1
|
Hossain MA. A comprehensive review of targeting RAF kinase in cancer. Eur J Pharmacol 2025; 986:177142. [PMID: 39577552 DOI: 10.1016/j.ejphar.2024.177142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
RAF kinases, particularly the BRAF isoform, play a crucial role in the MAPK/ERK signaling pathway, regulating key cellular processes such as proliferation, differentiation, and survival. Dysregulation of this pathway often caused by mutations in the BRAF gene or alterations in upstream regulators like Ras and receptor tyrosine kinases contributes significantly to cancer development. Mutations, such as BRAF-V600E, are present in a variety of malignancies, with the highest prevalence in melanoma. Targeted therapies against RAF kinases have achieved substantial success, especially in BRAF-V600E-mutant melanomas, where inhibitors like vemurafenib and dabrafenib have demonstrated remarkable efficacy, leading to improved patient outcomes. These inhibitors have also shown clinical benefits in cancers such as thyroid and colorectal carcinoma, although to a lesser extent. Despite these successes, therapeutic resistance remains a major hurdle. Resistance mechanisms, including RAF dimerization, feedback reactivation of the MAPK pathway, and paradoxical activation of ERK signaling, often lead to diminished efficacy over time, resulting in disease progression or even secondary malignancies. In response, current research is focusing on novel therapeutic strategies, including combination therapies that target multiple components of the pathway simultaneously, such as MEK inhibitors used in tandem with RAF inhibitors. Additionally, next-generation RAF inhibitors are being developed to address resistance and enhance therapeutic specificity. This review discusses the clinical advancements in RAF-targeted therapies, with a focus on ongoing efforts to overcome therapeutic resistance and enhance outcomes for cancer patients. It also underscores the persistent challenges in effectively targeting RAF kinase in oncology.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
2
|
Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Nat Rev Cancer 2024; 24:105-122. [PMID: 38195917 DOI: 10.1038/s41568-023-00650-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
The RAF family of kinases includes key activators of the pro-tumourigenic mitogen-activated protein kinase pathway. Hyperactivation of RAF proteins, particularly BRAF and CRAF, drives tumour progression and drug resistance in many types of cancer. Although BRAF is the most studied RAF protein, partially owing to its high mutation incidence in melanoma, the role of CRAF in tumourigenesis and drug resistance is becoming increasingly clinically relevant. Here, we summarize the main known regulatory mechanisms and gene alterations that contribute to CRAF activity, highlighting the different oncogenic roles of CRAF, and categorize RAF1 (CRAF) mutations according to the effect on kinase activity. Additionally, we emphasize the effect that CRAF alterations may have on drug resistance and how precision therapies could effectively target CRAF-dependent tumours. Here, we discuss preclinical and clinical findings that may lead to improved treatments for all types of oncogenic RAF1 alterations in cancer.
Collapse
Affiliation(s)
- Melody Riaud
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Jennifer Maxwell
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Isabel Soria-Bretones
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Meredith Li
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - April A N Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada.
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
McGrail K, Granado-Martínez P, Esteve-Puig R, García-Ortega S, Ding Y, Sánchez-Redondo S, Ferrer B, Hernandez-Losa J, Canals F, Manzano A, Navarro-Sabaté A, Bartrons R, Yanes O, Pérez-Alea M, Muñoz-Couselo E, Garcia-Patos V, Recio JA. BRAF activation by metabolic stress promotes glycolysis sensitizing NRAS Q61-mutated melanomas to targeted therapy. Nat Commun 2022; 13:7113. [PMID: 36402789 PMCID: PMC9675737 DOI: 10.1038/s41467-022-34907-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
NRAS-mutated melanoma lacks a specific line of treatment. Metabolic reprogramming is considered a novel target to control cancer; however, NRAS-oncogene contribution to this cancer hallmark is mostly unknown. Here, we show that NRASQ61-mutated melanomas specific metabolic settings mediate cell sensitivity to sorafenib upon metabolic stress. Mechanistically, these cells are dependent on glucose metabolism, in which glucose deprivation promotes a switch from CRAF to BRAF signaling. This scenario contributes to cell survival and sustains glucose metabolism through BRAF-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2/3 (PFKFB2/PFKFB3). In turn, this favors the allosteric activation of phosphofructokinase-1 (PFK1), generating a feedback loop that couples glycolytic flux and the RAS signaling pathway. An in vivo treatment of NRASQ61 mutant melanomas, including patient-derived xenografts, with 2-deoxy-D-glucose (2-DG) and sorafenib effectively inhibits tumor growth. Thus, we provide evidence for NRAS-oncogene contributions to metabolic rewiring and a proof-of-principle for the treatment of NRASQ61-mutated melanoma combining metabolic stress (glycolysis inhibitors) and previously approved drugs, such as sorafenib.
Collapse
Affiliation(s)
- Kimberley McGrail
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Paula Granado-Martínez
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Rosaura Esteve-Puig
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain ,Present Address: MAJ3 Capital S.L, Barcelona, 08018 Spain
| | - Sara García-Ortega
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Yuxin Ding
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Sara Sánchez-Redondo
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain ,grid.7719.80000 0000 8700 1153Present Address: Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Berta Ferrer
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain ,grid.411083.f0000 0001 0675 8654Anatomy Pathology Department, Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Javier Hernandez-Losa
- grid.411083.f0000 0001 0675 8654Anatomy Pathology Department, Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Francesc Canals
- grid.411083.f0000 0001 0675 8654Proteomics Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, 08035 Spain
| | - Anna Manzano
- grid.418284.30000 0004 0427 2257Department of Physiological Sciences, University of Barcelona, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Aura Navarro-Sabaté
- grid.418284.30000 0004 0427 2257Department of Physiological Sciences, University of Barcelona, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Ramón Bartrons
- grid.418284.30000 0004 0427 2257Department of Physiological Sciences, University of Barcelona, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | - Oscar Yanes
- grid.410367.70000 0001 2284 9230Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona, Spain ,grid.413448.e0000 0000 9314 1427CIBER on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Mileidys Pérez-Alea
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain ,Present Address: Advance Biodesign, 69800 Saint-Priest, France
| | - Eva Muñoz-Couselo
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain ,grid.411083.f0000 0001 0675 8654Clinical Oncology Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Vicenç Garcia-Patos
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain ,grid.411083.f0000 0001 0675 8654Dermatology Department, Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| | - Juan A. Recio
- grid.430994.30000 0004 1763 0287Biomedical Research in Melanoma-Animal Models and Cancer Laboratory, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Hospital Barcelona-UAB, Barcelona, 08035 Spain
| |
Collapse
|
4
|
Cook FA, Cook SJ. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans 2021; 49:237-251. [PMID: 33367512 PMCID: PMC7924995 DOI: 10.1042/bst20200485] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.
Collapse
Affiliation(s)
- Frazer A. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
5
|
Animireddy S, Kavadipula P, Kotapalli V, Gowrishankar S, Rao S, Bashyam MD. Aberrant cytoplasmic localization of ARID1B activates ERK signaling and promotes oncogenesis. J Cell Sci 2021; 134:jcs251637. [PMID: 33443092 DOI: 10.1242/jcs.251637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The ARID1B (BAF250b) subunit of the human SWI/SNF chromatin remodeling complex is a canonical nuclear tumor suppressor. We employed in silico prediction, intracellular fluorescence and cellular fractionation-based subcellular localization analyses to identify the ARID1B nuclear localization signal (NLS). A cytoplasm-restricted ARID1B-NLS mutant was significantly compromised in its canonical transcription activation and tumor suppressive functions, as expected. Surprisingly however, cytoplasmic localization appeared to induce a gain of oncogenic function for ARID1B, as evidenced from several cell line- and mouse xenograft-based assays. Mechanistically, cytoplasm-localized ARID1B could bind c-RAF (RAF1) and PPP1CA causing stimulation of RAF-ERK signaling and β-catenin (CTNNB1) transcription activity. ARID1B harboring NLS mutations derived from tumor samples also exhibited aberrant cytoplasmic localization and acquired a neo-morphic oncogenic function via activation of RAF-ERK signaling. Furthermore, immunohistochemistry on a tissue microarray revealed significant correlation of ARID1B cytoplasmic localization with increased levels of active forms of ERK1 and ERK2 (also known as MAPK3 and MAPK1) and of β-catenin, as well as with advanced tumor stage and lymph node positivity in human primary pancreatic tumor tissues. ARID1B therefore promotes oncogenesis through cytoplasm-based gain-of-function mechanisms in addition to dysregulation in the nucleus.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Srinivas Animireddy
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Padmavathi Kavadipula
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | | | - Satish Rao
- Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
6
|
Panicker N, Coutman M, Lawlor-O’Neill C, Kahl RGS, Roselli S, Verrills NM. Ppp2r2a Knockout Mice Reveal That Protein Phosphatase 2A Regulatory Subunit, PP2A-B55α, Is an Essential Regulator of Neuronal and Epidermal Embryonic Development. Front Cell Dev Biol 2020; 8:358. [PMID: 32582689 PMCID: PMC7290052 DOI: 10.3389/fcell.2020.00358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
The serine/threonine protein phosphatase 2A (PP2A) is a master regulator of the complex cellular signaling that occurs during all stages of mammalian development. PP2A is composed of a catalytic, a structural, and regulatory subunit, for which there are multiple isoforms. The association of specific regulatory subunits determines substrate specificity and localization of phosphatase activity, however, the precise role of each regulatory subunit in development is not known. Here we report the generation of the first knockout mouse for the Ppp2r2a gene, encoding the PP2A-B55α regulatory subunit, using CRISPR/Cas9. Heterozygous animals developed and grew as normal, however, homozygous knockout mice were not viable. Analysis of embryos at different developmental stages found a normal Mendelian ratio of Ppp2r2a-/- embryos at embryonic day (E) 10.5 (25%), but reduced Ppp2r2a-/- embryos at E14.5 (18%), and further reduced at E18.5 (10%). No live Ppp2r2a-/- pups were observed at birth. Ppp2r2a-/- embryos were significantly smaller than wild-type or heterozygous littermates and displayed a variety of neural defects such as exencephaly, spina bifida, and cranial vault collapse, as well as syndactyly and severe epidermal defects; all processes driven by growth and differentiation of the ectoderm. Ppp2r2a-/- embryos had incomplete epidermal barrier acquisition, associated with thin, poorly differentiated stratified epithelium with weak attachment to the underlying dermis. The basal keratinocytes in Ppp2r2a-/- embryos were highly disorganized, with reduced immunolabeling of integrins and basement membrane proteins, suggesting impaired focal adhesion and hemidesmosome assembly. The spinous and granular layers were thinner in the Ppp2r2a-/- embryos, with aberrant expression of adherens and tight junction associated proteins. The overlying stratum corneum was either absent or incomplete. Thus PP2A-B55α is an essential regulator of epidermal stratification, and is essential for ectodermal development during embryogenesis.
