1
|
Takizawa N, Fujiwara T, Yamasaki M, Saito A, Fukao A, Nomoto A, Mizumoto K. The essential role for the RNA triphosphatase Cet1p in nuclear import of the mRNA capping enzyme Cet1p-Ceg1p complex of Saccharomyces cerevisiae. PLoS One 2013; 8:e78000. [PMID: 24205062 PMCID: PMC3813497 DOI: 10.1371/journal.pone.0078000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022] Open
Abstract
mRNA capping is the first cotranscriptional modification of mRNA in the nucleus. In Saccharomyces cerevisiae, the first two steps of mRNA capping are catalyzed by the RNA triphosphatase Cet1p and the RNA guanylyltransferase Ceg1p. Cet1p and Ceg1p interact to form a mRNA capping enzyme complex and the guanylyltransferase activity of Ceg1p is stimulated by binding with Cet1p. The Cet1p-Ceg1p complex needs to be transported into the nucleus, where mRNA capping occurs. However, the molecular mechanism of nuclear transport of the Cet1p-Ceg1p complex is not known. Here, we show that Cet1p is responsible and that the Cet1p-Ceg1p interaction is essential for the nuclear localization of the Cet1p-Ceg1p complex. The results indicate that the Cet1p-Ceg1p interaction is important not only for the activation of Ceg1p, but also for nuclear import of the complex.
Collapse
Affiliation(s)
- Naoki Takizawa
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
- * E-mail:
| | - Toshinobu Fujiwara
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Manabu Yamasaki
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Ayako Saito
- Department of Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Akira Fukao
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Akio Nomoto
- Laboratory of Basic Biology, Institute of Microbial Chemistry, Tokyo, Japan
| | - Kiyohisa Mizumoto
- Department of Biochemistry, School of Pharmaceutical Sciences, Kitasato University, Tokyo, Japan
| |
Collapse
|
2
|
Ghosh A, Lima CD. Enzymology of RNA cap synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:152-72. [PMID: 21956912 DOI: 10.1002/wrna.19] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 5' guanine-N7 methyl cap is unique to cellular and viral messenger RNA (mRNA) and is the first co-transcriptional modification of mRNA. The mRNA cap plays a pivotal role in mRNA biogenesis and stability, and is essential for efficient splicing, mRNA export, and translation. Capping occurs by a series of three enzymatic reactions that results in formation of N7-methyl guanosine linked through a 5'-5' inverted triphosphate bridge to the first nucleotide of a nascent transcript. Capping of cellular mRNA occurs co-transcriptionally and in vivo requires that the capping apparatus be physically associated with the RNA polymerase II elongation complex. Certain capped mRNAs undergo further methylation to generate distinct cap structures. Although mRNA capping is conserved among viruses and eukaryotes, some viruses have adopted strategies for capping mRNA that are distinct from the cellular mRNA capping pathway.
Collapse
Affiliation(s)
- Agnidipta Ghosh
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | |
Collapse
|
3
|
Gu M, Rajashankar KR, Lima CD. Structure of the Saccharomyces cerevisiae Cet1-Ceg1 mRNA capping apparatus. Structure 2010; 18:216-27. [PMID: 20159466 DOI: 10.1016/j.str.2009.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 12/06/2009] [Accepted: 12/15/2009] [Indexed: 11/16/2022]
Abstract
The 5' guanine-N7 cap is the first cotranscriptional modification of messenger RNA. In Saccharomyces cerevisiae, the first two steps in capping are catalyzed by the RNA triphosphatase Cet1 and RNA guanylyltransferase Ceg1, which form a complex that is directly recruited to phosphorylated RNA polymerase II (RNAP IIo), primarily via contacts between RNAP IIo and Ceg1. A 3.0 A crystal structure of Cet1-Ceg1 revealed a 176 kDa heterotetrameric complex composed of one Cet1 homodimer that associates with two Ceg1 molecules via interactions between the Ceg1 oligonucleotide binding domain and an extended Cet1 WAQKW amino acid motif. The WAQKW motif is followed by a flexible linker that would allow Ceg1 to achieve conformational changes required for capping while maintaining interactions with both Cet1 and RNAP IIo. The impact of mutations as assessed through genetic analysis in S. cerevisiae is consonant with contacts observed in the Cet1-Ceg1 structure.
