1
|
Guo S, Cong B, Zhu L, Zhang Y, Yang Y, Qi X, Wang X, Xiao L, Long C, Xu Y, Sheng X. Whole transcriptome sequencing of testis and epididymis reveals genes associated with sperm development in roosters. BMC Genomics 2024; 25:1029. [PMID: 39497056 PMCID: PMC11533344 DOI: 10.1186/s12864-024-10836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development. RESULTS In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from "Jing Hong No.1" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility. CONCLUSIONS Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.
Collapse
Affiliation(s)
- Shihao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Bailin Cong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Liyang Zhu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Yang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yaxi Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Kherraf ZE, Barbotin AL, Martinez G, Mazet A, Cazin C, Coutton C, Arnoult C, Thierry-Mieg N, Rives N, Rives-Feraille A, Ray PF. A splice donor variant of GAS8 induces structural disorganization of the axoneme in sperm flagella and leads to nonsyndromic male infertility. Clin Genet 2024; 105:220-225. [PMID: 37950557 DOI: 10.1111/cge.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Motile cilia and flagella are closely related organelles structured around a highly conserved axoneme whose formation and maintenance involve proteins from hundreds of genes. Defects in many of these genes have been described to induce primary ciliary dyskinesia (PCD) mainly characterized by chronic respiratory infections, situs inversus and/or infertility. In men, cilia/flagella-related infertility is usually caused by asthenozoospermia due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we investigated a cohort of 196 infertile men displaying a typical MMAF phenotype without any other PCD symptoms. Analysis of WES data identified a single case carrying a deleterious homozygous GAS8 variant altering a splice donor consensus site. This gene, also known as DRC4, encodes a subunit of the Nexin-Dynein Regulatory Complex (N-DRC), and has been already associated to male infertility and mild PCD. Confirming the deleterious effect of the candidate variant, GAS8 staining by immunofluorescence did not evidence any signal from the patient's spermatozoa whereas a strong signal was present along the whole flagella length in control cells. Concordant with its role in the N-DRC, transmission electron microscopy evidenced peripheral microtubule doublets misalignments. We confirm here the importance of GAS8 in the N-DRC and observed that its absence induces a typical MMAF phenotype not necessarily accompanied by other PCD symptoms.
Collapse
Affiliation(s)
- Zine-Eddine Kherraf
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Anne-Laure Barbotin
- CHU Lille, Institut de Biologie de la Reproduction-Spermiologie-CECOS, Lille, France
| | - Guillaume Martinez
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Aurélien Mazet
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
| | - Caroline Cazin
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| | - Charles Coutton
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Christophe Arnoult
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
| | | | - Nathalie Rives
- Team Adrenal and Gonadal Pathophysiology, Inserm, U1239 NorDIC, University Rouen Normandie, Rouen, France
- Reproductive Biology Laboratory-CECOS, Rouen University Hospital, Rouen, France
| | - Aurélie Rives-Feraille
- Team Adrenal and Gonadal Pathophysiology, Inserm, U1239 NorDIC, University Rouen Normandie, Rouen, France
- Reproductive Biology Laboratory-CECOS, Rouen University Hospital, Rouen, France
| | - Pierre F Ray
- Team Genetics Epigenetics and Therapies of Infertility (GETI), Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- CHU Grenoble Alpes, UM GI-DPI, Grenoble, France
| |
Collapse
|
3
|
Analysis of differential proteins between non-capacitated and capacitated boar sperm and verification of the effect of phosphofructokinase on capacitation. Theriogenology 2023; 199:19-29. [PMID: 36682265 DOI: 10.1016/j.theriogenology.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The objective of this study was to analyze the differences in the proteins in non-capacitated and capacitated boar sperm and to identify the functions of the differential proteins and key capacitation proteins of boar sperm before and after capacitation. Transwell chambers were used to separate capacitated sperm proteins using a unique polycarbonate membrane. Meanwhile, isotopic tags for relative and absolute quantification combined with LC‒MS/MS analysis were used for quantitative determination of differential proteins. Through the comparative analysis of different databases, 475 different proteins were identified in non-capacitated sperm and capacitated sperm, of which 303 were significantly upregulated and 172 were significantly downregulated. These differentially-expressed proteins are mainly involved in redox processes, cell biosynthesis processes and cell aromatic compound metabolism biological processes. They also participate in the signaling pathways of phosphorylation, ketone synthesis and degradation, most of which interact to varying degrees. Among these differentially-expressed proteins, phosphofructokinase attracted our attention as a potential capacitated protein. We further verified that phosphofructokinase can promote boar sperm capacitation by immunoblotting.
