1
|
Imre L, Nánási P, Benhamza I, Enyedi KN, Mocsár G, Bosire R, Hegedüs É, Niaki EF, Csóti Á, Darula Z, Csősz É, Póliska S, Scholtz B, Mező G, Bacsó Z, Timmers HTM, Kusakabe M, Balázs M, Vámosi G, Ausio J, Cheung P, Tóth K, Tremethick D, Harata M, Szabó G. Epigenetic modulation via the C-terminal tail of H2A.Z. Nat Commun 2024; 15:9171. [PMID: 39448645 PMCID: PMC11502880 DOI: 10.1038/s41467-024-53514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
H2A.Z-nucleosomes are present in both euchromatin and heterochromatin and it has proven difficult to interpret their disparate roles in the context of their stability features. Using an in situ assay of nucleosome stability and DT40 cells expressing engineered forms of the histone variant we show that native H2A.Z, but not C-terminally truncated H2A.Z (H2A.Z∆C), is released from nucleosomes of peripheral heterochromatin at unusually high salt concentrations. H2A.Z and H3K9me3 landscapes are reorganized in H2A.Z∆C-nuclei and overall sensitivity of chromatin to nucleases is increased. These tail-dependent differences are recapitulated upon treatment of HeLa nuclei with the H2A.Z-tail-peptide (C9), with MNase sensitivity being increased genome-wide. Fluorescence correlation spectroscopy revealed C9 binding to reconstituted nucleosomes. When introduced into live cells, C9 elicited chromatin reorganization, overall nucleosome destabilization and changes in gene expression. Thus, H2A.Z-nucleosomes influence global chromatin architecture in a tail-dependent manner, what can be modulated by introducing the tail-peptide into live cells.
Collapse
Affiliation(s)
- László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ibtissem Benhamza
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kata Nóra Enyedi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE, Supported Research Groups, Research Group of Peptide Chemistry, Budapest, Hungary
| | - Gábor Mocsár
- Damjanovich Cell Analysis Core Facility, Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, Debrecen, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Hegedüs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ágota Csóti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Darula
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Szeged, Hungary
- Core Facility, Proteomics Research Group, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Beáta Scholtz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, H-4032, Hungary
| | - Gábor Mező
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE, Supported Research Groups, Research Group of Peptide Chemistry, Budapest, Hungary
| | - Zsolt Bacsó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - H T Marc Timmers
- German Cancer Consortium (DKTK), partner site Freiburg, a partnership between the DKFZ and Medical Center-University of Freiburg and Department of Urology, Medical Center-University of Freiburg, Breisacher Str. 66, Freiburg, Germany
| | - Masayuki Kusakabe
- Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Margit Balázs
- HUN-REN-UD Public Health Research Group, Department of Public Health and Epidemiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Katalin Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - David Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
2
|
Flores Cortes E, Saddoris SM, Owens AK, Gibeault R, Depledge DP, Schang LM. Histone H2A variant H2A.B is enriched in transcriptionally active and replicating HSV-1 lytic chromatin. J Virol 2024; 98:e0201523. [PMID: 38451083 PMCID: PMC11019955 DOI: 10.1128/jvi.02015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.
Collapse
Affiliation(s)
- Esteban Flores Cortes
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Sarah M. Saddoris
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Arryn K. Owens
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Rebecca Gibeault
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel P. Depledge
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Luis M. Schang
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Belotti E, Lacoste N, Iftikhar A, Simonet T, Papin C, Osseni A, Streichenberger N, Mari PO, Girard E, Graies M, Giglia-Mari G, Dimitrov S, Hamiche A, Schaeffer L. H2A.Z is involved in premature aging and DSB repair initiation in muscle fibers. Nucleic Acids Res 2024; 52:3031-3049. [PMID: 38281187 PMCID: PMC11014257 DOI: 10.1093/nar/gkae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 01/19/2024] [Indexed: 01/30/2024] Open
Abstract
Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.
Collapse
Affiliation(s)
- Edwige Belotti
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nicolas Lacoste
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Arslan Iftikhar
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Thomas Simonet
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Christophe Papin
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Alexis Osseni
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Nathalie Streichenberger
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Pierre-Olivier Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Emmanuelle Girard
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Mohamed Graies
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Giuseppina Giglia-Mari
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences (IAB), Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Site Santé - Allée des Alpes, 38700 La Tronche, France
| | - Ali Hamiche
- For Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP, Parc d’innovation, 1 rue Laurent Fries, 67404 Ilkirch Cedex, France
| | - Laurent Schaeffer
- Laboratoire Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR 5261, 8 avenue Rockefeller, 69008 Lyon, France
- Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
4
|
Rogers AM, Neri NR, Chigweshe L, Holmes SG. Histone variant H2A.Z and linker histone H1 influence chromosome condensation in Saccharomyces cerevisiae. Genetics 2024; 226:iyae022. [PMID: 38366024 PMCID: PMC10990423 DOI: 10.1093/genetics/iyae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/15/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024] Open
Abstract
Chromosome condensation is essential for the fidelity of chromosome segregation during mitosis and meiosis. Condensation is associated both with local changes in nucleosome structure and larger-scale alterations in chromosome topology mediated by the condensin complex. We examined the influence of linker histone H1 and variant histone H2A.Z on chromosome condensation in budding yeast cells. Linker histone H1 has been implicated in local and global compaction of chromatin in multiple eukaryotes, but we observe normal condensation of the rDNA locus in yeast strains lacking H1. However, deletion of the yeast HTZ1 gene, coding for variant histone H2A.Z, causes a significant defect in rDNA condensation. Loss of H2A.Z does not change condensin association with the rDNA locus or significantly affect condensin mRNA levels. Prior studies reported that several phenotypes caused by loss of H2A.Z are suppressed by eliminating Swr1, a key component of the SWR complex that deposits H2A.Z in chromatin. We observe that an htz1Δ swr1Δ strain has near-normal rDNA condensation. Unexpectedly, we find that elimination of the linker histone H1 can also suppress the rDNA condensation defect of htz1Δ strains. Our experiments demonstrate that histone H2A.Z promotes chromosome condensation, in part by counteracting activities of histone H1 and the SWR complex.
Collapse
Affiliation(s)
- Anna M Rogers
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Nola R Neri
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Lorencia Chigweshe
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | - Scott G Holmes
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
5
|
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int J Mol Sci 2024; 25:3144. [PMID: 38542118 PMCID: PMC10969971 DOI: 10.3390/ijms25063144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024] Open
Abstract
Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone variants, are constitutively expressed in a replication-independent manner throughout the cell cycle. With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional regulation. Among all the histone families, histone H2A family has the largest number of histone variants reported to date. Each H2A variant has multiple functions apart from their primary role and some, even be further specialized to perform additional tasks in distinct lineages, such as testis specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in genes encoding H2A variants in cancer had revealed variants' potentiality in driving carcinogenesis. In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have ever concluded all identified variants in a single report. Here, in this review, we summarize the respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst potentiality being used in clinical setting.
Collapse
Affiliation(s)
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
6
|
Pugacheva EM, Bhatt DN, Rivero-Hinojosa S, Tajmul M, Fedida L, Price E, Ji Y, Loukinov D, Strunnikov AV, Ren B, Lobanenkov VV. BORIS/CTCFL epigenetically reprograms clustered CTCF binding sites into alternative transcriptional start sites. Genome Biol 2024; 25:40. [PMID: 38297316 PMCID: PMC10832218 DOI: 10.1186/s13059-024-03175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.
Collapse
Affiliation(s)
- Elena M Pugacheva
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Dharmendra Nath Bhatt
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Md Tajmul
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liron Fedida
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emma Price
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yon Ji
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dmitri Loukinov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexander V Strunnikov
- Guangzhou Institutes of Biomedicine and Health, Molecular Epigenetics Laboratory, 190 Kai Yuan Avenue, Science Park, Guangzhou, 510530, China
| | - Bing Ren
- Ludwig Institute for Cancer Research, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, Center for Epigenomics, Moores Cancer Center and Institute of Genomic Medicine, University of California, San Diego School of Medicine, La Jolla, CA, 92093-0653, USA
| | - Victor V Lobanenkov
- Molecular Pathology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Flores E, Saddoris SM, Owens AK, Gibeault R, Depledge DP, Schang LM. Histone H2A variant H2A.B is enriched in transcriptionally active HSV-1 lytic chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573075. [PMID: 38187672 PMCID: PMC10769327 DOI: 10.1101/2023.12.22.573075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections, but the precise mechanisms are not fully defined. Nucleosomes are dynamic; they slide, breathe, assemble and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X and macroH2A were enhanced in infected cells, whereas those of H2A.B uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, ectopic, and endogenous H2B, were assembled into HSV-1 chromatin evenly throughout the genome, but canonical H2A was relatively depleted from the viral chromatin whereas H2A.B was enriched in the most dynamic viral chromatin. When viral transcription was restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency, and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. Importance HSV-1 transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed mechanisms of regulation of HSV-1 transcription by epigenetics have not been fully characterized and may differ from those regulating cellular transcription. In particular, the lytic HSV-1 chromatin is unusually dynamic, whereas the latent silenced one is not, but the mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment on the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding for its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.