Collapse
Affiliation(s)
- Nikita Panicker
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Melody Coutman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Charley Lawlor-O’Neill
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Richard G. S. Kahl
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Séverine Roselli
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Nicole M. Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Priority Research Centre for Cancer Research, Innovation and Translation, University of Newcastle, Callaghan, NSW, Australia
- Hunter Cancer Research Alliance, Hunter Medical Research Institute, New Lambton, NSW, Australia
| |
Collapse
|
7
|
Cunningham DL, Sarhan AR, Creese AJ, Larkins KPB, Zhao H, Ferguson HR, Brookes K, Marusiak AA, Cooper HJ, Heath JK. Differential responses to kinase inhibition in FGFR2-addicted triple negative breast cancer cells: a quantitative phosphoproteomics study. Sci Rep 2020; 10:7950. [PMID: 32409632 PMCID: PMC7224374 DOI: 10.1038/s41598-020-64534-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Fibroblast Growth Factor (FGF) dependent signalling is frequently activated in cancer by a variety of different mechanisms. However, the downstream signal transduction pathways involved are poorly characterised. Here a quantitative differential phosphoproteomics approach, SILAC, is applied to identify FGF-regulated phosphorylation events in two triple- negative breast tumour cell lines, MFM223 and SUM52, that exhibit amplified expression of FGF receptor 2 (FGFR2) and are dependent on continued FGFR2 signalling for cell viability. Comparative Gene Ontology proteome analysis revealed that SUM52 cells were enriched in proteins associated with cell metabolism and MFM223 cells enriched in proteins associated with cell adhesion and migration. FGFR2 inhibition by SU5402 impacts a significant fraction of the observed phosphoproteome of these cells. This study expands the known landscape of FGF signalling and identifies many new targets for functional investigation. FGF signalling pathways are found to be flexible in architecture as both shared, and divergent, responses to inhibition of FGFR2 kinase activity in the canonical RAF/MAPK/ERK/RSK and PI3K/AKT/PDK/mTOR/S6K pathways are identified. Inhibition of phosphorylation-dependent negative-feedback pathways is observed, defining mechanisms of intrinsic resistance to FGFR2 inhibition. These findings have implications for the therapeutic application of FGFR inhibitors as they identify both common and divergent responses in cells harbouring the same genetic lesion and pathways of drug resistance.
Collapse
Affiliation(s)
- Debbie L Cunningham
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Adil R Sarhan
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah, 6400, Iraq
| | - Andrew J Creese
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Immunocore, 101 Park Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Hongyan Zhao
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Harriet R Ferguson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Katie Brookes
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Anna A Marusiak
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 02-097, Warszawa, Poland
| | - Helen J Cooper
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - John K Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
9
|
CRAF mutations in lung cancer can be oncogenic and predict sensitivity to combined type II RAF and MEK inhibition. Oncogene 2019; 38:5933-5941. [PMID: 31285551 PMCID: PMC6756226 DOI: 10.1038/s41388-019-0866-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 04/04/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022]
Abstract
Two out of 41 non-small cell lung cancer patients enrolled in a clinical study were found with a somatic CRAF mutation in their tumor, namely CRAFP261A and CRAFP207S. To our knowledge, both mutations are novel in lung cancer and CRAFP261A has not been previously reported in cancer. Expression of CRAFP261A in HEK293T cells and BEAS-2B lung epithelial cells led to increased ERK pathway activation in a dimer-dependent manner, accompanied with loss of CRAF phosphorylation at the negative regulatory S259 residue. Moreover, stable expression of CRAFP261A in mouse embryonic fibroblasts and BEAS-2B cells led to anchorage-independent growth. Consistent with a previous report, we could not observe a gain-of-function with CRAFP207S. Type II but not type I RAF inhibitors suppressed the CRAFP261A-induced ERK pathway activity in BEAS-2B cells, and combinatorial treatment with type II RAF inhibitors and a MEK inhibitor led to a stronger ERK pathway inhibition and growth arrest. Our findings suggest that the acquisition of a CRAFP261A mutation can provide oncogenic properties to cells, and that such cells are sensitive to combined MEK and type II RAF inhibitors. CRAF mutations should be diagnostically and therapeutically explored in lung and perhaps other cancers.
Collapse
|
10
|
Boned Del Río I, Young LC, Sari S, Jones GG, Ringham-Terry B, Hartig N, Rejnowicz E, Lei W, Bhamra A, Surinova S, Rodriguez-Viciana P. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proc Natl Acad Sci U S A 2019; 116:13330-13339. [PMID: 31213532 PMCID: PMC6613145 DOI: 10.1073/pnas.1902658116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.
Collapse
Affiliation(s)
- Isabel Boned Del Río
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Lucy C Young
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Sibel Sari
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Greg G Jones
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Benjamin Ringham-Terry
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Nicole Hartig
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Ewa Rejnowicz
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Winnie Lei
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Amandeep Bhamra
- Proteomics Research Core Facility, University College London Cancer Institute, WC1E 6DD London, United Kingdom
| | - Silvia Surinova
- Proteomics Research Core Facility, University College London Cancer Institute, WC1E 6DD London, United Kingdom
| | - Pablo Rodriguez-Viciana
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms;
| |
Collapse
|
11
|
Yin Q, Han T, Fang B, Zhang G, Zhang C, Roberts ER, Izumi V, Zheng M, Jiang S, Yin X, Kim M, Cai J, Haura EB, Koomen JM, Smalley KSM, Wan L. K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nat Commun 2019; 10:1870. [PMID: 31015455 PMCID: PMC6478693 DOI: 10.1038/s41467-019-09844-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
BRAF plays an indispensable role in activating the MEK/ERK pathway to drive tumorigenesis. Receptor tyrosine kinase and RAS-mediated BRAF activation have been extensively characterized, however, it remains undefined how BRAF function is fine-tuned by stimuli other than growth factors. Here, we report that in response to proinflammatory cytokines, BRAF is subjected to lysine 27-linked poly-ubiquitination in melanoma cells by the ITCH ubiquitin E3 ligase. Lysine 27-linked ubiquitination of BRAF recruits PP2A to antagonize the S365 phosphorylation and disrupts the inhibitory interaction with 14-3-3, leading to sustained BRAF activation and subsequent elevation of the MEK/ERK signaling. Physiologically, proinflammatory cytokines activate ITCH to maintain BRAF activity and to promote proliferation and invasion of melanoma cells, whereas the ubiquitination-deficient BRAF mutant displays compromised kinase activity and reduced tumorigenicity. Collectively, our study reveals a pivotal role for ITCH-mediated BRAF ubiquitination in coordinating the signals between cytokines and the MAPK pathway activation in melanoma cells.
Collapse
Affiliation(s)
- Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Tao Han
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Chao Zhang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Evan R Roberts
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mengmeng Zheng
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Shulong Jiang
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Oncology, Jining First People's Hospital, Jining, Shandong, 272111, P.R. China
| | - Xiu Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Oncology, Jining First People's Hospital, Jining, Shandong, 272111, P.R. China
| | - Minjung Kim
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Lixin Wan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA. .,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
12
|
Regulation of c-Raf Stability through the CTLH Complex. Int J Mol Sci 2019; 20:ijms20040934. [PMID: 30795516 PMCID: PMC6412545 DOI: 10.3390/ijms20040934] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022] Open
Abstract
c-Raf is a central component of the extracellular signal-regulated kinase (ERK) pathway which is implicated in the development of many cancer types. RanBPM (Ran-Binding Protein M) was previously shown to inhibit c-Raf expression, but how this is achieved remains unclear. RanBPM is part of a recently identified E3 ubiquitin ligase complex, the CTLH (C-terminal to LisH) complex. Here, we show that the CTLH complex regulates c-Raf expression through a control of its degradation. Several domains of RanBPM were found necessary to regulate c-Raf levels, but only the C-terminal CRA (CT11-RanBPM) domain showed direct interaction with c-Raf. c-Raf ubiquitination and degradation is promoted by the CTLH complex. Furthermore, A-Raf and B-Raf protein levels are also regulated by the CTLH complex, indicating a common regulation of Raf family members. Finally, depletion of CTLH subunits RMND5A (required for meiotic nuclear division 5A) and RanBPM resulted in enhanced proliferation and loss of RanBPM promoted tumour growth in a mouse model. This study uncovers a new mode of control of c-Raf expression through regulation of its degradation by the CTLH complex. These findings also uncover a novel target of the CTLH complex, and suggest that the CTLH complex has activities that suppress cell transformation and tumour formation.