Collapse
|
4
|
Lange JD, Bastide H, Lack JB, Pool JE. A Population Genomic Assessment of Three Decades of Evolution in a Natural Drosophila Population. Mol Biol Evol 2021; 39:6491261. [PMID: 34971382 PMCID: PMC8826484 DOI: 10.1093/molbev/msab368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Population genetics seeks to illuminate the forces shaping genetic variation, often based on a single snapshot of genomic variation. However, utilizing multiple sampling times to study changes in allele frequencies can help clarify the relative roles of neutral and non-neutral forces on short time scales. This study compares whole-genome sequence variation of recently collected natural population samples of Drosophila melanogaster against a collection made approximately 35 years prior from the same locality—encompassing roughly 500 generations of evolution. The allele frequency changes between these time points would suggest a relatively small local effective population size on the order of 10,000, significantly smaller than the global effective population size of the species. Some loci display stronger allele frequency changes than would be expected anywhere in the genome under neutrality—most notably the tandem paralogs Cyp6a17 and Cyp6a23, which are impacted by structural variation associated with resistance to pyrethroid insecticides. We find a genome-wide excess of outliers for high genetic differentiation between old and new samples, but a larger number of adaptation targets may have affected SNP-level differentiation versus window differentiation. We also find evidence for strengthening latitudinal allele frequency clines: northern-associated alleles have increased in frequency by an average of nearly 2.5% at SNPs previously identified as clinal outliers, but no such pattern is observed at random SNPs. This project underscores the scientific potential of using multiple sampling time points to investigate how evolution operates in natural populations, by quantifying how genetic variation has changed over ecologically relevant timescales.
Collapse
Affiliation(s)
- Jeremy D Lange
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
5
|
Chiu YL, Shikina S, Yoshioka Y, Shinzato C, Chang CF. De novo transcriptome assembly from the gonads of a scleractinian coral, Euphyllia ancora: molecular mechanisms underlying scleractinian gametogenesis. BMC Genomics 2020; 21:732. [PMID: 33087060 PMCID: PMC7579821 DOI: 10.1186/s12864-020-07113-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sexual reproduction of scleractinians has captured the attention of researchers and the general public for decades. Although extensive ecological data has been acquired, underlying molecular and cellular mechanisms remain largely unknown. In this study, to better understand mechanisms underlying gametogenesis, we isolated ovaries and testes at different developmental phases from a gonochoric coral, Euphyllia ancora, and adopted a transcriptomic approach to reveal sex- and phase-specific gene expression profiles. In particular, we explored genes associated with oocyte development and maturation, spermiogenesis, sperm motility / capacitation, and fertilization. RESULTS 1.6 billion raw reads were obtained from 24 gonadal samples. De novo assembly of trimmed reads, and elimination of contigs derived from symbiotic dinoflagellates (Symbiodiniaceae) and other organisms yielded a reference E. ancora gonadal transcriptome of 35,802 contigs. Analysis of 4 developmental phases identified 2023 genes that were differentially expressed during oogenesis and 678 during spermatogenesis. In premature/mature ovaries, 631 genes were specifically upregulated, with 538 in mature testes. Upregulated genes included those involved in gametogenesis, gamete maturation, sperm motility / capacitation, and fertilization in other metazoans, including humans. Meanwhile, a large number of genes without homology to sequences in the SWISS-PROT database were also observed among upregulated genes in premature / mature ovaries and mature testes. CONCLUSIONS Our findings show that scleractinian gametogenesis shares many molecular characteristics with that of other metazoans, but it also possesses unique characteristics developed during cnidarian and/or scleractinian evolution. To the best of our knowledge, this study is the first to create a gonadal transcriptome assembly from any scleractinian. This study and associated datasets provide a foundation for future studies regarding gametogenesis and differences between male and female colonies from molecular and cellular perspectives. Furthermore, our transcriptome assembly will be a useful reference for future development of sex-specific and/or stage-specific germ cell markers that can be used in coral aquaculture and ecological studies.
Collapse
Affiliation(s)
- Yi-Ling Chiu
- Doctoral Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.,Doctoral Program in Marine Biotechnology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan. .,Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan.
