1
|
Kennedy MA, Hosford CJ, Azumaya CM, Luyten YA, Chen M, Morgan RD, Stoddard BL. Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI. Nucleic Acids Res 2023; 51:4467-4487. [PMID: 36987874 PMCID: PMC10201449 DOI: 10.1093/nar/gkad228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Type IIS restriction endonucleases contain separate DNA recognition and catalytic domains and cleave their substrates at well-defined distances outside their target sequences. They are employed in biotechnology for a variety of purposes, including the creation of gene-targeting zinc finger and TAL effector nucleases and DNA synthesis applications such as Golden Gate assembly. The most thoroughly studied Type IIS enzyme, FokI, has been shown to require multimerization and engagement with multiple DNA targets for optimal cleavage activity; however, details of how it or similar enzymes forms a DNA-bound reaction complex have not been described at atomic resolution. Here we describe biochemical analyses of DNA cleavage by the Type IIS PaqCI restriction endonuclease and a series of molecular structures in the presence and absence of multiple bound DNA targets. The enzyme displays a similar tetrameric organization of target recognition domains in the absence or presence of bound substrate, with a significant repositioning of endonuclease domains in a trapped DNA-bound complex that is poised to deliver the first of a series of double-strand breaks. PaqCI and FokI share similar structural mechanisms of DNA cleavage, but considerable differences in their domain organization and quaternary architecture, facilitating comparisons between distinct Type IIS enzymes.
Collapse
Affiliation(s)
- Madison A Kennedy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| | | | - Caleigh M Azumaya
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Minyong Chen
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| |
Collapse
|
2
|
Gulati P, Singh A, Goel M, Saha S. The extremophile Picrophilus torridus carries a DNA adenine methylase M.PtoI that is part of a Type I restriction-modification system. Front Microbiol 2023; 14:1126750. [PMID: 37007530 PMCID: PMC10050889 DOI: 10.3389/fmicb.2023.1126750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
DNA methylation events mediated by orphan methyltransferases modulate various cellular processes like replication, repair and transcription. Bacteria and archaea also harbor DNA methyltransferases that are part of restriction-modification systems, which serve to protect the host genome from being cleaved by the cognate restriction enzyme. While DNA methylation has been exhaustively investigated in bacteria it remains poorly understood in archaea. Picrophilus torridus is a euryarchaeon that can thrive under conditions of extremely low pH (0.7), and thus far no reports have been published regarding DNA methylation in this extremophile. This study reports the first experimentation examining DNA methylation in P. torridus. We find the genome to carry methylated adenine (m6A) but not methylated cytosine (m5C) residues. The m6A modification is absent at GATC sites, indicating the absence of an active Dam methylase even though the dam gene has been annotated in the genome sequence. Two other methylases have also been annotated in the P. torridus genome sequence. One of these is a part of a Type I restriction-modification system. Considering that all Type I modification methylases characterized to date target adenine residues, the modification methylase of this Type I system has been examined. The genes encoding the S subunit (that is responsible for DNA recognition) and M subunit (that is responsible for DNA methylation) have been cloned and the recombinant protein purified from E.coli, and regions involved in M-S interactions have been identified. The M.PtoI enzyme harbors all the motifs that typify Type I modification methylases, and displays robust adenine methylation in in vitro assays under a variety of conditions. Interestingly, magnesium is essential for enzyme activity. The enzyme displays substrate inhibition at higher concentrations of AdoMet. Mutational analyses reveal that Motif I plays a role in AdoMet binding, and Motif IV is critical for methylation activity. The data presented here lays the foundation for further research in the area of DNA methylation and restriction-modification research in this most unusual microorganism.
Collapse
Affiliation(s)
- Pallavi Gulati
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Ashish Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Swati Saha
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
- *Correspondence: Swati Saha, ;
| |
Collapse
|
3
|
Zaworski J, Dagva O, Brandt J, Baum C, Ettwiller L, Fomenkov A, Raleigh EA. Reassembling a cannon in the DNA defense arsenal: Genetics of StySA, a BREX phage exclusion system in Salmonella lab strains. PLoS Genet 2022; 18:e1009943. [PMID: 35377874 PMCID: PMC9009780 DOI: 10.1371/journal.pgen.1009943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2021] [Revised: 04/14/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding mechanisms that shape horizontal exchange in prokaryotes is a key problem in biology. A major limit on DNA entry is imposed by restriction-modification (RM) processes that depend on the pattern of DNA modification at host-specified sites. In classical RM, endonucleolytic DNA cleavage follows detection of unprotected sites on entering DNA. Recent investigation has uncovered BREX (BacteRiophage EXclusion) systems. These RM-like activities employ host protection by DNA modification, but immediate replication arrest occurs without evident of nuclease action on unmodified phage DNA. Here we show that the historical stySA RM locus of Salmonella enterica sv Typhimurium is a variant BREX system. A laboratory strain disabled for both the restriction and methylation activity of StySA nevertheless has wild type sequence in pglX, the modification gene homolog. Instead, flanking genes pglZ and brxC each carry multiple mutations (μ) in their C-terminal domains. We further investigate this system in situ, replacing the mutated pglZμ and brxCμ genes with the WT counterpart. PglZ-WT supports methylation in the presence of either BrxCμ or BrxC-WT but not in the presence of a deletion/insertion allele, ΔbrxC::cat. Restriction requires both BrxC-WT and PglZ-WT, implicating the BrxC C-terminus specifically in restriction activity. These results suggests that while BrxC, PglZ and PglX are principal components of the BREX modification activity, BrxL is required for restriction only. Furthermore, we show that a partial disruption of brxL disrupts transcription globally. Horizontal gene transfer is a major driver of evolution and adaptation in bacteria. Genes from outside may be beneficial or dangerous to the receiving cell. Benefits include new food sources such as sugars, or new homes by adhesion, or new resistances, as to antibiotics. Dangers are posed by bacteriophages--viruses that take over the cell machinery, multiply, and release progeny to kill sister cells. Host-dependent restriction-modification systems enable defense that distinguishes relatives from strangers: using a modification pattern (M) carried by DNA bases added by the host cell to prevent restriction (R). Sisters and cousin cells will have the same protective pattern on DNA, while DNA of foreign origin will have the wrong M pattern and be restricted (R, rejected). Typically, restriction involves nuclease digestion. Here we address the enigmatic StySA RM system, one of the earliest to be genetically characterized. It is a variant of the newly recognized defense mechanism, BREX. BREX systems also track DNA history via modification pattern, but restrict by a novel, uncharacterized mechanism. Like other BREX family systems, StySA-BREX modification requires multiple components. When StySA-BREX transcription is unbalanced, we find global disruption of gene transcription. The disruption pattern does not suggest SOS-inducing damage to DNA.
Collapse
Affiliation(s)
- Julie Zaworski
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Oyut Dagva
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julius Brandt
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Chloé Baum
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Laurence Ettwiller
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Alexey Fomenkov
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Elisabeth A. Raleigh
- Research Department, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Zhang Y, Nunoura T, Nishiura D, Hirai M, Shimamura S, Kurosawa K, Ishiwata C, Deguchi S. A single-molecule counting approach for convenient and ultrasensitive measurement of restriction digest efficiencies. PLoS One 2020; 15:e0244464. [PMID: 33382779 PMCID: PMC7775078 DOI: 10.1371/journal.pone.0244464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Restriction endonucleases play a central role in the microbial immune system against viruses and are widely used in DNA specific cleavage, which is called restriction digestion, for genetic engineering. Herein, we applied digital cell-free protein synthesis as an easy-to-use orthogonal readout means to assess the restriction digest efficiency, a new application of digital bioassays. The digital counting principle enabled an unprecedentedly sensitive trace analysis of undigested DNA at the single-molecule level in a PCR-free manner. Our approach can quantify the template DNA of much lower concentrations that cannot be detected by ensemble-based methods such as gold-standard DNA electrophoresis techniques. The sensitive and quantitative measurements revealed a considerable variation in the digest efficiency among restriction endonucleases, from less than 70% to more than 99%. Intriguingly, none of them showed truly complete digestion within reasonably long periods of reaction time. The same rationale was extended to a multiplexed assay and applicable to any DNA-degrading or genome-editing enzymes. The enzyme kinetic parameters and the flanking sequence-dependent digest efficiency can also be interrogated with the proposed digital counting method. The absolute number of residual intact DNA molecules per microliter was concluded to be at least 107, drawing attention to the residual issue of genetic materials associated with the interpretation of nucleases' behaviors and functions in daily genetic engineering experiments.
