1
|
Quiroga I, Hernández-González JA, Bautista-Rodríguez E, Benítez-Rojas AC. Exploring the Structurally Conserved Regions and Functional Significance in Bacterial N-Terminal Nucleophile (Ntn) Amide-Hydrolases. Int J Mol Sci 2024; 25:6850. [PMID: 38999960 PMCID: PMC11241749 DOI: 10.3390/ijms25136850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.
Collapse
Affiliation(s)
- Israel Quiroga
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Juan Andrés Hernández-González
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Elizabeth Bautista-Rodríguez
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
- Department of Health Sciences, Universidad Autónoma de Tlaxcala, Sur 11, Barrio de Guardia, Zacatelco 90070, Mexico
| | - Alfredo C Benítez-Rojas
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| |
Collapse
|
2
|
Sneha, Pandey JP, Pandey DM. Evaluating the role of trypsin in silk degumming: An in silico approach. J Biotechnol 2022; 359:35-47. [PMID: 36126805 DOI: 10.1016/j.jbiotec.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
The trypsin being universal enzyme forming family of proteases catalyzes the hydrolysis of proteins into amino acids and regenerates the serine hydroxyl an active site. The trypsin enzyme from D. saccharalis, uses sericin as its preferred substrate. Presence of catalytic triad (serine, aspartic acid and histidine) at the substrate binding site of this enzyme is very important for the catalytic activity. In the current study, the interacting mechanism between the substrate sericin protein and enzyme trypsin protein were explored by integrating various computational approaches including physico-chemical properties, biophysical properties, dynamics, gene ontology, molecular docking, protein - protein interactions, binding free energy calculation and structural motifs were studied. The evolutionary study performed by MEGA X showed that trypsin protein sequence (ALE15212.1) is closely related to cocoonase protein sequence (ADG26770.1) from Antheraea pernyi. 3-D models of trypsin and sericin proteins were predicted using I-TASSER and further validated by PROCHECK, and ProSAweb softwares. The predicted trypsin structure model was assigned E.C. no. 3.4.21.4 which refers hydrolytic mechanism. Gene Ontology predicted by QuickGO showed that trypsin has serine hydrolase activity (GO: 00017171), and part of proteolysis (GO: 0006508) as well as protein metabolic process (GO:0019538) actvity. Molecular docking studies between trypsin and sericin proteins were conducted by the HADDOCK 2.4 having best docked protein complex with Z-score - 1.9. 2D and 3D protein-protein interaction was performed with LIGPLOT+ and HAWKDOCK, PDBsum, respectively. The amino acid residues interacting across proteins interface are sericin_chain A representing "Ser133, Tyr214, Thr188, Thr243, Ser225, Ser151, Ser156, His294, Arg293, Gly296″ and trypsin_chain B "Lys120, Tyr246, Asn119, Glu239, Ser62, Tyr194, Ile197, Ser171, Tyr169, Gly170″. Based on our results trypsin shows similarity with cocoonase and presumably trypsin can be used as an alternative source in cocoon degumming.
Collapse
Affiliation(s)
- Sneha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Jay Prakash Pandey
- Central Tasar Research and Training Institute, Piska-Nagri, Ranchi, Jharkhand 835303, India.