| | - Yuki Yoshioka
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 20224, Taiwan. .,Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
6
|
Tan QW, Mutwil M. Malaria.tools-comparative genomic and transcriptomic database for Plasmodium species. Nucleic Acids Res 2020; 48:D768-D775. [PMID: 31372645 PMCID: PMC6943069 DOI: 10.1093/nar/gkz662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria is a tropical parasitic disease caused by the Plasmodium genus, which resulted in an estimated 219 million cases of malaria and 435 000 malaria-related deaths in 2017. Despite the availability of the Plasmodium falciparum genome since 2002, 74% of the genes remain uncharacterized. To remedy this paucity of functional information, we used transcriptomic data to build gene co-expression networks for two Plasmodium species (P. falciparum and P. berghei), and included genomic data of four other Plasmodium species, P. yoelii, P. knowlesi, P. vivax and P. cynomolgi, as well as two non-Plasmodium species from the Apicomplexa, Toxoplasma gondii and Theileria parva. The genomic and transcriptomic data were incorporated into the resulting database, malaria.tools, which is preloaded with tools that allow the identification and cross-species comparison of co-expressed gene neighbourhoods, clusters and life stage-specific expression, thus providing sophisticated tools to predict gene function. Moreover, we exemplify how the tools can be used to easily identify genes relevant for pathogenicity and various life stages of the malaria parasite. The database is freely available at www.malaria.tools.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
7
|
Zhang P, Jiang W, Luo N, Zhu W, Fan L. IQ motif containing D (IQCD), a new acrosomal protein involved in the acrosome reaction and fertilisation. Reprod Fertil Dev 2019; 31:898-914. [DOI: 10.1071/rd18416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
The acrosome is single, large, dense-core secretory granule overlying the nucleus of most mammalian spermatozoa. Its exocytosis, the acrosome reaction, is a crucial event during fertilisation. In this study we identified a new acrosome-associated gene, namely IQ motif containing D (IQCD), expressed nearly in multiple tissues with highest expression levels in the testis. In mouse testis, Iqcd transcript accumulated from Postnatal Day (PND) 1 to adulthood. However, expression of IQCD protein at the testicular development stage started primarily from PND 18 and increased in an age-dependent manner until plateauing in adulthood. IQCD was primarily accumulated in the acrosome area of round and elongating spermatids within seminiferous tubules of the testes during the late stage of spermiogenesis; this immunolocalisation pattern is similar in mice and humans. IQCD levels in spermatozoa were significantly lower in IVF patients with total fertilisation failure or a low fertilisation rate than in healthy men. Anti-IQCD antibody significantly inhibited the acrosome reaction and slightly reduced protein tyrosine phosphorylation levels in human spermatozoa, but specifically blocked murine IVF. IQCD interacted with mammalian homolog of C. elegans uncoordinated gene 13 (Munc13) in spermatozoa and may participate in acrosome exocytosis. In conclusion, this study identified a new acrosomal protein, namely IQCD, which is involved in fertilisation and the acrosome reaction.
Collapse
|
8
|
Pan W, Zhang N, Liu W, Liu J, Zhou L, Liu Y, Yang M. The long noncoding RNA GAS8-AS1 suppresses hepatocarcinogenesis by epigenetically activating the tumor suppressor GAS8. J Biol Chem 2018; 293:17154-17165. [PMID: 30228180 DOI: 10.1074/jbc.ra118.003055] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are vital players in cancers, including hepatocellular carcinoma (HCC). We previously identified an lncRNA, GAS8-AS1, that is located in intron 2 of GAS8 However, its involvement in HCC is still largely unknown. In this study, we report that both GAS8-AS1 and its host gene GAS8 act as HCC tumor suppressors. We found that expression of GAS8-AS1 or GAS8 is significantly decreased in HCC tissues and is associated with a poor prognosis among HCC patients. Interestingly, lncRNA GAS8-AS1 could promote GAS8 transcription. We detected a CpG island in the GAS8 promoter, but lncRNA GAS8-AS1 did not affect DNA methylation at this GAS8 promoter site. Moreover, we identified two GAS8-AS1-interacting proteins, mixed-lineage leukemia 1 (MLL1), a histone 3 Lys-4 (H3K4) methyltransferase, and its partner WD-40 repeat protein 5 (WDR5). RNA pulldown, ChIP, and RNA immunoprecipitation assays revealed that GAS8-AS1 is required for maintaining the GAS8 promoter in an open chromatin state by recruiting the MLL1/WDR5 complex and for enhancing RNA polymerase II activity and GAS8 transcription. Of note, GAS8-AS1-dependent GAS8 hyperactivation inhibited malignant transformation of hepatocytes. Our results provide important insights into how lncRNA GAS8-AS1 suppresses HCC development and suggest potential strategies for treating patients with liver cancer.
Collapse
Affiliation(s)
- Wenting Pan
- From the College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100096, China.,the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China, and
| | - Nasha Zhang
- the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China, and
| | - Wenjuan Liu
- the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China, and
| | - Jibing Liu
- the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China, and
| | - Liqing Zhou
- the Department of Radiation Oncology, Huaian No. 2 Hospital, Huaian 223002, Jiangsu Province, China
| | - Yang Liu
- the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China, and
| | - Ming Yang
- the Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province 250117, China, and
| |
Collapse
|
9
|
Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, Rao MRS. Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements. Epigenetics Chromatin 2018; 11:43. [PMID: 30068355 PMCID: PMC6069787 DOI: 10.1186/s13072-018-0214-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Linker histones establish and maintain higher-order chromatin structure. Eleven linker histone subtypes have been reported in mammals. HILS1 is a spermatid-specific linker histone, and its expression overlaps with the histone-protamine exchange process during mammalian spermiogenesis. However, the role of HILS1 in spermatid chromatin remodeling is largely unknown. RESULTS In this study, we demonstrate using circular dichroism spectroscopy that HILS1 is a poor condenser of DNA and chromatin compared to somatic linker histone H1d. Genome-wide occupancy study in elongating/condensing spermatids revealed the preferential binding of HILS1 to the LINE-1 (L1) elements within the intergenic and intronic regions of rat spermatid genome. We observed specific enrichment of the histone PTMs like H3K9me3, H4K20me3 and H4 acetylation marks (H4K5ac and H4K12ac) in the HILS1-bound chromatin complex, whereas H3K4me3 and H3K27me3 marks were absent. CONCLUSIONS HILS1 possesses significantly lower α-helicity compared to other linker histones such as H1t and H1d. Interestingly, in contrast to the somatic histone variant H1d, HILS1 is a poor condenser of chromatin which demonstrate the idea that this particular linker histone variant may have distinct role in histone to protamine replacement. Based on HILS1 ChIP-seq analysis of elongating/condensing spermatids, we speculate that HILS1 may provide a platform for the structural transitions and forms the higher-order chromatin structures encompassing LINE-1 elements during spermiogenesis.
