1
|
Severin S, Gratacap MP, Bouvet L, Borret M, Kpotor AO, Chicanne G, Xuereb JM, Viaud J, Payrastre B. Phosphoinositides take a central stage in regulating blood platelet production and function. Adv Biol Regul 2024; 91:100992. [PMID: 37793962 DOI: 10.1016/j.jbior.2023.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Blood platelets are produced by megakaryocytes through a complex program of differentiation and play a critical role in hemostasis and thrombosis. These anucleate cells are the target of antithrombotic drugs that prevent them from clumping in cardiovascular disease conditions. Platelets also significantly contribute to various aspects of physiopathology, including interorgan communications, healing, inflammation, and thromboinflammation. Their production and activation are strictly regulated by highly elaborated mechanisms. Among them, those involving inositol lipids have drawn the attention of researchers. Phosphoinositides represent the seven combinatorially phosphorylated forms of the inositol head group of inositol lipids. They play a crucial role in regulating intracellular mechanisms, such as signal transduction, actin cytoskeleton rearrangements, and membrane trafficking, either by generating second messengers or by directly binding to specific domains of effector proteins. In this review, we will explore how phosphoinositides are implicated in controlling platelet production by megakaryocytes and in platelet activation processes. We will also discuss the diversity of phosphoinositides in platelets, their role in granule biogenesis and maintenance, as well as in integrin signaling. Finally, we will address the discovery of a novel pool of phosphatidylinositol 3-monophosphate in the outerleaflet of the plasma membrane of human and mouse platelets.
Collapse
Affiliation(s)
- Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Marie-Pierre Gratacap
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Laura Bouvet
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Maxime Borret
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Afi Oportune Kpotor
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Jean-Marie Xuereb
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Julien Viaud
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France
| | - Bernard Payrastre
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM UMR-1297 and Université Paul Sabatier, F-31432, Toulouse, France; Laboratoire d'Hématologie, Centre de Référence des Pathologies Plaquettaires, Centre Hospitalier Universitaire de Toulouse Rangueil, F-31432, Toulouse, France.
| |
Collapse
|
2
|
Pawinwongchai J, Jangprasert P, Nilsri N, Israsena N, Rojnuckarin P. Mutated JAK2 signal transduction in human Induced Pluripotent Stem Cell (iPSC)-derived Megakaryocytes. Platelets 2021; 33:700-708. [PMID: 34749590 DOI: 10.1080/09537104.2021.1981850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Janus kinase 2 (JAK2) gene mutations are the main drivers for polycythemia vera (PV) and essential thrombocythemia (ET). The mechanisms of single altered gene causing two different diseases are unclear. Additionally, novel treatments specifically targeting mutated JAK2 proteins are needed. In this study, the induced pluripotent stem cells (iPSCs) were virally transduced to express wild-type JAK2 (JAK2WT), JAK2p.V617F (JAK2V617F) or JAK2p.N542_E543del (JAK2exon12) under a doxycycline-inducible system. The modified iPSCs which were differentiated into megakaryocytes in the presence vs. absence of doxycycline were compared to ensure that the differences were solely from mutated JAK2 expressions. The JAK2V617-expressing iPSCs yielded significantly higher numbers of megakaryocytes consistent with the ET phenotype, while there was no enhancement by JAK2exon12 expression compatible with the pure erythrocytosis in humans. Capillary Western analyses revealed significantly greater JAK2 phosphorylation in iPSCs carrying JAK2V617F but not in JAK2WT and JAK2exon12 iPSCs. Activation of STAT3, STAT5 and AKT was increased by JAK2V617F, while they were decreased in JAK2exon12 iPSCs. Notably, interferon alpha and/or arsenic trioxide inhibited megakaryocytes proliferation and reduced JAK2, STAT3, STAT5 and AKT phosphorylation in mutant JAK2-expressing iPSCs compared with those without induction. In conclusion, JAK2V617F expression in iPSCs preferentially promoted megakaryocytes with a signaling profile distinctive from JAK2exon12 expression. Treatments with interferon alpha or arsenic trioxide preferentially suppressed the mutated over wild-type JAK2 signaling. This iPSC model is helpful in mechanistic studies and novel therapy screen for myeloproliferative neoplasm.