Collapse
|
13
|
Zheng S, Qu Z, Zanetti M, Lam B, Chin-Sang I. C. elegans PTEN and AMPK block neuroblast divisions by inhibiting a BMP-insulin-PP2A-MAPK pathway. Development 2018; 145:145/23/dev166876. [PMID: 30487179 DOI: 10.1242/dev.166876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
Caenorhabditis elegans that hatch in the absence of food stop their postembryonic development in a process called L1 arrest. Intriguingly, we find that the postembryonic Q neuroblasts divide and migrate during L1 arrest in mutants that have lost the energy sensor AMP-activated protein kinase (AMPK) or the insulin/IGF-1 signaling (IIS) negative regulator DAF-18/PTEN. We report that DBL-1/BMP works upstream of IIS to promote agonistic insulin-like peptides during L1 arrest. However, the abnormal Q cell divisions that occur during L1 arrest use a novel branch of the IIS pathway that is independent of the terminal transcription factor DAF-16/FOXO. Using genetic epistasis and drug interactions we show that AMPK functions downstream of, or in parallel with DAF-18/PTEN and IIS to inhibit PP2A function. Further, we show that PP2A regulates the abnormal Q cell divisions by activating the MPK-1/ERK signaling pathway via LIN-45/RAF, independently of LET-60/RAS. PP2A acts as a tumor suppressor in many oncogenic signaling cascades. Our work demonstrates a new role for PP2A that is needed to induce neuroblast divisions during starvation and is regulated by both insulin and AMPK.
Collapse
Affiliation(s)
- Shanqing Zheng
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Zhi Qu
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Michael Zanetti
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brandon Lam
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
14
|
Maity G, Haque I, Ghosh A, Dhar G, Gupta V, Sarkar S, Azeem I, McGregor D, Choudhary A, Campbell DR, Kambhampati S, Banerjee SK, Banerjee S. The MAZ transcription factor is a downstream target of the oncoprotein Cyr61/CCN1 and promotes pancreatic cancer cell invasion via CRAF-ERK signaling. J Biol Chem 2018; 293:4334-4349. [PMID: 29414775 PMCID: PMC5868262 DOI: 10.1074/jbc.ra117.000333] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/01/2018] [Indexed: 01/18/2023] Open
Abstract
Myc-associated zinc-finger protein (MAZ) is a transcription factor with dual roles in transcription initiation and termination. Deregulation of MAZ expression is associated with the progression of pancreatic ductal adenocarcinoma (PDAC). However, the mechanism of action of MAZ in PDAC progression is largely unknown. Here, we present evidence that MAZ mRNA expression and protein levels are increased in human PDAC cell lines, tissue samples, a subcutaneous tumor xenograft in a nude mouse model, and spontaneous cancer in the genetically engineered PDAC mouse model. We also found that MAZ is predominantly expressed in pancreatic cancer stem cells. Functional analysis indicated that MAZ depletion in PDAC cells inhibits invasive phenotypes such as the epithelial-to-mesenchymal transition, migration, invasion, and the sphere-forming ability of PDAC cells. Mechanistically, we detected no direct effects of MAZ on the expression of K-Ras mutants, but MAZ increased the activity of CRAF-ERK signaling, a downstream signaling target of K-Ras. The MAZ-induced activation of CRAF-ERK signaling was mediated via p21-activated protein kinase (PAK) and protein kinase B (AKT/PKB) signaling cascades and promoted PDAC cell invasiveness. Moreover, we found that the matricellular oncoprotein cysteine-rich angiogenic inducer 61 (Cyr61/CCN1) regulates MAZ expression via Notch-1-sonic hedgehog signaling in PDAC cells. We propose that Cyr61/CCN1-induced expression of MAZ promotes invasive phenotypes of PDAC cells not through direct K-Ras activation but instead through the activation of CRAF-ERK signaling. Collectively, these results highlight key molecular players in PDAC invasiveness and may help inform therapeutic strategies to improve clinical management and outcomes of PDAC.
Collapse
Affiliation(s)
- Gargi Maity
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Inamul Haque
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
| | - Arnab Ghosh
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Gopal Dhar
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | | | - Sandipto Sarkar
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Imaan Azeem
- From the Cancer Research Unit, Veterans Affairs Medical Center
| | - Douglas McGregor
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Department of Pathology and Laboratory Medicine, and
- the Pathology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Abhishek Choudhary
- the Gastroenterology Department, Veterans Affairs Medical Center, Kansas City, Missouri 64128
| | - Donald R Campbell
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the University of Missouri Kansas City and Saint Luke's Hospital of Kansas City, Kansas City, Missouri, and
| | - Suman Kambhampati
- From the Cancer Research Unit, Veterans Affairs Medical Center
- the Sarah Cannon Cancer Center at HCA Midwest Health, Kansas City, Missouri 64131
| | - Sushanta K Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
- the Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Snigdha Banerjee
- From the Cancer Research Unit, Veterans Affairs Medical Center,
- the Department of Pathology and Laboratory Medicine, and
| |
Collapse
|
15
|
Harms FL, Alawi M, Amor DJ, Tan TY, Cuturilo G, Lissewski C, Brinkmann J, Schanze D, Kutsche K, Zenker M. The novel RAF1 mutation p.(Gly361Ala) located outside the kinase domain of the CR3 region in two patients with Noonan syndrome, including one with a rare brain tumor. Am J Med Genet A 2017; 176:470-476. [PMID: 29271604 DOI: 10.1002/ajmg.a.38569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/29/2017] [Accepted: 11/16/2017] [Indexed: 11/07/2022]
Abstract
Noonan syndrome is characterized by typical craniofacial dysmorphism, postnatal growth retardation, congenital heart defect, and learning difficulties and belongs to the RASopathies, a group of neurodevelopmental disorders caused by germline mutations in genes encoding components of the RAS-MAPK pathway. Mutations in the RAF1 gene are associated with Noonan syndrome, with a high prevalence of hypertrophic cardiomyopathy (HCM). RAF1 mutations cluster in exons encoding the conserved region 2 (CR2), the kinase activation segment of the CR3 domain, and the C-terminus. We present two boys with Noonan syndrome and the identical de novo RAF1 missense variant c.1082G>C/p.(Gly361Ala) affecting the CR3, but located outside the kinase activation segment. The p.(Gly361Ala) mutation has been identified as a RAF1 allele conferring resistance to RAF inhibitors. This amino acid change favors a RAF1 conformation that allows for enhanced RAF dimerization and increased intrinsic kinase activity. Both patients with Noonan syndrome showed typical craniofacial dysmorphism, macrocephaly, and short stature. One individual developed HCM and was diagnosed with a disseminated oligodendroglial-like leptomeningeal tumor (DOLT) of childhood at the age of 9 years. While there is a well-established association of NS with malignant tumors, especially childhood hemato-oncological diseases, brain tumors have rarely been reported in Noonan syndrome. Our data demonstrate that mutation scanning of the entire coding region of genes associated with Noonan syndrome is mandatory not to miss rare variants located outside the known mutational hotspots.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core Facility, Hamburg, Germany.,Center for Bioinformatics, University of Hamburg, Hamburg, Germany.,Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Virus Genomics, Hamburg, Germany
| | - David J Amor
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Tiong Y Tan
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,University Children's Hospital, Belgrade, Serbia
| | - Christina Lissewski
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Julia Brinkmann
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
16
|
78495111110.3390/cancers9050052" />
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
|
17
|
Wee P, Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers (Basel) 2017; 9:cancers9050052. [PMID: 28513565 PMCID: PMC5447962 DOI: 10.3390/cancers9050052] [Citation(s) in RCA: 1096] [Impact Index Per Article: 137.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is commonly upregulated in cancers such as in non-small-cell lung cancer, metastatic colorectal cancer, glioblastoma, head and neck cancer, pancreatic cancer, and breast cancer. Various mechanisms mediate the upregulation of EGFR activity, including common mutations and truncations to its extracellular domain, such as in the EGFRvIII truncations, as well as to its kinase domain, such as the L858R and T790M mutations, or the exon 19 truncation. These EGFR aberrations over-activate downstream pro-oncogenic signaling pathways, including the RAS-RAF-MEK-ERK MAPK and AKT-PI3K-mTOR pathways. These pathways then activate many biological outputs that are beneficial to cancer cell proliferation, including their chronic initiation and progression through the cell cycle. Here, we review the molecular mechanisms that regulate EGFR signal transduction, including the EGFR structure and its mutations, ligand binding and EGFR dimerization, as well as the signaling pathways that lead to G1 cell cycle progression. We focus on the induction of CYCLIN D expression, CDK4/6 activation, and the repression of cyclin-dependent kinase inhibitor proteins (CDKi) by EGFR signaling pathways. We also discuss the successes and challenges of EGFR-targeted therapies, and the potential for their use in combination with CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Ping Wee
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Zhixiang Wang
- Department of Medical Genetics and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
18
|
Varga A, Ehrenreiter K, Aschenbrenner B, Kocieniewski P, Kochanczyk M, Lipniacki T, Baccarini M. RAF1/BRAF dimerization integrates the signal from RAS to ERK and ROKα. Sci Signal 2017; 10:eaai8482. [PMID: 28270557 DOI: 10.1126/scisignal.aai8482] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Downstream of growth factor receptors and of the guanine triphosphatase (GTPase) RAS, heterodimers of the serine/threonine kinases BRAF and RAF1 are critical upstream kinases and activators of the mitogen-activated protein kinase (MAPK) module containing the mitogen-activated and extracellular signal-regulated kinase kinase (MEK) and their targets, the extracellular signal-regulated kinase (ERK) family. Either direct or scaffold protein-mediated interactions among the components of the ERK module (the MAPKKKs BRAF and RAF1, MEK, and ERK) facilitate signal transmission. RAF1 also has essential functions in the control of tumorigenesis and migration that are mediated through its interaction with the kinase ROKα, an effector of the GTPase RHO and regulator of cytoskeletal rearrangements. We combined mutational and kinetic analysis with mathematical modeling to show that the interaction of RAF1 with ROKα is coordinated with the role of RAF1 in the ERK pathway. We found that the phosphorylated form of RAF1 that interacted with and inhibited ROKα was generated during the interaction of RAF1 with the ERK module. This mechanism adds plasticity to the ERK pathway, enabling signal diversification at the level of both ERK and RAF. Furthermore, by connecting ERK activation with the regulation of ROKα and cytoskeletal rearrangements by RAF1, this mechanism has the potential to precisely coordinate the proper timing of proliferation with changes in cell shape, adhesion, or motility.