Collapse
Affiliation(s)
- Laxmi Narayan Mishra
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Vasantha Shalini
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Nikhil Gupta
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Epigenetics and Cell Fate, UMR7216, CNRS, University Paris Diderot, Sorbonne Paris Cite, 75013, Paris, France
| | - Krittika Ghosh
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Neeraj Suthar
- InterpretOmics India Pvt. Ltd., #329, 7th Main, HAL II Stage 80 Feet Road, Indira Nagar, Bangalore, 560008, India
| | - Utsa Bhaduri
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - M R Satyanarayana Rao
- Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
10
|
Whittington E, Forsythe D, Borziak K, Karr TL, Walters JR, Dorus S. Contrasting patterns of evolutionary constraint and novelty revealed by comparative sperm proteomic analysis in Lepidoptera. BMC Genomics 2017; 18:931. [PMID: 29197336 PMCID: PMC5712127 DOI: 10.1186/s12864-017-4293-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022] Open
Abstract
Background Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. Results Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. Conclusions Our results identify a burst of genetic novelty amongst sperm proteins that may be associated with the origin of heteromorphic spermatogenesis in ancestral Lepidoptera and/or the subsequent evolution of this system. This pattern of genomic diversification is distinct from the remainder of the genome and thus suggests that this transition has had a marked impact on lepidopteran genome evolution. The identification of abundant sperm proteins unique to Lepidoptera, including proteins distinct between specific lineages, will accelerate future functional studies aiming to understand the developmental origin of dichotomous spermatogenesis and the functional diversification of the fertilization incompetent apyrene sperm morph. Electronic supplementary material The online version of this article (10.1186/s12864-017-4293-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Desiree Forsythe
- Science Education and Society, University of Rhode Island, Kingston, RI, USA
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Timothy L Karr
- Ecology and Evolutionary Biology, Kansas University, Lawrence, KS, USA
| | - James R Walters
- Department of Genomics and Genetic Resources, Kyoto Institute of Technology. Saga Ippon-cho, Ukyo-ku, Kyoto, Japan
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
11
|
Van De Weghe JC, Rusterholz TD, Latour B, Grout ME, Aldinger KA, Shaheen R, Dempsey JC, Maddirevula S, Cheng YHH, Phelps IG, Gesemann M, Goel H, Birk OS, Alanzi T, Rawashdeh R, Khan AO, Bamshad MJ, Nickerson DA, Neuhauss SC, Dobyns WB, Alkuraya FS, Roepman R, Bachmann-Gagescu R, Doherty D, Doherty D. Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish. Am J Hum Genet 2017. [PMID: 28625504 DOI: 10.1016/j.ajhg.2017.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
12
|
Pereira R, Oliveira J, Ferraz L, Barros A, Santos R, Sousa M. Mutation analysis in patients with total sperm immotility. J Assist Reprod Genet 2015; 32:893-902. [PMID: 25877373 DOI: 10.1007/s10815-015-0474-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/01/2015] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Perform the genetic characterization of five patients with total sperm immotility using Sanger sequencing and Whole Exome Sequencing (WES), in order to increase the knowledge on the genetics of sperm immotility and, ultimately, allow the identification of potential genetic markers for infertility. METHODS Prospective study at a University Medical school. We analysed five men with total sperm immotility, four with dysplasia of the fibrous sheath (DFS), associated with disruption of several axonemal structures, and one patient with situs inversus totalis, which showed absence of dynein arms (DA) and nexin bridges. We screened 7 genes by Sanger sequencing, involved in sperm motility and associated to ultrastructural defects found in these patients (CCDC39, CCDC40, DNAH5, DNAI1, RSPH1, AKAP3 and AKAP4). Additionally, we performed WES analysis in the patient with situs inversus. RESULTS We identified nine new DNA sequence variants by WES. Two of these variants were considered particularly relevant: a homozygous missense change in CCDC103 gene (c.104G > C, p.R35P) probably related with absence of dynein arms; the other in the INSL6 gene (c.262_263delCC) is thought to be also involved in sperm immotility. CONCLUSIONS Our work suggests that WES is an effective strategy, especially as compared with conventional sequencing, to study highly heterogenic genetic diseases, such as sperm immotility. For future work we expect to expand the analysis of WES to the other four patients and complement findings with expression analysis or functional studies to determine the impact of the novel variants.