Collapse
Affiliation(s)
- Yi Zhang
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Daisuke Nishiura
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Miho Hirai
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Shimamura
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Kanako Kurosawa
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Chieko Ishiwata
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Shigeru Deguchi
- Research Center for Bioscience and Nanoscience, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
5
|
Bourges AC, Torres Montaguth OE, Tadesse W, Labesse G, Aertsen A, Royer CA, Declerck N. An oligomeric switch controls the Mrr-induced SOS response in E. coli. DNA Repair (Amst) 2020; 97:103009. [PMID: 33220536 DOI: 10.1016/j.dnarep.2020.103009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 11/26/2022]
Abstract
Mrr from Escherichia coli K12 is a type IV restriction endonuclease whose role is to recognize and cleave foreign methylated DNA. Beyond this protective role, Mrr can inflict chromosomal DNA damage that elicits the SOS response in the host cell upon heterologous expression of specific methyltransferases such as M.HhaII, or after exposure to high pressure (HP). Activation of Mrr in response to these perturbations involves an oligomeric switch that dissociates inactive homo-tetramers into active dimers. Here we used scanning number and brightness (sN&B) analysis to determine in vivo the stoichiometry of a constitutively active Mrr mutant predicted to be dimeric and examine other GFP-Mrr mutants compromised in their response to either M.HhaII activity or HP shock. We also observed in vitro the direct pressure-induced tetramer dissociation by HP fluorescence correlation spectroscopy of purified GFP-Mrr. To shed light on the linkages between subunit interactions and activity of Mrr and its variants, we built a structural model of the full-length tetramer bound to DNA. Similar to functionally related endonucleases, the conserved DNA cleavage domain would be sequestered by the DNA recognition domain in the Mrr inactive tetramer, dissociating into an enzymatically active dimer upon interaction with multiple DNA sites.
Collapse
Affiliation(s)
- Anaïs C Bourges
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | | | - Wubishet Tadesse
- Department of Microbial and Molecular Systems, KU Leuven, B-3001, Leuven, Belgium
| | - Gilles Labesse
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, B-3001, Leuven, Belgium
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Nathalie Declerck
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090, Montpellier, France; Département MICA, INRA, 78350 Jouy-en-Josas, France.
| |
Collapse
|
6
|
Promiscuous DNA cleavage by HpyAII endonuclease is modulated by the HNH catalytic residues. Biosci Rep 2020; 40:226299. [PMID: 32880391 PMCID: PMC7494987 DOI: 10.1042/bsr20201633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a carcinogenic bacterium that is responsible for 5.5% of all human gastric cancers. H. pylori codes for an unusually large number of restriction-modification (R-M) systems and several of them are strain-specific and phase-variable. HpyAII is a novel Type IIs phase-variable restriction endonuclease present in 26695 strain of H. pylori. We show that HpyAII prefers two-site substrates over one-site substrates for maximal cleavage activity. HpyAII is less stringent in metal ion requirement and shows higher cleavage activity with Ni2+ over Mg2+. Mutational analysis of the putative residues of the HNH motif of HpyAII confirms that the protein has an active HNH site for the cleavage of DNA. However, mutation of the first Histidine residue of the HNH motif to Alanine does not abolish the enzymatic activity, but instead causes loss of fidelity compared with wildtype HpyAII. Previous studies have shown that mutation of the first Histidine residue of the HNH motif of all other known HNH motif motif-containing enzymes completely abolishes enzymatic activity. We found, in the case of HpyAII, mutation of an active site residue leads to the loss of endonuclease fidelity. The present study provides further insights into the evolution of restriction enzymes.
Collapse
|
7
|
Lutz T, Czapinska H, Fomenkov A, Potapov V, Heiter DF, Cao B, Dedon P, Bochtler M, Xu SY. Protein Domain Guided Screen for Sequence Specific and Phosphorothioate-Dependent Restriction Endonucleases. Front Microbiol 2020; 11:1960. [PMID: 33013736 PMCID: PMC7461809 DOI: 10.3389/fmicb.2020.01960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2020] [Accepted: 07/24/2020] [Indexed: 11/25/2022] Open
Abstract
Modification dependent restriction endonucleases (MDREs) restrict modified DNA, typically with limited sequence specificity (∼2-4 bp). Here, we focus on MDREs that have an SRA and/or SBD (sulfur binding domain) fused to an HNH endonuclease domain, cleaving cytosine modified or phosphorothioated (PT) DNA. We independently characterized the SBD-SRA-HNH endonuclease ScoMcrA, which preferentially cleaves 5hmC modified DNA. We report five SBD-HNH endonucleases, all recognizing GpsAAC/GpsTTC sequence and cleaving outside with a single nucleotide 3' stagger: EcoWI (N7/N6), Ksp11411I (N5/N4), Bsp305I (N6/N4-5), Mae9806I [N(8-10)/N(8-9)], and Sau43800I [N(8-9)/N(7-8)]. EcoWI and Bsp305I are more specific for PT modified DNA in Mg2+ buffer, and promiscuous with Mn2+. Ksp11411I is more PT specific with Ni2+. EcoWI and Ksp11411I cleave fully- and hemi-PT modified oligos, while Bsp305I cleaves only fully modified ones. EcoWI forms a dimer in solution and cleaves more efficiently in the presence of two modified sites. In addition, we demonstrate that EcoWI PT-dependent activity has biological function: EcoWI expressing cells restrict dnd+ GpsAAC modified plasmid strongly, and GpsGCC DNA weakly. This work establishes a framework for biotechnology applications of PT-dependent restriction endonucleases (PTDRs).
Collapse
Affiliation(s)
- Thomas Lutz
- New England Biolabs, Inc., Ipswich, MA, United States
| | | | | | | | | | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- College of Life Science, Qufu Normal University, Qufu, China
| | - Peter Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Warsaw, Poland
| | | |
Collapse
|
8
|
Billon P, Nambiar TS, Hayward SB, Zafra MP, Schatoff EM, Oshima K, Dunbar A, Breinig M, Park YC, Ryu HS, Tschaharganeh DF, Levine RL, Baer R, Ferrando A, Dow LE, Ciccia A. Detection of Marker-Free Precision Genome Editing and Genetic Variation through the Capture of Genomic Signatures. Cell Rep 2020; 30:3280-3295.e6. [PMID: 32160537 PMCID: PMC7108696 DOI: 10.1016/j.celrep.2020.02.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2019] [Revised: 01/13/2020] [Accepted: 02/14/2020] [Indexed: 10/29/2022] Open
Abstract
Genome editing technologies have transformed our ability to engineer desired genomic changes within living systems. However, detecting precise genomic modifications often requires sophisticated, expensive, and time-consuming experimental approaches. Here, we describe DTECT (Dinucleotide signaTurE CapTure), a rapid and versatile detection method that relies on the capture of targeted dinucleotide signatures resulting from the digestion of genomic DNA amplicons by the type IIS restriction enzyme AcuI. DTECT enables the accurate quantification of marker-free precision genome editing events introduced by CRISPR-dependent homology-directed repair, base editing, or prime editing in various biological systems, such as mammalian cell lines, organoids, and tissues. Furthermore, DTECT allows the identification of oncogenic mutations in cancer mouse models, patient-derived xenografts, and human cancer patient samples. The ease, speed, and cost efficiency by which DTECT identifies genomic signatures should facilitate the generation of marker-free cellular and animal models of human disease and expedite the detection of human pathogenic variants.