Collapse
Affiliation(s)
| | - Panchalee Jangprasert
- Research Unit in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nungruthai Nilsri
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Research Unit in Translational Hematology, Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Sudeshna T, Anand K, Medhamurthy R. Analysis of 20alpha-hydroxysteroid dehydrogenase expression in the corpus luteum of the buffalo cow: effect of prostaglandin F2-alpha treatment on circulating 20alpha-hydroxyprogesterone levels. Reprod Biol Endocrinol 2013; 11:111. [PMID: 24330451 PMCID: PMC3878843 DOI: 10.1186/1477-7827-11-111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/09/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND During female reproductive cycles, a rapid fall in circulating progesterone (P4) levels is one of the earliest events that occur during induced luteolysis in mammals. In rodents, it is well recognized that during luteolysis, P4 is catabolized to its inactive metabolite, 20alpha-hydroxyprogesterone (20alpha-OHP) by the action of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) enzyme and involves transcription factor, Nur77. Studies have been carried out to examine expression of 20alpha-HSD and its activity in the corpus luteum (CL) of buffalo cow. METHODS The expression of 20alpha-HSD across different bovine tissues along with CL was examined by qPCR analysis. Circulating P4 levels were monitored before and during PGF2alpha treatment. Expression of 20alpha-HSD and Nur77 mRNA was determined in CL at different time points post PGF2alpha treatment in buffalo cows. The chromatographic separation of P4 and its metabolite, 20alpha-OHP, in rat and buffalo cow serum samples were performed on reverse phase HPLC system. To further support the findings, 20alpha-HSD enzyme activity was quantitated in cytosolic fraction of CL of both rat and buffalo cow. RESULTS Circulating P4 concentration declined rapidly in response to PGF2alpha treatment. HPLC analysis of serum samples did not reveal changes in circulating 20alpha-OHP levels in buffalo cows but serum from pseudo pregnant rats receiving PGF2alpha treatment showed an increased 20alpha-OHP level at 24 h post treatment with accompanying decrease in P4 concentration. qPCR expression of 20alpha-HSD in CL from control and PGF2alpha-treated buffalo cows showed higher expression at 3 and 18 h post treatment, but its specific activity was not altered at different time points post PGF2alpha treatment. The Nur77 expression increased several fold 3 h post PGF2alpha treatment similar to the increased expression observed in the PGF2alpha-treated pseudo pregnant rats which perhaps suggest initiation of activation of apoptotic pathways in response to PGF2alpha treatment. CONCLUSIONS The results taken together suggest that synthesis of P4 appears to be primarily affected by PGF2alpha treatment in buffalo cows in contrast to increased metabolism of P4 in rodents.
Collapse
Affiliation(s)
- Tripathy Sudeshna
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Kumarasamy Anand
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Rudraiah Medhamurthy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Gab adapter proteins as therapeutic targets for hematologic disease. Adv Hematol 2011; 2012:380635. [PMID: 22216034 PMCID: PMC3246295 DOI: 10.1155/2012/380635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/19/2022] Open
Abstract
The Grb-2 associated binder (Gab) family of scaffolding/adaptor/docking proteins is a group of three molecules with significant roles in cytokine receptor signaling. Gabs possess structural motifs for phosphorylation-dependent receptor recruitment, Grb2 binding, and activation of downstream signaling pathways through p85 and SHP-2. In addition, Gabs participate in hematopoiesis and regulation of immune response which can be aberrantly activated in cancer and inflammation. The multifunctionality of Gab adapters might suggest that they would be too difficult to consider as candidates for “targeted” therapy. However, the one drug/one target approach is giving way to the concept of one drug/multiple target approach since few cancers are addicted to a single signaling molecule for survival and combination drug therapies can be problematic. In this paper, we cover recent findings on Gab multi-functionality, binding partners, and their role in hematological malignancy and examine the concept of Gab-targeted therapy.
Collapse
|
5
|
The additive effects of combined murine nuclear migration protein with murine thrombopoietin in vitro and in vivo on normal and myelosuppressed mice. Int J Hematol 2011; 94:44-53. [DOI: 10.1007/s12185-011-0828-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/02/2011] [Accepted: 03/22/2011] [Indexed: 11/25/2022]
|
6
|
Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Cappellini A, Ognibene A, McCubrey JA. The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:991-1002. [DOI: 10.1016/j.bbamcr.2010.04.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 04/06/2010] [Accepted: 04/06/2010] [Indexed: 12/19/2022]
|
7
|
Kaushansky K, Ranney HM. Thrombopoietin in normal and neoplastic stem cell development. Best Pract Res Clin Haematol 2010; 22:495-9. [PMID: 19959099 DOI: 10.1016/j.beha.2009.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has been known for sometime that thrombopoietin acts on megakaryocytic progenitor cells to stimulate platelet production. It has recently been discovered that it also stimulates the self-renewal and expansion of normal murine and human haematopoietic stem cells (HSCs) by acting on its cognate receptor, the product of the myeloproliferative leukaemia (c-MPL) proto-oncogene. The c-MPL receptor may also play an important role in the development of human myeloproliferative disorders, essential thrombocythemia, myelofibrosis and polycythemia vera, cooperating with the dysregulated Janus kinase JAK2V(617)F.
Collapse
Affiliation(s)
- Kenneth Kaushansky
- University of California San Diego Medical Center, San Diego, CA 92103-8811, USA.