Collapse
|
8
|
Li S, Wei T, Panchenko AR. Histone variant H2A.Z modulates nucleosome dynamics to promote DNA accessibility. Nat Commun 2023; 14:769. [PMID: 36765119 PMCID: PMC9918499 DOI: 10.1038/s41467-023-36465-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Nucleosomes, containing histone variants H2A.Z, are important for gene transcription initiation and termination, chromosome segregation and DNA double-strand break repair, among other functions. However, the underlying mechanisms of how H2A.Z influences nucleosome stability, dynamics and DNA accessibility are not well understood, as experimental and computational evidence remains inconclusive. Our modeling efforts of human nucleosome stability and dynamics, along with comparisons with experimental data show that the incorporation of H2A.Z results in a substantial decrease of the energy barrier for DNA unwrapping. This leads to the spontaneous DNA unwrapping of about forty base pairs from both ends, nucleosome gapping and increased histone plasticity, which otherwise is not observed for canonical nucleosomes. We demonstrate that both N- and C-terminal tails of H2A.Z play major roles in these events, whereas the H3.3 variant exerts a negligible impact in modulating the DNA end unwrapping. In summary, our results indicate that H2A.Z deposition makes nucleosomes more mobile and DNA more accessible to transcriptional machinery and other chromatin components.
Collapse
Affiliation(s)
- Shuxiang Li
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Tiejun Wei
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Anna R Panchenko
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada. .,Department of Biology and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,School of Computing, Queen's University, Kingston, ON, Canada. .,Ontario Institute of Cancer Research, Toronto, Canada.
| |
Collapse
|
9
|
Phillips EO, Gunjan A. Histone Variants: The Unsung Guardians of the Genome. DNA Repair (Amst) 2022; 112:103301. [DOI: 10.1016/j.dnarep.2022.103301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/15/2022]
|
10
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
11
|
Brewis HT, Wang AY, Gaub A, Lau JJ, Stirling PC, Kobor MS. What makes a histone variant a variant: Changing H2A to become H2A.Z. PLoS Genet 2021; 17:e1009950. [PMID: 34871303 PMCID: PMC8675926 DOI: 10.1371/journal.pgen.1009950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Chromatin structure and underlying DNA accessibility is modulated by the incorporation of histone variants. H2A.Z, a variant of the H2A core histone family, plays a distinct and essential role in a diverse set of biological functions including gene regulation and maintenance of heterochromatin-euchromatin boundaries. Although it is currently unclear how the replacement of H2A with H2A.Z can regulate gene expression, the variance in their amino acid sequence likely contributes to their functional differences. To tease apart regions of H2A.Z that confer its unique identity, a set of plasmids expressing H2A-H2A.Z hybrids from the native H2A.Z promoter were examined for their ability to recapitulate H2A.Z function. First, we found that the H2A.Z M6 region was necessary and sufficient for interaction with the SWR1-C chromatin remodeler. Remarkably, the combination of only 9 amino acid changes, the H2A.Z M6 region, K79 and L81 (two amino acids in the α2-helix), were sufficient to fully rescue growth phenotypes of the htz1Δ mutant. Furthermore, combining three unique H2A.Z regions (K79 and L81, M6, C-terminal tail) was sufficient for expression of H2A.Z-dependent heterochromatin-proximal genes and GAL1 derepression. Surprisingly, hybrid constructs that restored the transcription of H2A.Z-dependent genes, did not fully recapitulate patterns of H2A.Z-specific enrichment at the tested loci. This suggested that H2A.Z function in transcription regulation may be at least partially independent of its specific localization in chromatin. Together, this work has identified three regions that can confer specific H2A.Z-identity to replicative H2A, furthering our understanding of what makes a histone variant a variant.
Collapse
Affiliation(s)
- Hilary T. Brewis
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Alice Y. Wang
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Aline Gaub
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Justine J. Lau
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C. Stirling
- Terry Fox Laboratory, BC Cancer, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Dai L, Xiao X, Pan L, Shi L, Xu N, Zhang Z, Feng X, Ma L, Dou S, Wang P, Zhu B, Li W, Zhou Z. Recognition of the inherently unstable H2A nucleosome by Swc2 is a major determinant for unidirectional H2A.Z exchange. Cell Rep 2021; 35:109183. [PMID: 34038732 DOI: 10.1016/j.celrep.2021.109183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/29/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
The multisubunit chromatin remodeler SWR1/SRCAP/p400 replaces the nucleosomal H2A-H2B dimer with the free-form H2A.Z-H2B dimer, but the mechanism governing the unidirectional H2A-to-H2A.Z exchange remains elusive. Here, we perform single-molecule force spectroscopy to dissect the disassembly/reassembly processes of the H2A nucleosome and H2A.Z nucleosome. We find that the N-terminal 1-135 residues of yeast SWR1 complex protein 2 (previously termed Swc2-Z) facilitate the disassembly of nucleosomes containing H2A but not H2A.Z. The Swc2-mediated nucleosome disassembly/reassembly requires the inherently unstable H2A nucleosome, whose instability is conferred by three H2A α2-helical residues, Gly47, Pro49, and Ile63, as they selectively weaken the structural rigidity of the H2A-H2B dimer. It also requires Swc2-ZN (residues 1-37) that directly anchors to the H2A nucleosome and functions in the SWR1-catalyzed H2A.Z replacement in vitro and yeast H2A.Z deposition in vivo. Our findings provide mechanistic insights into how the SWR1 complex discriminates between the H2A nucleosome and H2A.Z nucleosome, establishing a simple paradigm for the governance of unidirectional H2A.Z exchange.
Collapse
Affiliation(s)
- Linchang Dai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuxin Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoli Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuoxing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China.
| | - Zheng Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Edwards GB, Muthurajan UM, Bowerman S, Luger K. Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2020; 133:e131. [PMID: 33351266 PMCID: PMC7781197 DOI: 10.1002/cpmb.131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biochemical and biophysical investigation of proteins, nucleic acids, and the assemblies that they form yields essential information to understand complex systems. Analytical ultracentrifugation (AUC) represents a broadly applicable and information-rich method for investigating macromolecular characteristics such as size, shape, stoichiometry, and binding properties, all in the true solution-state environment that is lacking in most orthogonal methods. Despite this, AUC remains underutilized relative to its capabilities and potential in the fields of biochemistry and molecular biology. Although there has been a rapid development of computing power and AUC analysis tools in this millennium, fewer advancements have occurred in development of new applications of the technique, leaving these powerful instruments underappreciated and underused in many research institutes. With AUC previously limited to absorbance and Rayleigh interference optics, the addition of fluorescence detection systems has greatly enhanced the applicability of AUC to macromolecular systems that are traditionally difficult to characterize. This overview provides a resource for novices, highlighting the potential of AUC and encouraging its use in their research, as well as for current users, who may benefit from our experience. We discuss the strengths of fluorescence-detected AUC and demonstrate the power of even simple AUC experiments to answer practical and fundamental questions about biophysical properties of macromolecular assemblies. We address the development and utility of AUC, explore experimental design considerations, present case studies investigating properties of biological macromolecules that are of common interest to researchers, and review popular analysis approaches. © 2020 The Authors.
