1
|
Mabry AR, Singh A, Mulrooney B, Gorman J, Thielbar AR, Wolf ER, Mayo LD. Induction of the Mdm2 gene and protein by kinase signaling pathways is repressed by the pVHL tumor suppressor. Proc Natl Acad Sci U S A 2024; 121:e2400935121. [PMID: 39047034 PMCID: PMC11295014 DOI: 10.1073/pnas.2400935121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The tumor suppressor von Hippel-Lindau, pVHL, is a multifaceted protein. One function is to dock to the hypoxia-inducible transcription factor (HIF) and recruit a larger protein complex that destabilizes HIF via ubiquitination, preventing angiogenesis and tumor development. pVHL also binds to the tumor suppressor p53 to activate specific p53 target genes. The oncogene Mdm2 impairs the formation of the p53-pVHL complex and activation of downstream genes by conjugating nedd8 to pVHL. While Mdm2 can impact p53 and pVHL, how pVHL may impact Mdm2 is unclear. Like p53 somatic mutations, point mutations are evident in pVHL that are common in renal clear cell carcinomas (RCC). In patients with RCC, Mdm2 levels are elevated, and we examined whether there was a relationship between Mdm2 and pVHL. TCGA and DepMap analysis revealed that mdm2 gene expression was elevated in RCC with vhl point mutations or copy number loss. In pVHL reconstituted or deleted isogenetically match RCC or MEF cell lines, Mdm2 was decreased in the presence of pVHL. Furthermore, through analysis using genetic and pharmacological approaches, we show that pVHL represses Mdm2 gene expression by blocking the MAPK-Ets signaling pathway and blocks Akt-mediated phosphorylation and stabilization of Mdm2. Mdm2 inhibition results in an increase in the p53-p21 pathway to impede cell growth. This finding shows how pVHL can indirectly impact the function of Mdm2 by regulating signaling pathways to restrict cell growth.
Collapse
Affiliation(s)
- Alexander R. Mabry
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Arnima Singh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Brianna Mulrooney
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - James Gorman
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Abigail R. Thielbar
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
| | - Eric R. Wolf
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN46022
| | - Lindsey D. Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN46022
- Indiana University School of Medicine, Indianapolis, IN46022
- Indiana University Indianapolis, Indianapolis, IN46022
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN46022
| |
Collapse
|
2
|
Magdaleno C, Tschumperlin DJ, Rajasekaran N, Varadaraj A. SOCS domain targets ECM assembly in lung fibroblasts and experimental lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580347. [PMID: 38469152 PMCID: PMC10926664 DOI: 10.1101/2024.02.14.580347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts. Our results demonstrate that fibroblasts differentiated using TGFß, followed by transduction with the SOCS domain, exhibit significantly reduced levels of the contractile myofibroblast-marker, α-SMA. Furthermore, in support of its role to retard differentiation, we find that lung fibroblasts expressing the SOCS domain present with significantly reduced levels of α-SMA and fibrillar fibronectin after differentiation with TGFß. We show that adenoviral delivery of the SOCS domain in the fibrotic phase of experimental lung fibrosis in mice, significantly reduces collagen accumulation in disease lungs. These data underscore a novel function for the SOCS domain and its potential in ameliorating pathologic matrix deposition in lung fibroblasts and experimental lung fibrosis.
Collapse
Affiliation(s)
- Carina Magdaleno
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Narendiran Rajasekaran
- Correspondence to: Archana Varadaraj, PO Box 5698, Science and Health Building, Rm430, Flagstaff, AZ, 86011, USA. Tel: (928) 523-6394, Fax: (928) 523-8111, ; Narendiran Rajasekaran, PO Box 5698, Science and Health Building, Rm430, Flagstaff, AZ, 86011, USA. Tel: (928) 523-6394, Fax: (928) 523-8111,
| | - Archana Varadaraj
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
3
|
Jiang Y, Ni S, Xiao B, Jia L. Function, mechanism and drug discovery of ubiquitin and ubiquitin-like modification with multiomics profiling for cancer therapy. Acta Pharm Sin B 2023; 13:4341-4372. [PMID: 37969742 PMCID: PMC10638515 DOI: 10.1016/j.apsb.2023.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 11/17/2023] Open
Abstract
Ubiquitin (Ub) and ubiquitin-like (Ubl) pathways are critical post-translational modifications that determine whether functional proteins are degraded or activated/inactivated. To date, >600 associated enzymes have been reported that comprise a hierarchical task network (e.g., E1-E2-E3 cascade enzymatic reaction and deubiquitination) to modulate substrates, including enormous oncoproteins and tumor-suppressive proteins. Several strategies, such as classical biochemical approaches, multiomics, and clinical sample analysis, were combined to elucidate the functional relations between these enzymes and tumors. In this regard, the fundamental advances and follow-on drug discoveries have been crucial in providing vital information concerning contemporary translational efforts to tailor individualized treatment by targeting Ub and Ubl pathways. Correspondingly, emphasizing the current progress of Ub-related pathways as therapeutic targets in cancer is deemed essential. In the present review, we summarize and discuss the functions, clinical significance, and regulatory mechanisms of Ub and Ubl pathways in tumorigenesis as well as the current progress of small-molecular drug discovery. In particular, multiomics analyses were integrated to delineate the complexity of Ub and Ubl modifications for cancer therapy. The present review will provide a focused and up-to-date overview for the researchers to pursue further studies regarding the Ub and Ubl pathways targeted anticancer strategies.
Collapse
Affiliation(s)
| | | | - Biying Xiao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
4
|
Pellegrini H, Sharpe EH, Liu G, Nishiuchi E, Doerr N, Kipp KR, Chin T, Schimmel MF, Weimbs T. Cleavage fragments of the C-terminal tail of polycystin-1 are regulated by oxidative stress and induce mitochondrial dysfunction. J Biol Chem 2023; 299:105158. [PMID: 37579949 PMCID: PMC10502374 DOI: 10.1016/j.jbc.2023.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.
Collapse
Affiliation(s)
- Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Elizabeth H Sharpe
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Guangyi Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA; Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Eiko Nishiuchi
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Kevin R Kipp
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Tiffany Chin
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Margaret F Schimmel
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
5
|
Differential dynamics of cullin deneddylation via COP9 signalosome subunit 5 interaction. Biochem Biophys Res Commun 2022; 637:341-347. [DOI: 10.1016/j.bbrc.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
6
|
Runde AP, Mack R, S J PB, Zhang J. The role of TBK1 in cancer pathogenesis and anticancer immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:135. [PMID: 35395857 PMCID: PMC8994244 DOI: 10.1186/s13046-022-02352-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.
Collapse
Affiliation(s)
- Austin P Runde
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
7
|
Todd VM, Vecchi LA, Clements ME, Snow KP, Ontko CD, Himmel L, Pinelli C, Rafat M, Johnson RW. Hypoxia inducible factor signaling in breast tumors controls spontaneous tumor dissemination in a site-specific manner. Commun Biol 2021; 4:1122. [PMID: 34556788 PMCID: PMC8460839 DOI: 10.1038/s42003-021-02648-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature in tumors and induces signaling that promotes tumor cell survival, invasion, and metastasis, but the impact of hypoxia inducible factor (HIF) signaling in the primary tumor on dissemination to bone in particular remains unclear. To better understand the contributions of hypoxia inducible factor 1 alpha (HIF1α), HIF2α, and general HIF pathway activation in metastasis, we employ a PyMT-driven spontaneous murine mammary carcinoma model with mammary specific deletion of Hif1α, Hif2α, or von Hippel-Lindau factor (Vhl) using the Cre-lox system. Here we show that Hif1α or Hif2α deletion in the primary tumor decreases metastatic tumor burden in the bone marrow, while Vhl deletion increases bone tumor burden, as hypothesized. Unexpectedly, Hif1α deletion increases metastatic tumor burden in the lung, while deletion of Hif2α or Vhl does not affect pulmonary metastasis. Mice with Hif1α deleted tumors also exhibit reduced bone volume as measured by micro computed tomography, suggesting that disruption of the osteogenic niche may be involved in the preference for lung dissemination observed in this group. Thus, we reveal that HIF signaling in breast tumors controls tumor dissemination in a site-specific manner.