Collapse
Affiliation(s)
- Meigang Gu
- Structural Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
4
|
Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey SE, Bisaillon M. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA (NEW YORK, N.Y.) 2009; 15:2340-2350. [PMID: 19850911 PMCID: PMC2779676 DOI: 10.1261/rna.1609709] [Citation(s) in RCA: 186] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 08/31/2009] [Indexed: 05/28/2023]
Abstract
The 5'-end of the flavivirus genome harbors a methylated (m7)GpppA(2'OMe) cap structure, which is generated by the virus-encoded RNA triphosphatase, RNA (guanine-N7) methyltransferase, nucleoside 2'-O-methyltransferase, and RNA guanylyltransferase. The presence of the flavivirus guanylyltransferase activity in NS5 has been suggested by several groups but has not been empirically proven. Here we provide evidence that the N-terminus of the flavivirus NS5 protein is a true RNA guanylyltransferase. We demonstrate that GTP can be used as a substrate by the enzyme to form a covalent GMP-enzyme intermediate via a phosphoamide bond. Mutational studies also confirm the importance of a specific lysine residue in the GTP binding site for the enzymatic activity. We show that the GMP moiety can be transferred to the diphosphate end of an RNA transcript harboring an adenosine as the initiating residue. We also demonstrate that the flavivirus RNA triphosphatase (NS3 protein) stimulates the RNA guanylyltransferase activity of the NS5 protein. Finally, we show that both enzymes are sufficient and necessary to catalyze the de novo formation of a methylated RNA cap structure in vitro using a triphosphorylated RNA transcript. Our study provides biochemical evidence that flaviviruses encode a complete RNA capping machinery.
Collapse
Affiliation(s)
- Moheshwarnath Issur
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Massayuki Kikuti C, Tersariol ILS, Schenkman S. Divalent metal requirements for catalysis and stability of the RNA triphosphatase from Trypanosoma cruzi. Mol Biochem Parasitol 2006; 150:83-95. [PMID: 16887207 DOI: 10.1016/j.molbiopara.2006.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/25/2022]
Abstract
RNA triphosphatases act in the first step of the mRNA capping process, removing the gamma-phosphoryl group from the 5' end of nascent RNA. A metal-dependent catalysis is found in the enzymes from trypanosomes and several other lower eukaryotes. This contrasts with the cysteine-dependent activity of the corresponding enzymes of mammals, a difference that points to these enzymes as potential targets for drug design. This work describes the identification, expression, purification, enzyme kinetics, and the role of divalent metal in the ATPase activity of the RNA triphosphatase from Trypanosoma cruzi, the agent of Chagas' disease, and compares it with the previously characterized enzyme from Trypanosoma brucei. Sequence similarity of the T. cruzi enzyme with the RNA triphosphatase of Saccharomyces cerevisiae indicates that a tunnel domain containing the divalent metal forms its active site. Based on enzyme kinetics, circular dichroism, and intrinsic fluorescence analysis, a kinetic mechanism for the ATPase activity of the T. cruzi tunnel triphosphatase is proposed. A single metal is sufficient to interact with the enzyme through the formation of a productive MnATP-enzyme complex, while free ATP inhibits activity. Manganese is also required for the tunnel stability of the T. cruzi enzyme, while the T. brucei homologue remains stable in the absence of metal, as shown for other triphosphatases. These findings may be useful to devise specific triphosphatase inhibitors to the T. cruzi enzyme.