| | | |
Collapse
|
8
|
Conde I, Pabón D, Jayo A, Lastres P, González-Manchón C. Involvement of ERK1/2, p38 and PI3K in megakaryocytic differentiation of K562 cells. Eur J Haematol 2010; 84:430-40. [PMID: 20070854 DOI: 10.1111/j.1600-0609.2010.01416.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Megakaryocytic differentiation of myelogenous leukemia cell lines induced by a number of chemical compounds mimics, in part, the physiological process that takes place in the bone marrow in response to a variety of stimuli. We have investigated the involvement of mitogen-activated protein kinases (MAPKs) [extracellular signal-regulated protein kinase (ERK1/2) and p38] and phosphoinositide 3-kinase (PI3K) signaling pathways in the differentiated phenotypes of K562 cells promoted by phorbol 12-myristate 13-acetate, staurosporine (STA), and the p38 MAPK inhibitor SB202190. In our experimental conditions, only STA-treated cells showed the phenotype of mature megakaryocytes (MKs) including GPIbalpha expression, DNA endoreduplication, and formation of platelet-like structures. We provide evidence supporting that basal activity, but not sustained activation, of ERK1/2 is required for expression of MK surface markers. Moreover, ERK1/2 signaling is not involved in cell endomitosis. The PI3K pathway exerts dual regulatory effects on K562 cell differentiation: it is intimately connected with ERK1/2 cascade to stimulate expression of surface markers and it is also necessary, but not sufficient, for polyploidization. Finally, apoptosis and megakaryocytic differentiation exhibit different sensitivity to p38 down-regulation: it is required for expression of early specific markers but is not involved in cell apoptosis. The present work with K562 cells provides new insights into the molecular mechanisms regulating MK differentiation. The results indicate that a precise orchestration of signals, including ERK1/2 and p38 MAPKs as well as PI3K pathway, is necessary for acquisition of features of mature MKs.
Collapse
Affiliation(s)
- Isabel Conde
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | | | | | | | | |
Collapse
|
9
|
Séverin S, Ghevaert C, Mazharian A. The mitogen-activated protein kinase signaling pathways: role in megakaryocyte differentiation. J Thromb Haemost 2010; 8:17-26. [PMID: 19874462 DOI: 10.1111/j.1538-7836.2009.03658.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Megakaryopoiesis is a process by which bone marrow progenitor cells develop into mature megakaryocytes (MKs), which in turn produce platelets required for normal hemostasis. The mitogen-activated protein kinases (MAPKs) family comprises four main groups of proteins: extracellular signal-related kinases (ERKs) (ERK1/2 or p44/p42), ERK5, p38MAPKs (alpha, beta, gamma, delta) and c-Jun amino-terminal kinases (JNKs) (JNK 1, 2, 3). These intracellular signaling pathways play a pivotal role in many essential cellular processes including proliferation and differentiation. The purpose of this review is to summarize our current knowledge on the role of MAPKs in MKs, specifically regarding differentiation in immortalized cell lines and primary MKs. A critical role of the MEK (MAPK kinase)-ERK1/2 pathway in MK development has been demonstrated although the details remain controversial. There is at present no functional evidence for a role of p38MAPKs whereas the role of JNKs and ERK5 in MK development is not known. Characterization of these molecular event cascades remains crucial for the understanding of the megakaryopoiesis process.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
10
|
Bankers-Fulbright JL, Bartemes KR, Kephart GM, Kita H, O'Grady SM. Beta2-integrin-mediated adhesion and intracellular Ca2+ release in human eosinophils. J Membr Biol 2009; 228:99-109. [PMID: 19290459 DOI: 10.1007/s00232-009-9163-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 02/18/2009] [Indexed: 01/13/2023]
Abstract
Human eosinophils spontaneously adhere to various substrates in the absence of exogenously added activators. In the present study a method was developed for characterizing eosinophil adhesion by measuring changes in impedance. Impedance measurements were performed in HCO(3)-buffered HybriCare medium maintained in a humidified 5% CO(2) incubator at 37 degrees C. Impedance increased by more than 1 kOmega within minutes after eosinophils made contact with the substrate, reaching a peak within 20 min. Blocking mobilization of intracellular [Ca(2+)] that precedes adhesion with BAPTA-AM (10 microM) completely inhibited the rise in impedance as well as the changes in cell shape typically observed in adherent cells. However, lowering the extracellular [Ca(2+)] with 2.5 mM EGTA did not inhibit the increase in impedance. Pretreatment with anti-CD18 antibody to block substrate interactions with beta(2)-integrins, or jasplakinolide (2 microM) to block actin reorganization, abolished the increase in impedance and adherent morphology of the cells. Exposure of eosinophils to the phosphatidylinositol 3 kinase inhibitor LY294002 (5 microM) or treatment with protein kinase C zeta pseudosubstrate to competitively inhibit activity of the enzyme significantly reduced the increase in impedance and inhibited the cell spreading associated with adhesion. These results demonstrate a novel method for measuring eosinophil adhesion and showed that, following formation of a tethered attachment, a rapid increase in intracellular [Ca(2+)] precedes the cytoskeletal rearrangements required for cell shape changes and plasma membrane-substrate interactions associated with adhesion.
Collapse
|
11
|
Kaushansky K. Determinants of platelet number and regulation of thrombopoiesis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:147-152. [PMID: 20008193 DOI: 10.1182/asheducation-2009.1.147] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Our understanding of thrombopoiesis has improved greatly in the last two decades with the availability of in vitro assays of megakaryocyte progenitor cell growth, with the cloning and characterization of stem cell factor (SCF) and thrombopoietin (Tpo), the latter the primary humoral regulator of this process, and with the generation of genetically altered murine models of thrombopoietic failure and excess. While SCF affects developmentally early aspects of megakaryocyte growth, Tpo affects nearly all aspects of platelet production, from hematopoietic stem cell (HSC) self-renewal and expansion, through stimulation of megakaryocyte progenitor cell proliferation, to supporting their maturation into platelet-producing cells. The molecular and cellular mechanisms through which the marrow microenvironment and humoral mediators affect platelet production provide new insights into the interplay between intrinsic and extrinsic influences on hematopoiesis, and highlight new opportunities to translate basic biology into clinical advances.