Collapse
Affiliation(s)
- Vera M Todd
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
| | - Lawrence A Vecchi
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Miranda E Clements
- Tumor Microenvironment and Metastasis Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katherine P Snow
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Health, and Society, Vanderbilt University, Nashville, TN, USA
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Lauren Himmel
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Pinelli
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marjan Rafat
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
de Rojas-P I, Albiñana V, Taranets L, Recio-Poveda L, Cuesta AM, Popov N, Kronenberger T, Botella LM. The Endothelial Landscape and Its Role in Von Hippel-Lindau Disease. Cells 2021; 10:cells10092313. [PMID: 34571962 PMCID: PMC8465092 DOI: 10.3390/cells10092313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 01/09/2023] Open
Abstract
Von Hippel–Lindau disease (VHL) is a rare hereditary disease characterized by the predisposal to develop different types of highly vascularized tumors. VHL patients carry a VHL mutation that causes partial lack of functional VHL protein (pVHL) in all cells, and a total lack thereof in cells harboring a second hit mutation. Absence of pVHL generates a prolonged state of pseudo-hypoxia in the cell due to accumulation of hypoxia inducible factor, an important transcription factor regulating pro-tumorigenic genes. The work here presented focuses on characterizing the endothelium of VHL patients, by means of blood outgrowth endothelial cells (BOECs). Transcriptome analysis of VHL-derived BOECs, further supported by in vitro assays, shows that these cells are at a disadvantage, as evidenced by loss of cell adhesion capacity, angiogenesis defects, and immune response and oxidative metabolic gene downregulation, which induce oxidative stress. These results suggest that the endothelium of VHL patients is functionally compromised and more susceptible to tumor development. These findings contribute to shedding light on the vascular landscape of VHL patients preceding the second hit mutation in the VHL gene. This knowledge could be useful in searching for new therapies for these patients and other vascular diseases.
Collapse
Affiliation(s)
- Isabel de Rojas-P
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (I.d.R.-P.); (V.A.); (L.R.-P.); (A.M.C.)
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, 37007 Salamanca, Spain
| | - Virginia Albiñana
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (I.d.R.-P.); (V.A.); (L.R.-P.); (A.M.C.)
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Lyudmyla Taranets
- Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany; (L.T.); (N.P.); (T.K.)
| | - Lucía Recio-Poveda
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (I.d.R.-P.); (V.A.); (L.R.-P.); (A.M.C.)
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
| | - Angel M. Cuesta
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (I.d.R.-P.); (V.A.); (L.R.-P.); (A.M.C.)
- Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Nikita Popov
- Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany; (L.T.); (N.P.); (T.K.)
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital Tübingen, Otfried-Müller-Strasse 14, 72076 Tübingen, Germany; (L.T.); (N.P.); (T.K.)
| | - Luisa M. Botella
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (I.d.R.-P.); (V.A.); (L.R.-P.); (A.M.C.)
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
9
|
PHLPPing the balance: restoration of protein kinase C in cancer. Biochem J 2021; 478:341-355. [PMID: 33502516 DOI: 10.1042/bcj20190765] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Protein kinase signalling, which transduces external messages to mediate cellular growth and metabolism, is frequently deregulated in human disease, and specifically in cancer. As such, there are 77 kinase inhibitors currently approved for the treatment of human disease by the FDA. Due to their historical association as the receptors for the tumour-promoting phorbol esters, PKC isozymes were initially targeted as oncogenes in cancer. However, a meta-analysis of clinical trials with PKC inhibitors in combination with chemotherapy revealed that these treatments were not advantageous, and instead resulted in poorer outcomes and greater adverse effects. More recent studies suggest that instead of inhibiting PKC, therapies should aim to restore PKC function in cancer: cancer-associated PKC mutations are generally loss-of-function and high PKC protein is protective in many cancers, including most notably KRAS-driven cancers. These recent findings have reframed PKC as having a tumour suppressive function. This review focusses on a potential new mechanism of restoring PKC function in cancer - through targeting of its negative regulator, the Ser/Thr protein phosphatase PHLPP. This phosphatase regulates PKC steady-state levels by regulating the phosphorylation of a key site, the hydrophobic motif, whose phosphorylation is necessary for the stability of the enzyme. We also consider whether the phosphorylation of the potent oncogene KRAS provides a mechanism by which high PKC expression may be protective in KRAS-driven human cancers.
Collapse
|
10
|
Zhang W, Li L, Cai L, Liang Y, Xu J, Liu Y, Zhou L, Ding C, Zhang Y, Zhao H, Qin J, Shao Z, Wei W, Jia L. Tumor-associated antigen Prame targets tumor suppressor p14/ARF for degradation as the receptor protein of CRL2 Prame complex. Cell Death Differ 2021; 28:1926-1940. [PMID: 33504946 PMCID: PMC8184998 DOI: 10.1038/s41418-020-00724-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/30/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023] Open
Abstract
Protein Preferentially Expressed Antigen in Melanoma (Prame), a tumor-associated antigen, has been found to frequently overexpress in various cancers, which indicates advanced cancer stages and poor clinical prognosis. Moreover, previous reports noted that Prame functions as a substrate recognizing receptor protein of Cullin RING E3 ligases (CRLs) to mediate potential substrates degradation through Ubiquitin Proteasome System (UPS). However, none of the Prame specific substrate has been identified so far. In this study, proteomic analysis of RBX1-interacting proteins revealed p14/ARF, a well-known tumor suppressor, as a novel ubiquitin target of RBX1. Subsequently, immunoprecipitation and in vivo ubiquitination assay determined Cullin2-RBX1-Transcription Elongation Factor B Subunit 2 (EloB) assembled CRL2 E3 ligase complex to regulate the ubiquitination and subsequent degradation of p14/ARF. Finally, through siRNA screening, Prame was identified as the specific receptor protein responsible for recognizing p14/ARF to be degraded. Additionally, via bioinformatics analysis of TCGA database and clinical samples, Prame was determined to overexpress in tumor tissues vs. paired adjacent tissues and associated with poor prognosis of cancer patients. As such, downregulation of Prame expression significantly restrained cancer cell growth by inducing G2/M phase cell cycle arrest, which could be rescued by simultaneously knocking down of p14/ARF. Altogether, targeting overexpressed Prame in cancer cells inactivated RBX1-Cullin2-EloB-Prame E3 ligase (CRL2Prame) and halted p14/ARF degradation to restrain tumor growth by inducing G2/M phase cell cycle arrest.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Junfeng Xu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yue Liu
- Department of Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 2000402, China
| | - Lisha Zhou
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences, The PHOENIX Center, Beijing, 102206, China
| | - Yanmei Zhang
- Department of Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 2000402, China
| | - Hu Zhao
- Department of Clinical Laboratory, Huadong Hospital, Fudan University, Shanghai, 200040, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200040, China.,Research Center on Aging and Medicine, Fudan University, Shanghai, 2000402, China
| | - Jun Qin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 102206, China.,National Center for Protein Sciences, The PHOENIX Center, Beijing, 102206, China
| | - Zhimin Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02115, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
11
|
Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression. Int J Mol Sci 2020; 21:ijms21218162. [PMID: 33142830 PMCID: PMC7663541 DOI: 10.3390/ijms21218162] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. The key molecules of the hypoxia/oxygen-sensing signaling include the transcriptional regulator hypoxia-inducible factor (HIF) which widely controls oxygen responsive genes, the central members of the 2-oxoglutarate (2-OG)-dependent dioxygenases, such as prolyl hydroxylase (PHD or EglN), and an E3 ubiquitin ligase component for HIF degeneration called von Hippel–Lindau (encoding protein pVHL). In this review, we summarize the current knowledge about the canonical hypoxia signaling, HIF transcription factors, and pVHL. In addition, the role of 2-OG-dependent enzymes, such as DNA/RNA-modifying enzymes, JmjC domain-containing enzymes, and prolyl hydroxylases, in gene regulation of cancer progression, is specifically reviewed. We also discuss the therapeutic advancement of targeting hypoxia and oxygen sensing pathways in cancer.
Collapse
|
12
|
ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers. Nat Commun 2020; 11:3965. [PMID: 32770022 PMCID: PMC7414915 DOI: 10.1038/s41467-020-17770-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Dysregulated Wnt/β-catenin activation plays a critical role in cancer progression, metastasis, and drug resistance. Genotoxic agents such as radiation and chemotherapeutics have been shown to activate the Wnt/β-catenin signaling although the underlying mechanism remains incompletely understood. Here, we show that genotoxic agent-activated Wnt/β-catenin signaling is independent of the FZD/LRP heterodimeric receptors and Wnt ligands. OTULIN, a linear linkage-specific deubiquitinase, is essential for the DNA damage-induced β-catenin activation. OTULIN inhibits linear ubiquitination of β-catenin, which attenuates its Lys48-linked ubiquitination and proteasomal degradation upon DNA damage. The association with β-catenin is enhanced by OTULIN Tyr56 phosphorylation, which depends on genotoxic stress-activated ABL1/c-Abl. Inhibiting OTULIN or Wnt/β-catenin sensitizes triple-negative breast cancer xenograft tumors to chemotherapeutics and reduces metastasis. Increased OTULIN levels are associated with aggressive molecular subtypes and poor survival in breast cancer patients. Thus, OTULIN-mediated Wnt/β-catenin activation upon genotoxic treatments promotes drug resistance and metastasis in breast cancers. Genotoxic agents have been shown to activate the Wnt/β-catenin signaling but the underlying mechanism remains unclear. Here, the authors show that upon DNA damage, the deubiquitinase OTULIN activates Wnt/β-catenin signaling by inhibiting linear ubiquitination, K48-linked polyubiquitination, and proteasomal degradation of β-catenin.
