity to isoniazid and triclosan, two inhibitors of the FAS-II system. The isoniazid and triclosan sensitivity of this mutant could be restored by the ectopic expression of MSMEG_5634 or Rv0910, the MSMEG_5634 homologous protein in Mycobacterium tuberculosis H37Rv. These results suggest that MSMEG_5634 and its homologous proteins, forming a novel acyl-AcpM-binding protein family in mycobacterium, confer intrinsic sensitivity to FAS-II inhibitors.
Collapse
Affiliation(s)
- Mengmiao Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Qian Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Weidi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhenwen Zhao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaotian Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Junjie Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
11
|
Pandey S, Singh A, Yang G, d’Andrea FB, Jiang X, Hartman TE, Mosior JW, Bourland R, Gold B, Roberts J, Geiger A, Tang S, Rhee K, Ouerfelli O, Sacchettini JC, Nathan CF, Burns-Huang K. Characterization of Phosphopantetheinyl Hydrolase from Mycobacterium tuberculosis. Microbiol Spectr 2021; 9:e0092821. [PMID: 34550010 PMCID: PMC8557913 DOI: 10.1128/spectrum.00928-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Phosphopantetheinyl hydrolase, PptH (Rv2795c), is a recently discovered enzyme from Mycobacterium tuberculosis that removes 4'-phosphopantetheine (Ppt) from holo-carrier proteins (CPs) and thereby opposes the action of phosphopantetheinyl transferases (PPTases). PptH is the first structurally characterized enzyme of the phosphopantetheinyl hydrolase family. However, conditions for optimal activity of PptH have not been defined, and only one substrate has been identified. Here, we provide biochemical characterization of PptH and demonstrate that the enzyme hydrolyzes Ppt in vitro from more than one M. tuberculosis holo-CP as well as holo-CPs from other organisms. PptH provided the only detectable activity in mycobacterial lysates that dephosphopantetheinylated acyl carrier protein M (AcpM), suggesting that PptH is the main Ppt hydrolase in M. tuberculosis. We could not detect a role for PptH in coenzyme A (CoA) salvage, and PptH was not required for virulence of M. tuberculosis during infection of mice. It remains to be determined why mycobacteria conserve a broadly acting phosphohydrolase that removes the Ppt prosthetic group from essential CPs. We speculate that the enzyme is critical for aspects of the life cycle of M. tuberculosis that are not routinely modeled. IMPORTANCE Tuberculosis (TB), caused by Mycobacterium tuberculosis, was the leading cause of death from an infectious disease before COVID, yet the in vivo essentiality and function of many of the protein-encoding genes expressed by M. tuberculosis are not known. We biochemically characterize M. tuberculosis's phosphopantetheinyl hydrolase, PptH, a protein unique to mycobacteria that removes an essential posttranslational modification on proteins involved in synthesis of lipids important for the bacterium's cell wall and virulence. We demonstrate that the enzyme has broad substrate specificity, but it does not appear to have a role in coenzyme A (CoA) salvage or virulence in a mouse model of TB.
Collapse
Affiliation(s)
- Shilpika Pandey
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Amrita Singh
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Guangli Yang
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Felipe B. d’Andrea
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Travis E. Hartman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - John W. Mosior
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ronnie Bourland
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Annie Geiger
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Su Tang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Kyu Rhee
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Carl F. Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| | - Kristin Burns-Huang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
12
|
Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, Yang Q, Cheong LZ, Bi Y, Fu Y. Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12385-12401. [PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengquan Zhao
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yonghong Bi
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
13
|
Muzondiwa D, Hlanze H, Reva ON. The Epistatic Landscape of Antibiotic Resistance of Different Clades of Mycobacterium tuberculosis. Antibiotics (Basel) 2021; 10:857. [PMID: 34356778 PMCID: PMC8300818 DOI: 10.3390/antibiotics10070857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Drug resistance (DR) remains a global challenge in tuberculosis (TB) control. In order to develop molecular-based diagnostic methods to replace the traditional culture-based diagnostics, there is a need for a thorough understanding of the processes that govern TB drug resistance. The use of whole-genome sequencing coupled with statistical and computational methods has shown great potential in unraveling the complexity of the evolution of DR-TB. In this study, we took an innovative approach that sought to determine nonrandom associations between polymorphic sites in Mycobacterium tuberculosis (Mtb) genomes. Attributable risk statistics were applied to identify the epistatic determinants of DR in different clades of Mtb and the possible evolutionary pathways of DR development. It was found that different lineages of Mtb exploited different evolutionary trajectories towards multidrug resistance and compensatory evolution to reduce the DR-associated fitness cost. Epistasis of DR acquisition is a new area of research that will aid in the better understanding of evolutionary biological processes and allow predicting upcoming multidrug-resistant pathogens before a new outbreak strikes humanity.
Collapse
Affiliation(s)
| | | | - Oleg N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa; (D.M.); (H.H.)
| |
Collapse
|
14
|
Florou Z, Mavroidi A, Vatidis G, Daniil Z, Gourgoulianis K, Petinaki E. Molecular Basis of Resistance to First-Line Drugs of Mycobacterium tuberculosis/canettii Strains in Greece. Microb Drug Resist 2021; 27:1389-1396. [PMID: 33877884 DOI: 10.1089/mdr.2020.0396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the rate and the mutations of genes involved to the first-line antituberculous drugs' resistance of M. tuberculosis/canettii isolated in Central Greece from 2010 to 2019. During the study period, the rate of resistance to isoniazid, rifampicin, ethambutol, and pyrazinamide was 5.4%, 0.4%, 1.1%, and 1.1%, respectively. All phenotypically resistant isolates (14 to isoniazid, 3 to ethambutol, 3 to pyrazinamide, and 1 to rifampicin) and 17 susceptible isolates (control group) were tested for the presence of mutations/alterations/polymorphisms by PCR followed by sequencing analysis. The molecular typing of isolates was based on multispacer sequence typing. Despite the phenotypic resistance, mutations were detected in 13 of 21 isolates (11 isoniazid resistant, 1 rifampicin, and 1 pyrazinamide resistant). Four isoniazid-resistant strains carried the most common mutations S315T and C-15T, whereas the remaining seven isolates carried either less known (E399, A162, W477STOP, S94A, G-48A, C-54T, C-17T, L203, A196, S124, and K367) or novel (D74N, G691S, Ains-85, and D171G); none of the susceptible strains was found to be positive for any novel mutation. The two single rifampicin- and pyrazinamide-resistant strains carried the known mutations S450L (also referred as S531L) and L182W, respectively. The presence of uncommon or novel mutations conferring resistance to isoniazid (INH) creates a diagnostic problem in the routine microbiological laboratory, since commercial methods are focused on the detection of the most common mechanisms of resistance (S315T, C-15T, A-16G, T-8C, and T-8A), therefore, fail to detect such strains. The regional differences in the frequencies of mutations associated with resistance to the first-line drugs provide hints for the development of better molecular-based diagnostic tests.