Collapse
Affiliation(s)
- Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | | | | | | | | | | |
Collapse
|
13
|
Sagri E, Reczko M, Tsoumani KT, Gregoriou ME, Harokopos V, Mavridou AM, Tastsoglou S, Athanasiadis K, Ragoussis J, Mathiopoulos KD. The molecular biology of the olive fly comes of age. BMC Genet 2014; 15 Suppl 2:S8. [PMID: 25472866 PMCID: PMC4255830 DOI: 10.1186/1471-2156-15-s2-s8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Olive cultivation blends with the history of the Mediterranean countries since ancient times. Even today, activities around the olive tree constitute major engagements of several people in the countryside of both sides of the Mediterranean basin. The olive fly is, beyond doubt, the most destructive pest of cultivated olives. The female fly leaves its eggs in the olive fruit. Upon emergence, the larvae feed on the olive sap, thus destroying the fruit. If untreated, practically all olives get infected. The use of chemical insecticides constitutes the principal olive fly control approach. The Sterile Insect Technique (SIT), an environmentally friendly alternative control method, had been tried in pilot field applications in the 1970's, albeit with no practical success. This was mainly attributed to the low, non-antagonistic quality of the mixed-sex released insects. Many years of experience from successful SIT applications in related species, primarily the Mediterranean fruit fly, Ceratitis capitata, demonstrated that efficient SIT protocols require the availability of fundamental genetic and molecular information. Results Among the primary systems whose understanding can contribute towards novel SIT approaches (or its recently developed alternative RIDL: Release of Insects carrying a Dominant Lethal) is the reproductive, since the ability to manipulate the reproductive system would directly affect the insect's fertility. In addition, the analysis of early embryonic promoters and apoptotic genes would provide tools that confer dominant early-embryonic lethality during mass-rearing. Here we report the identification of several genes involved in these systems through whole transcriptome analysis of female accessory glands (FAGs) and spermathecae, as well as male testes. Indeed, analysis of differentially expressed genes in these tissues revealed higher metabolic activity in testes than in FAGs/spermathecae. Furthermore, at least five olfactory-related genes were shown to be differentially expressed in the female and male reproductive systems analyzed. Finally, the expression profile of the embryonic serendipity-α locus and the pre-apoptotic head involution defective gene were analyzed during embryonic developmental stages. Conclusions Several years of molecular studies on the olive fly can now be combined with new information from whole transcriptome analyses and lead to a deep understanding of the biology of this notorious insect pest. This is a prerequisite for the development of novel embryonic lethality female sexing strains for successful SIT efforts which, combined with improved mass-reared conditions, give new hope for efficient SIT applications for the olive fly.
Collapse
|
14
|
Magnusson K, Mendes AM, Windbichler N, Papathanos PA, Nolan T, Dottorini T, Rizzi E, Christophides GK, Crisanti A. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae. PLoS One 2011; 6:e21572. [PMID: 21738713 PMCID: PMC3128074 DOI: 10.1371/journal.pone.0021572] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio. We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages. The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.
Collapse
Affiliation(s)
- Kalle Magnusson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Antonio M. Mendes
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Tony Nolan
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tania Dottorini
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Milano, Italy
| | | | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Thorsteinsson RI, Christensen ST, Pedersen LB. Using quantitative PCR to identify kinesin-3 genes that are upregulated during growth arrest in mouse NIH3T3 cells. Methods Cell Biol 2010; 94:67-86. [PMID: 20362085 DOI: 10.1016/s0091-679x(08)94003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Most cells in our body form a single primary cilium when entering growth arrest. During the past decade, a number of studies have revealed a key role for primary cilia in coordinating a variety of signaling pathways that control important cellular and developmental processes. Consequently, significant effort has been directed toward the identification of genes involved in ciliary assembly and function. Many candidate ciliary genes and proteins have been identified using large-scale "omics" approaches, including proteomics, transcriptomics, and comparative genomics. Although such large-scale approaches can be extremely informative, additional validation of candidate ciliary genes using alternative "small-scale" approaches is often necessary. Here we describe a quantitative PCR-based method that can be used to screen groups of genes for those that are upregulated during growth arrest in cultured mouse NIH3T3 cells and those that might have cilia-related functions. We employed this method to specifically search for mouse kinesin-3 genes that are upregulated during growth arrest and identified three such genes (Kif13A, Kif13B, and Kif16A). In principle, however, the method can be extended to identify other genes or gene families that are upregulated during growth arrest.
