1
|
Castro H, Rocha MI, Duarte M, Vilurbina J, Gomes-Alves AG, Leao T, Dias F, Morgan B, Deponte M, Tomás AM. The cytosolic hyperoxidation-sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biol 2024; 71:103122. [PMID: 38490068 PMCID: PMC10955670 DOI: 10.1016/j.redox.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Typical two-cysteine peroxiredoxins (2-Cys-PRXs) are H2O2-metabolizing enzymes whose activity relies on two cysteine residues. Protists of the family Trypanosomatidae invariably express one cytosolic 2-Cys-PRX (cPRX1). However, the Leishmaniinae sub-family features an additional isoform (cPRX2), almost identical to cPRX1, except for the lack of an elongated C-terminus with a Tyr-Phe (YF) motif. Previously, cytosolic PRXs were considered vital components of the trypanosomatid antioxidant machinery. Here, we shed new light on the properties, functions and relevance of cPRXs from the human pathogen Leishmania infantum. We show first that LicPRX1 is sensitive to inactivation by hyperoxidation, mirroring other YF-containing PRXs participating in redox signaling. Using genetic fusion constructs with roGFP2, we establish that LicPRX1 and LicPRX2 can act as sensors for H2O2 and oxidize protein thiols with implications for signal transduction. Third, we show that while disrupting the LicPRX-encoding genes increases susceptibility of L. infantum promastigotes to external H2O2in vitro, both enzymes are dispensable for the parasites to endure the macrophage respiratory burst, differentiate into amastigotes and initiate in vivo infections. This study introduces a novel perspective on the functions of trypanosomatid cPRXs, exposing their dual roles as both peroxidases and redox sensors. Furthermore, the discovery that Leishmania can adapt to the absence of both enzymes has significant implications for our understanding of Leishmania infections and their treatment. Importantly, it questions the conventional notion that the oxidative response of macrophages during phagocytosis is a major barrier to infection and the suitability of cPRXs as drug targets for leishmaniasis.
Collapse
Affiliation(s)
- Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Maria Inês Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Margarida Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jordi Vilurbina
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Georgina Gomes-Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Teresa Leao
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Filipa Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruce Morgan
- Institut für Biochemie, Zentrum für Human und Molekularbiologie (ZHMB), Universität des Saarlandes, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Maria Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Gao L, Meng J, Yue C, Wu X, Su Q, Wu H, Zhang Z, Yu Q, Gao S, Fan S, Zuo L. Integrative analysis the characterization of peroxiredoxins in pan-cancer. Cancer Cell Int 2021; 21:366. [PMID: 34246267 PMCID: PMC8272277 DOI: 10.1186/s12935-021-02064-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Background Peroxiredoxins (PRDXs) are an antioxidant enzymes protein family involved in several biological functions such as differentiation, cell growth. In addition, previous studies report that PRDXs play critical roles in the occurrence and development of carcinomas. However, few studies have conducted systematic analysis of PRDXs in cancers. Therefore, the present study sought to explore the molecular characteristics and potential clinical significance of PRDX family members in pan cancer and further validate the function of PRDX6 in bladder urothelial carcinoma (BLCA). Methods A comprehensive analysis of PRDXs in 33 types of cancer was performed based on the TCGA database. This involved an analysis of mRNA expression profiles, genetic alterations, methylation, prognostic values, potential biological pathways and target drugs. Moreover, both the gain and loss of function strategies were used to assess the importance and mechanism of PRDX6 in the cell cycle of BLCA. Result Analysis showed abnormal expression of PRDX1-6 in several types of cancer compared to normal tissues. Univariate Cox proportional hazard regression analysis showed that expression levels of PRDX1, PRDX4 and PRDX6 were mostly associated with poor survival of OS, DSS and PFI, and PRDX2 and PRDX3 with favorable survival. In addition, the expression of PRDX genes were positively correlated with CNV and negatively with methylation. Moreover, analysis based on PharmacoDB dataset showed that the augmented levels of PRDX1, PRDX3 and PRDX6 were significantly correlated with EGFR/VEGFR inhibitor drugs. Furthermore, knocking down of PRDX6 inhibited growth of cancer cells through the JAK2-STAT3 in bladder cell lines. Conclusions PRDXs are potential biomarkers and therapeutic targets for several carcinomas, especially for BLCA. In addition, PRDX6 could regulate proliferation of cancer cell via JAK2-STAT3 pathway and involve into the process of cell cycle in BLCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02064-x.
Collapse
Affiliation(s)
- Lei Gao
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chuang Yue
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xingyu Wu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Quanxin Su
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hao Wu
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ze Zhang
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qinzhou Yu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Shenglin Gao
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China.
| | - Li Zuo
- Department of Urology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
3
|
dos Santos Meira C, Gedamu L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms 2019; 7:microorganisms7120695. [PMID: 31847221 PMCID: PMC6956275 DOI: 10.3390/microorganisms7120695] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
The intracellular protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a vector-borne disease of major public health concern, estimated to affect 12 million people worldwide. The clinical manifestations of leishmaniasis are highly variable and can range from self-healing localized cutaneous lesions to life-threatening disseminated visceral disease. Once introduced into the skin by infected sandflies, Leishmania parasites interact with a variety of immune cells, such as neutrophils, monocytes, dendritic cells (DCs), and macrophages. The resolution of infection requires a finely tuned interplay between innate and adaptive immune cells, culminating with the activation of microbicidal functions and parasite clearance within host cells. However, several factors derived from the host, insect vector, and Leishmania spp., including the presence of a double-stranded RNA virus (LRV), can modulate the host immunity and influence the disease outcome. In this review, we discuss the immune mechanisms underlying the main forms of leishmaniasis, some of the factors involved with the establishment of infection and disease severity, and potential approaches for vaccine and drug development focused on host immunity.
Collapse
|
4
|
De Silva G, Somaratne V, Senaratne S, Vipuladasa M, Wickremasinghe R, Wickremasinghe R, Ranasinghe S. Efficacy of a new rapid diagnostic test kit to diagnose Sri Lankan cutaneous leishmaniasis caused by Leishmania donovani. PLoS One 2017; 12:e0187024. [PMID: 29135995 PMCID: PMC5685575 DOI: 10.1371/journal.pone.0187024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Background Cutaneous leishmaniasis (CL) in Sri Lanka is caused by Leishmania donovani. This study assessed the diagnostic value of a new rapid diagnostic immunochromatographic strip (CL-Detect™ IC-RDT), that captures the peroxidoxin antigen of Leishmania amastigotes. Methodology/Principal findings We sampled 74 clinically suspected CL lesions, of which 59 (79.7%) were positive by PCR, 43 (58.1%) by Giemsa stained slit skin smear (SSS) and 21 (28.4%) by the new IC-RDT. All samples which were positive either by SSS or IC-RDT or both were positive by PCR. The sensitivities of the IC-RDT and SSS compared to PCR were 36% and 73%, respectively. Fifteen patients from this endemic region were negative by all three tests. Twenty two clinically non-CL skin lesions from a CL non-endemic region were also negative by all three methods. Specificity and PPV of both IC-RDT and SSS compared to PCR were 100%; the NPVs of IC-RDT and SSS were 37% and 58%, respectively. The median parasite grading of the 59 PCR positive samples was 2+ (1–10 parasites/100 HPFs) and IC-RDT positive lesions was 3+ (1–10 parasites /10HPFs). The duration of the lesion was not associated with IC-RDT positivity. Conclusions/Significance The median parasite grade of Sri Lankan CL lesions is low. The low sensitivities of SSS and CL Detect™ IC-RDT may be due to low parasite counts or low expression of peroxidoxin antigen in amastigotes of the Sri Lankan L. donovani strain. Our results indicate that negative SSS has to be combined with PCR for confirmation of CL in Sri Lanka. The current commercially available IC-RDT is not suitable to diagnose CL in Sri Lanka; an IC-RDT with improved sensitivity to detect L. donovani would be a valuable addition in the diagnostic tool kit for Sri Lanka.
Collapse
Affiliation(s)
- Gayani De Silva
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | - Sujai Senaratne
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | - Renu Wickremasinghe
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Shalindra Ranasinghe
- Department of Parasitology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- * E-mail:
| |
Collapse
|
5
|
Chreifi G, Dejam D, Poulos TL. Crystal structure and functional analysis of Leishmania major pseudoperoxidase. J Biol Inorg Chem 2017; 22:919-927. [PMID: 28584975 DOI: 10.1007/s00775-017-1469-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022]
Abstract
Leishmania major pseudoperoxidase (LmPP) is a recently discovered heme protein expressed by the human pathogen. Previous in vivo and in vitro studies suggest that LmPP is a crucial element of the pathogen's defense mechanism against the reactive nitrogen species peroxynitrite produced during the host immune response. To shed light on the potential mechanism of peroxynitrite detoxification, we have determined the 1.76-Å X-ray crystal structure of LmPP, revealing a striking degree of homology with heme peroxidases. The most outstanding structural feature is a Cys/His heme coordination, which corroborates previous spectroscopic and mutagenesis studies. We also used a combination of stopped-flow and electron paramagnetic spectroscopies that together suggest that peroxynitrite is not a substrate for LmPP catalysis, leaving the function of LmPP an open question.