Collapse
Affiliation(s)
- Zoi Florou
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | - Aggeliki Mavroidi
- Department of Microbiology, Konstantopouleio-Patission, General Hospital of N. Ionias, Athens, Greece
| | - George Vatidis
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| | - Zoi Daniil
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | - Konstantinos Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, Larissa, Greece
| | - Efi Petinaki
- Department of Microbiology, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
15
|
Palombo V, Alharthi A, Batistel F, Parys C, Guyader J, Trevisi E, D'Andrea M, Loor JJ. Unique adaptations in neonatal hepatic transcriptome, nutrient signaling, and one-carbon metabolism in response to feeding ethyl cellulose rumen-protected methionine during late-gestation in Holstein cows. BMC Genomics 2021; 22:280. [PMID: 33865335 PMCID: PMC8053294 DOI: 10.1186/s12864-021-07538-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methionine (Met) supply during late-pregnancy enhances fetal development in utero and leads to greater rates of growth during the neonatal period. Due to its central role in coordinating nutrient and one-carbon metabolism along with immune responses of the newborn, the liver could be a key target of the programming effects induced by dietary methyl donors such as Met. To address this hypothesis, liver biopsies from 4-day old calves (n = 6/group) born to Holstein cows fed a control or the control plus ethyl-cellulose rumen-protected Met for the last 28 days prepartum were used for DNA methylation, transcriptome, metabolome, proteome, and one-carbon metabolism enzyme activities. RESULTS Although greater withers and hip height at birth in Met calves indicated better development in utero, there were no differences in plasma systemic physiological indicators. RNA-seq along with bioinformatics and transcription factor regulator analyses revealed broad alterations in 'Glucose metabolism', 'Lipid metabolism, 'Glutathione', and 'Immune System' metabolism due to enhanced maternal Met supply. Greater insulin sensitivity assessed via proteomics, and efficiency of transsulfuration pathway activity suggested beneficial effects on nutrient metabolism and metabolic-related stress. Maternal Met supply contributed to greater phosphatidylcholine synthesis in calf liver, with a role in very low density lipoprotein secretion as a mechanism to balance metabolic fates of fatty acids arising from the diet or adipose-depot lipolysis. Despite a lack of effect on hepatic amino acid (AA) transport, a reduction in metabolism of essential AA within the liver indicated an AA 'sparing effect' induced by maternal Met. CONCLUSIONS Despite greater global DNA methylation, maternal Met supply resulted in distinct alterations of hepatic transcriptome, proteome, and metabolome profiles after birth. Data underscored an effect on maintenance of calf hepatic Met homeostasis, glutathione, phosphatidylcholine and taurine synthesis along with greater efficiency of nutrient metabolism and immune responses. Transcription regulators such as FOXO1, PPARG, E2F1, and CREB1 appeared central in the coordination of effects induced by maternal Met. Overall, maternal Met supply induced better immunometabolic status of the newborn liver, conferring the calf a physiologic advantage during a period of metabolic stress and suboptimal immunocompetence.
Collapse
Affiliation(s)
- Valentino Palombo
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Abdulrahman Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fernanda Batistel
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Claudia Parys
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Jessie Guyader
- Evonik Operations GmbH, Hanau-Wolfgang, 63457, Essen, Germany
| | - Erminio Trevisi
- Department of Animal Sciences, Food and Nutrition (DIANA), Università Cattolica del Sacro Cuore, 29122, Piacenza, Italy
| | - Mariasilvia D'Andrea
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, via De Sanctis snc, 86100, Campobasso, Italy
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Lü R, Zhang W, Yu L. Recent Advances in Antitubercular Compounds Targeting Mycolic Acid Biosynthesis and Transport. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
The thick waxy coat of mycobacteria, a protective layer against antibiotics and the host's immune system. Biochem J 2020; 477:1983-2006. [PMID: 32470138 PMCID: PMC7261415 DOI: 10.1042/bcj20200194] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.
Collapse
|
18
|
Batt SM, Burke CE, Moorey AR, Besra GS. Antibiotics and resistance: the two-sided coin of the mycobacterial cell wall. Cell Surf 2020; 6:100044. [PMID: 32995684 PMCID: PMC7502851 DOI: 10.1016/j.tcsw.2020.100044] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for tuberculosis, is the global leading cause of mortality from an infectious agent. Part of this success relies on the unique cell wall, which consists of a thick waxy coat with tightly packed layers of complexed sugars, lipids and peptides. This coat provides a protective hydrophobic barrier to antibiotics and the host's defences, while enabling the bacterium to spread efficiently through sputum to infect and survive within the macrophages of new hosts. However, part of this success comes at a cost, with many of the current first- and second-line drugs targeting the enzymes involved in cell wall biosynthesis. The flip side of this coin is that resistance to these drugs develops either in the target enzymes or the activation pathways of the drugs, paving the way for new resistant clinical strains. This review provides a synopsis of the structure and synthesis of the cell wall and the major current drugs and targets, along with any mechanisms of resistance.
Collapse
Affiliation(s)
- Sarah M. Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher E. Burke
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alice R. Moorey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
19
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Identification of Mycobacterium tuberculosis Peptides in Serum Extracellular Vesicles from Persons with Latent Tuberculosis Infection. J Clin Microbiol 2020; 58:JCM.00393-20. [PMID: 32245831 PMCID: PMC7269374 DOI: 10.1128/jcm.00393-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022] Open
Abstract
Identification of biomarkers for latent Mycobacterium tuberculosis infection and risk of progression to tuberculosis (TB) disease are needed to better identify individuals to target for preventive therapy, predict disease risk, and potentially predict preventive therapy efficacy. Our group developed multiple reaction monitoring mass spectrometry (MRM-MS) assays that detected M. tuberculosis peptides in serum extracellular vesicles from TB patients. We subsequently optimized this MRM-MS assay to selectively identify 40 M. tuberculosis peptides from 19 proteins that most commonly copurify with serum vesicles of patients with TB. Here, we used this technology to evaluate if M. tuberculosis peptides can also be detected in individuals with latent TB infection (LTBI). Serum extracellular vesicles from 74 individuals presumed to have latent M. tuberculosis infection (LTBI) based on close contact with a household member with TB or a recent tuberculin skin test (TST) conversion were included in this study. Twenty-nine samples from individuals with no evidence of TB infection by TST and no known exposure to TB were used as controls to establish a threshold to account for nonspecific/background signal. We identified at least one of the 40 M. tuberculosis peptides in 70 (95%) individuals with LTBI. A single peptide from the glutamine synthetase (GlnA1) enzyme was identified in 61/74 (82%) individuals with LTBI, suggesting peptides from M. tuberculosis proteins involved in nitrogen metabolism might be candidates for pathogen-specific biomarkers for detection of LTBI. The detection of M. tuberculosis peptides in serum extracellular vesicles from persons with LTBI represents a potential advance in the diagnosis of LTBI.