Collapse
Affiliation(s)
- Carlos Massayuki Kikuti
- Departamento de Microbiologia, Imunologia e Parasitologia - Universidade Federal de São Paulo, 04023-062 São Paulo, Brazil
| | | | | |
Collapse
|
7
|
Hausmann S, Pei Y, Shuman S. Homodimeric quaternary structure is required for the in vivo function and thermal stability of Saccharomyces cerevisiae and Schizosaccharomyces pombe RNA triphosphatases. J Biol Chem 2003; 278:30487-96. [PMID: 12788946 DOI: 10.1074/jbc.m303060200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae Cet1 and Schizosaccharomyces pombe Pct1 are the essential RNA triphosphatase components of the mRNA capping apparatus of budding and fission yeast, respectively. Cet1 and Pct1 share a baroque active site architecture and a homodimeric quaternary structure. The active site is located within a topologically closed hydrophilic beta-barrel (the triphosphate tunnel) that rests on a globular core domain (the pedestal) composed of elements from both protomers of the homodimer. Earlier studies of the effects of alanine cluster mutations at the crystallographic dimer interface of Cet1 suggested that homodimerization is important for triphosphatase function in vivo, albeit not for catalysis. Here, we studied the effects of 14 single-alanine mutations on Cet1 activity and thereby pinpointed Asp280 as a critical side chain required for dimer formation. We find that disruption of the dimer interface is lethal in vivo and renders Cet1 activity thermolabile at physiological temperatures in vitro. In addition, we identify individual residues within the pedestal domain (Ile470, Leu519, Ile520, Phe523, Leu524, and Ile530) that stabilize Cet1 in vivo and in vitro. In the case of Pct1, we show that dimerization depends on the peptide segment 41VPKIEMNFLN50 located immediately prior to the start of the Pct1 catalytic domain. Deletion of this peptide converts Pct1 into a catalytically active monomer that is defective in vivo in S. pombe and hypersensitive to thermal inactivation in vitro. Our findings suggest an explanation for the conservation of quaternary structure in fungal RNA triphosphatases, whereby the delicate tunnel architecture of the active site is stabilized by the homodimeric pedestal domain.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
8
|
Sawaya R, Shuman S. Mutational analysis of the guanylyltransferase component of Mammalian mRNA capping enzyme. Biochemistry 2003; 42:8240-9. [PMID: 12846573 DOI: 10.1021/bi034396d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA guanylyltransferase is an essential enzyme that catalyzes the second of three steps in the synthesis of the 5'-cap structure of eukaryotic mRNA. Here we conducted a mutational analysis of the guanylyltransferase domain of the mouse capping enzyme Mce1. We introduced 50 different mutations at 22 individual amino acids and assessed their effects on Mce1 function in vivo in yeast. We identified 16 amino acids as being essential for Mce1 activity (Arg299, Arg315, Asp343, Glu345, Tyr362, Asp363, Arg380, Asp438, Gly439, Lys458, Lys460, Asp468, Arg530, Asp532, Lys533, and Asn537) and clarified structure-activity relationships by testing the effects of conservative substitutions. The new mutational data for Mce1, together with prior mutational studies of Saccharomyces cerevisiae guanylyltransferase and the crystal structures of Chlorella virus and Candida albicans guanylyltransferases, provide a coherent picture of the functional groups that comprise and stabilize the active site. Our results extend and consolidate the hypothesis of a shared structural basis for catalysis by RNA capping enzymes, DNA ligases, and RNA ligases, which comprise a superfamily of covalent nucleotidyl transferases defined by a constellation of conserved motifs. Analysis of the effects of motif VI mutations on Mce1 guanylyltransferase activity in vitro highlights essential roles for Arg530, Asp532, Lys533, and Asn537 in GTP binding and nucleotidyl transfer.
Collapse
Affiliation(s)
- Rana Sawaya
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
9
|
Fabrega C, Shen V, Shuman S, Lima CD. Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II. Mol Cell 2003; 11:1549-61. [PMID: 12820968 DOI: 10.1016/s1097-2765(03)00187-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The 2.7 A structure of Candida albicans RNA guanylyltransferase Cgt1 cocrystallized with a carboxy-terminal domain (CTD) peptide composed of four Ser5-PO4 YSPTSPS heptad repeats illuminates distinct CTD-docking sites localized to the Cgt1 N-terminal nucleotidyl transferase domain. Tyr1, Pro3, Pro6, and Ser5-PO4 side chains from each of two YSPTSPS repeats contribute to the interface. Comparison to the Pin1-CTD structure shows that the CTD can assume markedly different conformations that are templated by particular binding partners. Structural plasticity combined with remodeling of CTD primary structure by kinases and phosphatases provides a versatile mechanism by which the CTD can recruit structurally dissimilar proteins during transcription. A binding site for the RNA triphosphatase component of the capping apparatus was also uncovered within the Cgt1 OB domain.