Collapse
Affiliation(s)
- Georges Chreifi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Dillon Dejam
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697-3900, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
6
|
Moraes-Souza RQ, Reinaque AP, Soares TS, Silva ALT, Giunchetti RC, Takano MAS, Akamatsu MA, Kubrusly FS, Lúcio-Macarini F, Raw I, Iourtov D, Ho PL, Bueno LL, Fujiwara RT, Volpato GT. Safety evaluation of a vaccine: Effect in maternal reproductive outcome and fetal anomaly frequency in rats using a leishmanial vaccine as a model. PLoS One 2017; 12:e0172525. [PMID: 28249007 PMCID: PMC5332059 DOI: 10.1371/journal.pone.0172525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
While the immunogenic potential of the vaccination against infectious diseases was extensively shown, data on the safety assessment of recombinant proteins in vaccine formulations administered during pregnancy are still scarce. In the current study, the antigenicity of a vaccine against leishmaniasis (based on Leishmania braziliensis recombinant protein peroxidoxin) during pregnancy and possible maternal reproductive outcomes and fetal anomalies after immunization with a leishmanial vaccine or adjuvant alone (Bordetella pertussis derived MPLA adjuvant) were assessed. Rats were mated and allocated in three groups: Control—rats received saline; Adjuvant—rats received the adjuvant MPLA, and Vaccine—rats received the combination of MPLA and peroxidoxin. The administration was subcutaneously at the dorsal region, three times (days 0, 7, 14 of pregnancy). On day 21 of pregnancy, all rats were bled for biochemical and immunological measurements. The gravid uterus was weighed with its contents, and the fetuses were analyzed. The immunization with peroxidoxin induced a significant production of circulating IgG levels compared to other groups but caused a significant in post-implantation loss (14.7%) when compared to Control (5.0%) and Adjuvant (4.4%) groups. Furthermore, a significantly high rate of fetal visceral anomalies, such as hydronephrosis and convoluted ureter, was also observed in animals that received vaccine when compared to Control or Adjuvant groups. These data indicate the importance of safety evaluation of vaccines during pregnancy and the limited use of peroxidoxin administration during pregnancy. More importantly, the safety monitoring of immunization with MPLA derived from Bordetella pertussis demonstrated no reproductive outcomes associated with adjuvant administration, suggesting its safe use during pregnancy.
Collapse
Affiliation(s)
- Rafaianne Q. Moraes-Souza
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) - Barra do Garças, Mato Grosso State, Brazil
| | - Ana Paula Reinaque
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG) Belo Horizonte, Minas Gerais State, Brazil
| | - Thaigra S. Soares
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) - Barra do Garças, Mato Grosso State, Brazil
| | - Ana Luiza T. Silva
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG) Belo Horizonte, Minas Gerais State, Brazil
| | - Rodolfo C. Giunchetti
- Laboratory of Cell-Cell Interactions, Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria A. S. Takano
- Division of Technological Development and Production (DDTP), Butantan Institute, São Paulo, Brazil
| | - Milena A. Akamatsu
- Division of Technological Development and Production (DDTP), Butantan Institute, São Paulo, Brazil
| | - Flávia S. Kubrusly
- Division of Technological Development and Production (DDTP), Butantan Institute, São Paulo, Brazil
| | - Fernanda Lúcio-Macarini
- Division of Technological Development and Production (DDTP), Butantan Institute, São Paulo, Brazil
| | - Isaias Raw
- Division of Technological Development and Production (DDTP), Butantan Institute, São Paulo, Brazil
| | - Dmitri Iourtov
- Division of Technological Development and Production (DDTP), Butantan Institute, São Paulo, Brazil
| | - Paulo Lee Ho
- Division of Technological Development and Production (DDTP), Butantan Institute, São Paulo, Brazil
| | - Lilian L. Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG) Belo Horizonte, Minas Gerais State, Brazil
| | - Ricardo T. Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG) Belo Horizonte, Minas Gerais State, Brazil
| | - Gustavo T. Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT) - Barra do Garças, Mato Grosso State, Brazil
- * E-mail:
| |
Collapse
|
7
|
da Silva MS, Segatto M, Pavani RS, Gutierrez-Rodrigues F, Bispo VDS, de Medeiros MHG, Calado RT, Elias MC, Cano MIN. Consequences of acute oxidative stress in Leishmania amazonensis : From telomere shortening to the selection of the fittest parasites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:138-150. [DOI: 10.1016/j.bbamcr.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
|
8
|
Zhang X, Niu J, Liang Y, Liu X, Yin H. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 2016; 17:21. [PMID: 26781463 PMCID: PMC4717592 DOI: 10.1186/s12863-016-0330-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/13/2016] [Indexed: 01/18/2023] Open
Abstract
Background Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Results Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Conclusion Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0330-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
9
|
Differential Immune Response against Recombinant Leishmania donovani Peroxidoxin 1 and Peroxidoxin 2 Proteins in BALB/c Mice. J Immunol Res 2015; 2015:348401. [PMID: 26380320 PMCID: PMC4562178 DOI: 10.1155/2015/348401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/25/2015] [Indexed: 11/25/2022] Open
Abstract
We assessed the immune response against recombinant proteins of two related, albeit functionally different, peroxidoxins from Leishmania donovani: peroxidoxin 1 (LdPxn1) and peroxidoxin 2 (LdPxn2) in BALB/c mice. We also evaluated the effect of coadministration of TLR agonists (CpG ODN and GLA-SE) on the antigen-specific immune response. Immunization with recombinant LdPxn1 alone induced a predominantly Th2 type immune response that is associated with the production of high level of IgG1 and no IgG2a isotype while rLdPxn2 resulted in a mixed Th1/Th2 response characterized by the production of antigen-specific IgG2a in addition to IgG1 isotype. Antigen-stimulated spleen cells from mice that were immunized with rLdPxn1 produced low level of IL-10 and IL-4 and no IFN-γ, whereas cells from mice immunized with rLdPxn2 secreted high level of IFN-γ, low IL-4, and no IL-10. Coadministration of CpG ODN or GLA-SE with rLdPxn1 skewed the immune response towards a Th 1 type as indicated by robust production of IgG2a isotype. Furthermore, the presence of TLR agonists together with rLdPxn1 antigen enhanced the production of IFN-γ and to a lesser extent of IL-10. TLR agonists also enhanced a more polarized Th 1 type immune response against rLdPxn2.
Collapse
|
10
|
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant. PLoS Negl Trop Dis 2014; 8:e3391. [PMID: 25500571 PMCID: PMC4263403 DOI: 10.1371/journal.pntd.0003391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1) is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF) DNA adjuvant. METHODOLOGY AND PRINCIPAL FINDINGS A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system. CONCLUSION The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the mice from Leishmania major infection. To our knowledge, this is the first study showing the vaccine potential of Leishmania peroxidoxin -1.
Collapse
Affiliation(s)
- Abebe Genetu Bayih
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Nada S. Daifalla
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Henard CA, Carlsen ED, Hay C, Kima PE, Soong L. Leishmania amazonensis amastigotes highly express a tryparedoxin peroxidase isoform that increases parasite resistance to macrophage antimicrobial defenses and fosters parasite virulence. PLoS Negl Trop Dis 2014; 8:e3000. [PMID: 25033301 PMCID: PMC4102420 DOI: 10.1371/journal.pntd.0003000] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/31/2014] [Indexed: 12/21/2022] Open
Abstract
Professional phagocytes generate a myriad of antimicrobial molecules to kill invading microorganisms, of which nitrogen oxides are integral in controlling the obligate intracellular pathogen Leishmania. Although reactive nitrogen species produced by the inducible nitric oxide synthase (iNOS) can promote the clearance of intracellular parasites, some Leishmania species/stages are relatively resistant to iNOS-mediated antimicrobial activity. The underlying mechanism for this resistance remains largely uncharacterized. Here, we show that the amastigote form of L. amazonensis is hyper-resistant to the antimicrobial actions of cytokine-activated murine and human macrophages as compared to its promastigote counterpart. Amastigotes exhibit a marked ability to directly counter the cytotoxicity of peroxynitrite (ONOO-), a leishmanicidal oxidant that is generated during infection through the combined enzymatic activities of NADPH oxidase and iNOS. The enhanced antinitrosative defense of amastigotes correlates with the increased expression of a tryparedoxin peroxidase (TXNPx) isoform that is also upregulated in response to iNOS enzymatic activity within infected macrophages. Accordingly, ectopic over-expression of the TXNPx isoform by L. amazonensis promastigotes significantly enhances parasite resistance against ONOO- cytotoxicity. Moreover, TXNPx-overexpressing parasites exhibit greater intra-macrophage survival, and increased parasite growth and lesion development in a murine model of leishmaniasis. Our investigations indicate that TXNPx isoforms contribute to Leishmania's ability to adapt to and antagonize the hostile microenvironment of cytokine-activated macrophages, and provide a mechanistic explanation for persistent infection in experimental and human leishmaniasis.