Collapse
|
21
|
Tan YZ, Zhang L, Rodrigues J, Zheng RB, Giacometti SI, Rosário AL, Kloss B, Dandey VP, Wei H, Brunton R, Raczkowski AM, Athayde D, Catalão MJ, Pimentel M, Clarke OB, Lowary TL, Archer M, Niederweis M, Potter CS, Carragher B, Mancia F. Cryo-EM Structures and Regulation of Arabinofuranosyltransferase AftD from Mycobacteria. Mol Cell 2020; 78:683-699.e11. [PMID: 32386575 PMCID: PMC7263364 DOI: 10.1016/j.molcel.2020.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/21/2020] [Accepted: 04/13/2020] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - José Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | | | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Ana L Rosário
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA
| | - Venkata P Dandey
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hui Wei
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Richard Brunton
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ashleigh M Raczkowski
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Diogo Athayde
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA; Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128 Nangang, Taipei 11529, Taiwan
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Clinton S Potter
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Zhang L, Zhao Y, Gao Y, Wu L, Gao R, Zhang Q, Wang Y, Wu C, Wu F, Gurcha SS, Veerapen N, Batt SM, Zhao W, Qin L, Yang X, Wang M, Zhu Y, Zhang B, Bi L, Zhang X, Yang H, Guddat LW, Xu W, Wang Q, Li J, Besra GS, Rao Z. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science 2020; 368:1211-1219. [PMID: 32327601 DOI: 10.1126/science.aba9102] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 11/02/2022]
Abstract
The arabinosyltransferases EmbA, EmbB, and EmbC are involved in Mycobacterium tuberculosis cell wall synthesis and are recognized as targets for the anti-tuberculosis drug ethambutol. In this study, we determined cryo-electron microscopy and x-ray crystal structures of mycobacterial EmbA-EmbB and EmbC-EmbC complexes in the presence of their glycosyl donor and acceptor substrates and with ethambutol. These structures show how the donor and acceptor substrates bind in the active site and how ethambutol inhibits arabinosyltransferases by binding to the same site as both substrates in EmbB and EmbC. Most drug-resistant mutations are located near the ethambutol binding site. Collectively, our work provides a structural basis for understanding the biochemical function and inhibition of arabinosyltransferases and the development of new anti-tuberculosis agents.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Gao
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | - Lijie Wu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruogu Gao
- University of Chinese Academy of Sciences, Beijing 100101, China.,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Qi Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yinan Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chengyao Wu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Sudagar S Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Natacha Veerapen
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah M Batt
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China
| | - Ling Qin
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Manfu Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lijun Bi
- National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Xian'en Zhang
- National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wenqing Xu
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies, iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, College of Pharmacy, Nankai University, Tianjin 300353, China.,Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China.,National Laboratory of Biomacromolecules and Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
| |
Collapse
|
23
|
Meneguello JE, Arita GS, Silva JVDO, Ghiraldi-Lopes LD, Caleffi-Ferracioli KR, Siqueira VLD, Scodro RBDL, Pilau EJ, Campanerut-Sá PAZ, Cardoso RF. Insight about cell wall remodulation triggered by rifampicin in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2020; 120:101903. [PMID: 32090864 DOI: 10.1016/j.tube.2020.101903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 11/27/2022]
Abstract
Rifampicin plays an important role during the treatment of tuberculosis, which makes it to be recommended throughout the regimen. The molecular target for rifampicin activity and resistance is the bacterial RNA polymerase coded by rpoB. However, it has been observed that Mycobacterium tuberculosis could use different metabolic pathways contributing to drug activity/resistance. In this sense, Proteomics analysis has been a key aspect towards the understanding of the dynamic genome expression triggered by drugs and other M. tuberculosis hostile stimuli. Herein, we aimed to report the changes in the M. tuberculosis protein profile triggered by rifampicin. The M. tuberculosis H37Rv strain was submitted to 12, 24 and 48 h of rifampicin challenge, at the minimal inhibitory concentration (0.03 μg mL-1), and proteins were extracted. The protein identification was carried out by liquid chromatography coupled to mass spectrometry (LC-MS). Four proteins, Ino1 (Rv0046c), FabD (Rv2243), EsxK (Rv1197) and PPE60 (Rv3478) were statistically underexpressed over 48 h of rifampicin exposure, indicating that in addition to the known activity of rifampin in transcriptional machinery in M. tuberculosis, processes related to disturbance in cell wall synthesis and lipid metabolism in the bacillus are also triggered by rifampicin contributing to bacillus death.
Collapse
Affiliation(s)
- Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Gláucia Sayuri Arita
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - João Vitor de Oliveira Silva
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Luciana Dias Ghiraldi-Lopes
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil
| | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Eduardo Jorge Pilau
- Postgraduate Program in Chemistry, Department of Chemistry, State University of Maringá, Maringá, PR, Brazil
| | - Paula Aline Zannetti Campanerut-Sá
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil.
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, Brazil; Postgraduate Program in Health Sciences, Center of Health Sciences, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
24
|
Zhao J, Wei W, Yan H, Zhou Y, Li Z, Chen Y, Zhang C, Zeng J, Chen T, Zhou L. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int J Med Microbiol 2019; 309:151323. [PMID: 31279617 DOI: 10.1016/j.ijmm.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/26/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022] Open
Abstract
Capreomycin (CAP), a cyclic peptide antibiotic, is considered to be an ideal second-line drug for tuberculosis (TB). However, in the past few years, the emergence of more CAP-resistant (CAPr) TB patients has limited its use. Although it has been reported that CAP resistance to Mycobacterium tuberculosis (Mtb) is associated with rrs or tlyA mutation, the exact mechanism of CAPr Mtb strains, especially the mechanism associated with tlyA deficient or mutation, is not fully understood. Herein, we utilized a multi-omics (genome, proteome, and metabolome) approach to assess CAP resistance on tlyA deficient CAPr Mtb strains (CAPr1) and tlyA point mutation CAPr Mtb strains (CAPr2) that we established for the first time in vitro to investigate the CAP-resistant mechanism. Our results showed that the CAPr1 strains (> 40 μg/ml) was more resistant to CAP than the CAPr2 strains (G695A, 10 μg/ml). Furthermore, multi-omics analysis indicated that the CAPr1 strains exhibited greater drug tolerance than the CAPr2 strains may be associated with the weakening of S-adenosyl-L-methionine-dependent methyltransferase (AdoMet-MT) activity and abnormal membrane lipid metabolism such as suppression of fatty acid metabolism, promotion of glycolipid phospholipid and glycerolipid metabolism. As a result, these studies reveal a new mechanism for CAP resistance to tlyA deficient or mutation Mtb strains, and may be helpful in developing new therapeutic approaches to prevent Mtb resistance to CAP.