Collapse
Affiliation(s)
- Carme Fabrega
- Biochemistry Department, Structural Biology Program, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
10
|
Srinivasan P, Piano F, Shatkin AJ. mRNA capping enzyme requirement for Caenorhabditis elegans viability. J Biol Chem 2003; 278:14168-73. [PMID: 12576475 DOI: 10.1074/jbc.m212102200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Capping of the initiated 5' ends of RNA polymerase II products is evolutionarily and functionally conserved from yeasts to humans. The m(7)GpppN cap promotes RNA stability, processing, transport, and translation. Deletion of capping enzymes in yeasts was shown to be lethal due to rapid exonucleolytic degradation of uncapped transcripts or failure of capped but unmethylated RNA to initiate protein synthesis. Using RNA interference and Caenorhabditis elegans we have found that RNA capping is also essential for metazoan viability. C. elegans bifunctional capping enzyme was cloned, and capping activity by the expressed protein as well as growth complementation of yeast deletion strains missing either RNA triphosphatase or guanylyltransferase required terminal sequences not present in the previously isolated cel-1 clone. By RNA interference analysis we show that cel-1 is required for embryogenesis. cel-1(RNAi) embryos formed cytoplasmic granules characteristic of a phenocluster of RNA processing genes and died early in development.
Collapse
Affiliation(s)
- Priya Srinivasan
- Center for Advanced Biotechnology and Medicine and Graduate Program in Biochemistry, Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA
| | | | | |
Collapse
|
11
|
Takagi T, Walker AK, Sawa C, Diehn F, Takase Y, Blackwell TK, Buratowski S. The Caenorhabditis elegans mRNA 5'-capping enzyme. In vitro and in vivo characterization. J Biol Chem 2003; 278:14174-84. [PMID: 12576476 DOI: 10.1074/jbc.m212101200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic mRNA capping enzymes are bifunctional, carrying both RNA triphosphatase (RTPase) and guanylyltransferase (GTase) activities. The Caenorhabditis elegans CEL-1 capping enzyme consists of an N-terminal region with RTPase activity and a C-terminal region that resembles known GTases, However, CEL-1 has not previously been shown to have GTase activity. Cloning of the cel-1 cDNA shows that the full-length protein has 623 amino acids, including an additional 38 residues at the C termini and 12 residues at the N termini not originally predicted from the genomic sequence. Full-length CEL-1 has RTPase and GTase activities, and the cDNA can functionally replace the capping enzyme genes in Saccharomyces cerevisiae. The CEL-1 RTPase domain is related by sequence to protein-tyrosine phosphatases; therefore, mutagenesis of residues predicted to be important for RTPase activity was carried out. CEL-1 uses a mechanism similar to protein-tyrosine phosphatases, except that there was not an absolute requirement for a conserved acidic residue that acts as a proton donor. CEL-1 shows a strong preference for RNA substrates of at least three nucleotides in length. RNA-mediated interference in C. elegans embryos shows that lack of CEL-1 causes development to arrest with a phenotype similar to that seen when RNA polymerase II elongation activity is disrupted. Therefore, capping is essential for gene expression in metazoans.
Collapse
Affiliation(s)
- Toshimitsu Takagi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Takagi T, Cho EJ, Janoo RTK, Polodny V, Takase Y, Keogh MC, Woo SA, Fresco-Cohen LD, Hoffman CS, Buratowski S. Divergent subunit interactions among fungal mRNA 5'-capping machineries. EUKARYOTIC CELL 2002; 1:448-57. [PMID: 12455993 PMCID: PMC118010 DOI: 10.1128/ec.1.3.448-457.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2002] [Accepted: 03/25/2002] [Indexed: 02/02/2023]
Abstract
The Saccharomyces cerevisiae mRNA capping enzyme consists of two subunits: an RNA 5'-triphosphatase (RTPase) and GTP::mRNA guanylyltransferase (GTase). The GTase subunit (Ceg1) binds to the phosphorylated carboxyl-terminal domain of the largest subunit (CTD-P) of RNA polymerase II (pol II), coupling capping with transcription. Ceg1 bound to the CTD-P is inactive unless allosterically activated by interaction with the RTPase subunit (Cet1). For purposes of comparison, we characterize here the related GTases and RTPases from the yeasts Schizosaccharomyces pombe and Candida albicans. Surprisingly, the S. pombe capping enzyme subunits do not interact with each other. Both can independently interact with CTD-P of pol II, and the GTase is not repressed by CTD-P binding. The S. pombe RTPase gene (pct1+) is essential for viability. Pct1 can replace the S. cerevisiae RTPase when GTase activity is supplied by the S. pombe or mouse enzymes but not by the S. cerevisiae GTase. The C. albicans capping enzyme subunits do interact with each other. However, this interaction is not essential in vivo. Our results reveal an unexpected diversity among the fungal capping machineries.