Collapse
Affiliation(s)
- Kenneth Kaushansky
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0671, USA.
| |
Collapse
|
12
|
Metjian A, Abrams CS. New insights and therapeutics for immune-mediated thrombocytopenia. Expert Rev Cardiovasc Ther 2008; 6:71-84. [DOI: 10.1586/14779072.6.1.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Park JI, Kim SG, Chun JS, Seo YM, Jeon MJ, Ohba M, Kim HJ, Chun SY. Activation of protein kinase Czeta mediates luteinizing hormone- or forskolin-induced NGFI-B expression in preovulatory granulosa cells of rat ovary. Mol Cell Endocrinol 2007; 270:79-86. [PMID: 17416458 DOI: 10.1016/j.mce.2007.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2006] [Revised: 02/03/2007] [Accepted: 02/26/2007] [Indexed: 11/17/2022]
Abstract
We have previously demonstrated that luteinizing hormone (LH) induces a rapid and transient expression of NGFI-B in the ovary. In this report, we investigated the signaling pathway for LH- and forskolin-induced NGFI-B expression in cultured rat granulosa cells of preovulatory follicles. LH- or forskolin-induced NGFI-B expression was suppressed by high dose of protein kinase C (PKC) inhibitor RO 31-8220 (10 microM), but not by low doses RO 31-8220 (0.1-1.0 microM) or adenylate cyclase inhibitor MDL-12,300A, implicating the involvement of atypical PKCs. Kinase assay revealed that LH treatment of granulosa cells resulted in a rapid stimulation of atypical PKCzeta activity. Interestingly, like LH, forskolin was also able to activate PKCzeta. Treatment with the cell-permeable PKCzeta-specific inhibitor pseudosubstrate peptide inhibited LH-or forskolin-induced NGFI-B expression, indicating the essential role of PKCzeta. Consistent with this promise, in granulosa cells depleted of diacylglycerol sensitive PKCs by prolonged treatment with tetradecanoylphobol-13-acetate, LH or forskolin could still induce NGFI-B expression, and RO 31-8220 or the PKCzeta pseudosubstrate peptide inhibited LH- or forskolin-induced NGFI-B expression. Furthermore, overexpression of dominant-negative PKCzeta in primary granulosa cells using a replication-defective adenovirus vector resulted in the suppression of LH- or forskolin-induced NGFI-B expression. Our findings demonstrate that PKCzeta, which is activated by LH or forskolin, contributes to the induction of NGFI-B in granulosa cells of preovulatory follicles.
Collapse
Affiliation(s)
- Jae-Il Park
- Hormone Research Center and School of Biological Sciences & Technology, Chonnam National University, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pick M, Perry C, Lapidot T, Guimaraes-Sternberg C, Naparstek E, Deutsch V, Soreq H. Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood 2006; 107:3397-406. [PMID: 16380450 DOI: 10.1182/blood-2005-08-3240] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractTo study the role of the stress-induced “readthrough” acetylcholinesterase splice variant, AChE-R, in thrombopoiesis, we used transgenic mice overexpressing human AChE-R (TgR). Increased AChE hydrolytic activity in the peripheral blood of TgR mice was associated with increased thrombopoietin levels and platelet counts. Bone marrow (BM) progenitor cells from TgR mice presented an elevated capacity to produce mixed (GEMM) and megakaryocyte (Mk) colonies, which showed intensified labeling of AChE-R and its interacting proteins RACK1 and PKC. When injected with bacterial lipopolysaccharide (LPS), parent strain FVB/N mice, but not TgR mice, showed reduced platelet counts. Therefore, we primed human CD34+ cells with the synthetic ARP26 peptide, derived from the cleavable C-terminus of AChE-R prior to transplantation, into sublethally irradiated NOD/SCID mice. Engraftment of human cells (both CD45+ and CD41+ Mk) was significantly increased in mice that received ARP26-primed CD34+ human cells versus mice that received fresh nonprimed CD34+ human cells. Moreover, ARP26 induced polyploidization and proplatelet shedding in human MEG-01 promegakaryotic cells, and human platelet engraftment increased following ex vivo expansion of ARP26-treated CD34+ cells as compared to cells expanded with thrombopoietin and stem cell factor. Our findings implicate AChE-R in thrombopoietic recovery, suggesting new therapeutic modalities for supporting platelet production.