Collapse
Affiliation(s)
| | - Uma M. Muthurajan
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
| | - Samuel Bowerman
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
- Howard Hughes Medical InstituteUniversity of Colorado BoulderBoulderColorado
| | - Karolin Luger
- Department of BiochemistryUniversity of Colorado BoulderBoulderColorado
- Howard Hughes Medical InstituteUniversity of Colorado BoulderBoulderColorado
| |
Collapse
|
14
|
Abstract
Chromatin is a highly dynamic structure that closely relates with gene expression in eukaryotes. ATP-dependent chromatin remodelling, histone post-translational modification and DNA methylation are the main ways that mediate such plasticity. The histone variant H2A.Z is frequently encountered in eukaryotes, and can be deposited or removed from nucleosomes by chromatin remodelling complex SWR1 or INO80, respectively, leading to altered chromatin state. H2A.Z has been found to be involved in a diverse range of biological processes, including genome stability, DNA repair and transcriptional regulation. Due to their formidable production of secondary metabolites, filamentous fungi play outstanding roles in pharmaceutical production, food safety and agriculture. During the last few years, chromatin structural changes were proven to be a key factor associated with secondary metabolism in fungi. However, studies on the function of H2A.Z are scarce. Here, we summarize current knowledge of H2A.Z functions with a focus on filamentous fungi. We propose that H2A.Z is a potential target involved in the regulation of secondary metabolite biosynthesis by fungi.
Collapse
|
15
|
Exploring histone loading on HIV DNA reveals a dynamic nucleosome positioning between unintegrated and integrated viral genome. Proc Natl Acad Sci U S A 2020; 117:6822-6830. [PMID: 32161134 PMCID: PMC7104181 DOI: 10.1073/pnas.1913754117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biology of HIV DNA, from its synthesis to its integration into the host genome, remains poorly understood. Here we show that in the nucleus, histones are rapidly loaded on newly synthesized unintegrated HIV DNA. Interestingly, the chromatin architecture around the HIV long terminal repeat (LTR) is different in unintegrated and integrated HIV DNA. Specifically, a nucleosome present only on the DNase hypersensitive site of unintegrated HIV DNA contributes to the transcriptional silencing of unintegrated HIV DNA by preventing RNAPII recruitment. The aim of the present study was to understand the biology of unintegrated HIV-1 DNA and reveal the mechanisms involved in its transcriptional silencing. We found that histones are loaded on HIV-1 DNA after its nuclear import and before its integration in the host genome. Nucleosome positioning analysis along the unintegrated and integrated viral genomes revealed major differences in nucleosome density and position. Indeed, in addition to the well-known nucleosomes Nuc0, Nuc1, and Nuc2 loaded on integrated HIV-1 DNA, we also found NucDHS, a nucleosome that covers the DNase hypersensitive site, in unintegrated viral DNA. In addition, unintegrated viral DNA-associated Nuc0 and Nuc2 were positioned slightly more to the 5′ end relative to their position in integrated DNA. The presence of NucDHS in the proximal region of the long terminal repeat (LTR) promoter was associated with the absence of RNAPII and of the active histone marks H3K4me3 and H3ac at the LTR. Conversely, analysis of integrated HIV-1 DNA showed a loss of NucDHS, loading of RNAPII, and enrichment in active histone marks within the LTR. We propose that unintegrated HIV-1 DNA adopts a repressive chromatin structure that competes with the transcription machinery, leading to its silencing.
Collapse
|
16
|
Lei B, Berger F. H2A Variants in Arabidopsis: Versatile Regulators of Genome Activity. PLANT COMMUNICATIONS 2020; 1:100015. [PMID: 33404536 PMCID: PMC7747964 DOI: 10.1016/j.xplc.2019.100015] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 12/11/2019] [Indexed: 05/16/2023]
Abstract
The eukaryotic nucleosome prevents access to the genome. Convergently evolving histone isoforms, also called histone variants, form diverse families that are enriched over distinct features of plant genomes. Among the diverse families of plant histone variants, H2A.Z exclusively marks genes. Here we review recent research progress on the genome-wide distribution patterns and deposition of H2A.Z in plants as well as its association with histone modifications and roles in plant chromatin regulation. We also discuss some hypotheses that explain the different findings about the roles of H2A.Z in plants.
Collapse
|
17
|
Abel S, Le Roch KG. The role of epigenetics and chromatin structure in transcriptional regulation in malaria parasites. Brief Funct Genomics 2019; 18:302-313. [PMID: 31220857 PMCID: PMC6859822 DOI: 10.1093/bfgp/elz005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/25/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Due to the unique selective pressures and extreme changes faced by the human malaria parasite Plasmodium falciparum throughout its life cycle, the parasite has evolved distinct features to alter its gene expression patterns. Along with classical gene regulation by transcription factors (TFs), of which only one family, the AP2 TFs, has been described in the parasite genome, a large body of evidence points toward chromatin structure and epigenetic factors mediating the changes in gene expression associated with parasite life cycle stages. These attributes may be critically important for immune evasion, host cell invasion and development of the parasite in its two hosts, the human and the Anopheles vector. Thus, the factors involved in the maintenance and regulation of chromatin and epigenetic features represent potential targets for antimalarial drugs. In this review, we discuss the mechanisms in P. falciparum that regulate chromatin structure, nucleosome landscape, the 3-dimensional structure of the genome and additional distinctive features created by parasite-specific genes and gene families. We review conserved traits of chromatin in eukaryotes in order to highlight what is unique in the parasite.
Collapse
Affiliation(s)
- Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
18
|
Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019; 12:37. [PMID: 31200754 PMCID: PMC6570943 DOI: 10.1186/s13072-019-0274-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/23/2019] [Indexed: 01/04/2023] Open
Abstract
The histone variant H2A.Z is involved in several processes such as transcriptional control, DNA repair, regulation of centromeric heterochromatin and, not surprisingly, is implicated in diseases such as cancer. Here, we review the recent developments on H2A.Z focusing on its role in transcriptional activation and repression. H2A.Z, as a replication-independent histone, has been studied in several model organisms and inducible mammalian model systems. Its loading machinery and several modifying enzymes have been recently identified, and some of the long-standing discrepancies in transcriptional activation and/or repression are about to be resolved. The buffering functions of H2A.Z, as supported by genome-wide localization and analyzed in several dynamic systems, are an excellent example of transcriptional control. Posttranslational modifications such as acetylation and ubiquitination of H2A.Z, as well as its specific binding partners, are in our view central players in the control of gene expression. Understanding the key-mechanisms in either turnover or stabilization of H2A.Z-containing nucleosomes as well as defining the H2A.Z interactome will pave the way for therapeutic applications in the future.