Collapse
Affiliation(s)
- Toshimitsu Takagi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 021151, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Current awareness on yeast. Yeast 2002; 19:285-92. [PMID: 11816036 DOI: 10.1002/yea.821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (3 weeks journals - search completed 5th. Dec. 2001)
Collapse
|
14
|
Hausmann S, Vivarès CP, Shuman S. Characterization of the mRNA capping apparatus of the microsporidian parasite Encephalitozoon cuniculi. J Biol Chem 2002; 277:96-103. [PMID: 11687593 DOI: 10.1074/jbc.m109649200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A scheme of eukaryotic phylogeny has been suggested based on the structure and physical linkage of the enzymes that catalyze mRNA cap formation. Here we show that the intracellular parasite Encephalitozoon cuniculi encodes a complete mRNA capping apparatus consisting of separate triphosphatase (EcCet1), guanylyltransferase (EcCeg1), and methyltransferase (Ecm1) enzymes, which we characterize biochemically and genetically. The triphosphatase EcCet1 belongs to a metal-dependent phosphohydrolase family that includes the triphosphatase components of the capping apparatus of fungi, DNA viruses, and the malaria parasite Plasmodium falciparum. These enzymes are structurally and mechanistically unrelated to the metal-independent cysteine phosphatase-type RNA triphosphatases found in metazoans and plants. Our findings support the proposed evolutionary connection between microsporidia and fungi, and they place fungi and protozoa in a common lineage distinct from that of metazoans and plants. RNA triphosphatase presents an attractive target for antiprotozoal/antifungal drug development.
Collapse
Affiliation(s)
- Stephane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | | | |
Collapse
|
15
|
Ho CK, Shuman S. Trypanosoma brucei RNA triphosphatase. Antiprotozoal drug target and guide to eukaryotic phylogeny. J Biol Chem 2001; 276:46182-6. [PMID: 11553645 DOI: 10.1074/jbc.m108706200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mRNA capping apparatus of the protozoan parasite Trypanosoma brucei consists of separately encoded RNA triphosphatase and RNA guanylyltransferase enzymes. The triphosphatase TbCet1 is a member of a new family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and the malaria parasite Plasmodium falciparum. The protozoal/fungal enzymes are structurally and mechanistically unrelated to the RNA triphosphatases of metazoans and plants. These results highlight the potential for discovery of broad spectrum antiprotozoal and antifungal drugs that selectively block the capping of pathogen-encoded mRNAs. We propose a scheme of eukaryotic phylogeny based on the structure of RNA triphosphatase and its physical linkage to the guanylyltransferase component of the capping apparatus.
Collapse
Affiliation(s)
- C K Ho
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
16
|
Pei Y, Schwer B, Saiz J, Fisher RP, Shuman S. RNA triphosphatase is essential in Schizosaccharomyces pombe and Candida albicans. BMC Microbiol 2001; 1:29. [PMID: 11737862 PMCID: PMC60989 DOI: 10.1186/1471-2180-1-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Accepted: 11/20/2001] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The first two steps in the capping of cellular mRNAs are catalyzed by the enzymes RNA triphosphatase and RNA guanylyltransferase. Although structural and mechanistic differences between fungal and mammalian RNA triphosphatases recommend this enzyme as a potential antifungal target, it has not been determined if RNA triphosphatase is essential for the growth of fungal species that cause human disease. RESULTS We show by classical genetic methods that the triphosphatase (Pct1) and guanylyltransferase (Pce1) components of the capping apparatus in the fission yeast Schizosaccharomyces pombe are essential for growth. We were unable to disrupt both alleles of the Candida albicans RNA triphosphatase gene CaCET1, implying that the RNA triphosphatase enzyme is also essential for growth of C. albicans, a human fungal pathogen. CONCLUSIONS Our results provide the first genetic evidence that cap synthesis is essential for growth of an organism other than Saccharomyces cerevisiae and they validate RNA triphosphatase as a target for antifungal drug discovery.
Collapse
Affiliation(s)
- Yi Pei
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Julia Saiz
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Robert P Fisher
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| | - Stewart Shuman
- Molecular Biology and Cell Biology Programs, Sloan-Kettering Institute, New York, NY 10021, USA
| |
Collapse
|