Collapse
|
13
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
14
|
Minervini G, Pennuto M, Tosatto SCE. The pVHL neglected functions, a tale of hypoxia-dependent and -independent regulations in cancer. Open Biol 2020; 10:200109. [PMID: 32603638 PMCID: PMC7574549 DOI: 10.1098/rsob.200109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The von Hippel–Lindau protein (pVHL) is a tumour suppressor mainly known for its role as master regulator of hypoxia-inducible factor (HIF) activity. Functional inactivation of pVHL is causative of the von Hippel–Lindau disease, an inherited predisposition to develop different cancers. Due to its impact on human health, pVHL has been widely studied in the last few decades. However, investigations mostly focus on its role in degrading HIFs, whereas alternative pVHL protein–protein interactions and functions are insistently surfacing in the literature. In this review, we analyse these almost neglected functions by dissecting specific conditions in which pVHL is proposed to have differential roles in promoting cancer. We reviewed its role in regulating phosphorylation as a number of works suggest pVHL to act as an inhibitor by either degrading or promoting downregulation of specific kinases. Further, we summarize hypoxia-dependent and -independent pVHL interactions with multiple protein partners and discuss their implications in tumorigenesis.
Collapse
Affiliation(s)
- Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.,Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
15
|
YU Q, XIONG X, SUN Y. [Targeting Cullin-RING E3 ligases for anti-cancer therapy: efforts on drug discovery]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:1-19. [PMID: 32621419 PMCID: PMC8800688 DOI: 10.3785/j.issn.1008-9292.2020.02.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 06/11/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the major components of ubiquitin-proteasome system, responsible for ubiquitylation and subsequent degradation of thousands of cellular proteins. CRLs play vital roles in the regulation of multiple cellular processes, including cell cycle, cell apoptosis, DNA replication, signalling transduction among the others, and are frequently dysregulated in many human cancers. The discovery of specific neddylation inhibitors, represented by MLN4924, has validated CRLs as promising targets for anti-cancer therapies with a growing market. Recent studies have focused on the discovery of the CRLs inhibitors by a variety of approaches, including high through-put screen, virtual screen or structure-based drug design. The field is, however, still facing the major challenging, since CRLs are a large multi-unit protein family without typical active pockets to facilitate the drug design, and enzymatic activity is mainly dependent on undruggable protein-protein interactions and dynamic conformation changes. Up to now, most reported CRLs inhibitors are aiming at targeting the F-box family proteins (e.g., SKP2, β-TrCP and FBXW7), the substrate recognition subunit of SCF E3 ligases. Other studies reported few small molecule inhibitors targeting the UBE2M-DCN1 interaction, which specifically inhibits CRL3/CRL1 by blocking the cullin neddylation. On the other hand, several CRL activators have been reported, such as plant auxin and immunomodulatory imide drugs, thalidomide. Finally, proteolysis-targeting chimeras (PROTACs) has emerged as a new technology in the field of drug discovery, specifically targeting the undruggable protein-protein interaction. The technique connects the small molecule that selectively binds to a target protein to a CRL E3 via a chemical linker to trigger the degradation of target protein. The PROTAC has become a hotspot in the field of E3-ligase-based anti-cancer drug discovery.
Collapse
|
16
|
Rao H, Li X, Liu M, Liu J, Li X, Xu J, Li L, Gao WQ. Di-Ras2 promotes renal cell carcinoma formation by activating the mitogen-activated protein kinase pathway in the absence of von Hippel-Lindau protein. Oncogene 2020; 39:3853-3866. [PMID: 32161311 DOI: 10.1038/s41388-020-1247-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common and lethal human urological malignancies in the world. One of the pathological drivers for ccRCC is the Ras family of small GTPases that function as "molecular switches" in many diseases including ccRCC. Among the GTPases in the Di-Ras family, DIRAS2 gene encodes a GTPase that shares 60% homology to Ras and Rap. Yet little is known about the biological function(s) of Di-Ras2 or how its activities are regulated. In this study, we focused on Di-Ras2, and determined its functions and underlying mechanism during formation of ccRCC. We found that Di-Ras2 was upregulated in ccRCC, and promoted the proliferation, migration and invasion of human ccRCC cells in the absence of von Hippel-Lindau protein (pVHL). Mechanistically, Di-Ras2 induces and regulates ccRCC formation by modulating phosphorylation of the downstream effectors and activating the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, Di-Ras2 interacts with E3 ubiquitin ligase, pVHL, which facilitates the ubiquitination and degradation of Di-Ras2. Together, these results indicate a potential function of Di-Ras2 as an oncogene in ccRCC, and these data provide a new perspective of the relationship between pVHL and the MAPK pathway in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xuefeng Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- Department of Medical Oncology, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, PR China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jing Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, 200127, Shanghai, PR China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
17
|
Hwang SH, Bang S, Kim W, Chung J. Von Hippel-Lindau tumor suppressor (VHL) stimulates TOR signaling by interacting with phosphoinositide 3-kinase (PI3K). J Biol Chem 2020; 295:2336-2347. [PMID: 31959630 DOI: 10.1074/jbc.ra119.011596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cell growth is positively controlled by the phosphoinositide 3-kinase (PI3K)-target of rapamycin (TOR) signaling pathway under conditions of abundant growth factors and nutrients. To discover additional mechanisms that regulate cell growth, here we performed RNAi-based mosaic analyses in the Drosophila fat body, the primary metabolic organ in the fly. Unexpectedly, the knockdown of the Drosophila von Hippel-Lindau (VHL) gene markedly decreased cell size and body size. These cell growth phenotypes induced by VHL loss of function were recovered by activation of TOR signaling in Drosophila Consistent with the genetic interactions between VHL and the signaling components of PI3K-TOR pathway in Drosophila, we observed that VHL loss of function in mammalian cells causes decreased phosphorylation of ribosomal protein S6 kinase and Akt, which represent the main activities of this pathway. We further demonstrate that VHL activates TOR signaling by directly interacting with the p110 catalytic subunit of PI3K. On the basis of the evolutionarily conserved regulation of PI3K-TOR signaling by VHL observed here, we propose that VHL plays an important role in the regulation and maintenance of proper cell growth in metazoans.
Collapse
Affiliation(s)
- Sun-Hong Hwang
- School of Biological Sciences, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Sunhoe Bang
- School of Biological Sciences, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Wonho Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Gwanak-Gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Liu X, Zurlo G, Zhang Q. The Roles of Cullin-2 E3 Ubiquitin Ligase Complex in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:173-186. [PMID: 31898228 DOI: 10.1007/978-981-15-1025-0_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Posttranslational protein modifications play an important role in regulating protein stability and cellular function. There are at least eight Cullin family members. Among them, Cullin-2 forms a functional E3 ligase complex with elongin B, elongin C, RING-box protein 1 (RBX1, also called ROC1), as well as the substrate recognition subunit (SRS) to promote the substrate ubiquitination and degradation. In this book chapter, we will review Cullin-2 E3 ligase complexes that include various SRS proteins, including von Hippel Lindau (pVHL), leucine-rich repeat protein-1 (LRR-1), preferentially expressed antigen of melanoma (PRAME), sex-determining protein FEM-1 and early embryogenesis protein ZYG-11. We will focus on the VHL signaling pathway in clear cell renal cell carcinoma (ccRCC), which may reveal various therapeutic avenues in treating this lethal cancer.
Collapse
Affiliation(s)
- Xijuan Liu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Giada Zurlo
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Qing Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA. .,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA. .,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA. .,Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Wang X, Rusin A, Walkey CJ, Lin JJ, Johnson DL. The RNA polymerase III repressor MAF1 is regulated by ubiquitin-dependent proteasome degradation and modulates cancer drug resistance and apoptosis. J Biol Chem 2019; 294:19255-19268. [PMID: 31645432 DOI: 10.1074/jbc.ra119.008849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
MAF1 homolog, negative regulator of RNA polymerase III (MAF1) is a key repressor of RNA polymerase (pol) III-dependent transcription and functions as a tumor suppressor. Its expression is frequently down-regulated in primary human hepatocellular carcinomas (HCCs). However, this reduction in MAF1 protein levels does not correlate with its transcript levels, indicating that MAF1 is regulated post-transcriptionally. Here, we demonstrate that MAF1 is a labile protein whose levels are regulated through the ubiquitin-dependent proteasome pathway. We found that MAF1 ubiquitination is enhanced upon mTOR complex 1 (TORC1)-mediated phosphorylation at Ser-75. Moreover, we observed that the E3 ubiquitin ligase cullin 2 (CUL2) critically regulates MAF1 ubiquitination and controls its stability and subsequent RNA pol III-dependent transcription. Analysis of the phenotypic consequences of modulating either CUL2 or MAF1 protein expression revealed changes in actin cytoskeleton reorganization and altered sensitivity to doxorubicin-induced apoptosis. Repression of RNA pol III-dependent transcription by chemical inhibition or knockdown of BRF1 RNA pol III transcription initiation factor subunit (BRF1) enhanced HCC cell sensitivity to doxorubicin, suggesting that MAF1 regulates doxorubicin resistance in HCC by controlling RNA pol III-dependent transcription. Together, our results identify the ubiquitin proteasome pathway and CUL2 as important regulators of MAF1 levels. They suggest that decreases in MAF1 protein underlie chemoresistance in HCC and perhaps other cancers and point to an important role for MAF1 and RNA pol III-mediated transcription in chemosensitivity and apoptosis.