Collapse
Affiliation(s)
- Marjorie Pick
- Department of Hematology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Hamelin V, Letourneux C, Romeo PH, Porteu F, Gaudry M. Thrombopoietin regulates IEX-1 gene expression through ERK-induced AML1 phosphorylation. Blood 2006; 107:3106-13. [PMID: 16368886 DOI: 10.1182/blood-2005-07-2953] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
The extracellular signal-regulated kinases (ERKs) are required for thrombopoietin (TPO) functions on hematopoietic cells, but the ERKs targets involved remain unknown. Here we show that the regulation of the immediate early gene X-1 (IEX-1), identified as an ERK substrate in response to TPO, was mediated by an ERK-dependent phosphorylation of AML1. The addition of TPO to UT7-Mpl cells and primary megakaryocytes induced gene expression of IEX-1. Neither erythropoietin (EPO) nor granulocyte macrophage-colony stimulating factor (GM-CSF) was able to activate IEX-1 gene expression in UT7-Mpl cells. The induced expression was mediated by a transcriptional activation of the IEX-1 promoter and required an AML1-binding site located at –1068. The direct involvement of AML1 in the regulation of IEX-1 gene expression was shown by both the use of AML1 mutants and by shRNA experiments targeting endogenous AML1. Finally, the ability of TPO to induce the IEX-1 gene expression was inhibited by U0126, a specific inhibitor of the ERKs activator MEK and AML1 transcriptional activity was shown to be modulated by TPO through ERK-dependent phosphorylation. Taken together, these data suggest that AML1 plays a role in modulating the IEX-1 expression and that the ERK-dependent AML1 phosphorylation regulates the TPO-mediated activation of IEX-1.
Collapse
|
16
|
Guerriero R, Parolini I, Testa U, Samoggia P, Petrucci E, Sargiacomo M, Chelucci C, Gabbianelli M, Peschle C. Inhibition of TPO-induced MEK or mTOR activity induces opposite effects on the ploidy of human differentiating megakaryocytes. J Cell Sci 2006; 119:744-52. [PMID: 16449323 DOI: 10.1242/jcs.02784] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The megakaryocyte is a paradigm for mammalian polyploid cells. However, the mechanisms underlying megakaryocytic polyploidization have not been elucidated. In this study, we investigated the role of Shc-Ras-MAPK and PI3K-AKT-mTOR pathways in promoting megakaryocytic differentiation, maturation and polyploidization. CD34+ cells, purified from human peripheral blood, were induced in serum-free liquid suspension culture supplemented with thrombopoietin (TPO) to differentiate into a virtually pure megakaryocytic progeny (97-99% CD61+/CD41+ cells). The early and repeated addition to cell cultures of low concentrations of PD98059, an inhibitor of MEK1/2 activation, gave rise to a population of large megakaryocytes showing an increase in DNA content and polylobated nuclei (from 45% to 70% in control and treated cultures, respectively). Conversely, treatment with the mTOR inhibitor rapamycin strongly inhibited cell polyploidization, as compared with control cultures. Western blot analysis of PD98059-treated progenitor cells compared with the control showed a downmodulation of phospho-ERK 1 and phospho-ERK 2 and a minimal influence on p70S6K activation; by contrast, p70S6K activation was completely inhibited in rapamycin-treated cells. Interestingly, the cyclin D3 localization was nuclear in PD98059-induced polyploid megakaryocytes, whereas it was completely cytoplasmic in those treated with rapamycin. Altogether, our results are in line with a model in which binding of TPO to the TPO receptor (mpl) could activate the rapamycin-sensitive PI3K-AKT-mTOR-p70S6K pathway and its downstream targets in promoting megakaryocytic cell polyploidization.
Collapse
Affiliation(s)
- Raffaella Guerriero
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Our understanding of thrombopoiesis--the formation of blood platelets--has improved greatly in the last decade, with the cloning and characterization of thrombopoietin, the primary regulator of this process. Thrombopoietin affects nearly all aspects of platelet production, from self-renewal and expansion of HSCs, through stimulation of the proliferation of megakaryocyte progenitor cells, to support of the maturation of these cells into platelet-producing cells. The molecular and cellular mechanisms through which thrombopoietin affects platelet production provide new insights into the interplay between intrinsic and extrinsic influences on hematopoiesis and highlight new opportunities to translate basic biology into clinical advances.
Collapse
Affiliation(s)
- Kenneth Kaushansky
- Department of Medicine, Division of Hematology/Oncology, University of California, San Diego, California 92103-3931, USA.
| |
Collapse
|
18
|
Abstract
Previous studies in cell lines have shown Lyn kinase to be a negative regulator of thrombopoietin (TPO)-induced proliferation. To further investigate the role of Lyn during megakaryocytopoiesis, Lyn-deficient mice (lyn(-/-)) were analyzed. We observed that lyn(-/-) mice have more bone marrow-derived GPIIB (CD41) and Mpl(+) cells when compared to their wild-type littermates. In addition, colony-forming unit-megakaryocytes (CFU-MK) are increased and TPO-induced expansion of primary marrow cells yielded a greater number of mature megakaryocytes (MKs) with increased nuclear ploidy. Histopathology of bone marrow and spleens from lyn(-/-) mice showed an increase in the number of MKs. Mechanistic studies revealed that TPO stimulation of MKs from lyn(-/-) mice did not affect phosphorylation of Janus kinase 2 (JAK2), signal transducer and activator of transcription (STAT) 3, STAT5, or MAP kinase kinase (MEK). Lyn-deficient MKs supported greater TPO-mediated phosphorylation and kinase activity of both Erk1/2 (mitogen-activated protein kinase, MAPK) and Akt. In contrast, there was a reduction of tyrosine phosphorylation of the inositol phosphatase, SHIP. This is the first direct evidence using primary MKs from Lyn-deficient mice that confirms our prior data from cell lines that Lyn kinase is a negative regulator of TPO signaling.