Collapse
Affiliation(s)
- Calvin A. Henard
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Eric D. Carlsen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- M.D.-Ph.D. Combined Degree Program, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Christie Hay
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter E. Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
Manhas R, Anand S, Tripathi P, Madhubala R. Deletion of Vitamin C biosynthesis enzyme, Arabino-1, 4-lactone oxidase inLeishmania donovaniresults in increased pro-inflammatory responses from host immune cells. Mol Microbiol 2014; 91:1227-39. [DOI: 10.1111/mmi.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Reetika Manhas
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Sneha Anand
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Pankaj Tripathi
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Rentala Madhubala
- School of Life Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
13
|
Adak S, Pal S. Ascorbate peroxidase acts as a novel determiner of redox homeostasis in Leishmania. Antioxid Redox Signal 2013; 19:746-54. [PMID: 22703594 DOI: 10.1089/ars.2012.4745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are produced as natural byproducts of metabolism and respiration. While physiological levels of ROS are required for vital cellular functions (e.g., development and proliferation), a living organism is faced with constant challenges due to accumulation or overproduction of ROS throughout its life. The life cycle of Leishmania parasite has led it to confront the highly oxidizing environment in the macrophage phagosomes, necessitating ROS homeostasis and signaling as key strategies for successful survival and pathogenicity. RECENT ADVANCES Ascorbate peroxidase from Leishmania major (LmAPX) is the only heme peroxidase identified so far in Leishmania. Structural analysis and functional characterization of LmAPX have yielded interesting and novel insight on this enzyme. The protein has been found to be a hybrid of cytochrome c peroxidase and ascorbate peroxidase. This enzyme is colocalized with cytochrome c in the inner mitochondrial membrane facing the intermembrane space and shows higher activity toward cytochrome c oxidation. CRITICAL ISSUES Overexpression of LmAPX in L. major cells confers tolerance to oxidative stress-mediated cardiolipin oxidation and consequently protects cells from extensive protein damage. LmAPX-/- mutants show higher intracellular hydrogen peroxide (H₂O₂), which might signal for cellular transformation from noninfective procyclic to infective metacyclic form and ultimately apoptosis. FUTURE DIRECTIONS Manipulation of LmAPX expression has significantly added to the present understanding of the parasite's defense network against oxidative damage caused by H₂O₂. The future investigations will address more exactly the signaling pathways involved in redox homeostasis.
Collapse
Affiliation(s)
- Subrata Adak
- Division of Structural Biology and Bio-informatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| | | |
Collapse
|
14
|
Identification and functional characterization of Leishmania donovani secretory peroxidase: delineating its role in NRAMP1 regulation. PLoS One 2013; 8:e53442. [PMID: 23326430 PMCID: PMC3543463 DOI: 10.1371/journal.pone.0053442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/28/2012] [Indexed: 01/02/2023] Open
Abstract
Leishmania silently evades host immune system and establish in the hostile environment of host macrophage phagolysosomes. For differentiation, growth and division parasite acquires divalent cations especially iron from the host nutritive pool. Natural resistance associated with macrophage protein1 (NRAMP1), a cation transporter that effluxes out divalent cations specifically iron from phagosomal milieu to the cytosol, to create ions deprived status for pathogenic microorganisms. The mechanisms of NRAMP1 regulation are largely unknown in leishmanial infections. In the present study, we identified a secretory Leishmania donovani peroxidase (Prx) that showed peroxidoxin like peroxidase activity and significantly reduced H2O2, O2.− and NO levels in LPS activated macrophages. Further, we also observed down regulated Nramp1 expression and concomitantly declined labile iron pool in activated macrophages treated with identified peroxidase. Prx also decreased levels of TNF-α, IFN-γ and IL-12 in LPS activated macrophages. These observations indicate a bifunctional protective role of secretory Prx; first it reduces redox activation of macrophages, and secondly it allows iron access to Leishmania by down regulating NRAMP1 expression.
Collapse
|
15
|
Bose M, Saha R, Sen Santara S, Mukherjee S, Roy J, Adak S. Protection against peroxynitrite by pseudoperoxidase from Leishmania major. Free Radic Biol Med 2012; 53:1819-28. [PMID: 22985938 DOI: 10.1016/j.freeradbiomed.2012.08.583] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/23/2012] [Accepted: 08/23/2012] [Indexed: 11/22/2022]
Abstract
Heme proteins share the ability to detoxify reactive nitrogen intermediates (NO and peroxynitrite). But, to date, no heme-containing enzymatic defense against toxic reactive nitrogen intermediates has been discovered in Leishmania species. We have cloned, expressed, and characterized a pseudoperoxidase from Leishmania major (LmPP) that is capable of detoxifying peroxynitrite (ONOO(-)). Optical, EPR, and resonance Raman spectral studies demonstrate that ONOO(-) can rapidly convert the six-coordinate ferric low-spin to a ferric high-spin form at neutral pH. Western blotting and immunofluorescence studies with anti-LmPP antibody show that the mature enzyme is located at the plasma membrane of amastigotes and is expressed eightfold higher in amastigotes compared to promastigotes. Moreover, to further investigate its exact physiological role in Leishmania, we have created LmPP-knockout mutants by gene replacement in L. major strains. IC(50) values for exogenously added H(2)O(2) or 3-morpholinosydnonimine (SIN1) show that deletion of LmPP in L. major renders the cell more susceptible to SIN1. The null mutant cells exhibit a marked decrease in virulence on infection with activated macrophages as well as inoculation into BALB/c mice. Collectively, these data provide strong evidence that LmPP plays an important role in the enzymatic defense against ONOO(-) within macrophages.
Collapse
Affiliation(s)
- Moumita Bose
- Division of Structural Biology and Bio-informatics, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | |
Collapse
|
16
|
Gretes MC, Poole LB, Karplus PA. Peroxiredoxins in parasites. Antioxid Redox Signal 2012; 17:608-33. [PMID: 22098136 PMCID: PMC3373223 DOI: 10.1089/ars.2011.4404] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. RECENT ADVANCES Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. CRITICAL ISSUES The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. FUTURE DIRECTIONS The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed.
Collapse
Affiliation(s)
- Michael C. Gretes
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - P. Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| |
Collapse
|
17
|
Yoon S, Park WY, Yu JR. Recombinant thioredoxin peroxidase from Cryptosporidium parvum has more powerful antioxidant activity than that from Cryptosporidium muris. Exp Parasitol 2012; 131:333-8. [DOI: 10.1016/j.exppara.2012.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
18
|
Diaz-Albiter H, Sant'Anna MRV, Genta FA, Dillon RJ. Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis. J Biol Chem 2012; 287:23995-4003. [PMID: 22645126 DOI: 10.1074/jbc.m112.376095] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phlebotomine sand flies are the vectors of medically important Leishmania. The Leishmania protozoa reside in the sand fly gut, but the nature of the immune response to the presence of Leishmania is unknown. Reactive oxygen species (ROS) are a major component of insect innate immune pathways regulating gut-microbe homeostasis. Here we show that the concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens but not after feeding on the Leishmania that uses the sand fly as a vector. Moreover, the Leishmania is sensitive to ROS either by oral administration of ROS to the infected fly or by silencing a gene that expresses a sand fly ROS-scavenging enzyme. Finally, the treatment of sand flies with an exogenous ROS scavenger (uric acid) altered the gut microbial homeostasis, led to an increased commensal gut microbiota, and reduced insect survival after oral infection with S. marcescens. Our study demonstrates a differential response of the sand fly ROS system to gut microbiota, an insect pathogen, and the Leishmania that utilize the sand fly as a vehicle for transmission between mammalian hosts.
Collapse
Affiliation(s)
- Hector Diaz-Albiter
- Vector Group, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | | | | | | |
Collapse
|
19
|
Daneshvar H, Wyllie S, Phillips S, Hagan P, Burchmore R. Comparative proteomics profiling of a gentamicin-attenuated Leishmania infantum cell line identifies key changes in parasite thiol-redox metabolism. J Proteomics 2012; 75:1463-71. [DOI: 10.1016/j.jprot.2011.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/21/2011] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
|
20
|
Daifalla NS, Bayih AG, Gedamu L. Immunogenicity of Leishmania donovani iron superoxide dismutase B1 and peroxidoxin 4 in BALB/c mice: the contribution of Toll-like receptor agonists as adjuvant. Exp Parasitol 2011; 129:292-8. [PMID: 21835175 DOI: 10.1016/j.exppara.2011.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 01/19/2023]
Abstract
In this study, we assessed the immune response of two Leishmania donovani recombinant proteins: iron superoxide dismutase B1 (SODB1) and peroxidoxin 4 (Pxn4) in BALB/c mice. Assessment of the immunogenicity of these proteins alone or combined with Toll-like receptor 9 (TLR-9) agonist (CpG ODN) or TLR-4 agonist (GLA-SE) showed that they elicit specific antibody as well as cytokine production in response to the respective antigen in vitro. The use of adjuvants augmented immunogenicity of these antigens and more importantly, skewed the immune response to a Th1-type. These results indicate that recombinant SODB1 and Pxn4 proteins are potential vaccine candidates when administered with appropriate adjuvants.
Collapse
Affiliation(s)
- Nada S Daifalla
- University of Calgary, Department of Biological Sciences, Room 374, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | | | | |
Collapse
|
21
|
Van Assche T, Deschacht M, da Luz RAI, Maes L, Cos P. Leishmania-macrophage interactions: insights into the redox biology. Free Radic Biol Med 2011; 51:337-51. [PMID: 21620959 DOI: 10.1016/j.freeradbiomed.2011.05.011] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/24/2011] [Accepted: 05/07/2011] [Indexed: 11/19/2022]
Abstract
Leishmaniasis is a neglected tropical disease that affects about 350 million individuals worldwide. The protozoan parasite has a relatively simple life cycle with two principal stages: the flagellated mobile promastigote living in the gut of the sandfly vector and the intracellular amastigote within phagolysosomal vesicles of the vertebrate host macrophage. This review presents a state-of-the-art overview of the redox biology at the parasite-macrophage interface. Although Leishmania species are susceptible in vitro to exogenous superoxide radical, hydrogen peroxide, nitric oxide, and peroxynitrite, they manage to survive the endogenous oxidative burst during phagocytosis and the subsequent elevated nitric oxide production in the macrophage. The parasite adopts various defense mechanisms to cope with oxidative stress: the lipophosphoglycan membrane decreases superoxide radical production by inhibiting NADPH oxidase assembly and the parasite also protects itself by expressing antioxidant enzymes and proteins. Some of these enzymes could be considered potential drug targets because they are not expressed in mammals. In respect to antileishmanial therapy, the effects of current drugs on parasite-macrophage redox biology and its involvement in the development of drug resistance and treatment failure are presented.