Collapse
Affiliation(s)
- Xianlong Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
20
|
Sergi C. EPAS 1, congenital heart disease, and high altitude: disclosures by genetics, bioinformatics, and experimental embryology. Biosci Rep 2019; 39:BSR20182197. [PMID: 31015364 PMCID: PMC6509053 DOI: 10.1042/bsr20182197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
The high-altitude environment is a challenge for human settlement. Low oxygen concentrations, extreme cold, and a harsh arid climate are doubtlessly challenges for the colonization of the Tibetan plateau. I am delighted to comment on the article of Pan et al. (2018) on mutations in endothelial PAS domain-containing protein 1 (EPAS1) in congenital heart disease in Tibetans. In humans, the EPAS1 gene is responsible for coding EPAS1 protein, an alias of which is HIF2α, an acronym for hypoxia-inducible factor 2 alpha. EPAS1 is a type of hypoxia-inducible factors, which are collected as a group of transcription factors involved in body response to oxygen level. EPAS1 gene is active under hypoxic conditions and plays an essential role in the development of the heart and in the management of the catecholamine balance, mutations of which have been identified in neuroendocrine tumors. In this article, Pan et al. investigated Tibetan patients with and without non-syndromic congenital heart disease. They identified two novel EPAS1 gene mutations, of which N203H mutation significantly affected the transcription activity of the vascular endothelial growth factor (VEGF) promoter, particularly in situations of hypoxia. VEGF is a downstream target of HIF-2 (other than HIF-1), and the expression levels of either HIF-1α or HIF-2α correlate positively to VEGF expression. Pan et al.'s data may be of incitement to further evaluate protein-protein interaction and using experimental animal models. Moreover, it may also be a stimulus for setting up genetic epidemiologic studies for other populations living at high altitudes.
Collapse
Affiliation(s)
- Consolato Sergi
- National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, P.R. China
- Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Stollery Children's Hospital, University Alberta Hospital, Edmonton, AB, Canada
| |
Collapse
|
21
|
The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. Int J Mol Sci 2019; 20:ijms20112667. [PMID: 31151253 PMCID: PMC6600158 DOI: 10.3390/ijms20112667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitination regulates nearly every aspect of cellular events in eukaryotes. It modifies intracellular proteins with 76-amino acid polypeptide ubiquitin (Ub) and destines them for proteolysis or activity alteration. Ubiquitination is generally achieved by a tri-enzyme machinery involving ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). E1 activates Ub and transfers it to the active cysteine site of E2 via a transesterification reaction. E3 coordinates with E2 to mediate isopeptide bond formation between Ub and substrate protein. The E1-E2-E3 cascade can create diverse types of Ub modifications, hence effecting distinct outcomes on the substrate proteins. Dysregulation of ubiquitination results in severe consequences and human diseases. There include cancers, developmental defects and immune disorders. In this review, we provide an overview of the ubiquitination machinery and discuss the recent progresses in the ubiquitination-mediated regulation of embryonic stem cell maintenance and cancer biology.
Collapse
|
22
|
|
23
|
Chowdhury P, Powell RT, Stephan C, Uray IP, Talley T, Karki M, Tripathi DN, Park YS, Mancini MA, Davies P, Dere R. Bexarotene - a novel modulator of AURKA and the primary cilium in VHL-deficient cells. J Cell Sci 2018; 131:jcs.219923. [PMID: 30518623 PMCID: PMC6307881 DOI: 10.1242/jcs.219923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022] Open
Abstract
Loss of the gene von Hippel–Lindau (VHL) is associated with loss of primary cilia and is causally linked to elevated levels of Aurora kinase A (AURKA). We developed an image-based high-throughput screening (HTS) assay using a dual-labeling image analysis strategy that identifies both the cilium and the basal body. By using this strategy, we screened small-molecule compounds for the targeted rescue of cilia defects associated with VHL deficiency with high accuracy and reproducibility. Bexarotene was identified and validated as a positive regulator of the primary cilium. Importantly, the inability of an alternative retinoid X receptor (RXR) agonist to rescue ciliogenesis, in contrast to bexarotene, suggested that multiple bexarotene-driven mechanisms were responsible for the rescue. We found that bexarotene decreased AURKA expression in VHL-deficient cells, thereby restoring the ability of these cells to ciliate in the absence of VHL. Finally, bexarotene treatment reduced the propensity of subcutaneous lesions to develop into tumors in a mouse xenograft model of renal cell carcinoma (RCC), with a concomitant decrease in activated AURKA, highlighting the potential of bexarotene treatment as an intervention strategy in the clinic to manage renal cystogenesis associated with VHL deficiency and elevated AURKA expression. Highlighted Article: An image-based screen using a dual labeling strategy identified bexarotene, a rexinoid, as a novel modulator of the primary cilium in VHL-deficient cells.
Collapse
Affiliation(s)
- Pratim Chowdhury
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Reid T Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Clifford Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Ivan P Uray
- Department of Clinical Oncology, University of Debrecen, Debrecen 4032, Hungary
| | - Tia Talley
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Menuka Karki
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Durga Nand Tripathi
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yong Sung Park
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Davies
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Ruhee Dere
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Zhang J, Zhang Q. VHL and Hypoxia Signaling: Beyond HIF in Cancer. Biomedicines 2018; 6:biomedicines6010035. [PMID: 29562667 PMCID: PMC5874692 DOI: 10.3390/biomedicines6010035] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Von Hippel-Lindau (VHL) is an important tumor suppressor that is lost in the majority of clear cell carcinoma of renal cancer (ccRCC). Its regulatory pathway involves the activity of E3 ligase, which targets hypoxia inducible factor α (including HIF1α and HIF2α) for proteasome degradation. In recent years, emerging literature suggests that VHL also possesses other HIF-independent functions. This review will focus on VHL-mediated signaling pathways involving the latest identified substrates/binding partners, including N-Myc downstream-regulated gene 3 (NDRG3), AKT, and G9a, etc., and their physiological roles in hypoxia signaling and cancer. We will also discuss the crosstalk between VHL and NF-κB signaling. Lastly, we will review the latest findings on targeting VHL signaling in cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
25
|
Abstract
The von Hippel–Lindau (VHL) gene is a two-hit tumor suppressor gene and is linked to the development of the most common form of kidney cancer, clear cell renal carcinoma; blood vessel tumors of the retina, cerebellum, and spinal cord called hemangioblastomas; and tumors of the sympathoadrenal nervous system called paragangliomas. The VHL gene product, pVHL, is the substrate recognition subunit of a cullin-dependent ubiquitin ligase that targets the α subunits of hypoxia-inducible factor (HIF) for destruction when oxygen is plentiful. Mounting evidence implicates HIF2 in the pathogenesis of pVHL-defective tumors and has provided a conceptual foundation for the development of drugs to treat them that inhibit HIF2-responsive gene products such as VEGF and, more recently, HIF2 itself. pVHL has additional, noncanonical functions that are cancer relevant, including roles related to the primary cilium, chromosome stability, extracellular matrix formation, and survival signaling.
Collapse
Affiliation(s)
- William G. Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
26
|
Robinson CM, Lefebvre F, Poon BP, Bousard A, Fan X, Lathrop M, Tost J, Kim WY, Riazalhosseini Y, Ohh M. Consequences of VHL Loss on Global DNA Methylome. Sci Rep 2018; 8:3313. [PMID: 29463811 PMCID: PMC5820357 DOI: 10.1038/s41598-018-21524-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
In clear-cell renal cell carcinoma (ccRCC), loss of von Hippel-Lindau (VHL) tumour suppressor gene and reduced oxygen tension promote stabilisation of hypoxia-inducible factor (HIF) family of transcription factors, which promote changes in the expression of genes that contribute to oncogenesis. Multiple studies have demonstrated significant perturbations in DNA methylation in ccRCC via largely unclear mechanisms that modify the transcriptional output of tumour cells. Here, we show that the methylation status of the CpG dinucleotide within the consensus hypoxia-responsive element (HRE) markedly influences the binding of HIF and that the loss of VHL results in significant alterations in the DNA methylome. Surprisingly, hypoxia, which likewise promotes HIF stabilisation and activation, has relatively few effects on global DNA methylation. Gene expression analysis of ccRCC patient samples highlighted expression of a group of genes whose transcription correlated with methylation changes, including hypoxic responsive genes such as VEGF and TGF. These results suggest that the loss of VHL alters DNA methylation profile across the genome, commonly associated with and contributing to ccRCC progression.