Collapse
Affiliation(s)
| | - Francesca Ferrante
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Andreas Herchenröther
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, University of Giessen, Heinrich-Buff-Ring 58-62, 35392, Giessen, Germany
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
19
|
Gottesfeld JM. Milestones in transcription and chromatin published in the Journal of Biological Chemistry. J Biol Chem 2019; 294:1652-1660. [PMID: 30710013 DOI: 10.1074/jbc.tm118.004162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During Herbert Tabor's tenure as Editor-in-Chief from 1971 to 2010, JBC has published many seminal papers in the fields of chromatin structure, epigenetics, and regulation of transcription in eukaryotes. As of this writing, more than 21,000 studies on gene transcription at the molecular level have been published in JBC since 1971. This brief review will attempt to highlight some of these ground-breaking discoveries and show how early studies published in JBC have influenced current research. Papers published in the Journal have reported the initial discovery of multiple forms of RNA polymerase in eukaryotes, identification and purification of essential components of the transcription machinery, and identification and mechanistic characterization of various transcriptional activators and repressors and include studies on chromatin structure and post-translational modifications of the histone proteins. The large body of literature published in the Journal has inspired current research on how chromatin organization and epigenetics impact regulation of gene expression.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Departments of Molecular Medicine and Chemistry, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
20
|
Osakabe A, Lorković ZJ, Kobayashi W, Tachiwana H, Yelagandula R, Kurumizaka H, Berger F. Histone H2A variants confer specific properties to nucleosomes and impact on chromatin accessibility. Nucleic Acids Res 2018; 46:7675-7685. [PMID: 29945241 PMCID: PMC6125630 DOI: 10.1093/nar/gky540] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, variants of core histone H2A are selectively incorporated in distinct functional domains of chromatin and are distinguished by conserved sequences of their C-terminal tail, the L1 loop and the docking domain, suggesting that each variant confers specific properties to the nucleosome. Chromatin of flowering plants contains four types of H2A variants, which biochemical properties have not been characterized. We report that in contrast with animals, in Arabidopsis thaliana H2A variants define only four major types of homotypic nucleosomes containing exclusively H2A, H2A.Z, H2A.X or H2A.W. In vitro assays show that the L1 loop and the docking domain confer distinct stability of the nucleosome. In vivo and in vitro assays suggest that the L1 loop and the docking domain cooperate with the C-terminal tail to regulate chromatin accessibility. Based on these findings we conclude that the type of H2A variant in the nucleosome impacts on its interaction with DNA and propose that H2A variants regulate the dynamics of chromatin accessibility. In plants, the predominance of homotypic nucleosomes with specific physical properties and their specific localization to distinct domains suggest that H2A variants play a dominant role in chromatin dynamics and function.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wataru Kobayashi
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroaki Tachiwana
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ramesh Yelagandula
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
21
|
Khatami F, Tavangar SM. Circulating tumor DNA (ctDNA) in the era of personalized cancer therapy. J Diabetes Metab Disord 2018; 17:19-30. [PMID: 30288382 PMCID: PMC6154523 DOI: 10.1007/s40200-018-0334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
The heterogeneity of tumor is considered as a major difficulty to victorious personalized cancer medicine. There is an extremeneed of consistent response evaluation for in vivo tumor heterogeneity anditscoupledconflict mechanisms. In this occasion researchers will be able to keep pace withpredictive, preventive, personalized, and Participatory (P4) medicine for cancer managements. In fact tumor heterogeneity is a central part of cancer evolution,soin order to progress in understanding of the dynamics within a tumor some diagnostic apparatus should be improved. Latest molecular techniques like Next generation Sequencing (NGS) and ultra-deep sequencing could disclose some clones within a liquid tumor biopsy which mainly responsible of treatment resistance. Circulating tumor DNA (ctDNA) as a main component of liquid biopsy is agifted biomarker for cancer mutation tracking as well as profiling. Personalized medicine facilitate learning regarding to genetic pools of tumor and their possible respond to treatment which could be much easier by using of ctDNA.With this information, cliniciansarelooking forward to find the best strategies for prevention, screening, and treatment in the way of precision medicine. Currently, numerous clinical efficacy of such informative improved treatment are in hand. Here we represent the review of plasma-derived ctDNA studies use in personalized cancer managements.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Departments of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Xu M, Leichty AR, Hu T, Poethig RS. H2A.Z promotes the transcription of MIR156A and MIR156C in Arabidopsis by facilitating the deposition of H3K4me3. Development 2018; 145:dev152868. [PMID: 29361556 PMCID: PMC5825843 DOI: 10.1242/dev.152868] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/20/2017] [Indexed: 01/19/2023]
Abstract
Vegetative phase change in Arabidopsis thaliana is mediated by a decrease in the level of MIR156A and MIR156C, resulting in an increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes. Changes in chromatin structure are required for the downregulation of MIR156A and MIR156C, but whether chromatin structure contributes to their initial elevated expression is unknown. We found that mutations in components of the SWR1 complex (ARP6, SEF) and in genes encoding H2A.Z (HTA9 and HTA11) reduce the expression of MIR156A and MIR156C, and accelerate vegetative phase change, indicating that H2A.Z promotes juvenile vegetative identity. However, arp6 and sef did not accelerate the temporal decline in miR156, and the downregulation of MIR156A and MIR156C was not accompanied by significant change in the level of H2A.Z at these loci. We conclude that H2A.Z contributes to the high expression of MIR156A/MIR156C early in shoot development, but does not regulate the timing of vegetative phase change. Our results also suggest that H2A.Z promotes the expression of MIR156A/MIR156C by facilitating the deposition of H3K4me3, rather than by decreasing nucleosome occupancy.
Collapse
Affiliation(s)
- Mingli Xu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron R Leichty
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tieqiang Hu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
23
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
24
|
Madakashira B, Corbett L, Zhang C, Paoli P, Casement JW, Mann J, Sadler KC, Mann DA. Variant Histone H2afv reprograms DNA methylation during early zebrafish development. Epigenetics 2017; 12:811-824. [PMID: 29099280 PMCID: PMC5739095 DOI: 10.1080/15592294.2017.1359382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The DNA methylome is re-patterned during discrete phases of vertebrate development. In zebrafish, there are 2 waves of global DNA demethylation and re-methylation: the first occurs before gastrulation when the parental methylome is changed to the zygotic pattern and the second occurs after formation of the embryonic body axis, during organ specification. The occupancy of the histone variant H2A.Z and regions of DNA methylation are generally anti-correlated, and it has been proposed that H2A.Z restricts the boundaries of highly methylated regions. While many studies have described the dynamics of methylome changes during early zebrafish development, the factors involved in establishing the DNA methylation landscape in zebrafish embryos have not been identified. We test the hypothesis that the zebrafish ortholog of H2A.Z (H2afv) restricts DNA methylation during development. We find that, in control embryos, bulk genome methylation decreases after gastrulation, with a nadir at the bud stage, and peaks during mid-somitogenesis; by 24 hours post -fertilization, total DNA methylation levels return to those detected in gastrula. Early zebrafish embryos depleted of H2afv have significantly more bulk DNA methylation during somitogenesis, suggesting that H2afv limits methylation during this stage of development. H2afv deficient embryos are small, with multisystemic abnormalities. Genetic interaction experiments demonstrate that these phenotypes are suppressed by depletion of DNA methyltransferase 1 (Dnmt1). This work demonstrates that H2afv is essential for global DNA methylation reprogramming during early vertebrate development and that embryonic development requires crosstalk between H2afv and Dnmt1.
Collapse
Affiliation(s)
- Bhavani Madakashira
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| | - Laura Corbett
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - Chi Zhang
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| | - Pier Paoli
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - John W Casement
- c Bioinformatics Support Unit, Faculty of Medical Sciences , Newcastle University , Newcastle Upon Tyne , NE24HH
| | - Jelena Mann
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - Kirsten C Sadler
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,d Department of Medicine/Division of Liver Diseases, Department of Developmental and Regenerative Biology , Icahn School of Medicine at Mount Sinai , New York , New York
| | - Derek A Mann
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| |
Collapse
|
25
|
Horikoshi N, Arimura Y, Taguchi H, Kurumizaka H. Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A. Open Biol 2017; 6:rsob.160127. [PMID: 27358293 PMCID: PMC4929947 DOI: 10.1098/rsob.160127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 12/13/2022] Open
Abstract
H2A.Z is incorporated into nucleosomes located around transcription start sites and functions as an epigenetic regulator for the transcription of certain genes. During transcriptional regulation, the heterotypic H2A.Z/H2A nucleosome containing one each of H2A.Z and H2A is formed. However, previous homotypic H2A.Z nucleosome structures suggested that the L1 loop region of H2A.Z would sterically clash with the corresponding region of canonical H2A in the heterotypic nucleosome. To resolve this issue, we determined the crystal structures of heterotypic H2A.Z/H2A nucleosomes. In the H2A.Z/H2A nucleosome structure, the H2A.Z L1 loop structure was drastically altered without any structural changes of the canonical H2A L1 loop, thus avoiding the steric clash. Unexpectedly, the heterotypic H2A.Z/H2A nucleosome is more stable than the homotypic H2A.Z nucleosome. These data suggested that the flexible character of the H2A.Z L1 loop plays an essential role in forming the stable heterotypic H2A.Z/H2A nucleosome.
Collapse
Affiliation(s)
- Naoki Horikoshi
- Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yasuhiro Arimura
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hiroyuki Taguchi
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hitoshi Kurumizaka
- Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
26
|
Perell GT, Mishra NK, Sudhamalla B, Ycas PD, Islam K, Pomerantz WCK. Specific Acetylation Patterns of H2A.Z Form Transient Interactions with the BPTF Bromodomain. Biochemistry 2017; 56:4607-4615. [PMID: 28771339 PMCID: PMC5779092 DOI: 10.1021/acs.biochem.7b00648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational lysine acetylation of histone tails affects both chromatin accessibility and recruitment of multifunctional bromodomain-containing proteins for modulating transcription. The bromodomain- and PHD finger-containing transcription factor (BPTF) regulates transcription but has also been implicated in high gene expression levels in a variety of cancers. In this report, the histone variant H2A.Z, which replaces H2A in chromatin, is evaluated for its affinity for BPTF with a specific recognition pattern of acetylated lysine residues of the N-terminal tail region. Although BPTF immunoprecipitates H2A.Z-containing nucleosomes, a direct interaction with its bromodomain has not been reported. Using protein-observed fluorine nuclear magnetic resonance (PrOF NMR) spectroscopy, we identified a diacetylation of H2A.Z on lysine residues 4 and 11, with the highest affinity for BPTF with a Kd of 780 μM. A combination of subsequent 1H NMR Carr-Purcell-Meiboom-Gill experiments and photo-cross-linking further confirmed the specificity of the diacetylation pattern at lysines 4 and 11. Because of an adjacent PHD domain, this transient interaction may contribute to a higher-affinity bivalent interaction. Further evaluation of specificity toward a set of bromodomains, including two BET bromodomains (Brd4 and BrdT) and two Plasmodium falciparum bromodomains, resulted in one midmicromolar affinity binder, PfGCN5 (Kd = 650 μM). With these biochemical experiments, we have identified a direct interaction of histone H2A.Z with bromodomains with a specific acetylation pattern that further supports the role of H2A.Z in epigenetic regulation.