Collapse
Affiliation(s)
- Tim Van Assche
- Laboratory of Microbiology Parasitology, and Hygiene, University of Antwerp, B-2020 Antwerp, Belgium
| | | | | | | | | |
Collapse
|
22
|
Biswas A, Bhattacharya A, Das PK. Role of cAMP Signaling in the Survival and Infectivity of the Protozoan Parasite, Leishmania donovani. Mol Biol Int 2011; 2011:782971. [PMID: 22091412 PMCID: PMC3200087 DOI: 10.4061/2011/782971] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 04/01/2011] [Indexed: 11/21/2022] Open
Abstract
Leishmania donovani, while invading macrophages, encounters striking shift in temperature and pH (from 22°C and pH 7.2 to 37°C and pH 5.5), which act as the key environmental trigger for differentiation, and increases cAMP level and cAMP-mediated responses. For comprehensive understanding of cAMP signaling, we studied the enzymes related to cAMP metabolism. A stage-specific and developmentally regulated isoform of receptor adenylate cyclase (LdRACA) showed to regulate differentiation-coupled induction of cAMP. The soluble acidocalcisomal pyrophosphatase, Ldvsp1, was the major isoform regulating cAMP level in association with LdRACA. A differentially expressed soluble cytosolic cAMP phosphodiesterase (LdPDEA) might be related to infection establishment by shifting trypanothione pool utilization bias toward antioxidant defense. We identified and cloned a functional cAMP-binding effector molecule from L. donovani (a regulatory subunit of cAMP-dependent protein kinase, LdPKAR) that may modulate metacyclogenesis through induction of autophagy. This study reveals the significance of cAMP signaling in parasite survival and infectivity.
Collapse
Affiliation(s)
- Arunima Biswas
- Molecular Cell Biology Laboratory, Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | |
Collapse
|
23
|
Eslami G, Frikha F, Salehi R, Khamesipour A, Hejazi H, Nilforoushzadeh MA. Cloning, expression and dynamic simulation of TRYP6 from Leishmania major (MRHO/IR/75/ER). Mol Biol Rep 2010; 38:3765-76. [PMID: 21120619 DOI: 10.1007/s11033-010-0492-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 11/10/2010] [Indexed: 11/27/2022]
Abstract
Leishmania, a digenetic protozoan parasite causes severe diseases in human and animals. Efficient evasion of toxic microbicidal molecules, such as reactive oxygen species and reactive nitrogen species is crucial for Leishmania to survive and replicate in the host cells. Tryparedoxin peroxidase, a member of peroxiredoxins family, is vital for parasite survival in the presence of antioxidant, hence it is one of the most important molecules in Leishmania viability and then, it may be an appropriate goal for challenging against leishmaniasis. After cloning and sub-cloning of TRYP6 from Leishmania major (MRHO/IR/75/ER), homology modeling of the LmTRYP6 was proposed to predict some functional property of this protein. The refined model showed that the core structure consists of a seven β stranded β-sheet and five α helices which are organized as a central 7-stranded β2-β1-β5-β4-β3-β6-β7 surrounded by 2-stranded β-hairpin, α helices A and D on one side, and α helices B, C and E on the other side. The peroxidatic active site is located in a pocket formed by the residue Pro45, Met46, Thr49, Val51, Cys52, Arg128, Met147 and Pro 148. The catalytic Cys52, located in the first turn of helix αB, is in van der Waals with a Pro45, a Thr49 and an Arg128 that are absolutely conserved in all known Prx sequences. In this study, an attractive molecular target was studied. These results might be used in designing of drugs to fight an important human pathogen.
Collapse
Affiliation(s)
- G Eslami
- Department of Parasitology and Mycology, Shahid Sadoughi University of Medical Sciences, 8916188/35, Yazd, Iran.
| | | | | | | | | | | |
Collapse
|
24
|
Kima PE, Bonilla JA, Cho E, Ndjamen B, Canton J, Leal N, Handfield M. Identification of Leishmania proteins preferentially released in infected cells using change mediated antigen technology (CMAT). PLoS Negl Trop Dis 2010; 4. [PMID: 20957202 PMCID: PMC2950143 DOI: 10.1371/journal.pntd.0000842] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/08/2010] [Indexed: 01/01/2023] Open
Abstract
Although Leishmania parasites have been shown to modulate their host cell's responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs) and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus. Leishmania are intracellular parasites that reside within parasitophorous vacuoles (PV) in phagocytes. From within these compartments parasites control the host cell's responses to multiple stimuli. There is limited knowledge of the molecules that Leishmania parasites elaborate in the host cell to target processes therein. Furthermore, the mechanism by which such molecules would access their targets beyond the PV is not known. In the study presented here, we implemented the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed inside infected cells. The approach was based on the reasoning that parasites express ‘new’ or antigenically modified molecules in the intracellular environment; therefore antiserum that is reactive to infected cells would contain immunoglobulins that are specific to these ‘new’ molecules. After adsorption of the antiserum with axenically cultured parasites, the antiserum was used to screen a parasite genomic expression library to identify genes encoding the molecules that are preferentially expressed in infected cells. We present for the first time evidence that some of these CMAT molecules accumulate in the PV and then traffic into the host cell in vesicles of distinct morphologies. Furthermore, several of these parasite molecules become localized in discrete compartments within the host cell.
Collapse
Affiliation(s)
- Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America.
| | | | | | | | | | | | | |
Collapse
|
25
|
Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho KI. The Frankia alni symbiotic transcriptome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:593-607. [PMID: 20367468 DOI: 10.1094/mpmi-23-5-0593] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actinobacteria Frankia spp. are able to induce the formation of nodules on the roots of a large spectrum of actinorhizal plants, where they convert dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living Frankia alni cells and on Alnus glutinosa nodule bacteria, using whole-genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia spp. genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to nitrogen fixation were highly induced, nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster), and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified, suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signaling processes, protein drug export, protein secretion, lipopolysaccharide, and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We also showed that this Frankia symbiotic transcriptome was highly similar among phylogenetically distant plant families Betulaceae and Myricaceae. Finally, comparison with rhizobia transcriptome suggested that F. alni is metabolically more active in symbiosis than rhizobia.
Collapse
|
26
|
Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 2009; 165:32-47. [DOI: 10.1016/j.molbiopara.2008.12.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/13/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
|
27
|
Dolai S, Yadav RK, Pal S, Adak S. Leishmania major ascorbate peroxidase overexpression protects cells against reactive oxygen species-mediated cardiolipin oxidation. Free Radic Biol Med 2008; 45:1520-9. [PMID: 18822369 DOI: 10.1016/j.freeradbiomed.2008.08.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 08/22/2008] [Accepted: 08/23/2008] [Indexed: 11/19/2022]
Abstract
Heme peroxidases are a class of multifunctional redox-active proteins found in all organisms. We recently cloned, expressed, and characterized an ascorbate peroxidase from Leishmania major (LmAPX) that was capable of detoxifying hydrogen peroxide. Localization studies using green fluorescent protein fusions revealed that LmAPX was localized within the mitochondria by its N-terminal signal sequence. Subcellular fractionation analysis of the cell homogenate by the Percoll density-gradient method and subsequent Western blot analysis with anti-LmAPX antibody further confirmed the mitochondrial localization of mature LmAPX. Submitochondrial fractionation analysis showed that the mature enzyme (~3.6 kDa shorter than the theoretical value of the whole gene) was present in the intermembrane space side of the inner membrane. Moreover, expression of the LmAPX gene was increased by treatment with exogenous H(2)O(2), indicating that LmAPX was induced by oxidative stress. To investigate the biological role of LmAPX we generated Leishmania cells overexpressing LmAPX in the mitochondria. Flow-cytometric analysis, thin-layer chromatography, and IC(50) measurements suggested that overexpression of LmAPX caused depletion of the mitochondrial ROS burden and conferred a protection against mitochondrial cardiolipin oxidation and increased tolerance to H(2)O(2). These results suggest that the single-copy LmAPX gene plays a protective role against oxidative damage.
Collapse
Affiliation(s)
- Subhankar Dolai
- Division of Structural Biology and Bioinformatics, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | |
Collapse
|
28
|
Abstract
This article provides an overview about the recent advances in the dissection of the peroxide metabolism of Trypanosomatidae. This family of protozoan organisms comprises the medically relevant parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. Over the past 10 years, three major families of peroxidases have been identified in these organisms: (a) 2-cysteine peroxiredoxins, (b) nonselenium glutathione peroxidases, and (c) ascorbate peroxidases. In trypanosomatids, these enzymes display the unique feature of using reducing equivalents derived from trypanothione, a dithiol found exclusively in these protozoa. The electron transfer between trypanothione and the peroxidases is mediated by a redox shuttle, which can either be tryparedoxin, ascorbate, or even glutathione. The preference for the intermediate molecule differs among each peroxidase and so does the specificity for the peroxide substrate. These observations, added to the fact that these peroxidases are distributed throughout different subcellular compartments, point to the existence of an elaborate peroxide metabolism in trypanosomatids. With the completion of the trypanosomatids genome, other molecules displaying peroxidase activity might be added to this list in the future.