Collapse
Affiliation(s)
- Andrea Varga
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Karin Ehrenreiter
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Bertram Aschenbrenner
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Pawel Kocieniewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochanczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Rose JC, Huang PS, Camp ND, Ye J, Leidal AM, Goreshnik I, Trevillian BM, Dickinson MS, Cunningham-Bryant D, Debnath J, Baker D, Wolf-Yadlin A, Maly DJ. A computationally engineered RAS rheostat reveals RAS-ERK signaling dynamics. Nat Chem Biol 2016; 13:119-126. [PMID: 27870838 PMCID: PMC5161653 DOI: 10.1038/nchembio.2244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/08/2016] [Indexed: 01/07/2023]
Abstract
Synthetic protein switches controlled with user-defined inputs are powerful tools for studying and controlling dynamic cellular processes. To date, these approaches have relied primarily on intermolecular regulation. Here, we report a computationally-guided framework for engineering intramolecular regulation of protein function. We utilize this framework to develop Chemically Inducible Activator of RAS (CIAR), a single-component RAS rheostat that directly activates endogenous RAS in response to a small molecule. Using CIAR, we show that direct RAS activation elicits markedly different RAS/ERK signaling dynamics compared to growth factor stimulation, and that these dynamics differ between cell types. We also found that the clinically-approved RAF inhibitor vemurafenib potently primes cells to respond to direct wild-type RAS activation. These results demonstrate the utility of CIAR for quantitatively interrogating RAS signaling. Finally, we demonstrate the general utility of our approach to design intramolecularly-regulated protein tools by applying this methodology to the Rho Family GEFs.
Collapse
Affiliation(s)
- John C Rose
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Nathan D Camp
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jordan Ye
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Andrew M Leidal
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Miles S Dickinson
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | | | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Institute for Protein Design, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | | | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
20
|
Glutaminolysis Was Induced by TGF-β1 through PP2Ac Regulated Raf-MEK-ERK Signaling in Endothelial Cells. PLoS One 2016; 11:e0162658. [PMID: 27612201 PMCID: PMC5017743 DOI: 10.1371/journal.pone.0162658] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022] Open
Abstract
Vascular endothelial cells can survive under hypoxic and inflammatory conditions by alterations of the cellular energy metabolism. In addition to high rates of glycolysis, glutaminolysis is another important way of providing the required energy to support cellular sprouting in such situations. However, the exact mechanism in which endothelial cells upregulate glutaminolysis remains unclear. Here we demonstrated that protein phosphatase 2A (PP2A)-mediated Raf-MEK-ERK signaling was involved in glutaminolysis in endothelial cells. Using models of human umbilical vein endothelial cells (HUVECs) treated with transforming growth factor-β1 (TGF-β1), we observed a dramatic induction in cellular glutamate levels accompanied by Raf-MEK-ERK activation. By addition of U0126, the specific inhibitor of MEK1/2, the expression of kidney-type glutaminase (KGA, a critical glutaminase in glutaminolysis) was significantly decreased. Moreover, inhibition of PP2A by okadaic acid (OA), a specific inhibitor of PP2A phosphatase activity or by depletion of its catalytic subunit (PP2Ac), led to a significant inactivation of Raf-MEK-ERK signaling and reduced glutaminolysis in endothelial cells. Taken together, these results indicated that PP2A-dependent Raf-MEK-ERK activation was involved in glutaminolysis and inhibition of PP2A signals was sufficient to block Raf-MEK-ERK pathway and reduced glutamine metabolism in endothelial cells.
Collapse
|
21
|
Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro 2015; 7:7/5/1759091415602463. [PMID: 26442853 PMCID: PMC4601130 DOI: 10.1177/1759091415602463] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Yan Rong
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain University of Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| |
Collapse
|
22
|
Ghosh A, Ratha BN, Gayen N, Mroue KH, Kar RK, Mandal AK, Bhunia A. Biophysical Characterization of Essential Phosphorylation at the Flexible C-Terminal Region of C-Raf with 14-3-3ζ Protein. PLoS One 2015; 10:e0135976. [PMID: 26295714 PMCID: PMC4546627 DOI: 10.1371/journal.pone.0135976] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023] Open
Abstract
Phosphorylation at the C-terminal flexible region of the C-Raf protein plays an important role in regulating its biological activity. Auto-phosphorylation at serine 621 (S621) in this region maintains C-Raf stability and activity. This phosphorylation mediates the interaction between C-Raf and scaffold protein 14-3-3ζ to activate the downstream MEK kinase pathway. In this study, we have defined the interaction of C-terminal peptide sequence of C-Raf with 14-3-3ζ protein and determined the possible structural adaptation of this region. Biophysical elucidation of the interaction was carried out using phosphopeptide (residue number 615–630) in the presence of 14-3-3ζ protein. Using isothermal titration calorimetry (ITC), a high binding affinity with micro-molar range was found to exist between the peptide and 14-3-3ζ protein, whereas the non-phosphorylated peptide did not show any appreciable binding affinity. Further interaction details were investigated using several biophysical techniques such as circular dichroism (CD), fluorescence, and nuclear magnetic resonance (NMR) spectroscopy, in addition to molecular modeling. This study provides the molecular basis for C-Raf C-terminal-derived phosphopeptide interaction with 14-3-3ζ protein as well as structural insights responsible for phosphorylated S621-mediated 14-3-3ζ binding at an atomic resolution.
Collapse
Affiliation(s)
- Anirban Ghosh
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700 054, India
| | - Bhisma Narayan Ratha
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700 054, India
| | - Nilanjan Gayen
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700 054, India
| | - Kamal H. Mroue
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109–1055, United States of America
| | - Rajiv K. Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700 054, India
| | - Atin K. Mandal
- Department of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700 054, India
- * E-mail: (AKM); (AB)
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata, 700 054, India
- * E-mail: (AKM); (AB)
| |
Collapse
|
23
|
Jensen HA, Bunaciu RP, Varner JD, Yen A. GW5074 and PP2 kinase inhibitors implicate nontraditional c-Raf and Lyn function as drivers of retinoic acid-induced maturation. Cell Signal 2015; 27:1666-75. [PMID: 25817574 PMCID: PMC4529126 DOI: 10.1016/j.cellsig.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
The multivariate nature of cancer necessitates multi-targeted therapy, and kinase inhibitors account for a vast majority of approved cancer therapeutics. While acute promyelocytic leukemia (APL) patients are highly responsive to retinoic acid (RA) therapy, kinase inhibitors have been gaining momentum as co-treatments with RA for non-APL acute myeloid leukemia (AML) differentiation therapies, especially as a means to treat relapsed or refractory AML patients. In this study GW5074 (a c-Raf inhibitor) and PP2 (a Src-family kinase inhibitor) enhanced RA-induced maturation of t(15;17)-negative myeloblastic leukemia cells and rescued response in RA-resistant cells. PD98059 (a MEK inhibitor) and Akti-1/2 (an Akt inhibitor) were less effective, but did tend to promote maturation-uncoupled G1/G0 arrest, while wortmannin (a PI3K inhibitor) did not enhance differentiation surface marker expression or growth arrest. PD98059 and Akti-1/2 did not enhance differentiation markers and have potential, antagonistic off-targets effects on the aryl hydrocarbon receptor (AhR), but neither could the AhR agonist 6-formylindolo(3,2-b)carbazole (FICZ) rescue differentiation events in the RA-resistant cells. GW5074 rescued early CD38 expression in RA-resistant cells exhibiting an early block in differentiation before CD38 expression, while for RA-resistant cells with differentiation blocked later, PP2 rescued the later differentiation marker CD11b; but surprisingly, the combination of the two was not synergistic. Kinases c-Raf, Src-family kinases Lyn and Fgr, and PI3K display highly correlated signaling changes during RA treatment, while activation of traditional downstream targets (Akt, MEK/ERK), and even the surface marker CD38, were poorly correlated with c-Raf or Lyn during differentiation. This suggests that an interrelated kinase module involving c-Raf, PI3K, Lyn and perhaps Fgr functions in a nontraditional way during RA-induced maturation or during rescue of RA induction therapy using inhibitor co-treatment in RA-resistant leukemia cells.