Collapse
Affiliation(s)
- Jiao Zhao
- Jinan University, Guangzhou 510632, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Huimin Yan
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Zhenyan Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Jincheng Zeng
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; South China Institute of Biomedicine, Guangzhou 510530, China.
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Alsayed SSR, Beh CC, Foster NR, Payne AD, Yu Y, Gunosewoyo H. Kinase Targets for Mycolic Acid Biosynthesis in Mycobacterium tuberculosis. Curr Mol Pharmacol 2019; 12:27-49. [PMID: 30360731 DOI: 10.2174/1874467211666181025141114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Mycolic acids (MAs) are the characteristic, integral building blocks for the mycomembrane belonging to the insidious bacterial pathogen Mycobacterium tuberculosis (M.tb). These C60-C90 long α-alkyl-β-hydroxylated fatty acids provide protection to the tubercle bacilli against the outside threats, thus allowing its survival, virulence and resistance to the current antibacterial agents. In the post-genomic era, progress has been made towards understanding the crucial enzymatic machineries involved in the biosynthesis of MAs in M.tb. However, gaps still remain in the exact role of the phosphorylation and dephosphorylation of regulatory mechanisms within these systems. To date, a total of 11 serine-threonine protein kinases (STPKs) are found in M.tb. Most enzymes implicated in the MAs synthesis were found to be phosphorylated in vitro and/or in vivo. For instance, phosphorylation of KasA, KasB, mtFabH, InhA, MabA, and FadD32 downregulated their enzymatic activity, while phosphorylation of VirS increased its enzymatic activity. These observations suggest that the kinases and phosphatases system could play a role in M.tb adaptive responses and survival mechanisms in the human host. As the mycobacterial STPKs do not share a high sequence homology to the human's, there have been some early drug discovery efforts towards developing potent and selective inhibitors. OBJECTIVE Recent updates to the kinases and phosphatases involved in the regulation of MAs biosynthesis will be presented in this mini-review, including their known small molecule inhibitors. CONCLUSION Mycobacterial kinases and phosphatases involved in the MAs regulation may serve as a useful avenue for antitubercular therapy.
Collapse
Affiliation(s)
- Shahinda S R Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Chau C Beh
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Neil R Foster
- Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Bentley 6102 WA, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Yu Yu
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
26
|
Paik S, Choi S, Lee KI, Back YW, Son YJ, Jo EK, Kim HJ. Mycobacterium tuberculosis acyl carrier protein inhibits macrophage apoptotic death by modulating the reactive oxygen species/c-Jun N-terminal kinase pathway. Microbes Infect 2019; 21:40-49. [DOI: 10.1016/j.micinf.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/25/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
|
27
|
Kumar V, Sharma A, Pratap S, Kumar P. Biochemical and biophysical characterization of 1,4-naphthoquinone as a dual inhibitor of two key enzymes of type II fatty acid biosynthesis from Moraxella catarrhalis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1131-1142. [PMID: 30282611 DOI: 10.1016/j.bbapap.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023]
Abstract
The fatty acid biosynthesis (FAS II) is a vital process in bacteria and regarded as an attractive pathway for the development of potential antimicrobial agents. In this study, we report 1,4-naphthoquinone (NPQ) as a dual inhibitor of two key enzymes of FAS II pathway, namely FabD (Malonyl-CoA:ACP transacylase) and FabZ (β-hydroxyacyl-ACP dehydratase). Mode of inhibition of NPQ was found to be non-competitive for both enzymes with IC50 of 26.67 μΜ and 23.18 μΜ against McFabZ and McFabD respectively. Conformational changes in secondary and tertiary structures marked by the loss of helical contents were observed in both enzymes upon NPQ binding. The fluorescence quenching was found to be static with a stable ground state complex formation. ITC based studies have shown that NPQ is binding to McFabZ with a stronger affinity (~1.5×) as compared to McFabD. Molecular docking studies have found that NPQ interacts with key residues of both McFabD (Ser209, Arg126, and Leu102) and McFabZ (His74 and Tyr112) enzymes. Both complexes have shown the structural stability during the 20 ns run of molecular dynamics based simulations. Altogether, the present study suggests that NPQ scaffold can be exploited as a multi-targeted inhibitor of FAS II pathway, and these biochemical and biophysical findings will further help in the development of potent antibacterial agents targeting FAS II pathway.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Anchal Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Shivendra Pratap
- Department of Biotechnology, Indian Institute of Technology Roorkee, India
| | - Pravindra Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, India.
| |
Collapse
|
28
|
Marcella AM, Barb AW. Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering. Appl Microbiol Biotechnol 2018; 102:6333-6341. [PMID: 29858956 DOI: 10.1007/s00253-018-9114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023]
Abstract
This review will cover the structure, enzymology, and related aspects that are important for structure-based engineering of the transacylase enzymes from fatty acid biosynthesis and polyketide synthesis. Furthermore, this review will focus on in vitro characteristics and not cover engineering of the upstream or downstream reactions or strategies to manipulate metabolic flux in vivo. The malonyl-coenzyme A(CoA)-holo-acyl-carrier protein (holo-ACP) transacylase (FabD) from Escherichia coli serves as a model for this enzyme with thorough descriptions of structure, enzyme mechanism, and effects of mutation on substrate binding presented in the literature. Here, we discuss multiple practical and theoretical considerations regarding engineering transacylase enzymes to accept non-cognate substrates and form novel acyl-ACPs for downstream reactions.
Collapse
Affiliation(s)
- Aaron M Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA.