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| |
Collapse
|
3
|
Koeller CM, Smith TK, Gulick AM, Bangs JD. p67: a cryptic lysosomal hydrolase in Trypanosoma brucei? Parasitology 2021; 148:1271-1276. [PMID: 33070788 PMCID: PMC8053727 DOI: 10.1017/s003118202000195x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
p67 is a type I transmembrane glycoprotein of the terminal lysosome of African trypanosomes. Its biosynthesis involves transport of an initial gp100 ER precursor to the lysosome, followed by cleavage to N-terminal (gp32) and C-terminal (gp42) subunits that remain non-covalently associated. p67 knockdown is lethal, but the only overt phenotype is an enlarged lysosome (~250 to >1000 nm). Orthologues have been characterized in Dictyostelium and mammals. These have processing pathways similar to p67, and are thought to have phospholipase B-like (PLBL) activity. The mouse PLBD2 crystal structure revealed that the PLBLs represent a subgroup of the larger N-terminal nucleophile (NTN) superfamily, all of which are hydrolases. NTNs activate by internal autocleavage mediated by a nucleophilic residue, i.e. Cys, Ser or Thr, on the upstream peptide bond to form N-terminal α (gp32) and C-terminal β (gp42) subunits that remain non-covalently associated. The N-terminal residue of the β subunit is then catalytic in subsequent hydrolysis reactions. All PLBLs have a conserved Cys/Ser dipeptide at the α/β junction (Cys241/Ser242 in p67), mutation of which renders p67 non-functional in RNAi rescue assays. p67 orthologues are found in many clades of parasitic protozoa, thus p67 is the founding member of a group of hydrolases that likely play a role broadly in the pathogenesis of parasitic infections.
Collapse
Affiliation(s)
- Carolina M. Koeller
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY14203, USA
| | - Terry K. Smith
- Schools of Biology & Chemistry, BSRC, University of St. Andrews, St Andrews, FifeKY16 9ST, UK
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY14203, USA
| | - James D. Bangs
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY14203, USA
| |
Collapse
|
4
|
Cheng YN, Qiu S, Cheng F, Weng CY, Wang YJ, Zheng YG. Enhancing Catalytic Efficiency of an Actinoplanes utahensis Echinocandin B Deacylase through Random Mutagenesis and Site-Directed Mutagenesis. Appl Biochem Biotechnol 2019; 190:1257-1270. [PMID: 31741208 DOI: 10.1007/s12010-019-03170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
Abstract
Echinocandin B deacylase (EBDA), from Actinoplanes utahensis ZJB-08196, is capable of cleaving the linoleoyl group from echinocandin B (ECB), forming the echinocandin B nucleus (ECBN), which is a key precursor of semisynthetic antifungal antibiotics. In the present study, molecular evolution of AuEBDA by random mutagenesis combined with site-directed mutagenesis (SDM) and screening was performed. Random mutagenesis on the wild-type (WT) AuEBDA generated two beneficial substitutions of G287Q, R527V. The "best" variant AuEBDA-G287Q/R527V was obtained by combining G287Q with R527V through SDM, which was most active at 35 °C, pH 7.5, with Km and vmax values of 0.68 mM and 395.26 U/mg, respectively. Mutation of G287Q/R527V markedly increased the catalytic efficiency kcat/Km by 290% compared with the WT-AuEBDA.
Collapse
Affiliation(s)
- Ying-Nan Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Shuai Qiu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Chun-Yue Weng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China.
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
5
|
Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci U S A 2018; 115:E10032-E10040. [PMID: 30301806 DOI: 10.1073/pnas.1811759115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.
Collapse
|
6
|
Gebai A, Gorelik A, Li Z, Illes K, Nagar B. Structural basis for the activation of acid ceramidase. Nat Commun 2018; 9:1621. [PMID: 29692406 PMCID: PMC5915598 DOI: 10.1038/s41467-018-03844-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/14/2018] [Indexed: 01/21/2023] Open
Abstract
Acid ceramidase (aCDase, ASAH1) hydrolyzes lysosomal membrane ceramide into sphingosine, the backbone of all sphingolipids, to regulate many cellular processes. Abnormal function of aCDase leads to Farber disease, spinal muscular atrophy with progressive myoclonic epilepsy, and is associated with Alzheimer’s, diabetes, and cancer. Here, we present crystal structures of mammalian aCDases in both proenzyme and autocleaved forms. In the proenzyme, the catalytic center is buried and protected from solvent. Autocleavage triggers a conformational change exposing a hydrophobic channel leading to the active site. Substrate modeling suggests distinct catalytic mechanisms for substrate hydrolysis versus autocleavage. A hydrophobic surface surrounding the substrate binding channel appears to be a site of membrane attachment where the enzyme accepts substrates facilitated by the accessory protein, saposin-D. Structural mapping of disease mutations reveals that most would destabilize the protein fold. These results will inform the rational design of aCDase inhibitors and recombinant aCDase for disease therapeutics. Acid ceramidase (aCDase) hydrolyzes lysosomal membrane ceramide into sphingosine and its dysfunction leads to a variety of disease phenotypes. Here, the authors present structures of aCDase in its proenzyme and autocleaved forms, which provides insight into its mechanism of action.