Collapse
Affiliation(s)
- Holly A Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jeffrey D Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
24
|
Ali I, Damdimopoulou P, Stenius U, Halldin K. Cadmium at nanomolar concentrations activates Raf–MEK–ERK1/2 MAPKs signaling via EGFR in human cancer cell lines. Chem Biol Interact 2015; 231:44-52. [DOI: 10.1016/j.cbi.2015.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/26/2015] [Accepted: 02/18/2015] [Indexed: 02/08/2023]
|
25
|
Meyer K, Kwon YC, Liu S, Hagedorn CH, Ray RB, Ray R. Interferon-α inducible protein 6 impairs EGFR activation by CD81 and inhibits hepatitis C virus infection. Sci Rep 2015; 5:9012. [PMID: 25757571 PMCID: PMC4355636 DOI: 10.1038/srep09012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
Viral entry requires co-operative interactions of several host cell factors. Interferon (IFN) and the IFN-stimulated genes (ISGs) play a central role in antiviral responses against hepatitis C virus (HCV) infection. We examined the effect of interferon-α inducible protein 6 (IFI6) against HCV infection in human hepatoma cells. HCV RNA level or infectious foci were inhibited significantly by ectopic expression of IFI6. IFI6 impaired CD81 co-localization with claudin-1 (CLDN1) upon HCV infection or CD81 cross-linking by specific antibody. Activation of epidermal growth factor receptor (EGFR), a co-factor involved in CD81/CLDN1 interactions, was reduced in IFI6 expressing cells in response to HCV infection or CD81 cross linking by antibody, but not by treatment with EGF. Taken together, the results from our study support a model where IFI6 inhibits HCV entry by impairing EGFR mediated CD81/CLDN1 interactions. This may be relevant to other virus entry processes employing EGFR.
Collapse
Affiliation(s)
- Keith Meyer
- Department of Internal Medicine, Saint Louis University
| | | | - Shuanghu Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah
| | - Curt H Hagedorn
- 1] Department of Medicine and Genetics, University of Arkansas for Medical Sciences [2] The Central Arkansas Veterans Healthcare System
| | - Ratna B Ray
- 1] Department of Internal Medicine, Saint Louis University [2] Department of Pathology, Saint Louis University
| | - Ranjit Ray
- 1] Department of Internal Medicine, Saint Louis University [2] Department of Molecular Microbiology &Immunology, Saint Louis University
| |
Collapse
|
26
|
An S, Yang Y, Ward R, Liu Y, Guo XX, Xu TR. Raf-interactome in tuning the complexity and diversity of Raf function. FEBS J 2014; 282:32-53. [PMID: 25333451 DOI: 10.1111/febs.13113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/06/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022]
Abstract
Raf kinases have been intensely studied subsequent to their discovery 30 years ago. The Ras-Raf-mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-extracellular signal-regulated kinase/mitogen-activated protein kinase (Ras-Raf-MEK-ERK/MAPK) signaling pathway is at the heart of the signaling networks that control many fundamental cellular processes and Raf kinases takes centre stage in the MAPK pathway, which is now appreciated to be one of the most common sources of the oncogenic mutations in cancer. The dependency of tumors on this pathway has been clearly demonstrated by targeting its key nodes; however, blockade of the central components of the MAPK pathway may have some unexpected side effects. Over recent years, the Raf-interactome or Raf-interacting proteins have emerged as promising targets for protein-directed cancer therapy. This review focuses on the diversity of Raf-interacting proteins and discusses the mechanisms by which these proteins regulate Raf function, as well as the implications of targeting Raf-interacting proteins in the treatment of human cancer.
Collapse
Affiliation(s)
- Su An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, China
| | | | | | | | | | | |
Collapse
|
27
|
Lidsky M, Antoun G, Speicher P, Adams B, Turley R, Augustine C, Tyler D, Ali-Osman F. Mitogen-activated protein kinase (MAPK) hyperactivation and enhanced NRAS expression drive acquired vemurafenib resistance in V600E BRAF melanoma cells. J Biol Chem 2014; 289:27714-26. [PMID: 25063807 PMCID: PMC4183808 DOI: 10.1074/jbc.m113.532432] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 07/15/2014] [Indexed: 01/10/2023] Open
Abstract
Although targeting the V600E activating mutation in the BRAF gene, the most common genetic abnormality in melanoma, has shown clinical efficacy in melanoma patients, response is, invariably, short lived. To better understand mechanisms underlying this acquisition of resistance to BRAF-targeted therapy in previously responsive melanomas, we induced vemurafenib resistance in two V600E BRAF+ve melanoma cell lines, A375 and DM443, by serial in vitro vemurafenib exposure. The resulting approximately 10-fold more vemurafenib-resistant cell lines, A375rVem and D443rVem, had higher growth rates and showed differential collateral resistance to cisplatin, melphalan, and temozolomide. The acquisition of vemurafenib resistance was associated with significantly increased NRAS levels in A375rVem and D443rVem, increased activation of the prosurvival protein, AKT, and the MAPKs, ERK, JNK, and P38, which correlated with decreased levels of the MAPK inhibitor protein, GSTP1. Despite the increased NRAS, whole exome sequencing showed no NRAS gene mutations. Inhibition of all three MAPKs and siRNA-mediated NRAS suppression both reversed vemurafenib resistance significantly in A375rVem and DM443rVem. Together, the results indicate a mechanism of acquired vemurafenib resistance in V600E BRAF+ve melanoma cells that involves increased activation of all three human MAPKs and the PI3K pathway, as well as increased NRAS expression, which, contrary to previous reports, was not associated with mutations in the NRAS gene. The data highlight the complexity of the acquired vemurafenib resistance phenotype and the challenge of optimizing BRAF-targeted therapy in this disease. They also suggest that targeting the MAPKs and/or NRAS may provide a strategy to mitigate such resistance in V600E BRAF+ve melanoma.
Collapse
Affiliation(s)
| | - Gamil Antoun
- the Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | | | - Bartley Adams
- the Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | | - Francis Ali-Osman
- the Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
28
|
Holderfield M, Deuker MM, McCormick F, McMahon M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer 2014; 14:455-67. [PMID: 24957944 PMCID: PMC4250230 DOI: 10.1038/nrc3760] [Citation(s) in RCA: 606] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The identification of mutationally activated BRAF in many cancers altered our conception of the part played by the RAF family of protein kinases in oncogenesis. In this Review, we describe the development of BRAF inhibitors and the results that have emerged from their analysis in both the laboratory and the clinic. We discuss the spectrum of RAF mutations in human cancer and the complex interplay between the tissue of origin and the response to RAF inhibition. Finally, we enumerate mechanisms of resistance to BRAF inhibition that have been characterized and postulate how strategies of RAF pathway inhibition may be extended in scope to benefit not only the thousands of patients who are diagnosed annually with BRAF-mutated metastatic melanoma but also the larger patient population with malignancies harbouring mutationally activated RAF genes that are ineffectively treated with the current generation of BRAF kinase inhibitors.
Collapse
Affiliation(s)
| | | | - Frank McCormick
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| | - Martin McMahon
- Corresponding Authors: Frank McCormick & Martin McMahon, Diller Family Cancer Research Bldg., 1450 Third Street, University of California, San Francisco, CA 94158, USA, &
| |
Collapse
|
29
|
Romano D, Nguyen LK, Matallanas D, Halasz M, Doherty C, Kholodenko BN, Kolch W. Protein interaction switches coordinate Raf-1 and MST2/Hippo signalling. Nat Cell Biol 2014; 16:673-84. [DOI: 10.1038/ncb2986] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 12/19/2022]
|
30
|
"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett 2014; 588:2398-406. [PMID: 24937142 PMCID: PMC4099524 DOI: 10.1016/j.febslet.2014.06.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
The Raf/Mek/Erk signaling pathway, activated downstream of Ras primarily to promote proliferation, represents the best studied of the evolutionary conserved MAPK cascades. The investigation of the pathway has continued unabated since its discovery roughly 30 years ago. In the last decade, however, the identification of unexpected in vivo functions of pathway components, as well as the discovery of Raf mutations in human cancer, the ensuing quest for inhibitors, and the efforts to understand their mechanism of action, have boosted interest tremendously. From this large body of work, protein-protein interaction has emerged as a recurrent, crucial theme. This review focuses on the role of protein complexes in the regulation of the Raf/Mek/Erk pathway and in its cross-talk with other signaling cascades. Mapping these interactions and finding a way of exploiting them for therapeutic purposes is one of the challenges of future molecule-targeted therapy.