| |
Collapse
|
29
|
Biophysical and in silico interaction studies of aporphine alkaloids with Malonyl-CoA: ACP transacylase (FabD) from drug resistant Moraxella catarrhalis. Biochimie 2018; 149:18-33. [DOI: 10.1016/j.biochi.2018.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/21/2018] [Indexed: 01/23/2023]
|
30
|
Marcella AM, Barb AW. The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins). Appl Microbiol Biotechnol 2017; 101:8431-8441. [DOI: 10.1007/s00253-017-8586-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/29/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022]
|
31
|
Michelsen SW, Soborg B, Diaz LJ, Hoff ST, Agger EM, Koch A, Rosenkrands I, Wohlfahrt J, Melbye M. The dynamics of immune responses to Mycobacterium tuberculosis during different stages of natural infection: A longitudinal study among Greenlanders. PLoS One 2017; 12:e0177906. [PMID: 28570574 PMCID: PMC5453477 DOI: 10.1371/journal.pone.0177906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Objective Understanding human immunity to Mycobacterium tuberculosis (Mtb) during different stages of infection is important for development of an effective tuberculosis (TB) vaccine. We aimed to evaluate immunity to Mtb infection by measuring immune responses to selected Mtb antigens expressed during different stages of infection over time and to observe sustainability of immunity. Methods In a cohort study comprising East Greenlanders aged 17–22 years (2012 to 2014) who had either; undetectable Mtb infection, ongoing or prior Mtb infection at enrolment, we measured immunity to 15 antigens over a one-year period. Quantiferon-TB Gold testing (QFT) defined Mtb infection status (undetected/detected). The eligible study population of East Greenlanders aged 17–22 years was identified from the entire population using the Civil Registration System. From the source population 65 participants were selected by stratified random sampling according to information on Mtb infection stage. Retrospective and prospective information on notified TB (including treatment) was obtained through the mandatory TB notification system and was used to characterise Mtb infection stage (ongoing/prior). Immunity to 15 antigens including two QFT antigens, PPD and 12 non-QFT antigens (representing early, constitutive and latent Mtb infection) was assessed by measuring immune responses using whole-blood antigen stimulation and interferon gamma measurement. Results Of 65 participants, 54 were considered Mtb-infected. Immunity to Mtb infection fluctuated with high annual risk of conversion (range: 6–69%) and reversion (range: 5–95%). During follow-up, five (8%) participants were notified with TB; neither conversion nor reversion was associated with an increased risk of progressing to TB. Conclusions Our findings suggest that human immunity to natural Mtb infection over time is versatile with fluctuations, resulting in high levels of conversion and reversion of immunity, thus human immunity to Mtb is much more dynamic than anticipated. The study findings suggest future use of longitudinal assessment of immune responses when searching for TB vaccine candidate antigens.
Collapse
Affiliation(s)
- Sascha Wilk Michelsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
- * E-mail:
| | - Bolette Soborg
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Jorge Diaz
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Soren Tetens Hoff
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Else Marie Agger
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Koch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jan Wohlfahrt
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Mads Melbye
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Stanford School of Medicine, Stanford, California, United States of America
| |
Collapse
|
32
|
Barandun J, Damberger FF, Delley CL, Laederach J, Allain FHT, Weber-Ban E. Prokaryotic ubiquitin-like protein remains intrinsically disordered when covalently attached to proteasomal target proteins. BMC STRUCTURAL BIOLOGY 2017; 17:1. [PMID: 28143508 PMCID: PMC5286830 DOI: 10.1186/s12900-017-0072-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/24/2017] [Indexed: 11/11/2022]
Abstract
Background The post-translational modification pathway referred to as pupylation marks proteins for proteasomal degradation in Mycobacterium tuberculosis and other actinobacteria by covalently attaching the small protein Pup (prokaryotic ubiquitin-like protein) to target lysine residues. In contrast to the functionally analogous eukaryotic ubiquitin, Pup is intrinsically disordered in its free form. Its unfolded state allows Pup to adopt different structures upon interaction with different binding partners like the Pup ligase PafA and the proteasomal ATPase Mpa. While the disordered behavior of free Pup has been well characterized, it remained unknown whether Pup adopts a distinct structure when attached to a substrate. Results Using a combination of NMR experiments and biochemical analysis we demonstrate that Pup remains unstructured when ligated to two well-established pupylation substrates targeted for proteasomal degradation in Mycobacterium tuberculosis, malonyl transacylase (FabD) and ketopantoyl hydroxylmethyltransferase (PanB). Isotopically labeled Pup was linked to FabD and PanB by in vitro pupylation to generate homogeneously pupylated substrates suitable for NMR analysis. The single target lysine of PanB was identified by a combination of mass spectroscopy and mutational analysis. Chemical shift comparison between Pup in its free form and ligated to substrate reveals intrinsic disorder of Pup in the conjugate. Conclusion When linked to the proteasomal substrates FabD and PanB, Pup is unstructured and retains the ability to interact with its different binding partners. This suggests that it is not the conformation of Pup attached to these two substrates which determines their delivery to the proteasome, but the availability of the degradation complex and the depupylase. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0072-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonas Barandun
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zürich, CH-8093, Switzerland.,Present address: Laboratory of Protein and Nucleic Acid Chemistry, The Rockefeller University, New York, NY, USA
| | - Fred F Damberger
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zürich, CH-8093, Switzerland
| | - Cyrille L Delley
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zürich, CH-8093, Switzerland
| | - Juerg Laederach
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zürich, CH-8093, Switzerland
| | - Frédéric H T Allain
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zürich, CH-8093, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zürich, CH-8093, Switzerland.
| |
Collapse
|
33
|
Abstract
Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis (TB), is recognized as a global health emergency as promoted by the World Health Organization. Over 1 million deaths per year, along with the emergence of multi- and extensively-drug resistant strains of Mtb, have triggered intensive research into the pathogenicity and biochemistry of this microorganism, guiding the development of anti-TB chemotherapeutic agents. The essential mycobacterial cell wall, sharing some common features with all bacteria, represents an apparent ‘Achilles heel’ that has been targeted by TB chemotherapy since the advent of TB treatment. This complex structure composed of three distinct layers, peptidoglycan, arabinogalactan and mycolic acids, is vital in supporting cell growth, virulence and providing a barrier to antibiotics. The fundamental nature of cell wall synthesis and assembly has rendered the mycobacterial cell wall as the most widely exploited target of anti-TB drugs. This review provides an overview of the biosynthesis of the prominent cell wall components, highlighting the inhibitory mechanisms of existing clinical drugs and illustrating the potential of other unexploited enzymes as future drug targets.
Collapse
|
34
|
Marcella AM, Barb AW. A rapid fluorometric assay for the S-malonyltransacylase FabD and other sulfhydryl utilizing enzymes. J Biol Methods 2016; 3. [PMID: 27642613 PMCID: PMC5023282 DOI: 10.14440/jbm.2016.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The development of biorenewable chemicals will support green chemistry initiatives and supplement the catalog of starting materials available to the chemical industry. Bacterial fatty acid biosynthesis is being pursued as a source of protein catalysts to synthesize novel reduced carbon molecules in fermentation systems. The availability of methods to measure enzyme catalysis for native and engineered enzymes from this pathway remains a bottleneck because a simple quantitative enzyme assay for numerous enzymes does not exist. Here we present two variations of a fluorescence assay that is readily extendable to high-throughput screening and is appropriate for thiol consuming and generating enzymes including the E. coli enzymes malonyl-coenzyme A transacylase (FabD) and keto-acylsynthase III (FabH). We measured KM values of 60 ± 20 µM (acetyl-CoA) and 20 ± 10 µM (malonyl-ACP) and a kcat of 7.4–9.0 s-1 with FabH. Assays of FabD included a precipitation step to remove the thiol-containing substrate holo-ACP from the reaction product coenzyme-A to estimate reaction rates. Analysis of initial velocity measurements revealed KM values of 60 ± 20 µM (malonyl-CoA) and 40 ± 10 µM (holo-ACP) and a kcat of 2100–2600 s-1 for the FabD enzyme. Our data show similar results when compared to existing radioactive and continuous coupled assays in terms of sensitivity while providing the benefit of simplicity, scalability and repeatability. Fluorescence detection also eliminates the need for radioactive substrates traditionally used to assay these enzymes.