Collapse
Affiliation(s)
- Ahmad Gebai
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Alexei Gorelik
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Zixian Li
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Katalin Illes
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
7
|
Bifunctional quorum-quenching and antibiotic-acylase MacQ forms a 170-kDa capsule-shaped molecule containing spacer polypeptides. Sci Rep 2017; 7:8946. [PMID: 28827579 PMCID: PMC5566955 DOI: 10.1038/s41598-017-09399-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Understanding the molecular mechanisms of bacterial antibiotic resistance will help prepare against further emergence of multi-drug resistant strains. MacQ is an enzyme responsible for the multi-drug resistance of Acidovorax sp. strain MR-S7. MacQ has acylase activity against both N-acylhomoserine lactones (AHLs), a class of signalling compounds involved in quorum sensing, and β-lactam antibiotics. Thus, MacQ is crucial as a quencher of quorum sensing as well as in conferring antibiotic resistance in Acidovorax. Here, we report the X-ray structures of MacQ in ligand-free and reaction product complexes. MacQ forms a 170-kDa capsule-shaped molecule via face-to-face interaction with two heterodimers consisting of an α-chain and a β-chain, generated by the self-cleaving activity of a precursor polypeptide. The electron density of the spacer polypeptide in the hollow of the molecule revealed the close orientation of the peptide-bond atoms of Val20SP-Gly21SP to the active-site, implying a role of the residues in substrate binding. In mutational analyses, uncleaved MacQ retained degradation activity against both AHLs and penicillin G. These results provide novel insights into the mechanism of self-cleaving maturation and enzymatic function of N-terminal nucleophile hydrolases.
Collapse
|
8
|
Pica A, Chi MC, Chen YY, d'Ischia M, Lin LL, Merlino A. The maturation mechanism of γ-glutamyl transpeptidases: Insights from the crystal structure of a precursor mimic of the enzyme from Bacillus licheniformis and from site-directed mutagenesis studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:195-203. [PMID: 26536828 DOI: 10.1016/j.bbapap.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023]
Abstract
γ-Glutamyl transpeptidases (γ-GTs) are members of N-terminal nucleophile hydrolase superfamily. They are synthetized as single-chain precursors, which are then cleaved to form mature enzymes. Basic aspects of autocatalytic processing of these pro-enzymes are still unknown. Here we describe the X-ray structure of the precursor mimic of Bacillus licheniformis γ-GT (BlGT), obtained by mutating catalytically important threonine to alanine (T399A-BlGT), and report results of autoprocessing of mutants of His401, Thr415, Thr417, Glu419 and Arg571. Data suggest that Thr417 is in a competent position to activate the catalytic threonine (Thr399) for nucleophilic attack of the scissile peptide bond and that Thr415 plays a major role in assisting the process. On the basis of these new structural results, a possible mechanism of autoprocessing is proposed. This mechanism, which guesses the existence of a six-membered transition state involving one carbonyl and two hydroxyl groups, is in agreement with all the available experimental data collected on γ-GTs from different species and with our new Ala-scanning mutagenesis data.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy; Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone, 16, Naples 80133, Italy
| | - Meng-Chun Chi
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Yi-Yu Chen
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy
| | - Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, Naples I-80126, Italy; Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone, 16, Naples 80133, Italy.