Collapse
|
31
|
Cao TV, Hicks MR, Standley PR. In vitro biomechanical strain regulation of fibroblast wound healing. J Osteopath Med 2014; 113:806-18. [PMID: 24174502 DOI: 10.7556/jaoa.2013.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CONTEXT Strain-directed therapy such as vacuum compression and manual manipulative therapies are clinically effective, but their cellular and molecular mechanisms are not well understood. OBJECTIVE To determine the effects of modeled myofascial release (MFR) on fibroblast wound healing and to investigate the potential role of nitric oxide (NO) in mediating these responses. METHODS Using an in vitro scratch wound strain model, the authors investigated human fibroblast wound healing characteristics in response to injurious repetitive motion strain (RMS) and MFR. Secretion of NO was induced with interleukin-1β and sodium nitroprusside and inhibited with NO synthase inhibitor L-N(G)-monomethyl arginine citrate (L-NMMA) to determine the effects of NO on wound healing. Protein microarray was also performed to evaluate the expression of intracellular protein and activation of protein kinase G (PKG), extracellular signal-regulated kinase (ERK1/2), protein kinase C (PKC), and phosphoinositide 3-kinase (PI3K), the downstream effectors in the NO pathway. RESULTS Fibroblasts that received RMS resulted in reduced wound closure rates (vs nonstrain, P<.05), which are partially attenuated by a single dose of MFR. Interleukin-1β and exogenous NO did not appear to have an effect on nonstrained fibroblast wound healing. However, strained fibroblasts appeared to express increased sensitivity to NO. The authors also observed a 12.2% increase in NO secretion, an increase in PKG activation, and a downregulation of PKC and PI3K inhibitory domain in the combined strain group. CONCLUSION If clinically translatable, these data suggest that mechanical strain such as vacuum compression therapy and manual manipulative therapy may modify PKC and PI3K to sensitize fibroblasts to NO and improve wound healing by promoting cell proliferation and migration by means of PKC and PKG signaling.
Collapse
Affiliation(s)
- Thanh V Cao
- University of Arizona College of Medicine-Phoenix, HSEB, Room B558, 435 N 5th St, Phoenix, AZ 85004-2157.
| | | | | |
Collapse
|
32
|
A feedback circuit between miR-133 and the ERK1/2 pathway involving an exquisite mechanism for regulating myoblast proliferation and differentiation. Cell Death Dis 2013; 4:e934. [PMID: 24287695 PMCID: PMC3847338 DOI: 10.1038/cddis.2013.462] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
Abstract
MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis.
Collapse
|
33
|
Abstract
V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) is a key activator of the ERK pathway and is a target for cross-regulation of this pathway by the cAMP signaling system. The cAMP-activated protein kinase, PKA, inhibits Raf-1 by phosphorylation on S259. Here, we show that the cAMP-degrading phosphodiesterase-8A (PDE8A) associates with Raf-1 to protect it from inhibitory phosphorylation by PKA, thereby enhancing Raf-1's ability to stimulate ERK signaling. PDE8A binds to Raf-1 with high (picomolar) affinity. Mapping of the interaction domain on PDE8A using peptide array technology identified amino acids 454-465 as the main binding site, which could be disrupted by mutation. A cell-permeable peptide corresponding to this region disrupted the PDE8A/Raf-1 interaction in cells, thereby reducing ERK activation and the cellular response to EGF. Overexpression of a catalytically inactive PDE8A in cells displayed a dominant negative phenotype on ERK activation. These effects were recapitulated at the organism level in genetically modified (PDE8A(-/-)) mice. Similarly, PDE8 deletion in Drosophila melanogaster reduced basal ERK activation and sensitized flies to stress-induced death. We propose that PDE8A is a physiological regulator of Raf-1 signaling in some cells.
Collapse
|
34
|
Jensen HA, Styskal LE, Tasseff R, Bunaciu RP, Congleton J, Varner JD, Yen A. The Src-family kinase inhibitor PP2 rescues inducible differentiation events in emergent retinoic acid-resistant myeloblastic leukemia cells. PLoS One 2013; 8:e58621. [PMID: 23554907 PMCID: PMC3598855 DOI: 10.1371/journal.pone.0058621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/05/2013] [Indexed: 12/29/2022] Open
Abstract
Retinoic acid is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing maturation in leukemia cells. Using HL60 model human myeloid leukemia cells, where all-trans retinoic acid (RA) induces granulocytic differentiation, we developed two emergent RA-resistant HL60 cell lines which are characterized by loss of RA-inducible G1/G0 arrest, CD11b expression, inducible oxidative metabolism and p47phox expression. However, RA-treated RA-resistant HL60 continue to exhibit sustained MEK/ERK activation, and one of the two sequentially emergent resistant lines retains RA-inducible CD38 expression. Other signaling events that define the wild-type (WT) response are compromised, including c-Raf phosphorylation and increased expression of c-Cbl, Vav1, and the Src-family kinases (SFKs) Lyn and Fgr. As shown previously in WT HL60 cells, we found that the SFK inhibitor PP2 significantly increases G1/G0 cell cycle arrest, CD38 and CD11b expression, c-Raf phosphorylation and expression of the aforementioned regulators in RA-resistant HL60. The resistant cells were potentially incapable of developing inducible oxidative metabolism. These results motivate the concept that RA resistance can occur in steps, wherein growth arrest and other differentiation events may be recovered in both emergent lines. Investigating the mechanistic anomalies in resistant cell lines is of therapeutic significance and helps to mechanistically understand the response to retinoic acid’s biological effects in WT HL60 cells.
Collapse
Affiliation(s)
- Holly A. Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lauren E. Styskal
- Department of Biological Engineering, Cornell University, Ithaca, New York, United States of America
| | - Ryan Tasseff
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Rodica P. Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Johanna Congleton
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Nagasaka K, Seiki T, Yamashita A, Massimi P, Subbaiah VK, Thomas M, Kranjec C, Kawana K, Nakagawa S, Yano T, Taketani Y, Fujii T, Kozuma S, Banks L. A novel interaction between hScrib and PP1γ downregulates ERK signaling and suppresses oncogene-induced cell transformation. PLoS One 2013; 8:e53752. [PMID: 23359326 PMCID: PMC3554735 DOI: 10.1371/journal.pone.0053752] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022] Open
Abstract
Previous studies have shown that the cell polarity regulator hScrib interacts with, and consequently controls, the ERK signaling pathway. This interaction occurs through two well-conserved Kinase Interacting Motifs, which allow hScrib to bind ERK1 directly, resulting in a reduction in the levels of phospho-ERK. This suggests that hScrib might recruit a phosphatase to regulate this signaling pathway. Using a proteomic approach we now show that Protein Phosphatase 1γ (PP1γ) is a major interacting partner of hScrib. This interaction is direct and occurs through a conserved PP1γ interaction motif on the hScrib protein, and this interaction appears to be required for hScrib's ability to downregulate ERK phosphorylation. In addition, hScrib also controls the pattern of PP1γ localization, where loss of hScrib enhances the nuclear translocation of PP1γ. Furthermore, we also show that the ability of hScrib to interact with PP1γ is important for the ability of hScrib to suppress oncogene-induced transformation of primary rodent cells. Taken together, these results demonstrate that hScrib acts as a scaffold to integrate the control of the PP1γ and ERK signaling pathways and explains how disruption of hScrib localisation can contribute towards the development of human malignancy.
Collapse
Affiliation(s)
- Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takayuki Seiki
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Paola Massimi
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy
| | - Vanitha Krishna Subbaiah
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy
| | - Miranda Thomas
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy
| | - Christian Kranjec
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Nakagawa
- Department of Obstetrics and Gynecology, The Teikyo University School of Medicine, Tokyo, Japan
| | - Tetsu Yano
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Taketani
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shiro Kozuma
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Trieste, Italy
| |
Collapse
|
36
|
Deb S, Do H, Byrne D, Jene N, Dobrovic A, Fox SB. PIK3CA mutations are frequently observed in BRCAX but not BRCA2-associated male breast cancer. Breast Cancer Res 2013; 15:R69. [PMID: 23971979 PMCID: PMC3978692 DOI: 10.1186/bcr3463] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/30/2013] [Accepted: 08/23/2013] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Although a substantial proportion of male breast cancers (MBCs) are hereditary, the molecular pathways that are activated are unknown. We therefore examined the frequency and clinicopathological associations of the PIK3CA/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and their regulatory genes in familial MBC. METHODS High resolution melting analysis and confirmatory sequencing was used to determine the presence of somatic mutations in PIK3CA (exon 9 and 20), AKT1 (exon 4), KRAS (exon 2) and BRAF (exon 15) genes in 57 familial MBCs. Further analysis of the PIK3CA/mTOR pathway was performed using immunohistochemistry for the pAKT1, pS6 and p4EBP1 biomarkers. RESULTS PIK3CA somatic mutations were identified in 10.5% (6 of 57) of cases; there were no AKT1, KRAS or BRAF somatic mutations. PIK3CA mutations were significantly more frequent in cancers from BRCAX patients (17.2%, 5/29) than BRCA2 (0%, 0/25) carriers (P = 0.030). Two BRCAX patients had an E547K mutation which has only been reported in one female breast cancer previously. PIK3CA mutation was significantly correlated with positive pS6 (83.3% vs. 32.0%, P = 0.024) and negative p4EBP1 (100% vs. 38.0%, P = 0.006) expression, but not pAKT expression. Expression of nuclear p4EBP1 correlated with BRCA2 mutation carrier status (68.0% vs. 38.7%, P = 0.035). CONCLUSIONS Somatic PIK3CA mutation is present in familial male breast cancer but absent in BRCA2 carriers. The presence of two of the extremely rare E547K PIK3CA mutations in our cohort may have specific relevance in MBCs. Further study of PIK3CA in MBCs, and in particular BRCAX patients, may contribute to further establishing the relevance of specific PIK3CA mutations in MBC aetiology and in the identification of particular patient groups most likely to benefit from therapeutic targeting with the novel PIK3CA inhibitors that are currently in development.