Collapse
Affiliation(s)
- Gabriella T. Perell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Neeraj K. Mishra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Babu Sudhamalla
- Department of Chemistry, University of Pittsburgh, 1307 Chevron Science Center, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peter D. Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kabirul Islam
- Department of Chemistry, University of Pittsburgh, 1307 Chevron Science Center, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - William C. K. Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Wedel C, Förstner KU, Derr R, Siegel TN. GT-rich promoters can drive RNA pol II transcription and deposition of H2A.Z in African trypanosomes. EMBO J 2017; 36:2581-2594. [PMID: 28701485 PMCID: PMC5579346 DOI: 10.15252/embj.201695323] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/25/2023] Open
Abstract
Genome‐wide transcription studies are revealing an increasing number of “dispersed promoters” that, unlike “focused promoters”, lack well‐conserved sequence motifs and tight regulation. Dispersed promoters are nevertheless marked by well‐defined chromatin structures, suggesting that specific sequence elements must exist in these unregulated promoters. Here, we have analyzed regions of transcription initiation in the eukaryotic parasite Trypanosoma brucei, in which RNA polymerase II transcription initiation occurs over broad regions without distinct promoter motifs and lacks regulation. Using a combination of site‐specific and genome‐wide assays, we identified GT‐rich promoters that can drive transcription and promote the targeted deposition of the histone variant H2A.Z in a genomic context‐dependent manner. In addition, upon mapping nucleosome occupancy at high resolution, we find nucleosome positioning to correlate with RNA pol II enrichment and gene expression, pointing to a role in RNA maturation. Nucleosome positioning may thus represent a previously unrecognized layer of gene regulation in trypanosomes. Our findings show that even highly dispersed, unregulated promoters contain specific DNA elements that are able to induce transcription and changes in chromatin structure.
Collapse
Affiliation(s)
- Carolin Wedel
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany
| | | | - Ramona Derr
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, Universität Würzburg, Würzburg, Germany .,Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, München, Germany.,Biomedical Center Munich, Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Rudnizky S, Malik O, Bavly A, Pnueli L, Melamed P, Kaplan A. Nucleosome mobility and the regulation of gene expression: Insights from single-molecule studies. Protein Sci 2017; 26:1266-1277. [PMID: 28329910 DOI: 10.1002/pro.3159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
Nucleosomes at the promoters of genes regulate the accessibility of the transcription machinery to DNA, and function as a basic layer in the complex regulation of gene expression. Our understanding of the role of the nucleosome's spontaneous, thermally driven position changes in modulating expression is lacking. This is the result of the paucity of experimental data on these dynamics, at high-resolution, and for DNA sequences that belong to real, transcribed genes. We have developed an assay that uses partial, reversible unzipping of nucleosomes with optical tweezers to repeatedly probe a nucleosome's position over time. Using the nucleosomes at the promoters of two model genes, Cga and Lhb, we show that the mobility of nucleosomes is modulated by the sequence of DNA and by the use of alternative histone variants, and describe how the mobility can affect transcription, at the initiation and elongation phases.
Collapse
Affiliation(s)
- Sergei Rudnizky
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Omri Malik
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Adaiah Bavly
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.,Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| |
Collapse
|
29
|
Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:93-103. [PMID: 27701139 DOI: 10.1515/reveh-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports describing epigenetic changes induced by iAs exposure and the possible epigenetic mechanisms underlying these changes.
Collapse
|
30
|
Bowerman S, Wereszczynski J. Effects of MacroH2A and H2A.Z on Nucleosome Dynamics as Elucidated by Molecular Dynamics Simulations. Biophys J 2016; 110:327-337. [PMID: 26789756 DOI: 10.1016/j.bpj.2015.12.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022] Open
Abstract
Eukaryotes tune the transcriptional activity of their genome by altering the nucleosome core particle through multiple chemical processes. In particular, replacement of the canonical H2A histone with the variants macroH2A and H2A.Z has been shown to affect DNA accessibility and nucleosome stability; however, the processes by which this occurs remain poorly understood. In this study, we elucidate the molecular mechanisms of these variants with an extensive molecular dynamics study of the canonical nucleosome along with three variant-containing structures: H2A.Z, macroH2A, and an H2A mutant with macroH2A-like L1 loops. Simulation results show that variant L1 loops play a pivotal role in stabilizing DNA binding to the octamer through direct interactions, core structural rearrangements, and altered allosteric networks in the nucleosome. All variants influence dynamics; however, macroH2A-like systems have the largest effect on energetics. In addition, we provide a comprehensive analysis of allosteric networks in the nucleosome and demonstrate that variants take advantage of stronger interactions between L1 loops to propagate dynamics throughout the complex. Furthermore, we show that posttranslational modifications are enriched at key locations in these networks. Taken together, these results provide, to our knowledge, new insights into the relationship between the structure, dynamics, and function of the nucleosome core particle and chromatin fibers, and how they are influenced by chromatin remodeling factors.
Collapse
Affiliation(s)
- Samuel Bowerman
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, Illinois.
| |
Collapse
|
31
|
Leung A, Cheema M, González-Romero R, Eirin-Lopez JM, Ausió J, Nelson CJ. Unique yeast histone sequences influence octamer and nucleosome stability. FEBS Lett 2016; 590:2629-38. [PMID: 27339085 DOI: 10.1002/1873-3468.12266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
Abstract
Yeast nucleosomes are known to be intrinsically less stable than those from higher eukaryotes. This difference presents significant challenges for the production of yeast nucleosome core particles (NCPs) and chromatin for in vitro analyses. Using recombinant yeast, human, and chimeric histone proteins, we demonstrate that three divergent amino acids in histone H3 (Q120 K121 K125 ) are responsible for the poor reconstitution of yeast histones into octamers. This QKK motif is only found in Fungi, and is located at the nucleosome dyad axis. Yeast-to-human changes at these positions render yeast histones amenable to well-established octamer reconstitution and salt dialysis methods for generating nucleosomal and longer chromatin templates. By contrast, the most divergent yeast core histones, H2A and H2B, affect the biophysical properties of NCP but not their stability. An evolutionary analysis of H3 sequences shows that a gradual divergence in H3 sequences occurred in Fungi to yield QKK in budding yeast. This likely facilitates the highly euchromatic nature of yeast genomes. Our results provide an explanation for the long recognized difference in yeast nucleosome stability and they offer a simple method to generate yeast chromatin templates for in vitro studies.
Collapse
Affiliation(s)
- Andrew Leung
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Manjinder Cheema
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Rodrigo González-Romero
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Jose M Eirin-Lopez
- Chromatin Structure and Evolution (Chromevol) Group, Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | - Christopher J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| |
Collapse
|
32
|
Yang HD, Kim PJ, Eun JW, Shen Q, Kim HS, Shin WC, Ahn YM, Park WS, Lee JY, Nam SW. Oncogenic potential of histone-variant H2A.Z.1 and its regulatory role in cell cycle and epithelial-mesenchymal transition in liver cancer. Oncotarget 2016; 7:11412-11423. [PMID: 26863632 PMCID: PMC4905482 DOI: 10.18632/oncotarget.7194] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/23/2016] [Indexed: 12/28/2022] Open
Abstract
H2A.Z is a highly conserved H2A variant, and two distinct H2A.Z isoforms, H2A.Z.1 and H2A.Z.2, have been identified as products of two non-allelic genes, H2AFZ and H2AFV. H2A.Z has been reported to be overexpressed in breast, prostate and bladder cancers, but most studies did not clearly distinguish between isoforms. One recent study reported a unique role for the H2A.Z isoform H2A.Z.2 as a driver of malignant melanoma. Here we first report that H2A.Z.1 plays a pivotal role in the liver tumorigenesis by selectively regulating key molecules in cell cycle and epithelial-mesenchymal transition (EMT). H2AFZ expression was significantly overexpressed in a large cohort of hepatocellular carcinoma (HCC) patients, and high expression of H2AFZ was significantly associated with their poor prognosis. H2A.Z.1 overexpression was demonstrated in a subset of human HCC and cell lines. H2A.Z.1 knockdown suppressed HCC cell growth by transcriptional deregulation of cell cycle proteins and caused apoptotic cell death of HCC cells. We also observed that H2A.Z.1 knockdown reduced the metastatic potential of HCC cells by selectively modulating epithelial-mesenchymal transition regulatory proteins such as E-cadherin and fibronectin. In addition, H2A.Z.1 knockdown reduced the in vivo tumor growth rate in a mouse xenograft model. In conclusion, our findings suggest the oncogenic potential of H2A.Z.1 in liver tumorigenesis and that it plays established role in accelerating cell cycle transition and EMT during hepatocarcinogenesis. This makes H2A.Z.1 a promising target in liver cancer therapy.