Collapse
Affiliation(s)
- Claire M Robinson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics (C3G), 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Betty P Poon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada
| | - Aurelie Bousard
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Xiaojun Fan
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, 2 rue Gaston Crémieux, 91000, Evry, France
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, North Carolina, USA
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Wang S, Xia W, Qiu M, Wang X, Jiang F, Yin R, Xu L. Atlas on substrate recognition subunits of CRL2 E3 ligases. Oncotarget 2018; 7:46707-46716. [PMID: 27107416 PMCID: PMC5216831 DOI: 10.18632/oncotarget.8732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/02/2016] [Indexed: 12/16/2022] Open
Abstract
The Cullin2-type ubiquitin ligases belong to the Cullin-Ring Ligase (CRL) family, which is a crucial determinant of proteasome-based degradation processes in eukaryotes. Because of the finding of von Hippel-Lindau tumor suppressor (VHL), the Cullin2-type ubiquitin ligases gain focusing in the research of many diseases, especially in tumors. These multisubunit enzymes are composed of the Ring finger protein, the Cullin2 scaffold protein, the Elongin B&C linker protein and the variant substrate recognition subunits (SRSs), among which the Cullin2 scaffold protein is the determining factor of the enzyme mechanism. Substrate recognition of Cullin2-type ubiquitin ligases depends on SRSs and results in the degradation of diseases associated substrates by intracellular signaling events. This review focuses on the diversity and the multifunctionality of SRSs in the Cullin2-type ubiquitin ligases, including VHL, LRR-1, FEM1b, PRAME and ZYG11. Recently, as more SRSs are being discovered and more aspects of substrate recognition have been illuminated, insight into the relationship between Cul2-dependent SRSs and substrates provides a new area for cancer research.
Collapse
Affiliation(s)
- Siwei Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Wenjia Xia
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Mantang Qiu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Rong Yin
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
28
|
Williams E, Villar-Prados A, Bowser J, Broaddus R, Gladden AB. Loss of polarity alters proliferation and differentiation in low-grade endometrial cancers by disrupting Notch signaling. PLoS One 2017; 12:e0189081. [PMID: 29206870 PMCID: PMC5716545 DOI: 10.1371/journal.pone.0189081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/18/2017] [Indexed: 01/03/2023] Open
Abstract
Cell adhesion and apicobasal polarity together maintain epithelial tissue organization and homeostasis. Loss of adhesion has been described as a prerequisite for the epithelial to mesenchymal transition. However, what role misregulation of apicobasal polarity promotes tumor initiation and/or early progression remains unclear. We find that human low-grade endometrial cancers are associated with disrupted localization of the apical polarity protein Par3 and Ezrin while, the adhesion molecule E-cadherin remains unchanged, accompanied by decreased Notch signaling, and altered Notch receptor localization. Depletion of Par3 or Ezrin, in a cell-based model, results in loss of epithelial architecture, differentiation, increased proliferation, migration and decreased Notch signaling. Re-expression of Par3 in endometrial cancer cell lines with disrupted Par3 protein levels blocks proliferation and reduces migration in a Notch dependent manner. These data uncover a function for apicobasal polarity independent of cell adhesion in regulating Notch-mediated differentiation signals in endometrial epithelial cells.
Collapse
Affiliation(s)
- Erin Williams
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| | - Alejandro Villar-Prados
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| | - Jessica Bowser
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Russell Broaddus
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
- Department of Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
| | - Andrew B. Gladden
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX, United States of America
- Program of Genes and Development, Graduate School of Biomedical Sciences, University of Texas Health Sciences Center, Houston, TX, United States of America
| |
Collapse
|
29
|
Tarade D, Ohh M. The HIF and other quandaries in VHL disease. Oncogene 2017; 37:139-147. [PMID: 28925400 DOI: 10.1038/onc.2017.338] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/13/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
Abstract
Mutations in VHL underlie von Hippel-Lindau (VHL) disease, a hereditary cancer syndrome with several subtypes depending on the risk of developing certain combination of classic features, such as clear cell renal cell carcinoma (ccRCC), hemangioblastoma and pheochromocytoma. Although numerous potential substrates and functions of pVHL have been described over the past decade, the best-defined role of pVHL has remained as the negative regulator of the heterodimeric hypoxia-inducible factor (HIF) transcription factor via the oxygen-dependent ubiquitin-mediated degradation of HIF-α subunit. Despite the seminal discoveries that led to the molecular elucidation of the mammalian oxygen-sensing VHL-HIF axis, which have provided several rational therapies, the mechanisms underlying the complex genotype-phenotype correlation in VHL disease are unclear. This review will discuss and highlight the studies that have provided interesting insights as well as uncertainties to the underlying mechanisms governing VHL disease.
Collapse
Affiliation(s)
- D Tarade
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - M Ohh
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, MaRS Centre West Tower, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Hasanov E, Chen G, Chowdhury P, Weldon J, Ding Z, Jonasch E, Sen S, Walker CL, Dere R. Ubiquitination and regulation of AURKA identifies a hypoxia-independent E3 ligase activity of VHL. Oncogene 2017; 36:3450-3463. [PMID: 28114281 PMCID: PMC5485216 DOI: 10.1038/onc.2016.495] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The hypoxia-regulated tumor-suppressor von Hippel-Lindau (VHL) is an E3 ligase that recognizes its substrates as part of an oxygen-dependent prolyl hydroxylase (PHD) reaction, with hypoxia-inducible factor α (HIFα) being its most notable substrate. Here we report that VHL has an equally important function distinct from its hypoxia-regulated activity. We find that Aurora kinase A (AURKA) is a novel, hypoxia-independent target for VHL ubiquitination. In contrast to its hypoxia-regulated activity, VHL mono-, rather than poly-ubiquitinates AURKA, in a PHD-independent reaction targeting AURKA for degradation in quiescent cells, where degradation of AURKA is required to maintain the primary cilium. Tumor-associated variants of VHL differentiate between these two functions, as a pathogenic VHL mutant that retains intrinsic ability to ubiquitinate HIFα is unable to ubiquitinate AURKA. Together, these data identify VHL as an E3 ligase with important cellular functions under both normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- E Hasanov
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.,Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - G Chen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - P Chowdhury
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - J Weldon
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Z Ding
- Department of Systems Biology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - E Jonasch
- Department of Genitourinary Medical Oncology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - S Sen
- Department of Translational Molecular Pathology, U.T. M.D. Anderson Cancer Center, Houston, TX, USA
| | - C L Walker
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - R Dere
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
31
|
Cai W, Yang H. The structure and regulation of Cullin 2 based E3 ubiquitin ligases and their biological functions. Cell Div 2016; 11:7. [PMID: 27222660 PMCID: PMC4878042 DOI: 10.1186/s13008-016-0020-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 11/23/2022] Open
Abstract
Background Cullin-RING E3 ubiquitin ligase complexes play a central role in targeting cellular proteins for ubiquitination-dependent protein turnover through 26S proteasome. Cullin-2 is a member of the Cullin family, and it serves as a scaffold protein for Elongin B and C, Rbx1 and various substrate recognition receptors to form E3 ubiquitin ligases. Main body of the abstract First, the composition, structure and the regulation of Cullin-2 based E3 ubiquitin ligases were introduced. Then the targets, the biological functions of complexes that use VHL, Lrr-1, Fem1b, Prame, Zyg-11, BAF250, Rack1 as substrate targeting subunits were described, and their involvement in diseases was discussed. A small molecule inhibitor of Cullins as a potential anti-cancer drug was introduced. Furthermore, proteins with VHL box that might bind to Cullin-2 were described. Finally, how different viral proteins form E3 ubiquitin ligase complexes with Cullin-2 to counter host viral defense were explained. Conclusions Cullin-2 based E3 ubiquitin ligases, using many different substrate recognition receptors, recognize a number of substrates and regulate their protein stability. These complexes play critical roles in biological processes and diseases such as cancer, germline differentiation and viral defense. Through the better understanding of their biology, we can devise and develop new therapeutic strategies to treat cancers, inherited diseases and viral infections.
Collapse
Affiliation(s)
- Weijia Cai
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Haifeng Yang
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
32
|
Nielsen SM, Rhodes L, Blanco I, Chung WK, Eng C, Maher ER, Richard S, Giles RH. Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome. J Clin Oncol 2016; 34:2172-81. [PMID: 27114602 DOI: 10.1200/jco.2015.65.6140] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Von Hippel-Lindau disease (VHL) is one of the most common inherited neoplasia syndromes and is characterized by highly vascular tumors of the eyes, brain, and spine, as well as benign and malignant tumors and/or cysts of the kidneys, adrenal medullae and sympathetic paraganglia, endolymphatic sac, epididymis, and broad ligament. Since the discovery of the VHL gene in 1993, more than 900 families with VHL have been identified and examined. Genetic testing for VHL is widely available and will detect a disease-causing mutation in rate 95% to 100% of individuals who have a clinical diagnosis of VHL, making it the standard of care for diagnosis of VHL. Furthermore, genetic testing for VHL is indicated in some individuals with seemingly sporadic VHL-related tumor types, as ≤ 10% of pheochromocytoma or early-onset renal cell carcinoma and ≤ 40% of CNS hemangioblastoma harbor germline VHL mutations without a family history or additional features of VHL disease. The majority of VHL mutations are private, but there are also well-characterized founder mutations. VHL is a complex, multiorgan disease that spans the breadth of oncology subspecialties, and, as such, providers in these subspecialties should be aware of when to consider a diagnosis of VHL, when to refer a patient to a genetics specialist for consideration of gene testing, and, perhaps most importantly, how to communicate this sensitive information in an age-appropriate manner to at-risk families. This review will provide state-of-the-art information regarding the genetics of VHL and will serve as a key reference for nongenetics professionals who encounter patients with VHL.