Collapse
Affiliation(s)
- Helena Castro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | |
Collapse
|
29
|
Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, Rigault P, Corbeil J, Ouellette M, Papadopoulou B. Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics 2008; 9:255. [PMID: 18510761 PMCID: PMC2453527 DOI: 10.1186/1471-2164-9-255] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmania parasites cause a diverse spectrum of diseases in humans ranging from spontaneously healing skin lesions (e.g., L. major) to life-threatening visceral diseases (e.g., L. infantum). The high conservation in gene content and genome organization between Leishmania major and Leishmania infantum contrasts their distinct pathophysiologies, suggesting that highly regulated hierarchical and temporal changes in gene expression may be involved. RESULTS We used a multispecies DNA oligonucleotide microarray to compare whole-genome expression patterns of promastigote (sandfly vector) and amastigote (mammalian macrophages) developmental stages between L. major and L. infantum. Seven per cent of the total L. infantum genome and 9.3% of the L. major genome were differentially expressed at the RNA level throughout development. The main variations were found in genes involved in metabolism, cellular organization and biogenesis, transport and genes encoding unknown function. Remarkably, this comparative global interspecies analysis demonstrated that only 10-12% of the differentially expressed genes were common to L. major and L. infantum. Differentially expressed genes are randomly distributed across chromosomes further supporting a posttranscriptional control, which is likely to involve a variety of 3'UTR elements. CONCLUSION This study highlighted substantial differences in gene expression patterns between L. major and L. infantum. These important species-specific differences in stage-regulated gene expression may contribute to the disease tropism that distinguishes L. major from L. infantum.
Collapse
Affiliation(s)
- Annie Rochette
- Research Centre in Infectious Diseases, CHUL Research Centre and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bhattacharya A, Biswas A, Das PK. Role of intracellular cAMP in differentiation-coupled induction of resistance against oxidative damage in Leishmania donovani. Free Radic Biol Med 2008; 44:779-94. [PMID: 18078824 DOI: 10.1016/j.freeradbiomed.2007.10.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/10/2007] [Accepted: 10/31/2007] [Indexed: 11/24/2022]
Abstract
Even though the human parasite Leishmania donovani encounters tremendous oxidative burst during macrophage invasion, a set of parasites survives and proliferates intracellularly, leading to transformation from promastigote to amastigote form and disease manifestation. The striking shifts in temperature (from 22 degrees C in the insect gut to 37 degrees C in the mammalian host) and pH (7.2 in the insect gut to 5.5 in the parasitophorous vacuole of macrophages) are the key environmental triggers for differentiation as these cause an arrest in the G1 stage of the cell cycle and initiate transformation. Using an established in vitro culture and differentiation system our study demonstrates that the differentiation-triggering environment induces resistance to oxidative damage and consequently enhances infectivity. Differentiation conditions caused a three- to fourfold elevation in cAMP level as well as cAMP-dependent protein kinase activity. Similar to stress exposure, positive modulation of intracellular cAMP resulted in blockage of cell cycle progression and induction of resistance against oxidative damage. Resistance against pro-oxidants from either stress or cAMP may be associated with upregulation of the expression of three major antioxidant genes, peroxidoxin 1, trypanothione reductase, and superoxide dismutase A. Positive modulation of the intracellular cAMP response enables cells to resist the cytotoxic effects of pro-oxidants. In contrast, downregulation of intracellular cAMP by overexpression of cAMP phosphodiesterase A resulted in a decrease in resistance against oxidative damage and reduced infectivity toward activated macrophages. This study for the first time reveals the importance of cAMP response in the life cycle and infectivity of the Leishmania parasite.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Molecular Cell Biology Laboratory, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | |
Collapse
|
31
|
Narasimhan S, Sukumaran B, Bozdogan U, Thomas V, Liang X, DePonte K, Marcantonio N, Koski RA, Anderson JF, Kantor F, Fikrig E. A tick antioxidant facilitates the Lyme disease agent's successful migration from the mammalian host to the arthropod vector. Cell Host Microbe 2007; 2:7-18. [PMID: 18005713 DOI: 10.1016/j.chom.2007.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/20/2007] [Accepted: 06/05/2007] [Indexed: 11/25/2022]
Abstract
The tick Ixodes scapularis is an efficient vector for microbes, including the Lyme disease agent Borrelia burgdorferi. Ticks engorging on vertebrates induce recruitment of inflammatory cells to the bite site. For efficient transmission to the vector, pathogens have to traffic through this complex feeding site while avoiding the deleterious effects of immune cells. We show that a tick protein, Salp25D, plays a critical role-in the mammalian host-for acquisition of Borrelia burgdorferi by the vector. Silencing salp25D in tick salivary glands impaired spirochete acquisition by ticks engorging on B. burgdorferi-infected mice. Immunizing mice against Salp25D also decreased Borrelia acquisition by I. scapularis. Salp25D detoxified reactive oxygen species at the vector-pathogen-host interface, thereby providing a survival advantage to B. burgdorferi at the tick feeding site in mice. These data demonstrate that pathogens can exploit arthropod molecules to defuse mammalian responses in order to successfully enter the vector.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Leishmania mexicana amazonensis: plasma membrane adenine nucleotide translocator and chemotaxis. Exp Parasitol 2007; 118:408-19. [PMID: 18031742 DOI: 10.1016/j.exppara.2007.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/26/2007] [Accepted: 10/02/2007] [Indexed: 01/16/2023]
Abstract
Leishmania cannot synthesize purines de novo and rely on their host to furnish these compounds. To accomplish this, they possess multiple purine nucleoside and nucleobase transporters. Subcellular fractionation, immunohistochemical localization with anti-adenine nucleotide translocator (ANT) antibodies and surface biotinylation show that the mitochondrial ANT is also present in the plasma membrane of both promastigotes and amastigotes. Leishmania, however, do not appear to rely on this transporter to supplement their purine or energy requirements via preformed ATP from its host. Rather, Leishmania appear to use the plasma membrane ANT as part of a chemotaxis response. ATP is a chemorepellant for Leishmania and cells treated with atractyloside, an inhibitor of ANT, no longer exhibit negative chemotaxis for this compound.
Collapse
|
33
|
König J, Fairlamb AH. A comparative study of type I and type II tryparedoxin peroxidases in Leishmania major. FEBS J 2007; 274:5643-58. [PMID: 17922848 DOI: 10.1111/j.1742-4658.2007.06087.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genome of Leishmania major, the causative agent of cutaneous leishmaniasis, contains three almost identical genes encoding putative glutathione peroxidases, which differ only at their N- and C-termini. Because the gene homologues are essential in trypanosomes, they may also represent potential drug targets in Leishmania. Recombinant protein for the shortest of these showed negligible peroxidase activity with glutathione as the electron donor indicating that it is not a bone fide glutathione peroxidase. By contrast, high peroxidase activity was obtained with tryparedoxin, indicating that these proteins belong to a new class of monomeric tryparedoxin-dependent peroxidases (TDPX) distinct from the classical decameric 2-Cys peroxiredoxins (TryP). Mass spectrometry studies revealed that oxidation of TDPX1 with peroxides results in the formation of an intramolecular disulfide bridge between Cys35 and Cys83. Site-directed mutagenesis and kinetic studies showed that Cys35 is essential for peroxidase activity, whereas Cys83 is essential for reduction by tryparedoxin. Detailed kinetic studies comparing TDPX1 and TryP1 showed that both enzymes obey saturation ping-pong kinetics with respect to tryparedoxin and peroxide. Both enzymes show high affinity for tryparedoxin and broad substrate specificity for hydroperoxides. TDPX1 shows higher affinity towards hydrogen peroxide and cumene hydroperoxide than towards t-butyl hydroperoxide, whereas no specific substrate preference could be detected for TryP1. TDPX1 exhibits rate constants up to 8 x 10(4) m(-1).s(-1), whereas TryP1 exhibits higher rate constants approximately 10(6) m(-1).s(-1). All three TDPX proteins together constitute approximately 0.05% of the L. major promastigote protein content, whereas the TryPs are approximately 40 times more abundant. Possible specific functions of TDPXs are discussed.
Collapse
Affiliation(s)
- Janine König
- Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | | |
Collapse
|
34
|
Dolai S, Yadav RK, Datta AK, Adak S. Effect of thiocyanate on the peroxidase and pseudocatalase activities of Leishmania major ascorbate peroxidase. Biochim Biophys Acta Gen Subj 2007; 1770:247-56. [PMID: 17118560 DOI: 10.1016/j.bbagen.2006.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/20/2006] [Accepted: 10/02/2006] [Indexed: 11/23/2022]
Abstract
We report here that the Leishmania major ascorbate peroxidase (LmAPX), having similarity with plant ascorbate peroxidase, catalyzes the oxidation of suboptimal concentration of ascorbate to monodehydroascorbate (MDA) at physiological pH in the presence of added H(2)O(2) with concurrent evolution of O(2). This pseudocatalatic degradation of H(2)O(2) to O(2) is solely dependent on ascorbate and is blocked by a spin trap, alpha-phenyl-n-tert-butyl nitrone (PBN), indicating the involvement of free radical species in the reaction process. LmAPX thus appears to catalyze ascorbate oxidation by its peroxidase activity, first generating MDA and H(2)O with subsequent regeneration of ascorbate by the reduction of MDA with H(2)O(2) evolving O(2) through the intermediate formation of O(2)(-). Interestingly, both peroxidase and ascorbate-dependent pseudocatalatic activity of LmAPX are reversibly inhibited by SCN(-) in a concentration dependent manner. Spectral studies indicate that ascorbate cannot reduce LmAPX compound II to the native enzyme in presence of SCN(-). Further kinetic studies indicate that SCN(-) itself is not oxidized by LmAPX but inhibits both ascorbate and guaiacol oxidation, which suggests that SCN(-) blocks initial peroxidase activity with ascorbate rather than subsequent nonenzymatic pseudocatalatic degradation of H(2)O(2) to O(2). Binding studies by optical difference spectroscopy indicate that SCN(-) binds LmAPX (Kd = 100 +/- 10 mM) near the heme edge. Thus, unlike mammalian peroxidases, SCN(-) acts as an inhibitor for Leishmania peroxidase to block ascorbate oxidation and subsequent pseudocatalase activity.