Collapse
Affiliation(s)
- Rikke I Thorsteinsson
- Department of Biology, Section of Cell and Developmental Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | | | | |
Collapse
|
16
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
17
|
Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. ACTA ACUST UNITED AC 2010; 187:921-33. [PMID: 20008568 PMCID: PMC2806320 DOI: 10.1083/jcb.200908067] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elegant cryoelectron tomography reveals that the nexin link between microtubule doublets in 9 + 2 axonemal structures, critical for their ability to bend, is the dynein regulatory complex. Cilia and flagella are highly conserved microtubule (MT)-based organelles with motile and sensory functions, and ciliary defects have been linked to several human diseases. The 9 + 2 structure of motile axonemes contains nine MT doublets interconnected by nexin links, which surround a central pair of singlet MTs. Motility is generated by the orchestrated activity of thousands of dynein motors, which drive interdoublet sliding. A key regulator of motor activity is the dynein regulatory complex (DRC), but detailed structural information is lacking. Using cryoelectron tomography of wild-type and mutant axonemes from Chlamydomonas reinhardtii, we visualized the DRC in situ at molecular resolution. We present the three-dimensional structure of the DRC, including a model for its subunit organization and intermolecular connections that establish the DRC as a major regulatory node. We further demonstrate that the DRC is the nexin link, which is thought to be critical for the generation of axonemal bending.
Collapse
Affiliation(s)
- Thomas Heuser
- Biology Department, Brandeis University, Waltham, MA 02453, USA
| | | | | | | | | |
Collapse
|
18
|
Zhao L, Xu L, Zhou X, Zhu Q, Yang Z, Zhang C, Zhu X, Yu M, Zhang Y, Zhao X, Huang P. Interaction of influenza virus NS1 protein with growth arrest-specific protein 8. Virol J 2009; 6:218. [PMID: 19995461 PMCID: PMC2797798 DOI: 10.1186/1743-422x-6-218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 12/09/2009] [Indexed: 11/10/2022] Open
Abstract
NS1 protein is the only non-structural protein encoded by the influenza A virus, and it contributes significantly to disease pathogenesis by modulating many virus and host cell processes. A two-hybrid screen for proteins that interact with NS1 from influenza A yielded growth arrest-specific protein 8. Gas8 associated with NS1 in vitro and in vivo. Deletion analysis revealed that the N-terminal 260 amino acids of Gas8 were able to interact with NS1, and neither the RNA-binding domain nor the effector domain of NS1 was sufficient for the NS1 interaction. We also found that actin, myosin, and drebrin interact with Gas8. NS1 and beta-actin proteins could be co-immunoprecipitated from extracts of transfected cells. Furthermore, actin and Gas8 co-localized at the plasma membrane. These results are discussed in relation to the possible functions of Gas8 protein and their relevance in influenza virus release.
Collapse
Affiliation(s)
- Lixia Zhao
- Laboratory of protein engineering, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Colantonio JR, Vermot J, Wu D, Langenbacher AD, Fraser S, Chen JN, Hill KL. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear. Nature 2008; 457:205-9. [PMID: 19043402 DOI: 10.1038/nature07520] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 09/30/2008] [Indexed: 11/09/2022]
Abstract
In teleosts, proper balance and hearing depend on mechanical sensors in the inner ear. These sensors include actin-based microvilli and microtubule-based cilia that extend from the surface of sensory hair cells and attach to biomineralized 'ear stones' (or otoliths). Otolith number, size and placement are under strict developmental control, but the mechanisms that ensure otolith assembly atop specific cells of the sensory epithelium are unclear. Here we demonstrate that cilia motility is required for normal otolith assembly and localization. Using in vivo video microscopy, we show that motile tether cilia at opposite poles of the otic vesicle create fluid vortices that attract otolith precursor particles, thereby biasing an otherwise random distribution to direct localized otolith seeding on tether cilia. Independent knockdown of subunits for the dynein regulatory complex and outer-arm dynein disrupt cilia motility, leading to defective otolith biogenesis. These results demonstrate a requirement for the dynein regulatory complex in vertebrates and show that cilia-driven flow is a key epigenetic factor in controlling otolith biomineralization.
Collapse
Affiliation(s)
- Jessica R Colantonio
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Nishimura N, Araki K, Shinahara W, Nakano Y, Nishimura K, Higashio H, Sasaki T. Interaction of Rab3B with microtubule-binding protein Gas8 in NIH 3T3 cells. Arch Biochem Biophys 2008; 474:136-42. [PMID: 18396146 DOI: 10.1016/j.abb.2008.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/24/2008] [Accepted: 03/25/2008] [Indexed: 11/17/2022]
Abstract
Rab3 subfamily small G proteins (Rab3A, Rab3B, Rab3C, and Rab3D) control the regulated exocytosis in neuronal/secretory cells. Rab3B is also detected and upregulated in non-neuronal/non-secretory cells, whereas its function remains elusive. In the present study, we identified growth-arrest-specific gene 8 (Gas8), an evolutionally conserved microtubule-binding protein that is upregulated in growth-arrested NIH 3T3 cells and involved in the dynein motor regulation in flagellar/ciliary axoneme, as a novel Rab3B-binding protein using a yeast two-hybrid system. Rab3B as well as Gas8 was upregulated in growth-arrested NIH 3T3 cells and enriched in testis and lung with well-developed flagella/cilia. Gas8 was specifically interacted with the GTP-bound form of Rab3B and co-localized with Rab3B at the Golgi in NIH 3T3 cells. Furthermore, Rab3B was relocated upon expression of the Rab3B-binding domain of Gas8. These results suggest that Gas8 links Rab3B to microtubules in NIH 3T3 cells.