Collapse
Affiliation(s)
- Pierre Billon
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tarun S Nambiar
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel B Hayward
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria P Zafra
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Emma M Schatoff
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Koichi Oshima
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Dunbar
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marco Breinig
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, 69120 Heidelberg, Germany
| | - Young C Park
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Han S Ryu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Darjus F Tschaharganeh
- Helmholtz-University Group "Cell Plasticity and Epigenetic Remodeling", German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, 69120 Heidelberg, Germany
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Center for Hematological Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Baer
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Adolfo Ferrando
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Heenan PR, Perkins TT. Imaging DNA Equilibrated onto Mica in Liquid Using Biochemically Relevant Deposition Conditions. ACS NANO 2019; 13:4220-4229. [PMID: 30938988 DOI: 10.1021/acsnano.8b09234] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
For over 25 years, imaging of DNA by atomic force microscopy has been intensely pursued. Ideally, such images are then used to probe the physical properties of DNA and characterize protein-DNA interactions. The atomic flatness of mica makes it the preferred substrate for high signal-to-noise ratio (SNR) imaging, but the negative charge of mica and DNA hinders deposition. Traditional methods for imaging DNA and protein-DNA complexes in liquid have drawbacks: DNA conformations with an anomalous persistence length ( p), low SNR, and/or ionic deposition conditions detrimental to preserving protein-DNA interactions. Here, we developed a process to bind DNA to mica in a buffer containing both MgCl2 and KCl that resulted in high SNR images of equilibrated DNA in liquid. Achieving an equilibrated 2D configuration ( i. e., p = 50 nm) not only implied a minimally perturbative binding process but also improved data quality and quantity because the DNA's configuration was more extended. In comparison to a purely NiCl2-based protocol, we showed that an 8-fold larger fraction (90%) of 680-nm-long DNA molecules could be quantified. High-resolution images of select equilibrated molecules revealed the right-handed structure of DNA with a helical pitch of 3.5 nm. Deposition and imaging of DNA was achieved over a wide range of monovalent and divalent ionic conditions, including a buffer containing 50 mM KCl and 3 mM MgCl2. Finally, we imaged two protein-DNA complexes using this protocol: a restriction enzyme bound to DNA and a small three-nucleosome array. We expect such deposition of protein-DNA complexes at biochemically relevant ionic conditions will facilitate biophysical insights derived from imaging diverse protein-DNA complexes.
Collapse
Affiliation(s)
- Patrick R Heenan
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Physics , University of Colorado , Boulder , Colorado 80309 , United States
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado , Boulder , Colorado 80309 , United States
- Department of Molecular, Cellular, and Developmental Biology , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
10
|
Zebrowska J, Jezewska-Frackowiak J, Wieczerzak E, Kasprzykowski F, Zylicz-Stachula A, Skowron PM. Novel parameter describing restriction endonucleases: Secondary-Cognate-Specificity and chemical stimulation of TsoI leading to substrate specificity change. Appl Microbiol Biotechnol 2019; 103:3439-3451. [PMID: 30879089 PMCID: PMC6449304 DOI: 10.1007/s00253-019-09731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
Over 470 prototype Type II restriction endonucleases (REases) are currently known. Most recognise specific DNA sequences 4–8 bp long, with very few exceptions cleaving DNA more frequently. TsoI is a thermostable Type IIC enzyme that recognises the DNA sequence TARCCA (R = A or G) and cleaves downstream at N11/N9. The enzyme exhibits extensive top-strand nicking of the supercoiled single-site DNA substrate. The second DNA strand of such substrate is specifically cleaved only in the presence of duplex oligonucleotides containing a cognate site. We have previously shown that some Type IIC/IIG/IIS enzymes from the Thermus-family exhibit ‘affinity star’ activity, which can be induced by the S-adenosyl-L-methionine (SAM) cofactor analogue—sinefungin (SIN). Here, we define a novel type of inherently built-in ‘star’ activity, exemplified by TsoI. The TsoI ‘star’ activity cannot be described under the definition of the classic ‘star’ activity as it is independent of the reaction conditions used and cannot be separated from the cognate specificity. Therefore, we define this phenomenon as Secondary-Cognate-Specificity (SCS). The TsoI SCS comprises several degenerated variants of the cognate site. Although the efficiency of TsoI SCS cleavage is lower in comparison to the cognate TsoI recognition sequence, it can be stimulated by S-adenosyl-L-cysteine (SAC). We present a new route for the chemical synthesis of SAC. The TsoI/SAC REase may serve as a novel tool for DNA manipulation.
Collapse
Affiliation(s)
- Joanna Zebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Joanna Jezewska-Frackowiak
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Franciszek Kasprzykowski
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland
| | - Agnieszka Zylicz-Stachula
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza Street, 80-308, Gdansk, Poland.
| |
Collapse
|
11
|
Shen BW, Doyle L, Bradley P, Heiter DF, Lunnen KD, Wilson GG, Stoddard BL. Structure, subunit organization and behavior of the asymmetric Type IIT restriction endonuclease BbvCI. Nucleic Acids Res 2019; 47:450-467. [PMID: 30395313 PMCID: PMC6326814 DOI: 10.1093/nar/gky1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 11/17/2022] Open
Abstract
BbvCI, a Type IIT restriction endonuclease, recognizes and cleaves the seven base pair sequence 5'-CCTCAGC-3', generating 3-base, 5'-overhangs. BbvCI is composed of two protein subunits, each containing one catalytic site. Either site can be inactivated by mutation resulting in enzyme variants that nick DNA in a strand-specific manner. Here we demonstrate that the holoenzyme is labile, with the R1 subunit dissociating at low pH. Crystallization of the R2 subunit under such conditions revealed an elongated dimer with the two catalytic sites located on opposite sides. Subsequent crystallization at physiological pH revealed a tetramer comprising two copies of each subunit, with a pair of deep clefts each containing two catalytic sites appropriately positioned and oriented for DNA cleavage. This domain organization was further validated with single-chain protein constructs in which the two enzyme subunits were tethered via peptide linkers of variable length. We were unable to crystallize a DNA-bound complex; however, structural similarity to previously crystallized restriction endonucleases facilitated creation of an energy-minimized model bound to DNA, and identification of candidate residues responsible for target recognition. Mutation of residues predicted to recognize the central C:G base pair resulted in an altered enzyme that recognizes and cleaves CCTNAGC (N = any base).
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Lindsey Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Phil Bradley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Daniel F Heiter
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Keith D Lunnen
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
12
|
Dayeh DM, Cantara WA, Kitzrow JP, Musier-Forsyth K, Nakanishi K. Argonaute-based programmable RNase as a tool for cleavage of highly-structured RNA. Nucleic Acids Res 2018; 46:e98. [PMID: 29897478 PMCID: PMC6144825 DOI: 10.1093/nar/gky496] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2018] [Revised: 04/20/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
The recent identification and development of RNA-guided enzymes for programmable cleavage of target nucleic acids offers exciting possibilities for both therapeutic and biotechnological applications. However, critical challenges such as expensive guide RNAs and inability to predict the efficiency of target recognition, especially for highly-structured RNAs, remain to be addressed. Here, we introduce a programmable RNA restriction enzyme, based on a budding yeast Argonaute (AGO), programmed with cost-effective 23-nucleotide (nt) single-stranded DNAs as guides. DNA guides offer the advantage that diverse sequences can be easily designed and purchased, enabling high-throughput screening to identify optimal recognition sites in the target RNA. Using this DNA-induced slicing complex (DISC) programmed with 11 different guide DNAs designed to span the sequence, sites of cleavage were identified in the 352-nt human immunodeficiency virus type 1 5'-untranslated region. This assay, coupled with primer extension and capillary electrophoresis, allows detection and relative quantification of all DISC-cleavage sites simultaneously in a single reaction. Comparison between DISC cleavage and RNase H cleavage reveals that DISC not only cleaves solvent-exposed sites, but also sites that become more accessible upon DISC binding. This study demonstrates the advantages of the DISC system for programmable cleavage of highly-structured, functional RNAs.
Collapse
Affiliation(s)
- Daniel M Dayeh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Kitzrow
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Rosa J, Fernandez-Gonzalez E, Ducani C, Högberg B. BtsCI and BseGI display sequence preference in the nucleotides flanking the recognition sequence. PLoS One 2018; 13:e0202057. [PMID: 30118487 PMCID: PMC6097692 DOI: 10.1371/journal.pone.0202057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022] Open
Abstract
Restriction enzymes are the bread and butter of Molecular Biology. Nonetheless, how restriction enzymes recognize and cleave their target is not always clear. When developing a method for the enzymatic production of oligonucleotides, we noticed that type II endonucleases BtsCI and BseGI, which recognize the sequence GGATGNN^, perform incomplete digestions of DNA hairpins, with the top strand nick not always occurring correctly. We tested the cutting of synthetic hairpins containing all possible combinations of dinucleotides following the recognition site and our results show that all sequences containing one adenine following GGATG were digested more efficiently. We further show that the same sequence preference is also observable in double stranded DNA at higher Mg2+ concentrations and even in optimal conditions. Kinetic results show that BtsCI has a noteworthy difference in the first-rate constants between different sequences and between the two catalytic domains. An increase in Mg2+ resulted in a drastic decrease in the catalytic activity of the top (sense) strand that wasn’t always accompanied by a nick in the bottom strand (antisense).