Collapse
Affiliation(s)
- Subhankar Dolai
- Division of Structural Biology and Bio-informatics, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | | | | | | |
Collapse
|
35
|
Jirata D, Kuru T, Genetu A, Barr S, Hailu A, Aseffa A, Gedamu L. Identification, sequencing and expression of peroxidoxin genes from Leishmania aethiopica. Acta Trop 2006; 99:88-96. [PMID: 16962062 DOI: 10.1016/j.actatropica.2006.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Revised: 04/20/2006] [Accepted: 08/02/2006] [Indexed: 11/20/2022]
Abstract
Cutaneous leishmaniasis (CL) is a painful, disfiguring and debilitating disease prevalent in Ethiopia and other countries around the world. In Ethiopia, CL is primarily caused by Leishmania aethiopica and less often by L. tropica and L. major. The intracellular survival mechanisms of Leishmania parasites are still not well understood. Recently a new family of antioxidant enzymes called peroxidoxins have been identified that play an important role in parasite survival. In this study, we have identified two distinct peroxidoxin genes (Pxn1 and Pxn2) that are part of a multi-gene family in L. aethiopica. Protein sequence analysis showed that Pxn1 and Pxn2 are highly homologous to peroxidoxins from other Leishmania species. We have found that L. aethiopica Pxn1 is predominantly expressed in amastigotes and stationary phase promastigotes, whereas Pxn2 is constitutively expressed in the different stages of the parasite. This pattern of RNA expression is consistent with patterns seen in some Leishmania species, but not all. Data from this study will be helpful in enhancing vaccine strategies and drug studies targeted towards peroxidoxins.
Collapse
Affiliation(s)
- Dagim Jirata
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | | | | | | |
Collapse
|
36
|
Harder S, Bente M, Isermann K, Bruchhaus I. Expression of a mitochondrial peroxiredoxin prevents programmed cell death in Leishmania donovani. EUKARYOTIC CELL 2006; 5:861-70. [PMID: 16682463 PMCID: PMC1459684 DOI: 10.1128/ec.5.5.861-870.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leishmania promastigote cells transmitted by the insect vector get phagocytosed by macrophages and convert into the amastigote form. During development and transformation, the parasites are exposed to various concentrations of reactive oxygen species, which can induce programmed cell death (PCD). We show that a mitochondrial peroxiredoxin (LdmPrx) protects Leishmania donovani from PCD. Whereas this peroxiredoxin is restricted to the kinetoplast area in promastigotes, it covers the entire mitochondrion in amastigotes, accompanied by dramatically increased expression. A similar change in the expression pattern was observed during the growth of Leishmania from the early to the late logarithmic phase. Recombinant LdmPrx shows typical peroxiredoxin-like enzyme activity. It is able to detoxify organic and inorganic peroxides and prevents DNA from hydroxyl radical-induced damage. Most notably, Leishmania parasites overexpressing this peroxiredoxin are protected from hydrogen peroxide-induced PCD. This protection is also seen in promastigotes grown to the late logarithmic phase, also characterized by high expression of this peroxiredoxin. Apparently, the physiological role of this peroxiredoxin is stabilization of the mitochondrial membrane potential and, as a consequence, inhibition of PCD through removal of peroxides.
Collapse
Affiliation(s)
- Simone Harder
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | | | | | |
Collapse
|
37
|
Sarma AD, Emerich DW. A comparative proteomic evaluation of culture grownvs nodule isolatedBradyrhizobium japonicum. Proteomics 2006; 6:3008-28. [PMID: 16688787 DOI: 10.1002/pmic.200500783] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Total protein extract of Bradyrhizobium japonicum cultivated in HM media were resolved by 2-D PAGE using narrow range IPG strips. More than 1200 proteins were detected, of which nearly 500 proteins were analysed by MALDI-TOF and 310 spots were tentatively identified. The present study describes at the proteome level a significant number of metabolic pathways related to important cellular events in free-living B. japonicum. A comparative analysis of proteomes of free-living and nodule residing bacteria revealed major differences and similarities between the two states. Proteins related to fatty acid, nucleic acid and cell surface synthesis were significantly higher in cultured cells. Nitrogen metabolism was more pronounced in bacteroids whereas carbon metabolism was similar in both states. Relative percentage of proteins related to global functions like protein synthesis, maturation & degradation and membrane transporters were similar in both forms, however, different proteins provided these functions in the two states.
Collapse
Affiliation(s)
- Annamraju D Sarma
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
38
|
Holzer TR, McMaster WR, Forney JD. Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 2006; 146:198-218. [PMID: 16430978 DOI: 10.1016/j.molbiopara.2005.12.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 11/27/2005] [Accepted: 12/16/2005] [Indexed: 11/22/2022]
Abstract
We examined the Leishmania mexicana transcriptome to identify differentially regulated mRNAs using high-density whole-genome oligonucleotide microarrays designed from the genome data of a closely related species, Leishmania major. Statistical analysis on array hybridization data representing 8156 predicted coding regions revealed 288 genes (3.5% of all genes) whose steady-state mRNA levels meet criteria for differential regulation between promastigotes and lesion-derived amastigotes. Interestingly, sample comparison of promastigotes to axenic amastigotes resulted in only 17 genes (0.2%) that meet the same statistical criteria for differential regulation. The reduced number of regulated genes is a consequence of an increase in the magnitude of the transcript levels in cells under axenic conditions. The expression data for a subset of genes was validated by quantitative PCR. Our studies show that interspecies hybridization on microarrays can be used to analyze closely related protozoan parasites, that axenic culture conditions may alter amastigote transcript abundance, and that there is only a relatively modest change in abundance of a few mRNAs between morphologically distinct promastigote and amastigote cultured cells. Leishmania may represent an alternative paradigm for eukaryotic differentiation with minimal contributions from changes in mRNA abundance.
Collapse
Affiliation(s)
- Timothy R Holzer
- Purdue University, Department of Biochemistry, West Lafayette, IN 47907-2063, USA
| | | | | |
Collapse
|
39
|
Nickel C, Trujillo M, Rahlfs S, Deponte M, Radi R, Becker K. Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Biol Chem 2006; 386:1129-36. [PMID: 16307478 DOI: 10.1515/bc.2005.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Thioredoxin peroxidase 1 (TPx1) of the malarial parasite Plasmodium falciparum is a 2-Cys peroxiredoxin involved in the detoxification of reactive oxygen species and - as shown here - of reactive nitrogen species. As novel electron acceptor of reduced TPx1, we characterised peroxynitrite; the rate constant for ONOO- reduction by the enzyme (1 x 10(6) M(-1) s(-1) at pH 7.4 and 37 degrees C) was determined by stopped-flow measurements. As reducing substrate of TPx1, we identified - aside from thioredoxin - plasmoredoxin; this 22-kDa protein occurs only in malarial parasites. When studying the potential roles of Cys74 and Cys170 of Tpx1 in catalysis, as well as in oligomerisation behaviour, we found that replacement of Cys74 by Ala influenced neither the dimerisation nor enzymatic activity of TPx1. In the C170A mutant, however, the kcat/Km for reduced Trx as a substrate was shown to be approximately 50-fold lower and, in contrast to the wild-type enzyme, covalently linked dimers were not formed. For the catalytic cycle of TPx1, we conclude that oxidation of the peroxidatic Cys50 by the oxidising substrate is followed by the formation of an intermolecular disulfide bond between Cys50 and Cys170' of the second subunit, which is then attacked by an external electron donor such as thioredoxin or plasmoredoxin.
Collapse
Affiliation(s)
- Christine Nickel
- Interdisciplinary Research Centre, Justus-Liebig-University, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Dutta S, Ray D, Kolli BK, Chang KP. Photodynamic sensitization of Leishmania amazonensis in both extracellular and intracellular stages with aluminum phthalocyanine chloride for photolysis in vitro. Antimicrob Agents Chemother 2006; 49:4474-84. [PMID: 16251285 PMCID: PMC1280132 DOI: 10.1128/aac.49.11.4474-4484.2005] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania amazonensis, a causative agent of cutaneous leishmaniasis, is susceptible in vitro to light-mediated cytolysis in the presence of or after pretreatment with the photosensitizer aluminum phthalocyanine chloride. Cytolysis of both promastigotes and axenic amastigotes required less photosensitizer (e.g., one microg.ml(-1)) and a lower light dose (e.g., 1.5 J.cm(-2)) than did the mammalian cells examined for comparison. Exposure of Leishmania cells to the photosensitizer alone had little effect on their viability, as judged from their motility, growth, and/or retention of green fluorescent proteins genetically engineered for episomal expression. Fluorimetric assays for cell-associated and released green fluorescence proteins proved to be even more sensitive for the evaluation of cell viability than microscopy for the evaluation of motility and/or integrity. Axenic amastigotes pretreated with the photosensitizer infected macrophages of the J774 line but were lysed intracellularly when the infected cells were exposed to light. Addition of the photosensitizer to the already infected cells produced no effect on their intracellular parasites. However, light irradiation lysed these macrophages and also those infected with parasites preincubated with the photosensitizer at a concentration of 5 microg.ml(-1) or higher. Photosensitized Leishmania cells are highly susceptible to cytolysis, apparently due to the generation of reactive oxidative species on light illumination, suggestive of inefficiency of their antioxidant mechanisms. Efficient delivery of photosensitizers to intracellular Leishmania is expected to increase their therapeutic potentials against leishmaniasis.