Collapse
Affiliation(s)
- Noriyuki Nishimura
- Department of Biochemistry, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Baron DM, Ralston KS, Kabututu ZP, Hill KL. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella. J Cell Sci 2007; 120:478-91. [PMID: 17227795 DOI: 10.1242/jcs.03352] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cilia and flagella are highly conserved, complex organelles involved in a variety of important functions. Flagella are required for motility of several human pathogens and ciliary defects lead to a variety of fatal and debilitating human diseases. Many of the major structural components of cilia and flagella are known, but little is known about regulation of flagellar beat. Trypanosoma brucei, the causative agent of African sleeping sickness, provides an excellent model for studying flagellar motility. We have used comparative genomics to identify a core group of 50 genes unique to organisms with motile flagella. These genes, referred to as T. brucei components of motile flagella (TbCMF) include 30 novel genes, and human homologues of many of the TbCMF genes map to loci associated with human ciliary diseases. To characterize TbCMF protein function we used RNA interference to target 41 TbCMF genes. Sedimentation assays and direct observation demonstrated clear motility defects in a majority of these knockdown mutants. Epitope tagging, fluorescence localization and biochemical fractionation demonstrated flagellar localization for several TbCMF proteins. Finally, ultrastructural analysis identified a family of novel TbCMF proteins that function to maintain connections between outer doublet microtubules, suggesting that they are the first identified components of nexin links. Overall, our results provide insights into the workings of the eukaryotic flagellum, identify several novel human disease gene candidates, reveal unique aspects of the trypanosome flagellum and underscore the value of T. brucei as an experimental system for studying flagellar biology.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
22
|
Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, Karr TL. Genomic and functional evolution of the Drosophila melanogaster sperm proteome. Nat Genet 2006; 38:1440-5. [PMID: 17099714 DOI: 10.1038/ng1915] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/04/2006] [Indexed: 01/09/2023]
Abstract
In addition to delivering a haploid genome to the egg, sperm have additional critical functions, including egg activation, origination of the zygote centrosome and delivery of paternal factors. Despite this, existing knowledge of the molecular basis of sperm form and function is limited. We used whole-sperm mass spectrometry to identify 381 proteins of the Drosophila melanogaster sperm proteome (DmSP). This approach identified mitochondrial, metabolic and cytoskeletal proteins, in addition to several new functional categories. We also observed nonrandom genomic clustering of sperm genes and underrepresentation on the X chromosome. Identification of widespread functional constraint on the proteome indicates that sexual selection has had a limited role in the overall evolution of D. melanogaster sperm. The relevance of the DmSP to the study of mammalian sperm function and fertilization mechanisms is demonstrated by the identification of substantial homology between the DmSP and proteins of the mouse axoneme accessory structure.
Collapse
Affiliation(s)
- Steve Dorus
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | |
Collapse
|
23
|
Prabagaran E, Bandivdekar AH, Dighe V, Raghavan VP. HOXBES2: a novel epididymal HOXB2 homeoprotein and its domain-specific association with spermatozoa. Biol Reprod 2006; 76:314-26. [PMID: 17065603 DOI: 10.1095/biolreprod.106.053520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sperm from the testis acquires complete fertilizing ability and forward progressive motility following its transit through the epididymis. Acquisition of these characteristics results from the modification of the sperm proteome following interactions with epididymal secretions. In our attempts to identify epididymis-specific sperm plasma membrane proteins, a partial 2.83-kb clone was identified by immunoscreening a monkey epididymal cDNA library with an agglutinating monoclonal antibody raised against washed human spermatozoa. The sequence of the 2.83-kb clone exhibited homology to the region between 1 and 1097 bp of the homeobox gene, Hoxb2. This sequence was found to be species conserved, as revealed by RT-PCR analysis. To obtain a full-length clone of the sequence, 5' RACE-PCR (rapid amplification of cDNA ends PCR) was carried out using rat epididymal RNA as the template. It resulted in a full-length 1.657-kb cDNA encoding a 32.9-kDa putative protein. The protein designated HOXBES2 exhibited homology to the conserved 61-amino acid homeodomain region of the HOXB2 homeoprotein. However, characteristic differences were noted in its amino and carboxyl termini compared with HOXB2. A putative 30-kDa protein was detected in the tissue extracts from adult rat epididymis and caudal spermatozoa, and a 37-kDa protein was detected in the rat embryo when probed with a polyclonal antibody against HOXB2 protein. Multiple tissue Western blot and immunohistochemical analysis further indicated its expression in the cytoplasm of the principal and basal epithelial cells, with maximal expression in the distal epididymal segments. Northern blot analysis detected a single approximately 2.5-kb transcript from the adult epididymis. Indirect immunofluorescence localized the protein to the acrosome, midpiece, and equatorial segments of rat caudal and ejaculated human and monkey spermatozoa, respectively. In conclusion, we have identified and characterized a novel epididymal homeoprotein different from HOXB2 protein and hereafter referred to as HOXBES2, (HOXB2 homeodomain containing epididymis-specific sperm protein) with a probable role in fertilization.