Collapse
Affiliation(s)
- Siddhartha Deb
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
- Department of Pathology and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hongdo Do
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - David Byrne
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Nicholas Jene
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - kConFab Investigators
- Kathleen Cuningham Foundation Consortium for research into Familial Breast Cancer, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Alexander Dobrovic
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
- Department of Pathology and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
- Department of Pathology and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
37
|
Irie A, Harada K, Araki N, Nishimura Y. Phosphorylation of SET protein at Ser171 by protein kinase D2 diminishes its inhibitory effect on protein phosphatase 2A. PLoS One 2012; 7:e51242. [PMID: 23251465 PMCID: PMC3522678 DOI: 10.1371/journal.pone.0051242] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/01/2012] [Indexed: 12/30/2022] Open
Abstract
We previously reported that protein kinase D2 (PKD2) in T cells is promptly activated after T-cell receptor (TCR) stimulation and involved in the activation of interleukin-2 promoter and T cell death, and that one of its candidate substrate is SET protein, a natural inhibitor for protein phosphatase 2A (PP2A). In this study, we investigated the target amino acid residues of SET phosphorylated by PKD2 and the effects of phosphorylation of SET on PP2A phosphatase activity. In vitro kinase assay using various recombinant SET mutants having Ser/Thr to Ala substitutions revealed that Ser171 of SET is one of the sites phosphorylated by PKD2. Recombinant SET with phosphorylation-mimic Ser171 to Glu substitution reduced its inhibitory effects on PP2A phosphatase activity compared with Ser171 to Ala substituted or wild-type SET. In addition, knockdown of PKD2 in Jurkat cells by RNAi or treatment of human CD4(+) T cell clone with the PKD2 inhibitor Gö6976 resulted in reduced PP2A activity after TCR-stimulation judged from phosphorylation status of Tyr307 of the catalytic subunit of PP2A. These results suggest that PKD2 is involved in the regulation of PP2A activity in activated T cells through phosphorylation of Ser171 of SET.
Collapse
Affiliation(s)
- Atsushi Irie
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Kumiko Harada
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | - Yasuharu Nishimura
- Department of Immunogenetics, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
38
|
Gruhle S, Sauter M, Szalay G, Ettischer N, Kandolf R, Klingel K. The prostacyclin agonist iloprost aggravates fibrosis and enhances viral replication in enteroviral myocarditis by modulation of ERK signaling and increase of iNOS expression. Basic Res Cardiol 2012; 107:287. [PMID: 22836587 DOI: 10.1007/s00395-012-0287-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 12/19/2022]
Abstract
Enteroviruses, such as coxsackieviruses of group B (CVB), are able to induce a chronic inflammation of the myocardium, which may finally lead to the loss of functional tissue, remodeling processes and the development of fibrosis, thus affecting the proper contractile function of the heart. In other fibrotic diseases like scleroderma, the prostacyclin agonist iloprost was found to inhibit the extracellular signal-regulated kinase (ERK, p44/42 MAPK), a mitogen-activated protein kinase, and consecutively, the expression of the profibrotic cytokine connective tissue growth factor (CTGF), thereby preventing the development of fibrosis. As CTGF was found to mediate fibrosis in chronic CVB3 myocarditis as well, we evaluated whether the in vivo application of iloprost is capable to reduce the development of ERK/CTGF-mediated fibrosis in enteroviral myocarditis. Unexpectedly, the application of iloprost resulted in a prolonged myocardial inflammation and an aggravated fibrosis and failed to reduce activation of ERK and expression of CTGF at later stages of the disease. In addition, viral replication was found to be increased in iloprost-treated mice. Notably, the expression of cardiac inducible nitric oxide synthase (iNOS), which is known to aggravate myocardial damage in CVB3-infected mice, was strongly enhanced by iloprost. Using cultivated bone marrow macrophages (BMM), we confirmed these results, proving that iloprost potentiates the expression of iNOS mRNA and protein in CVB3-infected and IFN-gamma stimulated BMM. In conclusion, these results suggest a critical reflection of the clinical use of iloprost, especially in patients possibly suffering from an enteroviral myocarditis.
Collapse
Affiliation(s)
- Stefan Gruhle
- Department of Molecular Pathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstrasse 8, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants. Mol Cell Biol 2012; 32:3872-90. [PMID: 22826437 DOI: 10.1128/mcb.00751-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS-RAF-MEK-extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1(D486N). Raf1(D486N/+) (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1(D486N)-expressing cells compared with controls. RAF1(D486N), as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations.
Collapse
|
40
|
Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 2012; 40:139-46. [PMID: 22260680 DOI: 10.1042/bst20110609] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the present paper, we describe multiple levels of cross-talk between the PI3K (phosphoinositide 3-kinase)/Akt and Ras/MAPK (mitogen-activated protein kinase) signalling pathways. Experimental data and computer simulations demonstrate that cross-talk is context-dependent and that both pathways can activate or inhibit each other. Positive influence of the PI3K pathway on the MAPK pathway is most effective at sufficiently low doses of growth factors, whereas negative influence of the MAPK pathway on the PI3K pathway is mostly pronounced at high doses of growth factors. Pathway cross-talk endows a cell with emerging capabilities for processing and decoding signals from multiple receptors activated by different combinations of extracellular cues.
Collapse
|
41
|
Integrin signaling in cancer cell survival and chemoresistance. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:283181. [PMID: 22567280 PMCID: PMC3332161 DOI: 10.1155/2012/283181] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/10/2012] [Indexed: 01/09/2023]
Abstract
Resistance to apoptosis and chemotherapy is a hallmark of cancer cells, and it is a critical factor in cancer recurrence and patient relapse. Extracellular matrix (ECM) via its receptors, the integrins, has emerged as a major pathway contributing to cancer cell survival and resistance to chemotherapy. Several studies over the last decade have demonstrated that ECM/integrin signaling provides a survival advantage to various cancer cell types against numerous chemotherapeutic drugs and against antibody therapy. In this paper, we will discuss the major findings on how ECM/integrin signaling protects tumor cells from drug-induced apoptosis. We will also discuss the potential role of ECM in malignant T-cell survival and in cancer stem cell resistance. Understanding how integrins and their signaling partners promote tumor cell survival and chemoresistance will likely lead to the development of new therapeutic strategies and agents for cancer treatment.
Collapse
|
42
|
Abstract
The target of rapamycin (TOR) is a central cell growth regulator conserved from yeast to mammals. Uncontrolled TOR activation is commonly observed in human cancers. TOR forms two distinct structural and functional complexes, TORC1 and TORC2. TORC1 promotes cell growth and cell size by stimulating protein synthesis. A wide range of signals, including nutrients, energy levels, and growth factors, are known to control TORC1 activity. Among them, amino acids (AA) not only potently activate TORC1 but are also required for TORC1 activation by other stimuli, such as growth factors. The mechanisms of growth factors and cellular energy status in activating TORC1 have been well elucidated, whereas the molecular basis of AA signaling is just emerging. Recent advances in the role of AA signaling on TORC1 activation have revealed key components, including the Rag GTPases, protein kinases, nutrient transporters, and the intracellular trafficking machinery, in relaying AA signals to TORC1 activation.
Collapse
Affiliation(s)
- Joungmok Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
43
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
44
|
Udell CM, Rajakulendran T, Sicheri F, Therrien M. Mechanistic principles of RAF kinase signaling. Cell Mol Life Sci 2011; 68:553-65. [PMID: 20820846 PMCID: PMC11114552 DOI: 10.1007/s00018-010-0520-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/19/2022]
Abstract
The RAF family of kinases are key components acting downstream of receptor tyrosine kinases and cells employ several distinct mechanisms to strictly control their activity. RAF transitions from an inactive state, where the N-terminal regulatory region binds intramolecularly to the C-terminal kinase domain, to an open state capable of executing the phosphoryl transfer reaction. This transition involves changes both within and between the protein domains in RAF. Many different proteins regulate the transition between inactive and active states of RAF, including RAS and KSR, which are arguably the two most prominent regulators of RAF function. Recent developments have added several new twists to our understanding of RAF regulation. Among others, dimerization of the RAF kinase domain is emerging as a crucial step in the RAF activation process. The multitude of regulatory protein-protein interactions involving RAF remains a largely untapped area for therapeutic applications.