Collapse
Affiliation(s)
- Aaron M Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Molecular Biology Building, Room 4210, 2437 Pammel Drive, Iowa State University, Ames, IA 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Molecular Biology Building, Room 4210, 2437 Pammel Drive, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
35
|
Abrahams KA, Chung CW, Ghidelli-Disse S, Rullas J, Rebollo-López MJ, Gurcha SS, Cox JAG, Mendoza A, Jiménez-Navarro E, Martínez-Martínez MS, Neu M, Shillings A, Homes P, Argyrou A, Casanueva R, Loman NJ, Moynihan PJ, Lelièvre J, Selenski C, Axtman M, Kremer L, Bantscheff M, Angulo-Barturen I, Izquierdo MC, Cammack NC, Drewes G, Ballell L, Barros D, Besra GS, Bates RH. Identification of KasA as the cellular target of an anti-tubercular scaffold. Nat Commun 2016; 7:12581. [PMID: 27581223 PMCID: PMC5025758 DOI: 10.1038/ncomms12581] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
Phenotypic screens for bactericidal compounds are starting to yield promising hits against tuberculosis. In this regard, whole-genome sequencing of spontaneous resistant mutants generated against an indazole sulfonamide (GSK3011724A) identifies several specific single-nucleotide polymorphisms in the essential Mycobacterium tuberculosis β-ketoacyl synthase (kas) A gene. Here, this genomic-based target assignment is confirmed by biochemical assays, chemical proteomics and structural resolution of a KasA-GSK3011724A complex by X-ray crystallography. Finally, M. tuberculosis GSK3011724A-resistant mutants increase the in vitro minimum inhibitory concentration and the in vivo 99% effective dose in mice, establishing in vitro and in vivo target engagement. Surprisingly, the lack of target engagement of the related β-ketoacyl synthases (FabH and KasB) suggests a different mode of inhibition when compared with other Kas inhibitors of fatty acid biosynthesis in bacteria. These results clearly identify KasA as the biological target of GSK3011724A and validate this enzyme for further drug discovery efforts against tuberculosis.
Collapse
Affiliation(s)
- Katherine A. Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chun-wa Chung
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Joaquín Rullas
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - María José Rebollo-López
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Sudagar S. Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jonathan A. G. Cox
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alfonso Mendoza
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Elena Jiménez-Navarro
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | | | - Margarete Neu
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Paul Homes
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | | | - Ruth Casanueva
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Nicholas J. Loman
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Patrick J. Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joël Lelièvre
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Carolyn Selenski
- GlaxoSmithKline, 709 Swedeland Road, PO Box 1539, King of Prussia, Pennsylvania 19406-0939, USA
| | - Matthew Axtman
- GlaxoSmithKline, 709 Swedeland Road, PO Box 1539, King of Prussia, Pennsylvania 19406-0939, USA
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, CPBS, 34293 Montpellier, France
| | - Marcus Bantscheff
- Cellzome—a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Iñigo Angulo-Barturen
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Mónica Cacho Izquierdo
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Nicholas C. Cammack
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Gerard Drewes
- Cellzome—a GSK Company, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - David Barros
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert H. Bates
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, 28760 Madrid, Spain
| |
Collapse
|
36
|
Multivariate PLS Modeling of Apicomplexan FabD-Ligand Interaction Space for Mapping Target-Specific Chemical Space and Pharmacophore Fingerprints. PLoS One 2015; 10:e0141674. [PMID: 26535573 PMCID: PMC4633102 DOI: 10.1371/journal.pone.0141674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 10/12/2015] [Indexed: 02/05/2023] Open
Abstract
Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.
Collapse
|
37
|
Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A. Mycolic acids: deciphering and targeting the Achilles' heel of the tubercle bacillus. Mol Microbiol 2015; 98:7-16. [PMID: 26135034 PMCID: PMC4949712 DOI: 10.1111/mmi.13101] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 12/31/2022]
Abstract
Mycolic acids are unique long chain fatty acids found in the lipid-rich cell walls of mycobacteria including the tubercle bacillus Mycobacterium tuberculosis. Essential for viability and virulence, enzymes involved in the biosynthesis of mycolic acids represent novel targets for drug development. This is particularly relevant to the impact on global health given the rise of multidrug resistant and extensively drug resistant strains of M. tuberculosis. In this review, we discuss recent advances in our understanding of how mycolic acid are synthesised, especially the potential role of specialised fatty acid synthase complexes. Also, we examine the role of a recently reported mycolic acid transporter MmpL3 with reference to several reports of the targeting of this transporter by diverse compounds with anti-M. tuberculosis activity. Additionally, we consider recent findings that place mycolic acid biosynthesis in the context of the cell biology of the bacterium, viz its localisation and co-ordination with the bacterial cytoskeleton, and its role beyond maintaining cell envelope integrity.
Collapse
Affiliation(s)
- Vijayashankar Nataraj
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cristian Varela
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Asma Javid
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
38
|
Zimhony O, Schwarz A, Raitses-Gurevich M, Peleg Y, Dym O, Albeck S, Burstein Y, Shakked Z. AcpM, the meromycolate extension acyl carrier protein of Mycobacterium tuberculosis, is activated by the 4'-phosphopantetheinyl transferase PptT, a potential target of the multistep mycolic acid biosynthesis. Biochemistry 2015; 54:2360-71. [PMID: 25785780 DOI: 10.1021/bi501444e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Modification of acyl carrier proteins (ACP) or domains by the covalent binding of a 4'-phosphopantetheine (4'-PP) moiety is a fundamental condition for activation of fatty acid synthases (FASes) and polyketide synthases (PKSes). Binding of 4'-PP is mediated by 4' phosphopantetheinyl transfersases (PPTases). Mycobacterium tuberculosis (Mtb) possesses two essential PPTases: acyl carrier protein synthase (Mtb AcpS), which activates the multidomain fatty acid synthase I (FAS I), and Mtb PptT, an Sfp-type broad spectrum PPTase that activates PKSes. To date, it has not been determined which of the two Mtb PPTases, AcpS or PptT, activates the meromycolate extension ACP, Mtb AcpM, en route to the production of mycolic acids, the main components of the mycobacterial cell wall. In this study, we tested the enzymatic activation of a highly purified Mtb apo-AcpM to Mtb holo-AcpM by either Mtb PptT or Mtb AcpS. By using SDS-PAGE band shift assay and mass spectrometry analysis, we found that Mtb PptT is the PPTase that activates Mtb AcpM. We measured the catalytic activity of Mtb PptT toward CoA, using an activation assay of a blue pigment synthase, BpsA (a nonribosomal peptide synthase, NRPS). BpsA activation by Mtb PptT was inhibited by Mtb apo-AcpM through competition for CoA, in accord with Mtb AcpM activation. A structural model of the putative interaction between Mtb PptT and Mtb AcpM suggests that both hydrophobic and electrostatic interactions stabilize this complex. To conclude, activation of Mtb AcpM by Mtb PptT reveals a potential target of the multistep mycolic acid biosynthesis.