Collapse
Affiliation(s)
- Sarah M Nielsen
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands.
| | - Lindsay Rhodes
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands
| | - Ignacio Blanco
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands
| | - Wendy K Chung
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands
| | - Charis Eng
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands
| | - Eamonn R Maher
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands
| | - Stéphane Richard
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands
| | - Rachel H Giles
- Sarah M. Nielsen and Lindsay Rhodes, The University of Chicago, Chicago, IL; Ignacio Blanco, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain; Wendy K. Chung, Columbia University, New York, NY; Charis Eng, Cleveland Clinic; Charis Eng, Case Western Reserve University School of Medicine, Cleveland, OH; Eamonn R. Maher, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge, United Kingdom; Stéphane Richard, Réseau National pour Cancers Rares de l'Adulte PREDIR, INCa/AP-HP, Hôpital Bicêtre, Le Kremlin Bicêtre; Stéphane Richard, INSERM U1186, Gustave Roussy Cancer Campus, Villejuif, France; Rachel H. Giles, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Utrecht; and Rachel H. Giles, Dutch VHL Patient Organization, Gouda, the Netherlands
| |
Collapse
|
33
|
Mining for genes related to choroidal neovascularization based on the shortest path algorithm and protein interaction information. Biochim Biophys Acta Gen Subj 2016; 1860:2740-9. [PMID: 26987808 DOI: 10.1016/j.bbagen.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Choroidal neovascularization (CNV) is a serious eye disease that may cause visual loss, especially for older people. Many factors have been proven to induce this disease including age, gender, obesity, and so on. However, until now, we have had limited knowledge on CNV's pathogenic mechanism. Discovering the genes that underlie this disease and performing extensive studies on them can help us to understand how CNV occurs and design effective treatments. METHODS In this study, we designed a computational method to identify novel CNV-related genes in a large protein network constructed using the protein-protein interaction information in STRING. The candidate genes were first extracted from the shortest paths connecting any two known CNV-related genes and then filtered by a permutation test and using knowledge of their linkages to known CNV-related genes. RESULTS A list of putative CNV-related candidate genes was accessed by our method. These genes are deemed to have strong relationships with CNV. CONCLUSIONS Extensive analyses of several of the putative genes such as ANK1, ITGA4, CD44 and others indicate that they are related to specific biological processes involved in CNV, implying they may be novel CNV-related genes. GENERAL SIGNIFICANCE The newfound putative CNV-related genes may provide new insights into CNV and help design more effective treatments. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
34
|
Heir P, Srikumar T, Bikopoulos G, Bunda S, Poon BP, Lee JE, Raught B, Ohh M. Oxygen-dependent Regulation of Erythropoietin Receptor Turnover and Signaling. J Biol Chem 2016; 291:7357-72. [PMID: 26846855 DOI: 10.1074/jbc.m115.694562] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Indexed: 01/29/2023] Open
Abstract
von Hippel-Lindau (VHL) disease is a rare familial cancer predisposition syndrome caused by a loss or mutation in a single gene,VHL, but it exhibits a wide phenotypic variability that can be categorized into distinct subtypes. The phenotypic variability has been largely argued to be attributable to the extent of deregulation of the α subunit of hypoxia-inducible factor α, a well established target of VHL E3 ubiquitin ligase, ECV (Elongins/Cul2/VHL). Here, we show that erythropoietin receptor (EPOR) is hydroxylated on proline 419 and 426 via prolyl hydroxylase 3. EPOR hydroxylation is required for binding to the β domain of VHL and polyubiquitylation via ECV, leading to increased EPOR turnover. In addition, several type-specific VHL disease-causing mutants, including those that have retained proper binding and regulation of hypoxia-inducible factor α, showed a severe defect in binding prolyl hydroxylated EPOR peptides. These results identify EPOR as the secondbona fidehydroxylation-dependent substrate of VHL that potentially influences oxygen homeostasis and contributes to the complex genotype-phenotype correlation in VHL disease.
Collapse
Affiliation(s)
- Pardeep Heir
- From the Departments of Laboratory Medicine and Pathobiology and
| | - Tharan Srikumar
- the Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | | | - Severa Bunda
- From the Departments of Laboratory Medicine and Pathobiology and
| | - Betty P Poon
- From the Departments of Laboratory Medicine and Pathobiology and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 and
| | - Jeffrey E Lee
- From the Departments of Laboratory Medicine and Pathobiology and
| | - Brian Raught
- the Princess Margaret Cancer Centre, Toronto, Ontario M5G 1L7, Canada
| | - Michael Ohh
- From the Departments of Laboratory Medicine and Pathobiology and Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 and
| |
Collapse
|
35
|
Uchida T, Tamaki Y, Ayaki T, Shodai A, Kaji S, Morimura T, Banno Y, Nishitsuji K, Sakashita N, Maki T, Yamashita H, Ito H, Takahashi R, Urushitani M. CUL2-mediated clearance of misfolded TDP-43 is paradoxically affected by VHL in oligodendrocytes in ALS. Sci Rep 2016; 6:19118. [PMID: 26751167 PMCID: PMC4707540 DOI: 10.1038/srep19118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/04/2015] [Indexed: 12/28/2022] Open
Abstract
The molecular machinery responsible for cytosolic accumulation of misfolded TDP-43 in amyotrophic lateral sclerosis (ALS) remains elusive. Here we identified a cullin-2 (CUL2) RING complex as a novel ubiquitin ligase for fragmented forms of TDP-43. The von Hippel Lindau protein (VHL), a substrate binding component of the complex, preferentially recognized misfolded TDP-43 at Glu246 in RNA-recognition motif 2. Recombinant full-length TDP-43 was structurally fragile and readily cleaved, suggesting that misfolded TDP-43 is cleared by VHL/CUL2 in a step-wise manner via fragmentation. Surprisingly, excess VHL stabilized and led to inclusion formation of TDP-43, as well as mutant SOD1, at the juxtanuclear protein quality control center. Moreover, TDP-43 knockdown elevated VHL expression in cultured cells, implying an aberrant interaction between VHL and mislocalized TDP-43 in ALS. Finally, cytoplasmic inclusions especially in oligodendrocytes in ALS spinal cords were immunoreactive to both phosphorylated TDP-43 and VHL. Thus, our results suggest that an imbalance in VHL and CUL2 may underlie oligodendrocyte dysfunction in ALS, and highlight CUL2 E3 ligase emerges as a novel therapeutic potential for ALS.
Collapse
Affiliation(s)
- Tsukasa Uchida
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Yoshitaka Tamaki
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Ayaki
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Akemi Shodai
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Seiji Kaji
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Toshifumi Morimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Yoshinori Banno
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Kazuchika Nishitsuji
- Department of Molecular Pathology, Tokushima University, 2-24 Shinkuracho, Tokushima, Tokushima Prefecture 770-0855, Japan
| | - Naomi Sakashita
- Department of Molecular Pathology, Tokushima University, 2-24 Shinkuracho, Tokushima, Tokushima Prefecture 770-0855, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hirofumi Yamashita
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, Wakayama Prefecture 641-8509, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Makoto Urushitani
- Department of Neurology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
36
|
Moonlighting and pleiotropy within two regulators of the degradation machinery: the proteasome lid and the CSN. Biochem Soc Trans 2015; 42:1786-91. [PMID: 25399607 DOI: 10.1042/bst20140227] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The distinction between pleiotrotic and moonlighting roles of proteins is challenging; however, this distinction may be clearer when it comes to multiprotein complexes. Two examples are the proteasome lid and the COP9 signalosome (CSN), which are twin enzymes with 1:1 paralogy between subunits. In each complex, one out of eight subunits harbours a JAMM/MPN⁺ metalloprotease motif. This motif contributes the canonical activity of each complex: hydrolysis of covalently attached ubiquitin by Rpn11 in the proteasome lid and hydrolysis of ubiquitin-related 1 (Rub1/Nedd8) from Cullins by Csn5 in the CSN. In both complexes, executing this activity suggests pleiotropic effects and requires an assembled full complex. However, beyond canonical functions, both Rpn11 and Csn5 are involved in additional unique, complex-independent functions, herein referred to as moonlighting activities.