Collapse
Affiliation(s)
- Hee Doo Yang
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Pum-Joon Kim
- Department of Cardiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Woo Eun
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Qingyu Shen
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hyung Seok Kim
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Woo Chan Shin
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Min Ahn
- Department of Kidney System, College of Oriental Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won Sang Park
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jung Young Lee
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Suk Woo Nam
- Laboratory of Oncogenomics, Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Cancer Evolution Research Center, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
33
|
Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome. Cell Rep 2015; 13:61-69. [PMID: 26411677 DOI: 10.1016/j.celrep.2015.08.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/01/2015] [Accepted: 08/25/2015] [Indexed: 12/15/2022] Open
Abstract
Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.
Collapse
|
34
|
Monteiro FL, Baptista T, Amado F, Vitorino R, Jerónimo C, Helguero LA. Expression and functionality of histone H2A variants in cancer. Oncotarget 2015; 5:3428-43. [PMID: 25003966 PMCID: PMC4116493 DOI: 10.18632/oncotarget.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regulation of gene expression includes the replacement of canonical histones for non-allelic histone variants, as well as their multiple targeting by postranslational modifications. H2A variants are highly conserved between species suggesting they execute important functions that cannot be accomplished by canonical histones. Altered expression of many H2A variants is associated to cancer. MacroH2A variants are enriched in heterocromatic foci and are necessary for chromatin condensation. MacroH2A1.1 and macroH2A1.2 are two mutually exclusive isoforms. MacroH2A1.1 and macroH2A2 inhibit proliferation and are associated with better cancer prognosis; while macroH2A1.2 is associated to cancer progression. H2AX variant functions as a sensor of DNA damage and defines the cellular response towards DNA repair or apoptosis; therefore, screening approaches and therapeutic options targeting H2AX have been proposed. H2A.Z is enriched in euchromatin, acting as a proto-oncogene with established roles in hormone responsive cancers and overexpressed in endocrine-resistant disease. Other H2A family members have also been found altered in cancer, but their function remains unknown. Substantial progress has been made to understand histone H2A variants, their contribution to normal cellular function and to cancer development and progression. Yet, implementation of high resolution mass spectrometry is needed to further our knowledge on highly homologous H2A variants expression and function.
Collapse
Affiliation(s)
- Fátima Liliana Monteiro
- Mass Specrometry Center, Organic Chemistry and Natural Products Unit (QOPNA), Department of Chemistry, Universidade de Aveiro., Aveiro, Portugal
| | | | | | | | | | - Luisa A Helguero
- Mass Specrometry Center, Organic Chemistry and Natural Products Unit (QOPNA), Dep. of Chemistry, Universidade de Aveiro., Aveiro, Portugal
| |
Collapse
|
35
|
Abstract
Genetic and epigenetic changes are at the root of all cancers. The epigenetic component involves alterations of the post-synthetic modifications of DNA (methylation) and histones (histone posttranslational modifications, PTMs) as well as of those of their molecular "writers," "readers," and "erasers." Noncoding RNAs (ncRNA) can also play a role. Here, we focus on the involvement of histone alterations in cancer, in particular that of the histone variant H2A.Z in the etiology of prostate cancer. The structural mechanisms putatively responsible for the contribution of H2A.Z to oncogenic gene expression programs are first described, followed by what is currently known about the involvement of this histone variant in the regulation of androgen receptor regulated gene expression. The implications of this and their relevance to oncogene deregulation in different stages of prostate cancer, including the progression toward androgen independence, are discussed. This review underscores the increasing awareness of the epigenetic contribution of histone variants to oncogenic progression.
Collapse
Affiliation(s)
- Deanna Dryhurst
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 258a, Victoria, British Columbia Canada V8W 3P6
- ImmunoPrecise Antibodies Ltd., 3204-4464 Markham St., Victoria, British Columbia Canada V8Z 7X8
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Petch building, 258a, Victoria, British Columbia Canada V8W 3P6
| |
Collapse
|
36
|
Chen PB, Zhu LJ, Hainer SJ, McCannell KN, Fazzio TG. Unbiased chromatin accessibility profiling by RED-seq uncovers unique features of nucleosome variants in vivo. BMC Genomics 2014; 15:1104. [PMID: 25494698 PMCID: PMC4378318 DOI: 10.1186/1471-2164-15-1104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differential accessibility of DNA to nuclear proteins underlies the regulation of numerous cellular processes. Although DNA accessibility is primarily determined by the presence or absence of nucleosomes, differences in nucleosome composition or dynamics may also regulate accessibility. Methods for mapping nucleosome positions and occupancies genome-wide (MNase-seq) have uncovered the nucleosome landscapes of many different cell types and organisms. Conversely, methods specialized for the detection of large nucleosome-free regions of chromatin (DNase-seq, FAIRE-seq) have uncovered numerous gene regulatory elements. However, these methods are less successful in measuring the accessibility of DNA sequences within nucelosome arrays. RESULTS Here we probe the genome-wide accessibility of multiple cell types in an unbiased manner using restriction endonuclease digestion of chromatin coupled to deep sequencing (RED-seq). Using this method, we identified differences in chromatin accessibility between populations of cells, not only in nucleosome-depleted regions of the genome (e.g., enhancers and promoters), but also within the majority of the genome that is packaged into nucleosome arrays. Furthermore, we identified both large differences in chromatin accessibility in distinct cell lineages and subtle but significant changes during differentiation of mouse embryonic stem cells (ESCs). Most significantly, using RED-seq, we identified differences in accessibility among nucleosomes harboring well-studied histone variants, and show that these differences depend on factors required for their deposition. CONCLUSIONS Using an unbiased method to probe chromatin accessibility genome-wide, we uncover unique features of chromatin structure that are not observed using more widely-utilized methods. We demonstrate that different types of nucleosomes within mammalian cells exhibit different degrees of accessibility. These findings provide significant insight into the regulation of DNA accessibility.
Collapse
Affiliation(s)
| | | | | | | | - Thomas G Fazzio
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
37
|
Marques M, Laflamme L, Benassou I, Cissokho C, Guillemette B, Gaudreau L. Low levels of 3,3'-diindolylmethane activate estrogen receptor α and induce proliferation of breast cancer cells in the absence of estradiol. BMC Cancer 2014; 14:524. [PMID: 25048790 PMCID: PMC4223525 DOI: 10.1186/1471-2407-14-524] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 3,3'-diindolylmethane (DIM) is an acid-catalyzed dimer of idole-3-carbinol (I3C), a phytochemical found in cruciferous vegetables that include broccoli, Brussels sprouts and cabbage. DIM is an aryl hydrocarbon receptor (AhR) ligand and a potential anticancer agent, namely for the treatment of breast cancer. It is also advertised as a compound that regulates sex hormone homeostasis. METHODS Here we make use of RNA expression assays coupled to Chromatin Immunoprecipitation (ChIP) in breast cancer cell lines to study the effect of DIM on estrogen signaling. We further make use of growth assays, as well as fluorescence-activated cell sorting (FACS) assays, to monitor cell growth. RESULTS In this study, we report that 'physiologically obtainable' concentrations of DIM (10 μM) activate the estrogen receptor α (ERα) signaling pathway in the human breast cancer cell lines MCF7 and T47D, in a 17β-estradiol (E2)-independent manner. Accordingly, we observe induction of ERα target genes such as GREB1 and TFF1, and an increase in cellular proliferation after treatment with 10 μM DIM in the absence of E2. By using an ERα specific inhibitor (ICI 182 780), we confirm that the transcriptional and proliferative effects of DIM treatment are mediated by ERα. We further show that the protein kinase A signaling pathway participates in DIM-mediated activation of ERα. In contrast, higher concentrations of DIM (e.g. 50 μM) have an opposite and expected effect on cells, which is to inhibit proliferation. CONCLUSIONS We document an unexpected effect of DIM on cell proliferation, which is to stimulate growth by inducing the ERα signaling pathway. Importantly, this proliferative effect of DIM happens with potentially physiological concentrations that can be provided by the diet or by taking caplet supplements.