Collapse
Affiliation(s)
- João Rosa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Cosimo Ducani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Björn Högberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
14
|
Lyubchenko YL. Direct AFM Visualization of the Nanoscale Dynamics of Biomolecular Complexes. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:403001. [PMID: 30410191 PMCID: PMC6217977 DOI: 10.1088/1361-6463/aad898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/20/2023]
Abstract
High-speed AFM (HS-AFM) is an advanced technique with numerous applications in biology, particularly in molecular biophysics. Developed as a time-lapse AFM technique for direct imaging fully hydrated biological molecules, HS-AFM is currently capable of visualizing the dynamics of biological molecules and their complexes at a video-data acquisition rate. Spatial resolution at the nanometer level is another important characteristic of HS-AFM. This review focuses on examples of primarily protein-DNA complexes to illustrate the high temporal and spatial resolution capabilities of HS-AFM that have resulted in novel models and/or the functional mechanisms of these biological systems.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
15
|
Nelson RS, Valadon P. A universal phage display system for the seamless construction of Fab libraries. J Immunol Methods 2017; 450:41-49. [DOI: 10.1016/j.jim.2017.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2017] [Revised: 06/22/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
|
16
|
Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I) cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene. PLoS One 2017; 12:e0186633. [PMID: 29040308 PMCID: PMC5645126 DOI: 10.1371/journal.pone.0186633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2017] [Accepted: 10/04/2017] [Indexed: 11/25/2022] Open
Abstract
Obtaining thermostable enzymes (thermozymes) is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes’ expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli). RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase) and a methyltransferase (MTase) in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus) produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt) gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified ‘codon randomization’ strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS) and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology, extending the palette of available REase specificities.
Collapse
|
17
|
Tamulaitiene G, Jovaisaite V, Tamulaitis G, Songailiene I, Manakova E, Zaremba M, Grazulis S, Xu SY, Siksnys V. Restriction endonuclease AgeI is a monomer which dimerizes to cleave DNA. Nucleic Acids Res 2017; 45:3547-3558. [PMID: 28039325 PMCID: PMC5389614 DOI: 10.1093/nar/gkw1310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Although all Type II restriction endonucleases catalyze phosphodiester bond hydrolysis within or close to their DNA target sites, they form different oligomeric assemblies ranging from monomers, dimers, tetramers to higher order oligomers to generate a double strand break in DNA. Type IIP restriction endonuclease AgeI recognizes a palindromic sequence 5΄-A/CCGGT-3΄ and cuts it ('/' denotes the cleavage site) producing staggered DNA ends. Here, we present crystal structures of AgeI in apo and DNA-bound forms. The structure of AgeI is similar to the restriction enzymes that share in their target sites a conserved CCGG tetranucleotide and a cleavage pattern. Structure analysis and biochemical data indicate, that AgeI is a monomer in the apo-form both in the crystal and in solution, however, it binds and cleaves the palindromic target site as a dimer. DNA cleavage mechanism of AgeI is novel among Type IIP restriction endonucleases.
Collapse
Affiliation(s)
- Giedre Tamulaitiene
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Virginija Jovaisaite
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Inga Songailiene
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Saulius Grazulis
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Shuang-yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
18
|
Gratia M, Vende P, Charpilienne A, Baron HC, Laroche C, Sarot E, Pyronnet S, Duarte M, Poncet D. Challenging the Roles of NSP3 and Untranslated Regions in Rotavirus mRNA Translation. PLoS One 2016; 11:e0145998. [PMID: 26727111 PMCID: PMC4699793 DOI: 10.1371/journal.pone.0145998] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
Rotavirus NSP3 is a translational surrogate of the PABP-poly(A) complex for rotavirus mRNAs. To further explore the effects of NSP3 and untranslated regions (UTRs) on rotavirus mRNAs translation, we used a quantitative in vivo assay with simultaneous cytoplasmic NSP3 expression (wild-type or deletion mutant) and electroporated rotavirus-like and standard synthetic mRNAs. This assay shows that the last four GACC nucleotides of viral mRNA are essential for efficient translation and that both the NSP3 eIF4G- and RNA-binding domains are required. We also show efficient translation of rotavirus-like mRNAs even with a 5’UTR as short as 5 nucleotides, while more than eleven nucleotides are required for the 3’UTR. Despite the weak requirement for a long 5’UTR, a good AUG environment remains a requirement for rotavirus mRNAs translation.
Collapse
Affiliation(s)
- Matthieu Gratia
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Patrice Vende
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Annie Charpilienne
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Hilma Carolina Baron
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Cécile Laroche
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
| | - Emeline Sarot
- INSERM UMR-1037 - Université de Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Equipe labellisée Ligue Contre le Cancer Toulouse, France
| | - Stéphane Pyronnet
- INSERM UMR-1037 - Université de Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Equipe labellisée Ligue Contre le Cancer Toulouse, France
| | - Mariela Duarte
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
- Université d’Evry Val d’Essonne, Département de Biologie, Evry, France
| | - Didier Poncet
- Institut de Biologie Integrative de la Cellule (I2BC), UMR 9198, Département de Virologie, USC INRA 1358, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
19
|
Abstract
This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein-DNA complexes, including recent advances in the visualization of protein-DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein-DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein-DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described.
Collapse
Affiliation(s)
- Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| | - Luda S. Shlyakhtenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025
| |
Collapse
|
20
|
Zaremba M, Siksnys V. An Engineered SS Bridge Blocks the Conformational Change Required for the Nuclease Activity of BfiI. Biochemistry 2015; 54:5340-7. [PMID: 26261897 DOI: 10.1021/acs.biochem.5b00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
The type IIS restriction endonuclease BfiI is a homodimer, and each monomer is composed of the N-terminal catalytic and C-terminal DNA recognition domains connected by a 28-residue linker segment. In the crystal in the absence of cognate DNA, BfiI exists in a "closed" conformation, in which an interdomain linker occludes a putative DNA binding surface at the catalytic domain and sterically hinders access to the active site. Cognate DNA binding presumably triggers a conformational change from the inactive "closed" state to the catalytically competent "open" state. Here we show that the disulfide SS bridge engineered at the domain interface locks the enzyme in the "closed" state. In the "closed" SS-linked state, BfiI binds cognate DNA with the same affinity as the wild-type enzyme but does not cut it, indicating that cross-linking introduces a restraint on the conformational transition, which couples DNA recognition and cleavage. Disruption of the interdomain SS bridge by the reducing agent restores the DNA cleavage ability of BfiI.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| |
Collapse
|
21
|
Vogl T, Ahmad M, Krainer FW, Schwab H, Glieder A. Restriction site free cloning (RSFC) plasmid family for seamless, sequence independent cloning in Pichia pastoris. Microb Cell Fact 2015; 14:103. [PMID: 26169367 PMCID: PMC4501187 DOI: 10.1186/s12934-015-0293-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Tagging proteins is a standard method facilitating protein detection, purification or targeting. When tagging a certain protein of interest, it is challenging to predict which tag will give optimal results and will not interfere with protein folding, activity or yields. Ideally, multiple tags and positions are tested which however complicates molecular cloning and expression vector generation. In conventional cloning, tags are either added on PCR primers (requiring a distinct primer and PCR product per tag) or provided on the vector (typically leaving a restriction site scar). RESULTS Here we report a vector family of 40 plasmids allowing simple, seamless fusions of a single PCR product with various N- and C-terminal tags, signal sequences and promoters. The restriction site free cloning (RSFC) strategy presented in this paper relies on seamless cloning using type IIS restriction endonucleases. After cutting out a stuffer (placeholder) fragment from the vectors, a single PCR product can be directly inserted in frame into all 40 plasmids using blunt end or TA ligations, requiring only verification of the orientation. We have established a RSFC vector family for the commonly used protein expression host Pichia pastoris and demonstrated the system with the secretory expression of horseradish peroxidase (HRP). HRP fusions to four tags (Myc, FLAG, His, Strep) and two fusion proteins (GFP and MBP) showed a 31-fold difference in volumetric activities. C-terminal tagging caused in some cases almost a complete loss of function, whereas N-terminal tags showed moderate differences. CONCLUSIONS The RSFC vectors provide an unprecedented toolbox for expression optimization in P. pastoris. The results obtained with HRP underline the importance of comparing different tags to maximize activities of fusion proteins. In a similar fashion the RSFC strategy can be applied in other expression hosts to screen for optimal promoters, signal sequences or to facilitate the evaluation of (iso-) enzyme families.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria. .,Queensland University of Technology, 2 George St., Brisbane, QLD, 4000, Australia.