Collapse
|
37
|
Murnyák B, Szepesi R, Hortobágyi T. [Molecular genetics of familial tumour syndromes of the central nervous system]. Orv Hetil 2015; 156:171-7. [PMID: 25618858 DOI: 10.1556/oh.2015.30092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.
Collapse
Affiliation(s)
- Balázs Murnyák
- Debreceni Egyetem, Általános Orvostudományi Kar Patológiai Intézet, Neuropatológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| | - Rita Szepesi
- Debreceni Egyetem, Általános Orvostudományi Kar Orvosi Rehabilitáció és Fizikális Medicina Tanszék Debrecen Debreceni Egyetem, Általános Orvostudományi Kar Neurológiai Tanszék Debrecen
| | - Tibor Hortobágyi
- Debreceni Egyetem, Általános Orvostudományi Kar Patológiai Intézet, Neuropatológiai Tanszék Debrecen Nagyerdei krt. 98. 4032
| |
Collapse
|
38
|
|
39
|
Queisser MA, Dada LA, Deiss-Yehiely N, Angulo M, Zhou G, Kouri FM, Knab LM, Liu J, Stegh AH, DeCamp MM, Budinger GRS, Chandel NS, Ciechanover A, Iwai K, Sznajder JI. HOIL-1L functions as the PKCζ ubiquitin ligase to promote lung tumor growth. Am J Respir Crit Care Med 2014; 190:688-98. [PMID: 25118570 DOI: 10.1164/rccm.201403-0463oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Protein kinase C zeta (PKCζ) has been reported to act as a tumor suppressor. Deletion of PKCζ in experimental cancer models has been shown to increase tumor growth. However, the mechanisms of PKCζ down-regulation in cancerous cells have not been previously described. OBJECTIVES To determine the molecular mechanisms that lead to decreased PKCζ expression and thus increased survival in cancer cells and tumor growth. METHODS The levels of expression of heme-oxidized IRP2 ubiquitin ligase 1L (HOIL-1L), HOIL-1-interacting protein (HOIP), Shank-associated RH domain-interacting protein (SHARPIN), and PKCζ were analyzed by Western blot and/or quantitative real-time polymerase chain reaction in different cell lines. Coimmunoprecipitation experiments were used to demonstrate the interaction between HOIL-1L and PKCζ. Ubiquitination was measured in an in vitro ubiquitination assay and by Western blot with specific antibodies. The role of hypoxia-inducible factor (HIF) was determined by gain/loss-of-function experiments. The effect of HOIL-1L expression on cell death was investigated using RNA interference approaches in vitro and on tumor growth in mice models. Increased HOIL-1L and decreased PKCζ expression was assessed in lung adenocarcinoma and glioblastoma multiforme and documented in several other cancer types by oncogenomic analysis. MEASUREMENTS AND MAIN RESULTS Hypoxia is a hallmark of rapidly growing solid tumors. We found that during hypoxia, PKCζ is ubiquitinated and degraded via the ubiquitin ligase HOIL-1L, a component of the linear ubiquitin chain assembly complex (LUBAC). In vitro ubiquitination assays indicate that HOIL-1L ubiquitinates PKCζ at Lys-48, targeting it for proteasomal degradation. In a xenograft tumor model and lung cancer model, we found that silencing of HOIL-1L increased the abundance of PKCζ and decreased the size of tumors, suggesting that lower levels of HOIL-1L promote survival. Indeed, mRNA transcript levels of HOIL-1L were elevated in tumor of patients with lung adenocarcinoma, and in a lung adenocarcinoma tissue microarray the levels of HOIL-1L were associated with high-grade tumors. Moreover, we found that HOIL-1L expression was regulated by HIFs. Interestingly, the actions of HOIL-1L were independent of LUBAC. CONCLUSIONS These data provide first evidence of a mechanism of cancer cell adaptation to hypoxia where HIFs regulate HOIL-1L, which targets PKCζ for degradation to promote tumor survival. We provided a proof of concept that silencing of HOIL-1L impairs lung tumor growth and that HOIL-1L expression predicts survival rate in cancer patients suggesting that HOIL-1L is an attractive target for cancer therapy.
Collapse
|
40
|
Robinson CM, Ohh M. The multifaceted von Hippel-Lindau tumour suppressor protein. FEBS Lett 2014; 588:2704-11. [PMID: 24583008 DOI: 10.1016/j.febslet.2014.02.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/26/2022]
Abstract
Loss of von Hippel-Lindau protein (pVHL) is known to contribute to the initiation and progression of tumours associated with VHL disease as well as certain sporadic tumours including clear cell renal cell carcinoma (ccRCC). The VHL gene was first identified and cloned over 20 years ago and our understanding of its functions and effects has significantly increased since then. The best-known function of pVHL is its role in promoting the degradation of hypoxia-inducible factor α subunit (HIFα) as part of an E3 ubiquitin ligase complex. HIF stabilisation and transcriptional activation are also associated with various epigenetic alterations, indicating a potential role for VHL loss with changes in the epigenome. This review will highlight current knowledge regarding pVHL as well as discuss potentially novel roles of pVHL and how these may impact on cancer progression.
Collapse
Affiliation(s)
- Claire M Robinson
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Wang J, Zhang W, Ji W, Liu X, Ouyang G, Xiao W. The von hippel-lindau protein suppresses androgen receptor activity. Mol Endocrinol 2014; 28:239-48. [PMID: 24422631 DOI: 10.1210/me.2013-1258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The androgen receptor (AR) plays a pivotal role in prostate homeostasis and prostate cancer development. To understand the mechanism underlying the regulation of the AR holds a promise for developing novel therapeutic approaches for prostate cancer. Here, we show that the Von Hippel-Lindau gene product, pVHL, physically interacts with AR and inhibits AR transcription activity but does not induce AR turnover. Moreover, pVHL also suppresses androgen-induced cell proliferation, implicating a physiological role of pVHL in androgen-induced signaling pathway. In addition, we provide evidence to show that pVHL actually enhanced AR de-ubiquitination instead of inducing AR ubiquitination, uncovering a noncanonical role of pVHL in the ubiquitin proteasome pathway. Our data reveal a novel function of pVHL in the regulation of AR transcription activity, which may expand the scope of pVHL in tumor suppression and provide mechanistic insight into prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Jing Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
42
|
de Vivar Chevez AR, Finke J, Bukowski R. The Role of Inflammation in Kidney Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 816:197-234. [DOI: 10.1007/978-3-0348-0837-8_9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Li L, Shen C, Nakamura E, Ando K, Signoretti S, Beroukhim R, Cowley GS, Lizotte P, Liberzon E, Bair S, Root DE, Tamayo P, Tsherniak A, Cheng SC, Tabak B, Jacobsen A, Hakimi AA, Schultz N, Ciriello G, Sander C, Hsieh JJ, Kaelin WG. SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. Cancer Cell 2013; 24:738-50. [PMID: 24332042 PMCID: PMC3910168 DOI: 10.1016/j.ccr.2013.10.025] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/02/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer and is often linked to loss of chromosome 3p, which harbors the VHL tumor suppressor gene, loss of chromosome 14q, which includes HIF1A, and gain of chromosome 5q. The relevant target(s) on chromosome 5q is not known. Here, we show that 5q amplification leads to overexpression of the SQSTM1 oncogene in ccRCC lines and tumors. Overexpression of SQSTM1 in ccRCC lines promoted resistance to redox stress and increased soft agar growth, while downregulation of SQSTM1 decreased resistance to redox stress, impaired cellular fitness, and decreased tumor formation. Therefore, the selection pressure to amplify 5q in ccRCC is driven, at least partly, by SQSTM1.
Collapse
Affiliation(s)
- Lianjie Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chuan Shen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eijiro Nakamura
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kiyohiro Ando
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Glenn S Cowley
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick Lizotte
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ella Liberzon
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Steven Bair
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Pablo Tamayo
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Aviad Tsherniak
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Su-Chun Cheng
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Barbara Tabak
- Department of Cancer Biology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Anders Jacobsen
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 16605, USA
| | - A Ari Hakimi
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 16605, USA
| | - Nikolaus Schultz
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 16605, USA
| | - Giovanni Ciriello
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 16605, USA
| | - Chris Sander
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 16605, USA
| | - James J Hsieh
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 16605, USA; Department of Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 16605, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
44
|
Zhao Y, Sun Y. Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des 2013; 19:3215-25. [PMID: 23151137 DOI: 10.2174/13816128113199990300] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) promotes the timely degradation of short-lived proteins with key regulatory roles in a vast array of biological processes, such as cell cycle progression, oncogenesis and genome integrity. Thus, abnormal regulation of UPS disrupts the protein homeostasis and causes many human diseases, particularly cancer. Indeed, the FDA approval of bortezomib, the first class of general proteasome inhibitor, for the treatment of multiple myeloma, demonstrated that the UPS can be an attractive anti-cancer target. However, normal cell toxicity associated with bortezomib, resulting from global inhibition of protein degradation, promotes the focus of drug discovery efforts on targeting enzymes upstream of the proteasome for better specificity. E3 ubiquitin ligases, particularly those known to be activated in human cancer, become an attractive choice. Cullin-RING Ligases (CRLs) with multiple components are the largest family of E3 ubiquitin ligases and are responsible for ubiquitination of ~20% of cellular proteins degraded through UPS. Activity of CRLs is dynamically regulated and requires the RING component and cullin neddylation. In this review, we will introduce the UPS and CRL E3s and discuss the biological processes regulated by each of eight CRLs through substrate degradation. We will further discuss how cullin neddylation controls CRL activity, and how CRLs are being validated as the attractive cancer targets by abrogating the RING component through genetic means and by inhibiting cullin neddylation via MLN4924, a small molecule indirect inhibitor of CRLs, currently in several Phase I clinical trials. Finally, we will discuss current efforts and future perspectives on the development of additional inhibitors of CRLs by targeting E2 and/or E3 of cullin neddylation and CRL-mediated ubiquitination as potential anti-cancer agents.