Collapse
|
19
|
Chanprasert S, Geddis AE, Barroga C, Fox NE, Kaushansky K. Thrombopoietin (TPO) induces c-myc expression through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryocytes. Cell Signal 2005; 18:1212-8. [PMID: 16380230 DOI: 10.1016/j.cellsig.2005.09.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/28/2005] [Indexed: 01/30/2023]
Abstract
Thrombopoietin (TPO) and its receptor (c-Mpl) are the major regulators of megakaryocyte and platelet production and serve a critical and non-redundant role in hematopoietic stem cell (HSC) biology. TPO signals through the Jak-STAT, Ras-Raf-MAPK, and PI3K pathways, and promotes survival, proliferation, and polyploidization in megakaryocytes. The proto-oncogene c-myc also plays an important role in many of these same processes. In this work we studied the regulated expression of c-myc in megakaryocytic cell lines and primary cells by quantitative real-time RT-PCR. We found that TPO induced expression of c-myc in 1 h in both hematopoietic cell lines (UT-7 and BaF3/Mpl) and mature murine megakaryocytes. The TPO-induced expression of c-myc was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor, suggesting that TPO stimulated c-myc expression through a PI3K-dependent pathway. Of interest, our study showed that overexpression of active Akt did not rescue the effect of PI3K blockade on c-myc expression, rather, enhanced it. In addition, inhibitors of protein kinase C (PKC)zeta and the target of rapamycin (mTOR) also failed to affect c-myc mRNA expression, while c-myc mRNA expression was reduced by inhibition of the mitogen activated protein kinase (MAPK) pathway. Therefore, we conclude that TPO stimulates c-myc expression in primary megakaryocytes through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR.
Collapse
Affiliation(s)
- Supantitra Chanprasert
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
20
|
Melloni E, Secchiero P, Celeghini C, Campioni D, Grill V, Guidotti L, Zauli G. Functional expression of TRAIL and TRAIL-R2 during human megakaryocytic development. J Cell Physiol 2005; 204:975-82. [PMID: 15828026 DOI: 10.1002/jcp.20358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The expression and function of surface TRAIL and TRAIL receptors were investigated in primary megakaryocytic cells, generated in serum-free liquid phase from peripheral human CD34(+) cells. The surface expression of both TRAIL and "death receptor" TRAIL-R2 became detectable starting from the early phase of megakaryocytic differentiation (day 6 of culture) and persisted at later (days10-14) culture times. On the other hand, "death receptor" TRAIL-R1, "decoy receptors" TRAIL-R3, and TRAIL-R4 were barely detectable or undetectable at any time point examined. Addition of recombinant TRAIL at day 6 of culture increased the rate of spontaneous apoptosis of CD34(+)/CD41(dim) megakaryoblasts and it significantly decreased the total output of mature megakaryocytic cells evaluated after additional 4-8 days of culture. Conversely, addition in culture of TRAIL-R2-Fc chimera, which blocked the interaction between endogenous TRAIL and TRAIL-R2 on the surface of cultured megakaryocytic cells, increased the total megakaryocytic cell count. In addition, recombinant TRAIL promoted a small but reproducible increase of maturation in the surviving megakaryocytic cell population, evaluated by both phenotypic analysis and morphology. A similar pro-maturation effect was observed when TRAIL was added to bone marrow-derived CD61(+) megakaryocytic cells. Thus, our data suggest a role of TRAIL as a regulator of megakaryocytopoiesis.
Collapse
Affiliation(s)
- Elisabetta Melloni
- Department of Morphology and Embryology, Human Anatomy Section, University of Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Nonami A, Kato R, Taniguchi K, Yoshiga D, Taketomi T, Fukuyama S, Harada M, Sasaki A, Yoshimura A. Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells. J Biol Chem 2004; 279:52543-51. [PMID: 15465815 DOI: 10.1074/jbc.m405189200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sprouty/Spred family proteins have been identified as negative regulators of growth factor-induced ERK/mitogen-activated protein (MAP) kinase activation. However, it has not been clarified whether these proteins regulate cytokine-induced ERK activity. We found that Spred-1 is highly expressed in interleukin-3 (IL-3)-dependent hematopoietic cell lines and bone marrow-derived mast cells. To investigate the roles of Spred-1 in hematopoiesis, we expressed wild-type Spred-1 and a dominant negative form of Spred-1, DeltaC-Spred, in IL-3- and stem cell factor (SCF)-dependent cell lines as well as hematopoietic progenitor cells from mouse bone marrow by retrovirus gene transfer. In IL-3-dependent Ba/F3 cells expressing c-kit, forced expression of Spred-1 resulted in a reduced proliferation rate and ERK activation in response to not only SCF but also IL-3. In contrast, DeltaC-Spred augmented IL-3-induced cell proliferation and ERK activation. Wild-type Spred-1 inhibited colony formation of bone marrow cells in the presence of cytokines, whereas DeltaC-Spred-1 expression enhanced colony formation. Augmentation of ERK activation and proliferation in response to IL-3 was also observed in Spred-1-deficient bone marrow-derived mast cells. These data suggest that Spred-1 negatively regulates hematopoiesis by suppressing not only SCF-induced but also IL-3-induced ERK activation.