Collapse
Affiliation(s)
- E Prabagaran
- Department of Biochemistry, National Institute for Research in Reproductive Health (NIRRH), Indian Council of Medical Research, Parel 400 012, Mumbai, India
| | | | | | | |
Collapse
|
24
|
Abstract
Cilia are microtubule-based organelles that project like antennae from the surface of most cells in the body. Motile cilia move fluid past cells, for example mucus in the airway. Non-motile primary cilia, however, transduce a multitude of sensory stimuli, including chemical concentrations of growth factors, hormones, odorants, and developmental morphogens, as well as osmolarity, light intensity, and fluid flow. Cilia have evolved a complex ultrastructure to accommodate these diverse functions, and an extensive molecular machinery has developed to support the assembly of these organelles. Defects in the cilia themselves, or the machinery required to assemble them, lead to a broad spectrum of human disease symptoms, including polycystic kidney disease, nephronophthisis, hydrocephalus, polydactyly, situs inversus, retinal degeneration, and obesity. While these diseases highlight the pivotal roles of cilia in physiology and development, the mechanistic link between cilia, physiology, and disease remains unclear.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th St., San Francisco, California 94143, USA.
| | | |
Collapse
|
25
|
Colantonio JR, Bekker JM, Kim SJ, Morrissey KM, Crosbie RH, Hill KL. Expanding the Role of the Dynein Regulatory Complex to Non-Axonemal Functions: Association of GAS11 with the Golgi Apparatus. Traffic 2006; 7:538-48. [PMID: 16643277 DOI: 10.1111/j.1600-0854.2006.00411.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The mammalian GAS11 gene is a candidate tumor suppressor of unknown function that was previously identified as one of several genes upregulated upon growth arrest. Interestingly, although GAS11 homologs in Trypanosoma brucei (trypanin) and Chlamydomonas reinhardtii (PF2) are integral components of the flagellar axoneme and are necessary for regulating flagellar beat, the GAS11 gene was discovered based on its expression in cells that do not assemble a motile cilium. This suggests that GAS11 function might not be restricted to the cilium. To investigate this possibility, we generated GAS11-specific antibodies and demonstrate here that GAS11 is expressed in a variety of mammalian cells that lack a motile cilium. In COS7 cells, GAS11 is associated with the detergent-insoluble cytoskeleton and exhibits a juxtanuclear localization that overlaps with the pericentrosomal Golgi apparatus. This localization is dependent upon intact microtubules and is cell-cycle regulated, such that GAS11 is dispersed throughout the cytoplasm as cells progress through mitosis. GAS11 remains associated with Golgi fragments following depolymerization of cytoplasmic microtubules but is dispersed upon disruption of the Golgi with brefeldin A. These data suggest that GAS11 is associated with the Golgi apparatus. In support of this, recombinant GAS11 binds Golgi membranes in vitro. In growth-arrested mIMCD3 cells, GAS11 co-localizes with gamma-tubulin at the base of the primary cilium. The pericentrosomal Golgi apparatus and base of the cilium both represent convergence points for microtubule minus ends and correspond to sites where dynein regulation is required. The algal GAS11 homolog functions as part of a dynein regulatory complex (DRC) in the axoneme (Rupp and Porter. J Cell Biol 2003;162:47-57) and our findings suggest that components of this axonemal dynein regulatory system have been adapted in mammalian cells to participate in non-axonemal functions.
Collapse
Affiliation(s)
- Jessica R Colantonio
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
26
|
Rupp G, Porter ME. A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest-specific gene product. J Cell Biol 2003; 162:47-57. [PMID: 12847082 PMCID: PMC2172716 DOI: 10.1083/jcb.200303019] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 05/15/2003] [Accepted: 05/21/2003] [Indexed: 11/22/2022] Open
Abstract
The dynein regulatory complex (DRC) is an important intermediate in the pathway that regulates flagellar motility. To identify subunits of the DRC, we characterized a Chlamydomonas motility mutant obtained by insertional mutagenesis. The pf2-4 mutant displays an altered waveform that results in slow swimming cells. EM analysis reveals defects in DRC structure that can be rescued by reintroduction of the wild-type PF2 gene. Immunolocalization studies show that the PF2 protein is distributed along the length of the axoneme, where it is part of a discrete complex of polypeptides. PF2 is a coiled-coil protein that shares significant homology with a mammalian growth arrest-specific gene product (Gas11/Gas8) and a trypanosome protein known as trypanin. PF2 and its homologues appear to be universal components of motile axonemes that are required for DRC assembly and the regulation of flagellar motility. The expression of Gas8/Gas11 transcripts in a wide range of tissues may also indicate a potential role for PF2-related proteins in other microtubule-based structures.
Collapse
Affiliation(s)
- Gerald Rupp
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, IL 62901
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455
| |
Collapse
|