Collapse
Affiliation(s)
- Oren Zimhony
- †Kaplan Medical Center, Affiliated to the School of Medicine, Hebrew University of Jerusalem and Hadassah Medical Center, POB1 Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Beld J, Lee DJ, Burkart MD. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering. MOLECULAR BIOSYSTEMS 2015; 11:38-59. [PMID: 25360565 PMCID: PMC4276719 DOI: 10.1039/c4mb00443d] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field.
Collapse
Affiliation(s)
- Joris Beld
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
40
|
Kim YH, Kim KA, Kim YR, Choi MK, Kim HK, Choi KJ, Chun JH, Cha K, Hong KJ, Lee NG, Yoo CK, Oh HB, Kim TS, Rhie GE. Immunoproteomically identified GBAA_0345, alkyl hydroperoxide reductase subunit C is a potential target for multivalent anthrax vaccine. Proteomics 2014; 14:93-104. [PMID: 24273028 DOI: 10.1002/pmic.201200495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
Anthrax is caused by the spore-forming bacterium Bacillus anthracis, which has been used as a weapon for bioterrorism. Although current vaccines are effective, they involve prolonged dose regimens and often cause adverse reactions. High rates of mortality associated with anthrax have made the development of an improved vaccine a top priority. To identify novel vaccine candidates, we applied an immunoproteomics approach. Using sera from convalescent guinea pigs or from human patients with anthrax, we identified 34 immunogenic proteins from the virulent B. anthracis H9401. To evaluate vaccine candidates, six were expressed as recombinant proteins and tested in vivo. Two proteins, rGBAA_0345 (alkyl hydroperoxide reductase subunit C) and rGBAA_3990 (malonyl CoA-acyl carrier protein transacylase), have afforded guinea pigs partial protection from a subsequent virulent-spore challenge. Moreover, combined vaccination with rGBAA_0345 and rPA (protective antigen) exhibited an enhanced ability to protect against anthrax mortality. Finally, we demonstrated that GBAA_0345 localizes to anthrax spores and bacilli. Our results indicate that rGBAA_0345 may be a potential component of a multivalent anthrax vaccine, as it enhances the efficacy of rPA vaccination. This is the first time that sera from patients with anthrax have been used to interrogate the proteome of virulent B. anthracis vegetative cells.
Collapse
Affiliation(s)
- Yeon Hee Kim
- Division of High-risk Pathogen Research, Korea National Institute of Health, Chungbuk, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
ABSTRACT
Mycolic acids are major and specific long-chain fatty acids that represent essential components of the
Mycobacterium tuberculosis
cell envelope. They play a crucial role in the cell wall architecture and impermeability, hence the natural resistance of mycobacteria to most antibiotics, and represent key factors in mycobacterial virulence. Biosynthesis of mycolic acid precursors requires two types of fatty acid synthases (FASs), the eukaryotic-like multifunctional enzyme FAS I and the acyl carrier protein (ACP)–dependent FAS II systems, which consists of a series of discrete mono-functional proteins, each catalyzing one reaction in the pathway. Unlike FAS II synthases of other bacteria, the mycobacterial FAS II is incapable of
de novo
fatty acid synthesis from acetyl-coenzyme A, but instead elongates medium-chain-length fatty acids previously synthesized by FAS I, leading to meromycolic acids. In addition, mycolic acid subspecies with defined biological properties can be distinguished according to the chemical modifications decorating the meromycolate. Nearly all the genetic components involved in both elongation and functionalization of the meromycolic acid have been identified and are generally clustered in distinct transcriptional units. A large body of information has been generated on the enzymology of the mycolic acid biosynthetic pathway and on their genetic and biochemical/structural characterization as targets of several antitubercular drugs. This chapter is a comprehensive overview of mycolic acid structure, function, and biosynthesis. Special emphasis is given to recent work addressing the regulation of mycolic acid biosynthesis, adding new insights to our understanding of how pathogenic mycobacteria adapt their cell wall composition in response to environmental changes.
Collapse
|
42
|
Biswas R, Dutta D, Das AK. Cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of Rv0241c (HtdX) from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1110-3. [PMID: 24100560 PMCID: PMC3792668 DOI: 10.1107/s1744309113023452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/20/2013] [Indexed: 01/25/2023]
Abstract
Rv0241c (HtdX) is a putative (3R)-hydroxyacyl-CoA dehydratase of Mycobacterium tuberculosis. The htdX gene belongs to a conserved operon and is expressed in mycobacteria in the presence of several fatty-acid synthase II drugs. To elucidate the structure of HtdX, the protein was cloned, overexpressed, purified to homogeneity and crystallized. The protein was crystallized from two conditions: (i) 3 M sodium chloride, 0.1 M Na HEPES pH 8.0 and (ii) 2.5 M sodium chloride, 0.1 M Tris-HCl pH 8.5. A complete diffraction data set was collected from crystals from both conditions. The crystal from the first condition diffracted to 2.3 Å resolution and belonged to space group I41, with unit-cell parameters a=b=61.51, c=143.81 Å. Crystals from the second condition diffracted to 3.1 Å resolution and belonged to space group P4₃2₁2 or P4₁2₁2, with unit-cell parameters a=b=63.67, c=140.88 Å. Both crystals contained one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Debajyoti Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India
| |
Collapse
|
43
|
Jha DK, Panda L, Lavanya P, Ramaiah S, Anbarasu A. Detection and confirmation of alkaloids in leaves of Justicia adhatoda and bioinformatics approach to elicit its anti-tuberculosis activity. Appl Biochem Biotechnol 2012; 168:980-90. [PMID: 22899014 DOI: 10.1007/s12010-012-9834-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
Abstract
The extraction and determination of alkaloids was performed and confirmed by phytochemical analysis. Six different quinazoline alkaloids (vasicoline, vasicolinone, vasicinone, vasicine, adhatodine and anisotine) were found in the leaf of Justicia adhatoda (J. adhatoda). The presence of the peaks obtained through HPLC indicated the diverse nature of alkaloid present in the leaf. The enzyme β-ketoacyl-acyl-carrier protein synthase III that catalyses the initial step of fatty acid biosynthesis (FabH) via a type II fatty acid synthase has unique structural features and universal occurrence in Mycobacterium tuberculosis (M. tuberculosis). Thus, it was considered as a target for designing of anti-tuberculosis compounds. Docking simulations were conducted on the above alkaloids derived from J. adhatoda. The combination of docking/scoring provided interesting insights into the binding of different inhibitors and their activity. These results will be useful for designing inhibitors for M. tuberculosis and also will be a good starting point for natural plant-based pharmaceutical chemistry.