Collapse
Affiliation(s)
- Atsushi Nonami
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kohmura K, Miyakawa Y, Kawai Y, Ikeda Y, Kizaki M. Different roles of p38 MAPK and ERK in STI571-induced multi-lineage differentiation of K562 cells. J Cell Physiol 2004; 198:370-6. [PMID: 14755542 DOI: 10.1002/jcp.10426] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
STI571 is a specific tyrosine kinase inhibitor of Abl kinase. It was previously reported that STI571 induced hemoglobin synthesis in the chronic myelogenous leukemia (CML) cell line K562. However, its mechanisms remain unknown. In this study, we demonstrated that STI571 induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and dephosphorylation of extracellular signal-regulated kinase (ERK) in K562 cells. In contrast, the phosphorylation of c-Jun N-terminal kinases (JNK) in K562 cells was not altered by STI571. We also found that STI571 induced all the myeloid (CD11b, CD13), megakaryocytic (CD41a, CD42), and erythroid (glycophorin-A) markers on K562 cells. A p38 MAPK-specific inhibitor, SB203580, inhibited the STI571-induced multi-lineage differentiation of K562 cells, indicating that p38 MAPK is crucial for this differentiation. In contrast, SB203580 did not overcome the inhibitory effect for proliferation of K562 cells, indicating that p38 MAPK activation by STI571 does not affect cell numbers. Among the hematopoietic transcription factors, the expression level of c-myb mRNA was clearly downregulated after incubation with STI571 in K562 cells. STI571-induced downregulation of c-myb mRNA was prevented by the pretreatment of K562 cells by SB203580. Our data provides insights into how p38 MAPK and ERK pathways are involved in STI571-induced differentiation of K562 cells.
Collapse
Affiliation(s)
- Kanoko Kohmura
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
23
|
Kim SH, Kim HJ, Kim TS. Differential involvement of protein kinase C in human promyelocytic leukemia cell differentiation enhanced by artemisinin. Eur J Pharmacol 2003; 482:67-76. [PMID: 14660006 DOI: 10.1016/j.ejphar.2003.09.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Artemisinin, a sesquiterpene lactone endoperoxide that exists in several medicinal plants, is a well-known anti-malarial agent. In this report, we investigated the effect of artemisinin on cellular differentiation in the human promyelocytic leukemia HL-60 cell culture system. Artemisinin markedly increased the degree of HL-60 leukemia cell differentiation when simultaneously combined with low doses of 1 alpha,25-dihydoxyvitamin D(3) [1,25-(OH)(2)D(3)] or all-trans retinoic acid (all-trans RA). Artemisinin by itself had very weak effects on the differentiation of HL-60 cells. Cytofluorometric analysis and cell morphologic studies indicated that artemisinin potentiated 1,25-(OH)(2)D(3)-induced cell differentiation predominantly into monocytes and all-trans RA-induced cell differentiation into granulocytes, respectively. Extracellular-regulated kinase (ERK) inhibitors markedly inhibited HL-60 cell differentiation induced by artemisinin in combination with 1,25-(OH)(2)D(3) or all-trans RA, whereas phosphatidylinositol 3-kinase (PI3-K) inhibitors did not. Particularly, protein kinase C (PKC) inhibitors inhibited HL-60 cell differentiation induced by artemisinin in combination with 1,25-(OH)(2)D(3) but not with all-trans RA. Artemisinin enhanced PKC activity and protein level of PKC beta I isoform in only 1,25-(OH)(2)D(3)-treated HL-60 cells. Taken together, these results indicate that artemisinin strongly enhanced 1,25-(OH)(2)D(3)- and all-trans RA-induced cell differentiation in which PKC is differentially involved in arteminisin-mediated enhancement of leukemia cell differentiation.
Collapse
Affiliation(s)
- Seung Hyun Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Kwangju 500-757, South Korea
| | | | | |
Collapse
|
24
|
Chien MW, Chien CS, Hsiao LD, Lin CH, Yang CM. OxLDL induces mitogen-activated protein kinase activation mediated via PI3-kinase/Akt in vascular smooth muscle cells. J Lipid Res 2003; 44:1667-75. [PMID: 12810818 DOI: 10.1194/jlr.m300006-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.
Collapse
Affiliation(s)
- Ming-Wei Chien
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Abstract
Although first proposed to be the primary regulator of platelet production 45 years ago, the gene for thrombopoietin was cloned only within the last decade. Since then, our understanding of megakaryocyte and platelet production has increased substantially, and it is now appreciated that in addition to its critical role in regulating thrombopoiesis, the hormone affects multiple aspects of hematopoiesis, including playing a non-redundant role in stem cell survival, self-renewal and expansion. In addition to this greater physiological understanding of thrombopoietin biology, the molecular mechanisms by which the hormone affects cell survival and proliferation are coming under increased scrutiny. At least four signaling pathways have been identified that play important and non-overlapping roles in stem cell and megakaryocyte growth and development, potentially providing new strategies to therapeutically intervene in hematopoiesis. This review will focus on our current understanding of these processes.