Collapse
Affiliation(s)
- Sujoy Dutta
- Department of Microbiology/Immunology, Chicago Medical School, Rosalind Franklin University, 3333 Green Bay Rd., N. Chicago, Illinois 60064, USA
| | | | | | | |
Collapse
|
41
|
Lin YC, Hsu JY, Chiang SC, Lee ST. Distinct overexpression of cytosolic and mitochondrial tryparedoxin peroxidases results in preferential detoxification of different oxidants in arsenite-resistant Leishmania amazonensis with and without DNA amplification. Mol Biochem Parasitol 2005; 142:66-75. [PMID: 15907561 DOI: 10.1016/j.molbiopara.2005.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
A cytosolic (cTXNPx) and a mitochondrial (mTXNPx) tryparedoxin peroxidase genes, cloned from wildtype Leishmania amazonensis clone 2-23 are homologous in nucleic acid and amino acid sequences to the respective genes described for L. infantum and L. chagasi. Surprisingly, as shown in the results of transcription assays, protein determination and fluorescent antibody detection in situ, cTXNPx is distinctly overexpressed in the cytoplasm of arsenite-resistant A variant with DNA amplification, whereas mTXNPx is distinctly overexpressed in the mitochondrion of arsenite-resistant A' variant without DNA amplification, although A and A' are arsenite-resistant variants derived from the same wildtype clone of L. amazonensis, and selected against arsenite under the same conditions. Since the tunicamycin-resistant variant (T) derived from the same W(2-23) clone and the hydroxyurea-resistant (Hu(2-6)) variant derived from clone W(2-6) do not show overexpression of these two genes, it is suggested that the distinct overexpression of cTXNPx and mTXNPx genes in arsenite-resistant A and A' variants is linked to arsenite selection process. These two genes in A and A' variants, and cTXNPx(+) and mTXNPx(+) transfectants are similar to the respective genes described for L. infantum and L. chagasi in terms of antioxidant activities against H2O2 and t-butyl hydroperoxide, in which cTXNPx is more resistant to H2O2, and mTXNPx is more resistant to t-butyl hydroperoxide than the wildtype. Both genes, however, are cross-resistant to NO as compared to the control wildtype. In the transfectants carrying cTXNPx and mTXNPx in inverted orientation, these two genes are expressed in a level lower than that in wildtype. The decreased expression was followed by increased sensitivity of these transfectants to the oxidants. This possibly is due to the formation of antisense mRNA in these transfectants that causes a specific downregulation of the respective genes.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Division of Infectious Diseases, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | | | | | | |
Collapse
|
42
|
Cheng XJ, Yoshihara E, Takeuchi T, Tachibana H. Molecular characterization of peroxiredoxin from Entamoeba moshkovskii and a comparison with Entamoeba histolytica. Mol Biochem Parasitol 2005; 138:195-203. [PMID: 15555731 DOI: 10.1016/j.molbiopara.2004.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 08/27/2004] [Indexed: 12/01/2022]
Abstract
Peroxiredoxin of the pathogenic parasite, Entamoeba histolytica, is thought to be involved in protection from oxidative attack by host phagocytic cells and endogenously generated hydrogen peroxide. In this study, we cloned peroxiredoxin genes from the nonpathogenic ameba, Entamoeba moshkovskii, and characterized the peroxiredoxin protein. The open reading frame of three cloned cDNAs was demonstrated to encode a polypeptide of 218 or 217 amino acids. Identity of the amino acid sequence of peroxiredoxins between E. moshkovskii and E. histolytica was considerably high (77-81%), but the N-terminus portion of E. moshkovskii peroxiredoxin was shorter than that of E. histolytica. A recombinant peroxiredoxin of E. moshkovskii expressed in Escherichia coli exhibited hydrogen peroxidase activity. Its K(m) and V(max) values of 35 microM and 0.07 micromol/min/mg protein were approximately 1 and 1.5 times greater than E. histolytica peroxiredoxin, respectively. In addition, the protective effect of E. moshkovskii peroxiredoxin against oxidative-nicking of supercoiled plasmid DNA was shown to be greater than that of E. histolytica peroxiredoxin. Confocal laser scanning microscopy, using polyclonal antibody against the recombinant E. moshkovskii peroxiredoxin, demonstrated that this protein was localized in the nucleus and cytoplasm of trophozoites, supporting its function as a protectant against DNA damage. Southern blot and real-time reverse transcription PCR analyses of the E. moshkovskii peroxiredoxin gene demonstrated that it was a multi-copy gene and its expression was comparable to that of E. histolytica. These results suggest that the antioxidant peroxiredoxin is important for protection against endogenously generated hydrogen peroxide in the nonpathogenic ameba.
Collapse
Affiliation(s)
- Xun-Jia Cheng
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | | | | | | |
Collapse
|
43
|
Rochette A, McNicoll F, Girard J, Breton M, Leblanc E, Bergeron MG, Papadopoulou B. Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp. Mol Biochem Parasitol 2005; 140:205-20. [PMID: 15760660 DOI: 10.1016/j.molbiopara.2005.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 01/14/2005] [Indexed: 11/23/2022]
Abstract
The ability of Leishmania amastigotes to survive within the drastic environmental changes encountered in the phagolysosomes of mammalian macrophages is heavily dependent on the developmental regulation of a variety of genes. The identification of genes that are expressed preferentially in the mammalian stage of the parasite should increase our understanding of the molecular mechanisms regulating stage-specific gene expression and of the determinants that control its intracellular survival and contribute to its pathogenesis. We report here detailed sequence characterization and structural organization of the amastin gene family in Leishmania major and Leishmania infantum and the study of their developmental gene regulation throughout the parasite's life cycle. Amastin surface proteins represent the largest developmentally regulated gene family reported so far in Leishmania comprising up to 45 members. All the members of the amastin gene family in both Leishmania and Trypanosoma species share a similar structural organization and contain a highly conserved 11 amino acid extracellular domain, which is unique to amastin proteins. The majority of the amastin gene homologs are specifically expressed in the amastigote stage of the parasite. Three distinct RNA elements were identified in the 3'-untranslated regions (3'UTR) of the amastin transcripts. The majority of these transcripts contain a conserved 450 nt cis-acting 3'UTR element shown previously to regulate stage-specific gene expression at the level of translation, which suggests that several amastin homologs may be regulated by a similar mechanism of translational control inside the macrophage. These findings further highlight the unique features of gene expression control in Leishmania.
Collapse
Affiliation(s)
- Annie Rochette
- Infectious Diseases Research Center, RC-709, CHUL Research Center and Department of Medical Biology, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Ste-Foy (QC), Que., Canada G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
44
|
Bekerman R, Segal G, Ron EZ, Rosenberg E. The AlnB protein of the bioemulsan alasan is a peroxiredoxin. Appl Microbiol Biotechnol 2004; 66:536-41. [PMID: 15630518 DOI: 10.1007/s00253-004-1712-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/09/2004] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
The bioemulsifier of Acinetobacter radioresistens KA53, referred to as alasan, is a high molecular weight complex of a polysaccharide and three proteins (AlnA, AlnB and AlnC). AlnA has previously been shown to be an OmpA-like protein that is largely responsible for the emulsifying activity of alasan. To further elucidate the nature of alasan, the gene coding for AlnB was cloned, sequenced and overexpressed in Escherichia coli. The overall 561 bp sequence of the hypothetical AlnB showed strong homology, including all conserved regions and residues known to be essential for enzymatic activity, to the ubiquitous family of thiol-specific antioxidant enzymes known as peroxiredoxins. Transgenic E. coli overexpressing AlnB exhibited increased resistance to cumene hydroperoxide both in liquid culture and on agar medium. Recombinant AlnB had no emulsifying activity but stabilized oil-in-water emulsion generated by AlnA.
Collapse
Affiliation(s)
- R Bekerman
- Department of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | | | | | | |
Collapse
|
45
|
Trujillo M, Budde H, Piñeyro MD, Stehr M, Robello C, Flohé L, Radi R. Trypanosoma brucei and Trypanosoma cruzi Tryparedoxin Peroxidases Catalytically Detoxify Peroxynitrite via Oxidation of Fast Reacting Thiols. J Biol Chem 2004; 279:34175-82. [PMID: 15155760 DOI: 10.1074/jbc.m404317200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage activation is one of the hallmarks observed in trypanosomiasis, and the parasites must cope with the resulting oxidative burden, which includes the production of peroxynitrite, an unusual peroxo-acid that acts as a strong oxidant and trypanocidal molecule. Cytosolic tryparedoxin peroxidase (cTXNPx) has been recently identified as essential for oxidative defense in trypanosomatids. This peroxiredoxin decomposes peroxides using tryparedoxin (TXN) as electron donor, which in turn is reduced by dihydrotrypanothione. In this work, we studied the kinetics of the reaction of peroxynitrite with the different thiol-containing components of the cytosolic tryparedoxin peroxidase system in T. brucei (Tb) and T. cruzi (Tc), namely trypanothione, TXN, and cTXNPx. We found that whereas peroxynitrite reacted with dihydrotrypanothione and TbTXN at moderate rates (7200 and 3500 m(-1) s(-1), respectively, at pH 7.4 and 37 degrees C) and within the range of typical thiols, the second order rate constants for the reaction of peroxynitrite with reduced TbcTXNPx and TccTXNPx were 9 x 10(5) and 7.2 x 10(5) m(-1) s(-1) at pH 7.4 and 37 degrees C, respectively. This reactivity was dependent on a highly reactive cTXNPx thiol group identified as cysteine 52. Competition experiments showed that TbcTXNPx inhibited other fast peroxynitrite-mediated processes, such as the oxidation of Mn(3+)-porphyrins. Moreover, steady-state kinetic studies indicate that peroxynitrite-dependent TbcTXNPx and TccTXNPx oxidation is readily reverted by TXN, supporting that these peroxiredoxins would be not only a preferential target for peroxynitrite reactivity but also be able to act catalytically in peroxynitrite decomposition in vivo.