Collapse
Affiliation(s)
- Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, 4424B MS-1, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
45
|
Labno-Kirszniok K, Nieszporek T, Wiecek A, Helbig G, Lubinski J. Acute myeloid leukemia in a 38-year-old hemodialyzed patient with von Hippel-Lindau disease. Hered Cancer Clin Pract 2013; 11:11. [PMID: 23968328 PMCID: PMC3846582 DOI: 10.1186/1897-4287-11-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/30/2013] [Indexed: 01/03/2023] Open
Abstract
Von Hippel-Lindau disease (VHL disease) is a hereditary cancer predisposition syndrome caused by mutations of the von Hippel-Lindau tumor suppressor gene. The gene product, pVHL, regulates the level of proteins that play a central role in protecting cells against hypoxia. Clinical hallmarks of von Hippel-Lindau disease are the development of central nervous system hemangioblastomas, renal cell carcinoma, pheochromocytoma, neuroendocrine tumors and endolymphatic sac tumors. In this article the case of a 38-year old hemodialyzed patient who became ill with acute myeloid leukemia (AML) three years after being diagnosed with von Hippel-Lindau disease is presented. After cytostatic treatment the patient went into complete hematologic remission but there was still residual disease at the genetic level. After consolidation therapy patient developed bone marrow aplasia and severe pneumonia. Despite intensive treatment the patient died from acute respiratory failure. In this paper we present for the first time a case of von Hippel-Lindau disease associated with acute myeloid leukemia. No evidence of relationship between VHL disease and blood cancers has been demonstrated so far. Despite the fact that there is an increased risk of cancer development in hemodialyzed patients, cancer is a relatively rare cause of death in the dialysed population, and the most common malignancies are genitourinary cancers. It seems likely that development of acute myeloid leukemia in patient with VHL disease can be related to epigenetic alterations of the VHL gene, but further studies are needed.
Collapse
Affiliation(s)
- Katarzyna Labno-Kirszniok
- Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Francuska Street 20/24, Katowice 40-027, Poland.
| | | | | | | | | |
Collapse
|
46
|
Zhao WT, Zhou CF, Li XB, Zhang YF, Fan L, Pelletier J, Fang J. The von Hippel-Lindau protein pVHL inhibits ribosome biogenesis and protein synthesis. J Biol Chem 2013; 288:16588-16597. [PMID: 23612971 DOI: 10.1074/jbc.m113.455121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
pVHL, the product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase complex that targets hypoxia inducible factor α (HIF-α) for ubiquitination and degradation. Besides HIF-α, pVHL also interacts with other proteins and has multiple functions. Here, we report that pVHL inhibits ribosome biogenesis and protein synthesis. We find that pVHL associates with the 40S ribosomal protein S3 (RPS3) but does not target it for destruction. Rather, the pVHL-RPS3 association interferes with the interaction between RPS3 and RPS2. Expression of pVHL also leads to nuclear retention of pre-40S ribosomal subunits, diminishing polysomes and 18S rRNA levels. We also demonstrate that pVHL suppresses both cap-dependent and cap-independent protein synthesis. Our findings unravel a novel function of pVHL and provide insight into the regulation of ribosome biogenesis by the tumor suppressor pVHL.
Collapse
Affiliation(s)
- Wen-Ting Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng-Fu Zhou
- Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030, China
| | - Xue-Bing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Fang Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Jing Fang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
47
|
Pancreatic cyst development: insights from von Hippel-Lindau disease. Cilia 2013; 2:3. [PMID: 23384121 PMCID: PMC3579754 DOI: 10.1186/2046-2530-2-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cysts are a heterogeneous group of lesions, which can be benign or malignant. Due to improved imaging techniques, physicians are more often confronted with pancreatic cysts. Little is known about the origin of pancreatic cysts in general. Von Hippel-Lindau (VHL) disease is an atypical ciliopathy and inherited tumor syndrome, caused by a mutation in the VHL tumor suppressor gene encoding the VHL protein (pVHL). VHL patients are prone to develop cysts and neuroendocrine tumors in the pancreas in addition to several other benign and malignant neoplasms. Remarkably, pancreatic cysts occur in approximately 70% of VHL patients, making it the only hereditary tumor syndrome with such a discernible expression of pancreatic cysts. Cellular loss of pVHL due to biallelic mutation can model pancreatic cystogenesis in other organisms, suggesting a causal relationship. Here, we give a comprehensive overview of various pVHL functions, focusing on those that can potentially explain pancreatic cyst development in VHL disease. Based on preclinical studies, cilia loss in ductal cells is probably an important early event in pancreatic cyst development.
Collapse
|
48
|
Yang C, Huntoon K, Ksendzovsky A, Zhuang Z, Lonser RR. Proteostasis modulators prolong missense VHL protein activity and halt tumor progression. Cell Rep 2013; 3:52-9. [PMID: 23318261 PMCID: PMC3563731 DOI: 10.1016/j.celrep.2012.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 11/30/2012] [Accepted: 12/13/2012] [Indexed: 01/07/2023] Open
Abstract
Although missense mutations of the von Hippel-Lindau disease (VHL) gene are the most common germline mutation underlying this heritable cancer syndrome, the mechanism of tumorigenesis is unknown. We found a quantitative reduction of missense mutant VHL protein (pVHL) in tumors associated with physiologic mRNA expression. Although mutant pVHL is unstable and degraded contemporarily with translation, it retains its E3 ligase function, including hypoxia-inducible factor degradation. The premature pVHL degradation is due to misfolding and imbalance of chaperonin binding. Histone deacetylase inhibitors (HDACIs) can modulate this pathway by inhibiting the HDAC-Hsp90 chaperone axis, stabilizing pVHL, and restoring activity comparable to wild-type protein, both in vitro and in animal models. Furthermore, HDACI-mediated stabilization of missense pVHL significantly attenuates the growth of 786-O rodent tumor model. These findings provide direct biological insight into VHL-associated tumors and elucidate a treatment paradigm for VHL.
Collapse
Affiliation(s)
- Chunzhang Yang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
49
|
Gibbs BF, Yasinska IM, Pchejetski D, Wyszynski RW, Sumbayev VV. Differential control of hypoxia-inducible factor 1 activity during pro-inflammatory reactions of human haematopoietic cells of myeloid lineage. Int J Biochem Cell Biol 2012; 44:1739-49. [DOI: 10.1016/j.biocel.2012.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/12/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
|
50
|
Xue J, Lv DD, Jiao S, Zhao W, Li X, Sun H, Yan B, Fan L, Hu RG, Fang J. pVHL mediates K63-linked ubiquitination of nCLU. PLoS One 2012; 7:e35848. [PMID: 22532874 PMCID: PMC3332038 DOI: 10.1371/journal.pone.0035848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/23/2012] [Indexed: 11/19/2022] Open
Abstract
pVHL, product of von Hippel-Lindau (VHL) tumor suppressor gene, functions as the substrate recognition component of an E3-ubiquitin ligase that targets proteins for ubiquitination and proteasomal degradation. Hypoxia-inducible factor α (HIFα) is the well-known substrate of pVHL. Besides HIFα, pVHL also binds to many other proteins and has multiple functions. In this manuscript, we report that the nuclear clusterin (nCLU) is a target of pVHL. We found that pVHL had a direct interaction with nCLU. nCLU bound to pVHL at pVHL's β domain, the site for recognition of substrate, indicating that nCLU might be a substrate of pVHL. Interestingly, pVHL bound to nCLU but did not lead to nCLU destruction. Further studies indicated that pVHL mediated K63-linked ubiquitination of nCLU and promoted nCLU nuclear translocation. In summary, our results disclose a novel function of pVHL that mediates K63-linked ubiquitination and identify nCLU as a new target of pVHL.
Collapse
Affiliation(s)
- Jing Xue
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Dan-dan Lv
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Shi Jiao
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Wenting Zhao
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Xuebing Li
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Heng Sun
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Bing Yan
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Li Fan
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Rong-gui Hu
- The Institute of Biochemistry and Cell Biology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - Jing Fang
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, SIBS, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|