| | - Mudassar Ahmad
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Florian W Krainer
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Helmut Schwab
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria.
| |
Collapse
|
22
|
Horton JR, Wang H, Mabuchi MY, Zhang X, Roberts RJ, Zheng Y, Wilson GG, Cheng X. Modification-dependent restriction endonuclease, MspJI, flips 5-methylcytosine out of the DNA helix. Nucleic Acids Res 2014; 42:12092-101. [PMID: 25262349 PMCID: PMC4231741 DOI: 10.1093/nar/gku871] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/29/2022] Open
Abstract
MspJI belongs to a family of restriction enzymes that cleave DNA containing 5-methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC). MspJI is specific for the sequence 5(h)mC-N-N-G or A and cleaves with some variability 9/13 nucleotides downstream. Earlier, we reported the crystal structure of MspJI without DNA and proposed how it might recognize this sequence and catalyze cleavage. Here we report its co-crystal structure with a 27-base pair oligonucleotide containing 5mC. This structure confirms that MspJI acts as a homotetramer and that the modified cytosine is flipped from the DNA helix into an SRA-like-binding pocket. We expected the structure to reveal two DNA molecules bound specifically to the tetramer and engaged with the enzyme's two DNA-cleavage sites. A coincidence of crystal packing precluded this organization, however. We found that each DNA molecule interacted with two adjacent tetramers, binding one specifically and the other non-specifically. The latter interaction, which prevented cleavage-site engagement, also involved base flipping and might represent the sequence-interrogation phase that precedes specific recognition. MspJI is unusual in that DNA molecules are recognized and cleaved by different subunits. Such interchange of function might explain how other complex multimeric restriction enzymes act.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Hua Wang
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| | | | - Yu Zheng
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Single molecular investigation of DNA looping and aggregation by restriction endonuclease BspMI. Sci Rep 2014; 4:5897. [PMID: 25077775 PMCID: PMC4116625 DOI: 10.1038/srep05897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022] Open
Abstract
DNA looping and aggregation induced by restriction endonuclease BspMI are studied by atomic force microscopy (AFM) and magnetic tweezers (MT). With Ca(2+) substituted for the normal enzyme cofactor Mg(2+) and enzyme concentration below the critical concentration of 6 units/mL, AFM images of DNA-BspMI complex show that the number of binding and looping events increases with enzyme concentration. At the critical concentration 6 of units/mL, all the BspMI binding sites are saturated. It is worth noting that nonspecific BspMI binding to DNA at saturation concentration represents more than 8% of the total BspMI-DNA complexes directly observed in AFM images. Furthermore, we used MT to prove that additional loops can form when enzyme concentration is higher than its saturation valueand the complex is incubated for a long time (>2 hrs). We ascribe this phenomenon to the aggregation of enzymes. The force spectroscopy of the BspMI-DNA complex shows that the pulling force required to open the loop of the complex at less than saturation concentration has a peak at about 3 pN, which is lower than the force required to open additional loops due to enzyme aggregation at higher than saturation concentration (>6 pN).
Collapse
|
24
|
Smith RM, Pernstich C, Halford SE. TstI, a Type II restriction-modification protein with DNA recognition, cleavage and methylation functions in a single polypeptide. Nucleic Acids Res 2014; 42:5809-22. [PMID: 24634443 PMCID: PMC4027205 DOI: 10.1093/nar/gku187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Type II restriction–modification systems cleave and methylate DNA at specific sequences. However, the Type IIB systems look more like Type I than conventional Type II schemes as they employ the same protein for both restriction and modification and for DNA recognition. Several Type IIB proteins, including the archetype BcgI, are assemblies of two polypeptides: one with endonuclease and methyltransferase roles, another for DNA recognition. Conversely, some IIB proteins express all three functions from separate segments of a single polypeptide. This study analysed one such single-chain protein, TstI. Comparison with BcgI showed that the one- and the two-polypeptide systems differ markedly. Unlike the heterologous assembly of BcgI, TstI forms a homotetramer. The tetramer bridges two recognition sites before eventually cutting the DNA in both strands on both sides of the sites, but at each site the first double-strand break is made long before the second. In contrast, BcgI cuts all eight target bonds at two sites in a single step. TstI also differs from BcgI in either methylating or cleaving unmodified sites at similar rates. The site may thus be modified before TstI can make the second double-strand break. TstI MTase acts best at hemi-methylated sites.
Collapse
Affiliation(s)
- Rachel M Smith
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christian Pernstich
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephen E Halford
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
25
|
Wang X, Fan C, Zhang X, Zhu J, Fu YF. BioVector, a flexible system for gene specific-expression in plants. BMC PLANT BIOLOGY 2013; 13:198. [PMID: 24304941 PMCID: PMC4235170 DOI: 10.1186/1471-2229-13-198] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/11/2013] [Accepted: 11/27/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND Functional genomic research always needs to assemble different DNA fragments into a binary vector, so as to express genes with different tags from various promoters with different levels. The cloning systems available bear similar disadvantages, such as promoters/tags are fixed on a binary vector, which is generally with low cloning efficiency and limited for cloning sites if a novel promoter/tag is in need. Therefore, it is difficult both to assemble a gene and a promoter together and to modify the vectors in hand. Another disadvantage is that a long spacer from recombination sites, which may be detrimental to the protein function, exists between a gene and a tag. Multiple GATEWAY system only resolves former problem at the expense of very low efficiency and expensive for multiple LR reaction. RESULTS To improve efficiency and flexibility for constructing expression vectors, we developed a platform, BioVector, by combining classical restriction enzyme/ligase strategy with modern Gateway DNA recombination system. This system included a series of vectors for gene cloning, promoter cloning, and binary vector construction to meet various needs for plant functional genomic study. CONCLUSION This BioVector platform makes it easy to construct any vectors to express a target gene from a specific promoter with desired intensity, and it is also waiting to be freely modified by researchers themselves for ongoing demands. This idea can also be transferred to the different fields including animal or yeast study.
Collapse
Affiliation(s)
- Xu Wang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Chengming Fan
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Xiaomei Zhang
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Jinlong Zhu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| | - Yong-Fu Fu
- MOA Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China
| |
Collapse
|
26
|
A sequence-specific nicking endonuclease from streptomyces: purification, physical and catalytic properties. ISRN BIOCHEMISTRY 2013; 2013:287158. [PMID: 25937959 PMCID: PMC4392989 DOI: 10.1155/2013/287158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022]
Abstract
A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg(2+) as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease.
Collapse
|
27
|
Smith RM, Marshall JJT, Jacklin AJ, Retter SE, Halford SE, Sobott F. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA. Nucleic Acids Res 2012; 41:391-404. [PMID: 23147005 PMCID: PMC3592470 DOI: 10.1093/nar/gks1023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Type IIB restriction-modification systems, such as BcgI, feature a single protein with
both endonuclease and methyltransferase activities. Type IIB nucleases require two
recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts
all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and
B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes
the DNA. We show here that BcgI is organized as A2B protomers, with B at its
centre, but that these protomers self-associate to assemblies containing several
A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its
site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can
alternatively be activated by excess A subunits, much like the activation of FokI by its
catalytic domain. Eight A subunits, each with one centre for nuclease activity, are
presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus
involve two A2B units, each bound to a recognition site, with two more
A2B units bridging the complexes by protein–protein interactions
between the nuclease domains.
Collapse
Affiliation(s)
- Rachel M Smith
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
28
|
Ng DTW, Sarkar CA. Model-guided ligation strategy for optimal assembly of DNA libraries. Protein Eng Des Sel 2012; 25:669-78. [DOI: 10.1093/protein/gzs019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
|
29
|
Laurens N, Rusling DA, Pernstich C, Brouwer I, Halford SE, Wuite GJL. DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics. Nucleic Acids Res 2012; 40:4988-97. [PMID: 22373924 PMCID: PMC3367208 DOI: 10.1093/nar/gks184] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Protein-induced DNA looping is crucial for many genetic processes such as transcription, gene regulation and DNA replication. Here, we use tethered-particle motion to examine the impact of DNA bending and twisting rigidity on loop capture and release, using the restriction endonuclease FokI as a test system. To cleave DNA efficiently, FokI bridges two copies of an asymmetric sequence, invariably aligning the sites in parallel. On account of the fixed alignment, the topology of the DNA loop is set by the orientation of the sites along the DNA. We show that both the separation of the FokI sites and their orientation, altering, respectively, the twisting and the bending of the DNA needed to juxtapose the sites, have profound effects on the dynamics of the looping interaction. Surprisingly, the presence of a nick within the loop does not affect the observed rigidity of the DNA. In contrast, the introduction of a 4-nt gap fully relaxes all of the torque present in the system but does not necessarily enhance loop stability. FokI therefore employs torque to stabilise its DNA-looping interaction by acting as a ‘torsional’ catch bond.