Collapse
Affiliation(s)
- Madia Trujillo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda Gral. Flores 2125, 11800 Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
46
|
Castro H, Sousa C, Novais M, Santos M, Budde H, Cordeiro-da-Silva A, Flohé L, Tomás AM. Two linked genes of Leishmania infantum encode tryparedoxins localised to cytosol and mitochondrion. Mol Biochem Parasitol 2004; 136:137-47. [PMID: 15478793 DOI: 10.1016/j.molbiopara.2004.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tryparedoxins are components of the hydroperoxide detoxification cascades of Kinetoplastida, where they mediate electron transfer between trypanothione and a peroxiredoxin, which reduces hydroperoxides and possibly peroxynitrite. Tryparedoxins may also be involved in DNA synthesis, by their capacity to reduce ribonucleotide reductase. Here we report on the isolation of two tryparedoxin genes from Leishmania infantum, Li7XN1 and LiTXN2, which share the same genetic locus. These genes are both single copy and code for two active tryparedoxin enzymes, LiTXN1 and LiTXN2, with different biochemical and biological features. LiTXN1 is located to the cytosol and is upregulated in the infectious forms of the parasite, strongly suggesting that it might play an important role during infection. LiTXN2 is the first mitochondrial tryparedoxin described in Kinetoplastida. Biochemical assays performed on the purified recombinant proteins have shown that LiTXN1 preferentially reduces the cytosolic L. infantum peroxiredoxins, LicTXNPx1 and LicTXNPx2, whereas LiTXN2 has a higher specific activity for a mitochondrial peroxiredoxin, LimTXNPx. Kinetically, the two tryparedoxins follow a ping-pong mechanism and show no saturation. We suggest that LiTXN1 and LiTXN2 are part of two distinct antioxidant machineries, one cytosolic, the other mitochondrial, that complement each other to ensure effective defence from several sources of oxidants throughout the development of L. infantum.
Collapse
Affiliation(s)
- Helena Castro
- Institute for Molecular and Cell Biology, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Nugent PG, Karsani SA, Wait R, Tempero J, Smith DF. Proteomic analysis of Leishmania mexicana differentiation. Mol Biochem Parasitol 2004; 136:51-62. [PMID: 15138067 DOI: 10.1016/j.molbiopara.2004.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/08/2004] [Accepted: 02/11/2004] [Indexed: 11/20/2022]
Abstract
We have resolved the proteome of axenically differentiated Leishmania mexicana parasites by two-dimensional gel electrophoresis (2DE), employing optimised, robust and reproducible procedures, and visualised (by silver staining) approximately 2000 protein species in each of three developmental stages: procyclic promastigotes, metacyclic promastigotes and amastigotes. This analysis has used homogeneous populations of these parasite stages, characterised according to their morphology, protease and nuclease activity profiles and expression of stage-specific antigens. Following comparison of the whole proteome profiles between stages, 47 spots were found to be stage-specific, while a further 100 spots changed in intensity during differentiation. The majority of "unique" spots were expressed during the infective stages of parasite differentiation, metacyclic promastigotes and amastigotes. CapLC-QTOF mass spectrometry has allowed the identification of 47 protein species to date, including a number which are only detected in the amastigote stage. Proteins identified are members of eight functionally related groupings, some of which are implicated in infectivity and host-parasite interactions.
Collapse
Affiliation(s)
- Philip G Nugent
- Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Centre for Molecular Microbiology and Infection, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
48
|
Rouhier N, Gelhaye E, Corbier C, Jacquot JP. Active site mutagenesis and phospholipid hydroperoxide reductase activity of poplar type II peroxiredoxin. PHYSIOLOGIA PLANTARUM 2004; 120:57-62. [PMID: 15032877 DOI: 10.1111/j.0031-9317.2004.0203.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The nature of the active site and the substrate specificity of poplar type II peroxiredoxin, an enzyme which preferentially uses glutaredoxin as an electron donor, were investigated in this study. The type II peroxiredoxin is able to use phospholipid hydroperoxide nearly as efficiently as hydrogen peroxide. Two of the hyper-conserved amino acid residues in peroxiredoxins have been altered, by site-directed mutagenesis, generating the mutants T48V and R129Q. The two mutant proteins are inactive with hydrogen peroxide or tertiary butyl hydroperoxide as substrates. On the other hand, the mutant enzymes catalyse the degradation of cumene hydroperoxide with low efficiency. This suggests that the thiol-dependent regeneration process of the catalytic cysteine is not affected by the mutations and that all substrates are not accommodated identically in the active site.
Collapse
Affiliation(s)
- Nicolas Rouhier
- UMR 1136 Interaction Arbres Microorganismes INRA-UHP. Université Henri Poincaré, Faculté des Sciences BP 239, 54506 Vandoeuvre Cedex France LCM3B, Groupe Biocristallographie, UMR 7036, UHP, Faculté des Sciences, 54506 Vandoeuvre Cedex, France
| | | | | | | |
Collapse
|
49
|
Abraham EG, Islam S, Srinivasan P, Ghosh AK, Valenzuela JG, Ribeiro JMC, Kafatos FC, Dimopoulos G, Jacobs-Lorena M. Analysis of the Plasmodium and Anopheles transcriptional repertoire during ookinete development and midgut invasion. J Biol Chem 2003; 279:5573-80. [PMID: 14627712 DOI: 10.1074/jbc.m307582200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plasmodium, the causative agent of malaria, has to undergo sexual differentiation and development in anopheline mosquitoes for transmission to occur. To isolate genes specifically induced in both organisms during the early stages of Plasmodium differentiation in the mosquito, two cDNA libraries were constructed, one enriched for sequences expressed in differentiating Plasmodium berghei ookinetes and another enriched for sequences expressed in Anopheles stephensi guts containing invading ookinetes and early oocysts. Sequencing of 457 ookinete library clones and 652 early oocyst clones represented 175 and 346 unique expressed sequence tags, respectively. Nine of 13 Plasmodium and four of the five Anopheles novel expressed sequence tags analyzed on Northern blots were induced during ookinete differentiation and mosquito gut invasion. Ancaspase-7, an Anopheles effector caspase, is proteolytically activated during Plasmodium invasion of the midgut. WARP, a gene encoding a Plasmodium surface protein with a von Willebrand factor A-like adhesive domain, is expressed only in ookinetes and early oocysts. An anti-WARP polyclonal antibody strongly inhibits (70-92%) Plasmodium development in the mosquito, making it a candidate antigen for transmission blocking vaccines. The present results and those of an accompanying report (Srinivasan, P., Abraham, E. G., Ghosh, A. K., Valenzuela, J., Ribeiro, J. M. C., Dimopoulos G., Kafatos, F. C., Adams, J. H., and Jacobs-Lorena, M. (2004) J. Biol. Chem. 279, 5581-5587) provide the foundation for further analysis of Plasmodium differentiation in the mosquito and of mosquito responses to the parasite.
Collapse
Affiliation(s)
- Eappen G Abraham
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Akerman SE, Müller S. 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol Biochem Parasitol 2003; 130:75-81. [PMID: 12946843 DOI: 10.1016/s0166-6851(03)00161-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peroxiredoxins (Trx-Px) are ubiquitous antioxidant enzymes that catalyse the thioredoxin-dependent reduction of hydroperoxides. The number of characteristic active site (VCP/T) motifs defines these proteins as 1-Cys and 2-Cys Trx-Px. Steady-state kinetic parameters of Plasmodium falciparum 2-Cys Trx-Px (PfTrx-Px1) were determined using stopped flow rapid kinetics. The bi-substrate reaction displays ping-pong kinetics and the K(m) values for H2O2 and thioredoxin were determined to be 0.78+/-0.14 microM and 18.94+/-3.01 microM, respectively. The Vmax(app) and kcat(app) for H2O2 were found to be 4+/-0.6 U mg(-1) and 1.67+/-0.25 s(-1), respectively and those for thioredoxin are 23.0+/-0.2 U mg(-1) and 9.65+/-0.1 s(-1), emphasising the specificity of the enzyme for the substrate H2O2. After subjection to exogenous and endogenous oxidative stress, P. falciparum blood stage forms showed a marked elevation of PfTrx-Px1 mRNA and protein levels consistent with the hypothesis that it is an important component of the parasite's antioxidant machinery. Gel filtration, cross-linking and electron microscopy (EM) revealed that the protein forms decamers consisting of pentamers of homodimers that have a doughnut-like shape consistent with the structures of related proteins. No dimeric forms of the protein were detectable after gel filtration suggesting that PfTrx-Px1 predominantly exists as an oligomer.
Collapse
Affiliation(s)
- Susan E Akerman
- Division of Biological Chemistry and Molecular Microbiology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|