Collapse
Affiliation(s)
- Christian M. Udell
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Thanashan Rajakulendran
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Frank Sicheri
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Marc Therrien
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| |
Collapse
|
45
|
Yan L, Mieulet V, Burgess D, Findlay GM, Sully K, Procter J, Goris J, Janssens V, Morrice NA, Lamb RF. PP2A T61 epsilon is an inhibitor of MAP4K3 in nutrient signaling to mTOR. Mol Cell 2010; 37:633-42. [PMID: 20227368 DOI: 10.1016/j.molcel.2010.01.031] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 10/14/2009] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
The mammalian target of rapamycin (mTOR) pathway is activated by a variety of stimuli, including nutrients such as glucose and amino acids. The Ste20 family kinase MAP4K3 is regulated by amino acids and acts upstream of mTORC1. Here we investigate how MAP4K3 activity is regulated by amino acid sufficiency. We identify a transautophosphorylation site in the MAP4K3 kinase activation segment (Ser170) that is required for MAP4K3 activity and its activation of mTORC1 signaling. Following amino acid withdrawal, Ser170 is dephosphorylated via PP2A complexed to PR61 epsilon, a PP2A-targeting subunit. Inhibition of PR61 epsilon expression prevents MAP4K3 Ser170 dephosphorylation and impairs mTORC1 inhibition during amino acid withdrawal. We propose that during amino acid sufficiency Ser170-phosphorylated MAP4K3 activates mTORC1, but that upon amino acid restriction MAP4K3 preferentially interacts with PP2A(T61 epsilon), promoting dephosphorylation of Ser170, MAP4K3 inhibition, and, subsequently, inhibition of mTORC1 signaling.
Collapse
Affiliation(s)
- Lijun Yan
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, AB T6G IZ2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kilili GK, Kyriakis JM. Mammalian Ste20-like kinase (Mst2) indirectly supports Raf-1/ERK pathway activity via maintenance of protein phosphatase-2A catalytic subunit levels and consequent suppression of inhibitory Raf-1 phosphorylation. J Biol Chem 2010; 285:15076-15087. [PMID: 20212043 DOI: 10.1074/jbc.m109.078915] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many tumor suppressor proteins act to blunt the effects of mitogenic signaling pathways. Loss of function mutations in the merlin tumor suppressor underlie neurofibromatosis type 2 (NF2), a familial autosomal dominant cancer syndrome. Studies of Drosophila suggest that Hippo (hpo) is required for inhibition of cell proliferation mediated by dMer, the orthologue of human merlin. Mammalian sterile 20-like kinase-2 (Mst2) is a mammalian Hpo orthologue, and numerous studies implicate Mst2 as a tumor suppressor. Mst2 is negatively regulated by the proto-oncoprotein Raf-1 in a manner independent of the kinase activity of Raf-1. We sought to determine whether, in mammalian cells, merlin could positively regulate Mst2. We also sought to determine whether Mst2, in addition to being negatively regulated by Raf-1, might itself reciprocally regulate Raf-1. In contrast to findings from Drosophila, we find no evidence that mammalian merlin positively regulates mammalian Mst2. Instead, surprisingly, RNA interference silencing of Mst2 leads to elevated inhibitory phosphorylation of Raf-1 at Ser-259 and impaired Raf-1 kinase activity. Consequent to this, ERK pathway activation and cell proliferation are attenuated. Phosphatase-2A (PP2A) dephosphorylates Raf-1 Ser-259 in response to mitogens. Interestingly RNA interference silencing of Mst2 triggers a striking proteasome-dependent decrease in the levels of the catalytic subunit of PP2A (PP2A-C). A similar effect is achieved upon silencing of large tumor suppressor (LATS)-1 and LATS2, direct substrates of Mst2. Our studies reveal a more complex role for Mst2 than previously thought. The Mst2 --> LATS1/2 pathway, by maintaining PP2A-C levels, may, in some situations, positively affect mitogenic signaling.
Collapse
Affiliation(s)
- Geoffrey K Kilili
- Molecular Cardiology Research Institute, Tufts Medical Center, and the Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts 02111
| | - John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, and the Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts 02111.
| |
Collapse
|
47
|
Kaleem A, Ahmad I, Walker-Nasir E, Hoessli DC, Shakoori AR. Effect on the Ras/Raf signaling pathway of post-translational modifications of neurofibromin: in silico study of protein modification responsible for regulatory pathways. J Cell Biochem 2010; 108:816-24. [PMID: 19718661 DOI: 10.1002/jcb.22301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mapping and chemical characterization of post-translational modifications (PTMs) in proteins are critical to understand the regulatory mechanisms involving modified proteins and their role in disease. Neurofibromatosis type 1 (NF-1) is an autosomal dominantly inherited disorder, where NF1 mutations usually result in a reduced level of the tumor suppressor protein, neurofibromin (NF). NF is a multifunctional cytoplasmic protein that regulates microtubule dynamics and participates in several signaling pathways, particularly the RAS signaling pathway. NF is a Ras GTPase-activating protein (GAP) that prevents oncogenesis by converting GTP-Ras to GDP-Ras. This function of NF is regulated by phosphorylation. Interplay of phosphorylation with O-GlcNAc modification on the same or vicinal Ser/Thr residues, the Yin Yang sites, is well known in cytoplasmic and nuclear proteins. The dynamic aspects of PTMs and their interplay being difficult to follow in vivo, we undertook this in silico work to predict and define the possible role of Yin Yang sites in NF-1. Interplay of phosphorylation and O-GlcNAc modification is proposed as a mechanism controlling the Ras signaling pathway.
Collapse
Affiliation(s)
-
- Institute of Molecular Sciences and Bioinformatics, Lahore, Pakistan.
| | | | | | | | | | | |
Collapse
|
48
|
Niault T, Sobczak I, Meissl K, Weitsman G, Piazzolla D, Maurer G, Kern F, Ehrenreiter K, Hamerl M, Moarefi I, Leung T, Carugo O, Ng T, Baccarini M. From autoinhibition to inhibition in trans: the Raf-1 regulatory domain inhibits Rok-alpha kinase activity. ACTA ACUST UNITED AC 2010; 187:335-42. [PMID: 19948477 PMCID: PMC2779248 DOI: 10.1083/jcb.200906178] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanism by which Raf-1 antagonizes Rok-α to promote migration and tumorigenesis is revealed. The activity of Raf-1 and Rok-α kinases is regulated by intramolecular binding of the regulatory region to the kinase domain. Autoinhibition is relieved upon binding to the small guanosine triphosphatases Ras and Rho. Downstream of Ras, Raf-1 promotes migration and tumorigenesis by antagonizing Rok-α, but the underlying mechanism is unknown. In this study, we show that Rok-α inhibition by Raf-1 relies on an intermolecular interaction between the Rok-α kinase domain and the cysteine-rich Raf-1 regulatory domain (Raf-1reg), which is similar to Rok-α's own autoinhibitory region. Thus, Raf-1 mediates Rok-α inhibition in trans, which is a new concept in kinase regulation. This mechanism is physiologically relevant because Raf-1reg is sufficient to rescue all Rok-α–dependent defects of Raf-1–deficient cells. Downstream of Ras and Rho, the Raf-1–Rok-α interaction represents a novel paradigm of pathway cross talk that contributes to tumorigenesis and cell motility.
Collapse
Affiliation(s)
- Théodora Niault
- Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Some 25 years ago, Raf was discovered as the transforming principle shared by a murine sarcoma and an avian carcinoma virus. Thus, Raf and tumorigenesis have been connected from the very beginning. Ten years later, the work of many groups instated Raf as the link between Ras, the oncogene most frequently mutated in human cancers, and the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK/ERK) module, which with its manifold substrates can contribute to different aspects of carcinogenesis. Finally, the discovery of activating B-Raf mutations in a subset of human cancers, notably melanomas, conclusively established Raf as a major player in tumor development. Recent studies in animal models now show that endogenous C-Raf is essential for the development and maintenance of Ras-induced epidermal tumors. Surprisingly, the role of C-Raf in this case is not that of an mitogen-activated protein kinase activator, but rather that of an endogenous inhibitor of Rho signaling, expanding the range of tumor-related Raf targets. This review focuses on old and new targets of Raf in tumorigenesis.
Collapse
Affiliation(s)
- Théodora S Niault
- Center for Molecular Biology, Max F Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030 Vienna, Austria
| | | |
Collapse
|
50
|
Abstract
More than 25 years have passed since activating mutations in Ras genes were identified in DNA from human tumors. In this time, it has been established beyond doubt that these mutations play a direct role in causing cancer, and do so in collaboration with a number of other oncogenes and tumor suppressors. Oncogenic mutant Ras proteins are resistant to downregulation by GAP-mediated hydrolysis of bound GTP, and therefore signal persistently. Efforts to develop therapies that block Ras oncoprotein function directly have failed. The high affinity of Ras proteins for GTP has discouraged attempts to identify GTP-analogs. Ras processing enzymes have been targeted, but unfortunately, K-Ras, the Ras protein that plays the major role in human cancer, has proven refractory to these approaches. Further progress has been made with drugs that block downstream signaling: the approved drug Sorafenib inhibits Raf kinase, and its clinical benefits in liver cancer are greatest in patients in which the mitogen activated protein kinase (MAPK) signaling pathway is hyperactive. Other Raf kinase inhibitors, as well as drugs that block mitogen-activated protein kinase / extracellular signal-regulated kinase kinase (MEK) and various steps in the PI 3' kinase pathway, are under development. Here we will discuss the complexities of Ras signaling and their effects on targeting the Ras pathway in the future.
Collapse
Affiliation(s)
- Amy Young
- UCSF Helen Diller Family Comprehensive Cancer Center and Cancer Research Institute, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|