Collapse
Affiliation(s)
- Niels Laurens
- Department of Physics and Astronomy, VU University, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Rusling DA, Laurens N, Pernstich C, Wuite GJL, Halford SE. DNA looping by FokI: the impact of synapse geometry on loop topology at varied site orientations. Nucleic Acids Res 2012; 40:4977-87. [PMID: 22362745 PMCID: PMC3367207 DOI: 10.1093/nar/gks183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Most restriction endonucleases, including FokI, interact with two copies of their recognition sequence before cutting DNA. On DNA with two sites they act in cis looping out the intervening DNA. While many restriction enzymes operate symmetrically at palindromic sites, FokI acts asymmetrically at a non-palindromic site. The directionality of its sequence means that two FokI sites can be bridged in either parallel or anti-parallel alignments. Here we show by biochemical and single-molecule biophysical methods that FokI aligns two recognition sites on separate DNA molecules in parallel and that the parallel arrangement holds for sites in the same DNA regardless of whether they are in inverted or repeated orientations. The parallel arrangement dictates the topology of the loop trapped between sites in cis: the loop from inverted sites has a simple 180° bend, while that with repeated sites has a convoluted 360° turn. The ability of FokI to act at asymmetric sites thus enabled us to identify the synapse geometry for sites in trans and in cis, which in turn revealed the relationship between synapse geometry and loop topology.
Collapse
Affiliation(s)
- David A Rusling
- The DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | | | | | | | |
Collapse
|
31
|
Shankaranarayanan P, Mendoza-Parra MA, van Gool W, Trindade LM, Gronemeyer H. Single-tube linear DNA amplification for genome-wide studies using a few thousand cells. Nat Protoc 2012; 7:328-38. [PMID: 22281868 DOI: 10.1038/nprot.2011.447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Abstract
Linear amplification of DNA (LinDA) by T7 polymerase is a versatile and robust method for generating sufficient amounts of DNA for genome-wide studies with minute amounts of cells. LinDA can be coupled to a great number of global profiling technologies. Indeed, chromatin immunoprecipitation coupled to massive parallel sequencing (ChIP-seq) has been achieved for transcription factors and epigenetic modification of chromatin histones with 1,000 to 5,000 cells. LinDA largely simplifies reChIP-seq experiments to monitor co-binding at chromatin target sites. The single-tube design of LinDA is ideal for handling ultrasmall amounts of DNA (<30 pg) and is compatible with automation. The actual hands-on working time is less than 6 h with one overnight reaction. The present protocol describes all materials and critical steps, and provides examples and controls for LinDA. Applications of LinDA for genome-wide analyses of biobank samples and for the study of chromatin conformation and nuclear architecture are in progress.
Collapse
|
32
|
Cardew AS, Brown T, Fox KR. Secondary binding sites for heavily modified triplex forming oligonucleotides. Nucleic Acids Res 2011; 40:3753-62. [PMID: 22180535 PMCID: PMC3333850 DOI: 10.1093/nar/gkr1119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
Abstract
In order to enhance DNA triple helix stability synthetic oligonucleotides have been developed that bear amino groups on the sugar or base. One of the most effective of these is bis-amino-U (B), which possesses 5-propargylamino and 2′-aminoethoxy modifications. Inclusion of this modified nucleotide not only greatly enhances triplex stability, but also increases the affinity for related sequences. We have used a restriction enzyme protection, selection and amplification assay (REPSA) to isolate sequences that are bound by the heavily modified 9-mer triplex-forming oligonucleotide B6CBT. The isolated sequences contain An tracts (n = 6), suggesting that the 5′-end of this TFO was responsible for successful triplex formation. DNase I footprinting with these sequences confirmed triple helix formation at these secondary targets and demonstrated no interaction with similar oligonucleotides containing T or 5-propargylamino-dU.
Collapse
Affiliation(s)
- Antonia S Cardew
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, Southampton SO17 1BJ, UK
| | | | | |
Collapse
|
33
|
Pernstich C, Halford SE. Illuminating the reaction pathway of the FokI restriction endonuclease by fluorescence resonance energy transfer. Nucleic Acids Res 2011; 40:1203-13. [PMID: 21993298 PMCID: PMC3273807 DOI: 10.1093/nar/gkr809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
The FokI restriction endonuclease is a monomeric protein that recognizes an asymmetric sequence and cleaves both DNA strands at fixed loci downstream of the site. Its single active site is positioned initially near the recognition sequence, distant from its downstream target 13 nucleotides away. Moreover, to cut both strands, it has to recruit a second monomer to give an assembly with two active sites. Here, the individual steps in the FokI reaction pathway were examined by fluorescence resonance energy transfer (FRET). To monitor DNA binding and domain motion, a fluorescence donor was attached to the DNA, either downstream or upstream of the recognition site, and an acceptor placed on the catalytic domain of the protein. A FokI variant incapable of dimerization was also employed, to disentangle the signal due to domain motion from that due to protein association. Dimerization was monitored separately by using two samples of FokI labelled with donor and acceptor, respectively. The stopped-flow studies revealed a complete reaction pathway for FokI, both the sequence of events and the kinetics of each individual step.
Collapse
Affiliation(s)
- Christian Pernstich
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | | |
Collapse
|
34
|
The reaction mechanism of FokI excludes the possibility of targeting zinc finger nucleases to unique DNA sites. Biochem Soc Trans 2011; 39:584-8. [PMID: 21428944 DOI: 10.1042/bst0390584] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The FokI endonuclease is a monomeric protein with discrete DNA-recognition and catalytic domains. The latter has only one active site so, to cut both strands, the catalytic domains from two monomers associate to form a dimer. The dimer involving a monomer at the recognition site and another from free solution is less stable than that from two proteins tethered to the same DNA. FokI thus cleaves DNA with two sites better than one-site DNA. The two sites can be immediately adjacent, but they can alternatively be many hundreds of base pairs apart, in either inverted or repeated orientations. The catalytic domain of FokI is often a component of zinc finger nucleases. Typically, the zinc finger domains of two such nucleases are designed to recognize two neighbouring DNA sequences, with the objective of cutting the DNA exclusively between the target sequences. However, this strategy fails to take account of the fact that the catalytic domains of FokI can dimerize across distant sites or even at a solitary site. Additional copies of either target sequence elsewhere in the chromosome must elicit off-target cleavages.
Collapse
|
35
|
Shen BW, Xu D, Chan SH, Zheng Y, Zhu Z, Xu SY, Stoddard BL. Characterization and crystal structure of the type IIG restriction endonuclease RM.BpuSI. Nucleic Acids Res 2011; 39:8223-36. [PMID: 21724614 PMCID: PMC3185434 DOI: 10.1093/nar/gkr543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
A type IIG restriction endonuclease, RM.BpuSI from Bacillus pumilus, has been characterized and its X-ray crystal structure determined at 2.35Å resolution. The enzyme is comprised of an array of 5-folded domains that couple the enzyme's N-terminal endonuclease domain to its C-terminal target recognition and methylation activities. The REase domain contains a PD-x15-ExK motif, is closely superimposable against the FokI endonuclease domain, and coordinates a single metal ion. A helical bundle domain connects the endonuclease and methyltransferase (MTase) domains. The MTase domain is similar to the N6-adenine MTase M.TaqI, while the target recognition domain (TRD or specificity domain) resembles a truncated S subunit of Type I R–M system. A final structural domain, that may form additional DNA contacts, interrupts the TRD. DNA binding and cleavage must involve large movements of the endonuclease and TRD domains, that are probably tightly coordinated and coupled to target site methylation status.
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Marshall JJT, Smith RM, Ganguly S, Halford SE. Concerted action at eight phosphodiester bonds by the BcgI restriction endonuclease. Nucleic Acids Res 2011; 39:7630-40. [PMID: 21653548 PMCID: PMC3177199 DOI: 10.1093/nar/gkr453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recognition sequence, it has to act in trans, bridging two separate DNA molecules. We also show that BcgI makes the two DSBs at an individual site in a highly concerted manner. Intermediates cut on one side of the site do not accumulate during the course of the reaction: instead, the DNA is converted straight to the final products cut on both sides. On DNA with two sites, BcgI bridges the sites in cis and then generally proceeds to cut both strands on both sides of both sites without leaving the DNA. The BcgI restriction enzyme can thus excise two DNA segments together, by cleaving eight phosphodiester bonds within a single-DNA binding event.