Collapse
Affiliation(s)
| | | | | | | | | | - Luc Gaudreau
- Département de Biologie, Université de Sherbrooke, J1K 2R1 Sherbrooke, QC, Canada.
| |
Collapse
|
38
|
Shibata Y, Sawa H, Nishiwaki K. HTZ-1/H2A.z and MYS-1/MYST HAT act redundantly to maintain cell fates in somatic gonadal cells through repression of ceh-22 in C. elegans. Development 2014; 141:209-18. [PMID: 24346701 DOI: 10.1242/dev.090746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The stable maintenance of acquired cell fates is important during development and for maintaining tissue homeostasis. Although histone modification is one of the major strategies used by cells to maintain their fates, the mechanisms by which histone variants maintain cell fates are not well understood. In C. elegans, the acetylated-histone-H4 (AcH4)-binding protein BET-1 acts downstream of the MYST family histone acetyltransferases MYS-1 and MYS-2 to establish and maintain cell fates in multiple cell lineages. Here we show that, in the bet-1 pathway, the histone H2A variant HTZ-1/H2A.z and MYS-1 are required for the maintenance of cell fates in a redundant manner. BET-1 controlled the subnuclear localization of HTZ-1. HTZ-1 and MYS-1 maintained the fates of the somatic gonadal cells (SGCs) through the repression of a target, ceh-22/Nkx2.5, which induced the formation of the leader cells of the gonad. H3K27 demethylase, UTX-1, had an antagonistic effect relative to HTZ-1 in the regulation of ceh-22. Nuclear spot assay revealed that HTZ-1 localized to the ceh-22 locus in SGCs in an utx-1-dependent manner. We propose that HTZ-1 and MYS-1 repress ceh-22 when UTX-1 removes its silencing mark, H3K27 methylation on the ceh-22 locus, thereby maintaining the fates of SGCs.
Collapse
Affiliation(s)
- Yukimasa Shibata
- Department of Bioscience, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | |
Collapse
|
39
|
Billon P, Côté J. Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:290-302. [PMID: 24459731 DOI: 10.1016/j.bbagrm.2011.10.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Histone variant H2A.Z is essential in higher eukaryotes and has different functions in the cell. Several studies indicate that H2A.Z is found at specific loci in the genome such as regulatory-gene regions, where it poises genes for transcription. Itsdeposition creates chromatin regions with particular structural characteristics which could favor rapid transcription activation. This review focuses on the highly regulated mechanism of H2A.Z deposition in chromatin which is essential for genome integrity. Chaperones escort H2A.Z to large ATP-dependent chromatin remodeling enzymes which are responsible for its deposition/eviction. Over the last ten years, biochemical, genetic and genomic studies helped us understand the precise role of these complexes in this process. It hasbeen suggested that a cooperation occurs between histone acetyltransferase and chromatin remodeling activities to incorporate H2A.Z in chromatin. Its regulated deposition near centromeres and telomeres also shows its implication in chromosomal structure integrity and parallels a role in DNA damage response. Thedynamics of H2A.Z deposition/eviction at specific loci was shown to be critical for genome expression andmaintenance, thus cell fate. Altogether, recent findings reassert the importance of the regulated depositionof this histone variant. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
40
|
Insights into chromatin structure and dynamics in plants. BIOLOGY 2013; 2:1378-410. [PMID: 24833230 PMCID: PMC4009787 DOI: 10.3390/biology2041378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 11/17/2022]
Abstract
The packaging of chromatin into the nucleus of a eukaryotic cell requires an extraordinary degree of compaction and physical organization. In recent years, it has been shown that this organization is dynamically orchestrated to regulate responses to exogenous stimuli as well as to guide complex cell-type-specific developmental programs. Gene expression is regulated by the compartmentalization of functional domains within the nucleus, by distinct nucleosome compositions accomplished via differential modifications on the histone tails and through the replacement of core histones by histone variants. In this review, we focus on these aspects of chromatin organization and discuss novel approaches such as live cell imaging and photobleaching as important tools likely to give significant insights into our understanding of the very dynamic nature of chromatin and chromatin regulatory processes. We highlight the contribution plant studies have made in this area showing the potential advantages of plants as models in understanding this fundamental aspect of biology.
Collapse
|
41
|
Morillo Prado JR, Srinivasan S, Fuller MT. The histone variant His2Av is required for adult stem cell maintenance in the Drosophila testis. PLoS Genet 2013; 9:e1003903. [PMID: 24244183 PMCID: PMC3820763 DOI: 10.1371/journal.pgen.1003903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 09/08/2013] [Indexed: 12/19/2022] Open
Abstract
Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages.
Collapse
Affiliation(s)
- Jose Rafael Morillo Prado
- Department of Developmental Biology, Stanford University, School of Medicine Stanford, California, United States of America
| | | | | |
Collapse
|
42
|
Subramanian V, Mazumder A, Surface LE, Butty VL, Fields PA, Alwan A, Torrey L, Thai KK, Levine SS, Bathe M, Boyer LA. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation. PLoS Genet 2013; 9:e1003725. [PMID: 23990805 PMCID: PMC3749939 DOI: 10.1371/journal.pgen.1003725] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/01/2013] [Indexed: 12/20/2022] Open
Abstract
The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs). Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3)) are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3) interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3) was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3) ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3) ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3) displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP). Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3) mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin. Collectively, our work suggests that the divergent residues in the H2A.Z acidic patch comprise a unique domain that couples control of chromatin dynamics to the regulation of developmental gene expression patterns during lineage commitment.
Collapse
Affiliation(s)
- Vidya Subramanian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Aprotim Mazumder
- Laboratory for Computational Biology and Biophysics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lauren E. Surface
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Paul A. Fields
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Allison Alwan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Lillian Torrey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kevin K. Thai
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Stuart S. Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mark Bathe
- Laboratory for Computational Biology and Biophysics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Laurie A. Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
43
|
Stuss DP, Cheema M, Ng MK, Martinez de Paz A, Williamson B, Missiaen K, Cosman JD, McPhee D, Esteller M, Hendzel M, Delaney K, Ausió J. Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain. Nucleic Acids Res 2013; 41:4888-900. [PMID: 23558747 PMCID: PMC3643609 DOI: 10.1093/nar/gkt213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
MeCP2 is a methyl-CpG-binding protein that is a main component of brain chromatin in vertebrates. In vitro studies have determined that in addition to its specific methyl-CpG-binding domain (MBD) MeCP2 also has several chromatin association domains. However, the specific interactions of MeCP2 with methylated or non-methylated chromatin regions and the structural characteristics of the resulting DNA associations in vivo remain poorly understood. We analysed the role of the MBD in MeCP2–chromatin associations in vivo using an MeCP2 mutant Rett syndrome mouse model (Mecp2tm1.1Jae) in which exon 3 deletion results in an N-terminal truncation of the protein, including most of the MBD. Our results show that in mutant mice, the truncated form of MeCP2 (ΔMeCP2) is expressed in different regions of the brain and liver, albeit at 50% of its wild-type (wt) counterpart. In contrast to the punctate nuclear distribution characteristic of wt MeCP2, ΔMeCP2 exhibits both diffuse nuclear localization and a substantial retention in the cytoplasm, suggesting a dysfunction of nuclear transport. In mutant brain tissue, neuronal nuclei are smaller, and ΔMeCP2 chromatin is digested faster by nucleases, producing a characteristic nuclease-resistant dinucleosome. Although a fraction of ΔMeCP2 is found associated with nucleosomes, its interaction with chromatin is transient and weak. Thus, our results unequivocally demonstrate that in vivo the MBD of MeCP2 together with its adjacent region in the N-terminal domain are critical for the proper interaction of the protein with chromatin, which cannot be replaced by any other of its protein domains.