Collapse
Affiliation(s)
- K Kaushansky
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
26
|
Abstract
Mitogen-activated protein (Map) kinases are widely expressed serine-threonine kinases that mediate important regulatory signals in the cell. Three major groups of Map kinases exist: the p38 Map kinase family, the extracellular signal-regulated kinase (Erk) family, and the c-Jun NH2-terminal kinase (JNK) family. The members of the different Map kinase groups participate in the generation of various cellular responses, including gene transcription, induction of cell death or maintenance of cell survival, malignant transformation, and regulation of cell-cycle progression. Depending on the specific family isoform involved and the cellular context, Map kinase pathways can mediate signals that either promote or suppress the growth of malignant hematopoietic cells. Over the last few years, extensive work by several groups has established that Map kinase pathways play critical roles in the pathogenesis of various hematologic malignancies, providing new molecular targets for future therapeutic approaches. In this review, the involvement of various Map kinase pathways in the pathophysiology of hematologic malignances is summarized and the clinical implications of the recent advances in the field are discussed.
Collapse
Affiliation(s)
- Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago IL 60611, USA.
| |
Collapse
|
27
|
Zhang Y, Sun S, Wang Z, Thompson A, Kaluzhny Y, Zimmet J, Ravid K. Signaling by the Mpl receptor involves IKK and NF-kappaB. J Cell Biochem 2002; 85:523-35. [PMID: 11967992 DOI: 10.1002/jcb.10141] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Binding of tumor necrosis factor-alpha (TNF-alpha) to its receptor activates IKK complex, which leads to inducement of NF-kappaB activity. Here we report that activation of Mpl ligand is also linked to IKK and NF-kappaB activity. Mpl ligand, also known as thrombopoietin (TPO) or megakaryocyte growth and development factor (MGDF), induces megakaryocyte differentiation and inhibition of mitotic proliferation, followed by induction of polyploidization and fragmentation into platelets. The latter process is often observed in megakaryocytes undergoing apoptosis. Treatment of a Mpl ligand-responding megakaryocytic cell line with this cytokine led to an immediate, transient increase in IKK activity followed by a profound decrease in this kinase activity over time. This decrease was not due to an effect on the levels of the IKK regulatory components IKKalpha and IKKbeta. Proliferating megakaryocytes displayed a constitutive DNA-binding activity of NF-kappaB p50 homodimers and of NF-kappaB p50-p65 heterodimers. As expected, reduced IKK activity in Mpl ligand-treated cells was associated with a significant reduction in NF-kappaB DNA binding activity and in the activity of a NF-kappaB-dependent promoter. Our study is thus the first to identify a constitutive NF-kappaB activity in proliferating megakaryocytes as well as to describe a link between Mpl receptor signaling and IKK and NF-kappaB activities. Since a variety of proliferation-promoting genes and anti-apoptotic mechanisms are activated by NF-kappaB, retaining its low levels would be one potential mechanism by which inhibition of mitotic proliferation is maintained and apoptosis is promoted during late megakaryopoiesis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry, Whitaker Cardiovascular Institute, Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Linden HM, Kaushansky K. The glycan domain of thrombopoietin (TPO) acts in trans to enhance secretion of the hormone and other cytokines. J Biol Chem 2002; 277:35240-7. [PMID: 12101178 DOI: 10.1074/jbc.m201297200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO), the primary regulator of platelet production, is composed of an amino-terminal 152 amino acids, sufficient for activity, and a carboxyl-terminal region rich in carbohydrates (183 residues) that enhances secretion of the molecule. Full-length TPO is secreted at levels 10-20-fold greater than truncated TPO. By introducing into mammalian cells a novel cDNA encoding the TPO secretory leader linked to its carboxyl-terminal domain (TPO glycan domain (TGD)), we tested whether TGD could function in trans to enhance secretion of TPO. The artificial TGD was secreted, inactive in proliferation assays, and did not inhibit TPO activity. However, when co-transfected with a cDNA encoding truncated TPO, TGD enhanced secretion 4-fold, measured by specific bioassay and immunoassay. TGD also enhanced secretion of granulocyte monocyte colony-stimulating factor and stem cell factor but did not affect the production of erythropoietin, interleukin-3, growth hormone, or of full-length TPO. To localize TGD function, we added an endoplasmic reticulum (ER) retention signal to TGD and, separately, deleted the secretory leader. Deletion of the secretory leader attenuated the secretory function of TGD, whereas addition of the ER retention signal did not alter its function. To investigate the physiologic role of TGD in folding and proteasomal protection, we tested full-length and truncated TPO in assays of protein refolding, and we examined protein stability in the presence of proteasome inhibitors. We found that truncated TGD re-folds readily and that proteasome-mediated degradation contributes to the poor secretion of truncated TPO. We conclude that TGD enhances secretion of TPO and can additionally function as an inter-molecular chaperone, in part because of its ability to prevent degradation of the hormone. The cellular location of TGD action is likely to be within the ER or earlier in the secretory pathway.
Collapse
Affiliation(s)
- Hannah M Linden
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|