Collapse
|
37
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
38
|
Murray IA, Stickel SK, Roberts RJ. Sequence-specific cleavage of RNA by Type II restriction enzymes. Nucleic Acids Res 2010; 38:8257-68. [PMID: 20702422 PMCID: PMC3001074 DOI: 10.1093/nar/gkq702] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
The ability of 223 Type II restriction endonucleases to hydrolyze RNA–DNA heteroduplex oligonucleotide substrates was assessed. Despite the significant topological and sequence asymmetry introduced when one strand of a DNA duplex is substituted by RNA we find that six restriction enzymes (AvaII, AvrII, BanI, HaeIII, HinfI and TaqI), exclusively of the Type IIP class that recognize palindromic or interrupted-palindromic DNA sequences, catalyze robust and specific cleavage of both RNA and DNA strands of such a substrate. Time-course analyses indicate that some endonucleases hydrolyze phosphodiester bonds in both strands simultaneously whereas others appear to catalyze sequential reactions in which either the DNA or RNA product accumulates more rapidly. Such strand-specific variation in cleavage susceptibility is both significant (up to orders of magnitude difference) and somewhat sequence dependent, notably in relation to the presence or absence of uracil residues in the RNA strand. Hybridization to DNA oligonucleotides that contain endonuclease recognition sites can be used to achieve targeted hydrolysis of extended RNA substrates produced by in vitro transcription. The ability to ‘restrict’ an RNA–DNA hybrid, albeit with a limited number of restriction endonucleases, provides a method whereby individual RNA molecules can be targeted for site-specific cleavage in vitro.
Collapse
Affiliation(s)
- Iain A Murray
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | | | | |
Collapse
|
39
|
Abstract
Many biological processes rely on the interaction of proteins with multiple DNA sites separated by thousands of base pairs. These long-range communication events can be driven by both the thermal motions of proteins and DNA, and directional protein motions that are rectified by ATP hydrolysis. The present review describes conflicting experiments that have sought to explain how the ATP-dependent Type III restriction-modification enzymes can cut DNA with two sites in an inverted repeat, but not DNA with two sites in direct repeat. We suggest that an ATPase activity may not automatically indicate a DNA translocase, but can alternatively indicate a molecular switch that triggers communication by thermally driven DNA sliding. The generality of this mechanism to other ATP-dependent communication processes such as mismatch repair is also discussed.
Collapse
|
40
|
Zheng Y, Cohen-Karni D, Xu D, Chin HG, Wilson G, Pradhan S, Roberts RJ. A unique family of Mrr-like modification-dependent restriction endonucleases. Nucleic Acids Res 2010; 38:5527-34. [PMID: 20444879 PMCID: PMC2938202 DOI: 10.1093/nar/gkq327] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Mrr superfamily of homologous genes in microbial genomes restricts modified DNA in vivo. However, their biochemical properties in vitro have remained obscure. Here, we report the experimental characterization of MspJI, a remote homolog of Escherichia coli's Mrr and show it is a DNA modification-dependent restriction endonuclease. Our results suggest MspJI recognizes (m)CNNR (R = G/A) sites and cleaves DNA at fixed distances (N(12)/N(16)) away from the modified cytosine at the 3' side (or N(9)/N(13) from R). Besides 5-methylcytosine, MspJI also recognizes 5-hydroxymethylcytosine but is blocked by 5-glucosylhydroxymethylcytosine. Several other close homologs of MspJI show similar modification-dependent endonuclease activity and display substrate preferences different from MspJI. A unique feature of these modification-dependent enzymes is that they are able to extract small DNA fragments containing modified sites on genomic DNA, for example ∼32 bp around symmetrically methylated CG sites and ∼31 bp around methylated CNG sites. The digested fragments can be directly selected for high-throughput sequencing to map the location of the modification on the genomic DNA. The MspJI enzyme family, with their different recognition specificities and cleavage properties, provides a basis on which many future methods can build to decode the epigenomes of different organisms.
Collapse
Affiliation(s)
- Yu Zheng
- New England BioLabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Howell WM, Grundberg I, Faryna M, Landegren U, Nilsson M. Glycosylases and AP-cleaving enzymes as a general tool for probe-directed cleavage of ssDNA targets. Nucleic Acids Res 2010; 38:e99. [PMID: 20081204 PMCID: PMC2853139 DOI: 10.1093/nar/gkp1238] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022] Open
Abstract
The current arsenal of molecular tools for site-directed cleavage of single-stranded DNA (ssDNA) is limited. Here, we describe a method for targeted DNA cleavage that requires only the presence of an A nucleotide at the target position. The procedure involves hybridization of a complementary oligonucleotide probe to the target sequence. The probe is designed to create a deliberate G:A mismatch at the desired position of cleavage. The DNA repair enzyme MutY glycosylase recognizes the mismatch structure and selectively removes the mispaired A from the duplex to create an abasic site in the target strand. Addition of an AP-endonuclease, such as Endonuclease IV, subsequently cleaves the backbone dividing the DNA strand into two fragments. With an appropriate choice of an AP-cleaving enzyme, the 3′- and 5′-ends of the cleaved DNA are suitable to take part in subsequent enzymatic reactions such as priming for polymerization or joining by DNA ligation. We define suitable standard reaction conditions for glycosylase/AP-cleaving enzyme (G/AP) cleavage, and demonstrate the use of the method in an improved scheme for in situ detection using target-primed rolling-circle amplification of padlock probes.
Collapse
Affiliation(s)
- W Mathias Howell
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Se-751 85 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Lagerbäck P, Andersson E, Malmberg C, Carlson K. Bacteriophage T4 endonuclease II, a promiscuous GIY-YIG nuclease, binds as a tetramer to two DNA substrates. Nucleic Acids Res 2009; 37:6174-83. [PMID: 19666720 PMCID: PMC2764454 DOI: 10.1093/nar/gkp652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
The oligomerization state and mode of binding to DNA of the GIY-YIG endonuclease II (EndoII) from bacteriophage T4 was studied using gel filtration and electrophoretic mobility shift assays with a set of mutants previously found to have altered enzyme activity. At low enzyme/DNA ratios all mutants except one bound to DNA only as tetramers to two DNA substrates. The putatively catalytic E118 residue actually interfered with DNA binding (possibly due to steric hindrance or repulsion between the glutamate side chain and DNA), as shown by the ability of E118A to bind stably also as monomer or dimer to a single substrate. The tetrameric structure of EndoII in the DNA-protein complex is surprising considering the asymmetry of the recognized sequence and the predominantly single-stranded nicking. Combining the results obtained here with those from our previous in vivo studies and the recently obtained crystal structure of EndoII E118A, we suggest a model where EndoII translocates DNA between two adjacent binding sites and either nicks one strand of one or both substrates bound by the tetramer, or nicks both strands of one substrate. Thus, only one or two of the four active sites in the tetramer is catalytically active at any time.
Collapse
Affiliation(s)
- Pernilla Lagerbäck
- Department of Cell and Molecular Biology, University of Uppsala and Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
43
|
Laurens N, Bellamy SRW, Harms AF, Kovacheva YS, Halford SE, Wuite GJL. Dissecting protein-induced DNA looping dynamics in real time. Nucleic Acids Res 2009; 37:5454-64. [PMID: 19586932 PMCID: PMC2760800 DOI: 10.1093/nar/gkp570] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Many proteins that interact with DNA perform or enhance their specific functions by binding simultaneously to multiple target sites, thereby inducing a loop in the DNA. The dynamics and energies involved in this loop formation influence the reaction mechanism. Tethered particle motion has proven a powerful technique to study in real time protein-induced DNA looping dynamics while minimally perturbing the DNA-protein interactions. In addition, it permits many single-molecule experiments to be performed in parallel. Using as a model system the tetrameric Type II restriction enzyme SfiI, that binds two copies of its recognition site, we show here that we can determine the DNA-protein association and dissociation steps as well as the actual process of protein-induced loop capture and release on a single DNA molecule. The result of these experiments is a quantitative reaction scheme for DNA looping by SfiI that is rigorously compared to detailed biochemical studies of SfiI looping dynamics. We also present novel methods for data analysis and compare and discuss these with existing methods. The general applicability of the introduced techniques will further enhance tethered particle motion as a tool to follow DNA-protein dynamics in real time.