Collapse
Affiliation(s)
- David P Stuss
- Department of Biology, University of Victoria, British Columbia, V8W 2Y2, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
The variant histone H2A.V of Drosophila--three roles, two guises. Chromosoma 2013; 122:245-58. [PMID: 23553272 DOI: 10.1007/s00412-013-0409-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
Abstract
Histone variants play important roles in eukaryotic genome organization, the control of gene expression, cell division and DNA repair. Unlike other organisms that employ several H2A variants for different functions, the parsimonious fruit fly Drosophila melanogaster gets along with just a single H2A variant, H2A.V. Remarkably, H2A.V unites within one molecule features and functions of two different mammalian H2A variants, H2A.Z and H2A.X. Accordingly, H2A.V is involved in diverse functions, as an element of a class of active promoter structure, as a foundation for heterochromatin assembly and as a DNA damage sensor. Here, we comprehensively review the current knowledge of this fascinating histone variant.
Collapse
|
45
|
Xing YQ, Liu GQ, Zhao XJ, Cai L. An analysis and prediction of nucleosome positioning based on information content. Chromosome Res 2013; 21:63-74. [PMID: 23435498 DOI: 10.1007/s10577-013-9338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 11/26/2022]
Abstract
Nucleosome positioning plays a key role in the regulation of many biological processes. In this study, the statistical difference of information content was investigated in nucleosome and linker DNA regions across eukaryotic organisms. By analyzing the information redundancy, D k , in Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans genomes, the short-range dominance of nucleotide correlation in nucleosome and linker DNA regions was confirmed. Significant difference of the D k value between the nucleosome and linker DNA regions was also found. The underlying reason for many successful oligonucleotide-based predictions of nucleosome positioning in eukaryotic model organisms may be attributed to the short-range dominance of nucleotide correlation in the nucleosome and linker DNA regions. When applying power spectrum analysis to the nucleosome and linker DNA regions, some obvious differences in sequence periodic signals were observed. The parameter F k was introduced to describe particular base correlation. Furthermore, the support vector machine combining F k was used to classify nucleosome and linker DNA regions in Homo sapiens, Oryzias latipes, C. elegans, Candida albicans, and S. cerevisiae. Independent test demonstrated that a good performance can be achieved by using this algorithm. This result further revealed that base correlation information has an important role in nucleosome positioning.
Collapse
Affiliation(s)
- Yong-qiang Xing
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | | | | | | |
Collapse
|
46
|
Dynamics of modeled oligonucleosomes and the role of histone variant proteins in nucleosome organization. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:119-49. [PMID: 23582203 DOI: 10.1016/b978-0-12-410523-2.00004-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Elucidation of the structural dynamics of a nucleosome is of primary importance for understanding the molecular mechanisms that control the nucleosomal positioning. The presence of variant histone proteins in the nucleosome core raises the functional diversity of the nucleosomes in gene regulation and has the profound epigenetic consequences of great importance for understanding the fundamental issues like the assembly of variant nucleosomes, chromatin remodeling, histone posttranslational modifications, etc. Here, we report our observation of the dominant mechanisms of relaxation motions of the oligonucleosomes such as dimer, trimer, and tetramer (in the beads on a string model) with conventional core histones and role of variant histone H2A.Z in the chromatin dynamics using normal mode analysis. Analysis of the directionality of the global dynamics of the oligonucleosome reveals (i) the in-planar stretching as well as out-of-planar bending motions as the relaxation mechanisms of the oligonucleosome and (ii) the freedom of the individual nucleosome in expressing the combination of the above-mentioned motions as the global mode of dynamics. The highly dynamic N-termini of H3 and (H2A.Z-H2B) dimer evidence their participation in the transcriptionally active state. The key role of variant H2A.Z histone as a major source of vibrant motions via weaker intra- and intermolecular correlations is emphasized in this chapter.
Collapse
|
47
|
Abstract
Histones are the protein components of chromatin and are important for its organization and compaction. Although core histones are exclusively expressed during S phase of the cell cycle, there exist variants of canonical histones that are expressed throughout the cell cycle. These histone variants are often deposited at defined regions of the genome and they play important roles in a variety of cellular processes, such as transcription regulation, heterochromatin formation and DNA repair. In this chapter, we will focus on several histone variants that have been linked to transcription regulation, and highlight their physical and functional features that facilitate their activities in this context.
Collapse
Affiliation(s)
- Cindy Law
- Ontario Cancer Institute, 610 University Avenue, Toronto, ON, M5G 2M9, Canada
| | | |
Collapse
|
48
|
Bönisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 2012; 40:10719-41. [PMID: 23002134 PMCID: PMC3510494 DOI: 10.1093/nar/gks865] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In eukaryotes, DNA is organized together with histones and non-histone proteins into a highly complex nucleoprotein structure called chromatin, with the nucleosome as its monomeric subunit. Various interconnected mechanisms regulate DNA accessibility, including replacement of canonical histones with specialized histone variants. Histone variant incorporation can lead to profound chromatin structure alterations thereby influencing a multitude of biological processes ranging from transcriptional regulation to genome stability. Among core histones, the H2A family exhibits highest sequence divergence, resulting in the largest number of variants known. Strikingly, H2A variants differ mostly in their C-terminus, including the docking domain, strategically placed at the DNA entry/exit site and implicated in interactions with the (H3–H4)2-tetramer within the nucleosome and in the L1 loop, the interaction interface of H2A–H2B dimers. Moreover, the acidic patch, important for internucleosomal contacts and higher-order chromatin structure, is altered between different H2A variants. Consequently, H2A variant incorporation has the potential to strongly regulate DNA organization on several levels resulting in meaningful biological output. Here, we review experimental evidence pinpointing towards outstanding roles of these highly variable regions of H2A family members, docking domain, L1 loop and acidic patch, and close by discussing their influence on nucleosome and higher-order chromatin structure and stability.
Collapse
Affiliation(s)
- Clemens Bönisch
- Department of Molecular Biology, Center for Integrated Protein Science Munich, Adolf-Butenandt-Institute, Ludwig-Maximilians-University Munich, 80336 Munich, Germany.
| | | |
Collapse
|
49
|
Enhancers: emerging roles in cell fate specification. EMBO Rep 2012; 13:423-30. [PMID: 22491032 DOI: 10.1038/embor.2012.52] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/22/2012] [Indexed: 01/01/2023] Open
Abstract
Enhancers are regulatory DNA elements that dictate the spatial and temporal patterns of gene expression during development. Recent evidence suggests that the distinct chromatin features of enhancer regions provide the permissive landscape required for the differential access of diverse signalling molecules that drive cell-specific gene expression programmes. The epigenetic patterning of enhancers occurs before cell fate decisions, suggesting that the epigenetic information required for subsequent differentiation processes is embedded within the enhancer element. Lineage studies indicate that the patterning of enhancers might be regulated by the intricate interplay between DNA methylation status, the binding of specific transcription factors to enhancers and existing histone modifications. In this review, we present insights into the mechanisms of enhancer function, which might ultimately facilitate cell reprogramming strategies for use in regenerative medicine.
Collapse
|
50
|
Thambirajah AA, Ng MK, Frehlick LJ, Li A, Serpa JJ, Petrotchenko EV, Silva-Moreno B, Missiaen KK, Borchers CH, Adam Hall J, Mackie R, Lutz F, Gowen BE, Hendzel M, Georgel PT, Ausió J. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic Acids Res 2011; 40:2884-97. [PMID: 22144686 PMCID: PMC3326294 DOI: 10.1093/nar/gkr1066] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) is a chromatin-binding protein that mediates transcriptional regulation, and is highly abundant in brain. The nature of its binding to reconstituted templates has been well characterized in vitro. However, its interactions with native chromatin are less understood. Here we show that MeCP2 displays a distinct distribution within fractionated chromatin from various tissues and cell types. Artificially induced global changes in DNA methylation by 3-aminobenzamide or 5-aza-2′-deoxycytidine, do not significantly affect the distribution or amount of MeCP2 in HeLa S3 or 3T3 cells. Most MeCP2 in brain is chromatin-bound and localized within highly nuclease-accessible regions. We also show that, while in most tissues and cell lines, MeCP2 forms stable complexes with nucleosome, in brain, a fraction of it is loosely bound to chromatin, likely to nucleosome-depleted regions. Finally, we provide evidence for novel associations of MeCP2 with mononucleosomes containing histone H2A.X, H3K9me2 and H3K27me3 in different chromatin fractions from brain cortex and in vitro. We postulate that the functional compartmentalization and tissue-specific distribution of MeCP2 within different chromatin types may be directed by its association with nucleosomes containing specific histone variants, and post-translational modifications.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|