Collapse
Affiliation(s)
- Deepak Kumar Jha
- Medical and Biological computing laboratory, School of Biosciences and Technology, VIT University, Vellore, India
| | | | | | | | | |
Collapse
|
44
|
Sun M, Zhu G, Qin Z, Wu C, Lv M, Liao S, Qi N, Xie M, Cai J. Functional characterizations of malonyl-CoA:acyl carrier protein transacylase (MCAT) in Eimeria tenella. Mol Biochem Parasitol 2012; 184:20-8. [PMID: 22525053 DOI: 10.1016/j.molbiopara.2012.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 11/17/2022]
Abstract
Eimeria tenella, an apicomplexan parasite in chickens, possesses an apicoplast and its associated metabolic pathways including the Type II fatty acid synthesis (FAS II). Malonyl-CoA:acyl-carry protein transacylase (MCAT) encoded by the fabD gene is one of the essential enzymes in the FAS II system. In the present study, the entire E. tenella MCAT gene (EtfabD) was cloned and sequenced. Immunolabeling located this protein in the apicoplast organelle in coccidial sporozoites. Functional replacement of the fabD gene with amber mutation of E. coli temperature-sensitive LA2-89 strain by E. tenella EtMCAT demonstrated that EcFabD and EtMCAT perform the same biochemical function. The recombinant EtMCAT protein was expressed and its general biochemical features were also determined. An alkaloid natural product corytuberine (CAS: 517-56-6) could specifically inhibit the EtMCAT activity (IC(50)=16.47μM), but the inhibition of parasite growth in vitro by corytuberine was very weak (the predicted MIC(50)=0.65mM).
Collapse
Affiliation(s)
- Mingfei Sun
- Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sreshty MAL, Surolia A, Sastry GN, Murty US. Deorphanization of Malonyl CoA:ACP Transacylase Drug Target in Plasmodium falciparum (PfFabD) Using Bacterial Antagonists: A ‘Piggyback’ Approach for Antimalarial Drug Discovery. Mol Inform 2012; 31:281-99. [DOI: 10.1002/minf.201100051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 02/16/2012] [Indexed: 11/09/2022]
|
46
|
WANG CJ, LIN J, ZHANG JJ. Progress in The Study of Prokaryotic Ubiquitin-like Protein (Pup)-Proteasome System*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain. J Bacteriol 2011; 193:6960-72. [PMID: 21984794 DOI: 10.1128/jb.05638-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acetyl coenzyme A carboxylase (ACC) is a key enzyme providing a substrate for mycolic acid biosynthesis. Although in vitro studies have demonstrated that the protein encoded by accD6 (Rv2247) may be a functional carboxyltransferase subunit of ACC in Mycobacterium tuberculosis, the in vivo function and regulation of accD6 in slow- and fast-growing mycobacteria remain elusive. Here, directed mutagenesis demonstrated that although accD6 is essential for M. tuberculosis, it can be deleted in Mycobacterium smegmatis without affecting its cell envelope integrity. Moreover, we showed that although it is part of the type II fatty acid synthase operon, the accD6 gene of M. tuberculosis, but not that of M. smegmatis, possesses its own additional promoter (P(acc)). The expression level of accD6(Mtb) placed only under the control of P(acc) is 10-fold lower than that in wild-type M. tuberculosis but is sufficient to sustain cell viability. Importantly, this limited expression level affects growth, mycolic acid content, and cell morphology. These results provide the first in vivo evidence for AccD6 as a key player in the mycolate biosynthesis of M. tuberculosis, implicating AccD6 as the essential ACC subunit in pathogenic mycobacteria and an excellent target for new antitubercular compounds. Our findings also highlight important differences in the mechanism of acetyl carboxylation between pathogenic and nonpathogenic mycobacterial species.
Collapse
|
48
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
49
|
Cerda-Maira FA, McAllister F, Bode NJ, Burns KE, Gygi SP, Darwin KH. Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli. EMBO Rep 2011; 12:863-70. [PMID: 21738222 DOI: 10.1038/embor.2011.109] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/27/2011] [Accepted: 05/18/2011] [Indexed: 11/09/2022] Open
Abstract
Prokaryotic ubiquitin-like protein (Pup) is a post-translational modifier that attaches to more than 50 proteins in Mycobacteria. Proteasome accessory factor A (PafA) is responsible for Pup conjugation to substrates, but the manner in which proteins are selected for pupylation is unknown. To address this issue, we reconstituted the pupylation of model Mycobacterium proteasome substrates in Escherichia coli, which does not encode Pup or PafA. Surprisingly, Pup and PafA were sufficient to pupylate at least 51 E. coli proteins in addition to the mycobacterial proteins. These data suggest that pupylation signals are intrinsic to targeted proteins and might not require Mycobacterium-specific cofactors for substrate recognition by PafA in vivo.
Collapse
Affiliation(s)
- Francisca A Cerda-Maira
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, MSB 236, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
50
|
Development of Escherichia coli MG1655 strains to produce long chain fatty acids by engineering fatty acid synthesis (FAS) metabolism. Enzyme Microb Technol 2011; 49:44-51. [PMID: 22112270 DOI: 10.1016/j.enzmictec.2011.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 11/24/2022]
Abstract
The goal of this research was to develop recombinant Escherichia coli to improve fatty acid synthesis (FAS). Genes encoding acetyl-CoA carboxylase (accA, accB, accC), malonyl-CoA-[acyl-carrier-protein] transacylase (fabD), and acyl-acyl carrier protein thioesterase (EC 3.1.2.14 gene), which are all enzymes that catalyze key steps in the synthesis of fatty acids, were cloned and over-expressed in E. coli MG1655. The acetyl-CoA carboxylase (ACC) enzyme catalyzes the addition of CO(2) to acetyl-CoA to generate malonyl-CoA. The enzyme encoded by the fabD gene converts malonyl-CoA to malonyl-[acp], and the EC 3.1.2.14 gene converts fatty acyl-ACP chains to long chain fatty acids. All the genes except for the EC 3.1.2.14 gene were homologous to E. coli genes and were used to improve the enzymatic activities to over-express components of the FAS pathway through metabolic engineering. All recombinant E. coli MG1655 strains containing various gene combinations were developed using the pTrc99A expression vector. To observe changes in metabolism, the in vitro metabolites and fatty acids produced by the recombinants were analyzed. The fatty acids (C16) from recombinant strains were produced 1.23-2.41 times higher than that from the wild type.
Collapse
|