Collapse
Affiliation(s)
- Niels Laurens
- Department of Physics and Astronomy and Laser Centre, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands and The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stuart R. W. Bellamy
- Department of Physics and Astronomy and Laser Centre, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands and The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - August F. Harms
- Department of Physics and Astronomy and Laser Centre, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands and The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Yana S. Kovacheva
- Department of Physics and Astronomy and Laser Centre, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands and The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephen E. Halford
- Department of Physics and Astronomy and Laser Centre, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands and The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy and Laser Centre, VU University, De Boelelaan 1081, 1081 HV, Amsterdam, the Netherlands and The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
- *To whom correspondence should be addressed. Tel: +31 20 5987987; Fax: +31 205987991;
| |
Collapse
|
44
|
Morgan RD, Dwinell EA, Bhatia TK, Lang EM, Luyten YA. The MmeI family: type II restriction-modification enzymes that employ single-strand modification for host protection. Nucleic Acids Res 2009; 37:5208-21. [PMID: 19578066 PMCID: PMC2731913 DOI: 10.1093/nar/gkp534] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
The type II restriction endonucleases form one of the largest families of biochemically-characterized proteins. These endonucleases typically share little sequence similarity, except among isoschizomers that recognize the same sequence. MmeI is an unusual type II restriction endonuclease that combines endonuclease and methyltransferase activities in a single polypeptide. MmeI cuts DNA 20 bases from its recognition sequence and modifies just one DNA strand for host protection. Using MmeI as query we have identified numerous putative genes highly similar to MmeI in database sequences. We have cloned and characterized 20 of these MmeI homologs. Each cuts DNA at the same distance as MmeI and each modifies a conserved adenine on only one DNA strand for host protection. However each enzyme recognizes a unique DNA sequence, suggesting these enzymes are undergoing rapid evolution of DNA specificity. The MmeI family thus provides a rich source of novel endonucleases while affording an opportunity to observe the evolution of DNA specificity. Because the MmeI family enzymes employ modification of only one DNA strand for host protection, unlike previously described type II systems, we propose that such single-strand modification systems be classified as a new subgroup, the type IIL enzymes, for Lone strand DNA modification.
Collapse
|
45
|
Zylicz-Stachula A, Bujnicki JM, Skowron PM. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family. BMC Mol Biol 2009; 10:52. [PMID: 19480701 PMCID: PMC2700111 DOI: 10.1186/1471-2199-10-52] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2008] [Accepted: 05/29/2009] [Indexed: 01/09/2023] Open
Abstract
Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases), however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase) and methyltransferase (MTase) activities of wild type (wt) TspGWI (either recombinant or isolated from Thermus sp.) are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/E)XK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module of the HsdR subunit and the additional domains that are involved in subunit-subunit interactions in Type I systems. The MTase and REase activities of TspGWI are autonomous and can be uncoupled. Structurally and functionally, the TspGWI protomer appears to be a streamlined 'half' of a Type I enzyme.
Collapse
Affiliation(s)
- Agnieszka Zylicz-Stachula
- Division of Environmental Molecular Biotechnology, Department of Chemistry, University of Gdansk, Sobieskiego 18, Gdansk 80-952, Poland.
| | | | | |
Collapse
|
46
|
Lippow SM, Aha PM, Parker MH, Blake WJ, Baynes BM, Lipovsek D. Creation of a type IIS restriction endonuclease with a long recognition sequence. Nucleic Acids Res 2009; 37:3061-73. [PMID: 19304757 PMCID: PMC2685105 DOI: 10.1093/nar/gkp182] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/05/2009] [Indexed: 12/19/2022] Open
Abstract
Type IIS restriction endonucleases cleave DNA outside their recognition sequences, and are therefore particularly useful in the assembly of DNA from smaller fragments. A limitation of type IIS restriction endonucleases in assembly of long DNA sequences is the relative abundance of their target sites. To facilitate ligation-based assembly of extremely long pieces of DNA, we have engineered a new type IIS restriction endonuclease that combines the specificity of the homing endonuclease I-SceI with the type IIS cleavage pattern of FokI. We linked a non-cleaving mutant of I-SceI, which conveys to the chimeric enzyme its specificity for an 18-bp DNA sequence, to the catalytic domain of FokI, which cuts DNA at a defined site outside the target site. Whereas previously described chimeric endonucleases do not produce type IIS-like precise DNA overhangs suitable for ligation, our chimeric endonuclease cleaves double-stranded DNA exactly 2 and 6 nt from the target site to generate homogeneous, 5', four-base overhangs, which can be ligated with 90% fidelity. We anticipate that these enzymes will be particularly useful in manipulation of DNA fragments larger than a thousand bases, which are very likely to contain target sites for all natural type IIS restriction endonucleases.
Collapse
|
47
|
Sanders KL, Catto LE, Bellamy SRW, Halford SE. Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands. Nucleic Acids Res 2009; 37:2105-15. [PMID: 19223323 PMCID: PMC2673415 DOI: 10.1093/nar/gkp046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.
Collapse
Affiliation(s)
- Kelly L Sanders
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
48
|
Morgan RD, Bhatia TK, Lovasco L, Davis TB. MmeI: a minimal Type II restriction-modification system that only modifies one DNA strand for host protection. Nucleic Acids Res 2008; 36:6558-70. [PMID: 18931376 PMCID: PMC2582602 DOI: 10.1093/nar/gkn711] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
MmeI is an unusual Type II restriction enzyme that is useful for generating long sequence tags. We have cloned the MmeI restriction-modification (R-M) system and found it to consist of a single protein having both endonuclease and DNA methyltransferase activities. The protein comprises an amino-terminal endonuclease domain, a central DNA methyltransferase domain and C-terminal DNA recognition domain. The endonuclease cuts the two DNA strands at one site simultaneously, with enzyme bound at two sites interacting to accomplish scission. Cleavage occurs more rapidly than methyl transfer on unmodified DNA. MmeI modifies only the adenine in the top strand, 5′-TCCRAC-3′. MmeI endonuclease activity is blocked by this top strand adenine methylation and is unaffected by methylation of the adenine in the complementary strand, 5′-GTYGGA-3′. There is no additional DNA modification associated with the MmeI R-M system, as is required for previously characterized Type IIG R-M systems. The MmeI R-M system thus uses modification on only one of the two DNA strands for host protection. The MmeI architecture represents a minimal approach to assembling a restriction-modification system wherein a single DNA recognition domain targets both the endonuclease and DNA methyltransferase activities.
Collapse
Affiliation(s)
- Richard D Morgan
- New England Biolabs Inc., Ipswich, MA and MCB Department, Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
49
|
Hoeller BM, Reiter B, Abad S, Graze I, Glieder A. Random tag insertions by Transposon Integration mediated Mutagenesis (TIM). J Microbiol Methods 2008; 75:251-7. [DOI: 10.1016/j.mimet.2008.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2008] [Revised: 06/17/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
|
50
|
Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit. J Mol Biol 2008; 384:489-502. [PMID: 18835275 DOI: 10.1016/j.jmb.2008.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2008] [Revised: 09/10/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
Abstract
The heterodimeric restriction endonuclease R.BspD6I from Bacillus species D6 recognizes a pseudosymmetric sequence and cuts both DNA strands outside the recognition sequence. The large subunit, Nt.BspD6I, acts as a type IIS site-specific monomeric nicking endonuclease. The isolated small subunit, ss.BspD6I, does not bind DNA and is not catalytically active. We solved the crystal structures of Nt.BspD6I and ss.BspD6I at high resolution. Nt.BspD6I consists of three domains, two of which exhibit structural similarity to the recognition and cleavage domains of FokI. ss.BspD6I has a fold similar to that of the cleavage domain of Nt.BspD6I, each containing a PD-(D/E)XK motif and a histidine as an additional putative catalytic residue. In contrast to the DNA-bound FokI structure, in which the cleavage domain is rotated away from the DNA, the crystal structure of Nt.BspD6I shows the recognition and cleavage domains in favorable orientations for interactions with DNA. Docking models of complexes of Nt.BspD6I and R.BspD6I with cognate DNA were constructed on the basis of structural similarity to individual domains of FokI, R.BpuJI and HindIII. A three-helix bundle forming an interdomain linker in Nt.BspD6I acts as a rigid spacer adjusting the orientations of the spatially separated domains to match the distance between the recognition and cleavage sites accurately.
Collapse
|