| |
Collapse
|
9
|
Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity. Biochem J 2013; 451:217-26. [DOI: 10.1042/bj20121715] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of the wild-type form of glutaryl-7-ACA (7-aminocephalosporanic acid) acylase from Pseudomonas N176 and a double mutant of the protein (H57βS/H70βS) that displays enhanced catalytic efficiency on cephalosporin C over glutaryl-7-aminocephalosporanic acid has been determined. The structures show a heterodimer made up of an α-chain (229 residues) and a β-chain (543 residues) with a deep cavity, which constitutes the active site. Comparison of the wild-type and mutant structures provides insights into the molecular reasons for the observed enhanced specificity on cephalosporin C over glutaryl-7-aminocephalosporanic acid and offers the basis to evolve a further improved enzyme variant. The nucleophilic catalytic serine residue, Ser1β, is situated at the base of the active site cavity. The electron density reveals a ligand covalently bound to the catalytic serine residue, such that a tetrahedral adduct is formed. This is proposed to mimic the transition state of the enzyme for both the maturation step and the catalysis of the substrates. A view of the transition state configuration of the enzyme provides important insights into the mechanism of substrate binding and catalysis.
Collapse
|
10
|
Dutta A, Katarkar A, Chaudhuri K. In-silico structural and functional characterization of a V. cholerae O395 hypothetical protein containing a PDZ1 and an uncommon protease domain. PLoS One 2013; 8:e56725. [PMID: 23441214 PMCID: PMC3575494 DOI: 10.1371/journal.pone.0056725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/14/2013] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae, the causative agent of epidemic cholera, has been a constant source of concern for decades. It has constantly evolved itself in order to survive the changing environment. Acquisition of new genetic elements through genomic islands has played a major role in its evolutionary process. In this present study a hypothetical protein was identified which was present in one of the predicted genomic island regions of the large chromosome of V. cholerae O395 showing a strong homology with a conserved phage encoded protein. In-silico physicochemical analysis revealed that the hypothetical protein was a periplasmic protein. Homology modeling study indicated that the hypothetical protein was an unconventional and atypical serine protease belonging to HtrA protein family. The predicted 3D-model of the hypothetical protein revealed a catalytic centre serine utilizing a single catalytic residue for proteolysis. The predicted catalytic triad may help to deduce the active site for the recruitment of the substrate for proteolysis. The active site arrangements of this predicted serine protease homologue with atypical catalytic triad is expected to allow these proteases to work in different environments of the host.
Collapse
Affiliation(s)
- Avirup Dutta
- CSIR-SRF, Molecular and Human Genetics Division, CSIR - Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Atul Katarkar
- ICMR-SRF, Molecular and Human Genetics Division, CSIR - Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Keya Chaudhuri
- Chief Scientist, Molecular and Human Genetics Division, and Head Academic Affairs Division, CSIR - Indian Institute of Chemical Biology, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
11
|
Pollegioni L, Rosini E, Molla G. Cephalosporin C acylase: dream and(/or) reality. Appl Microbiol Biotechnol 2013; 97:2341-55. [PMID: 23417342 DOI: 10.1007/s00253-013-4741-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 01/24/2013] [Indexed: 11/30/2022]
Abstract
Cephalosporins currently constitute the most widely prescribed class of antibiotics and are used to treat diseases caused by both Gram-positive and Gram-negative bacteria. Cephalosporins contain a 7-aminocephalosporanic acid (7-ACA) nucleus which is derived from cephalosporin C (CephC). The 7-ACA nucleus is not sufficiently potent for clinical use; however, a series of highly effective antibiotic agents could be produced by modifying the side chains linked to the 7-ACA nucleus. The industrial production of higher-generation semi-synthetic cephalosporins starts from 7-ACA, which is obtained by deacylation of the naturally occurring antibiotic CephC. CephC can be converted to 7-ACA either chemically or enzymatically using D-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase. Both these methods show limitation, including the production of toxic waste products (chemical process) and the expense (the enzymatic one). In order to circumvent these problems, attempts have been undertaken to design a single-step means of enzymatically converting CephC to 7-ACA in the course of the past 10 years. The most suitable approach is represented by engineering the activity of a known glutaryl-7-aminocephalosporanic acid acylase such that it will bind and deacylate CephC more preferentially over glutaryl-7-aminocephalosporanic acid. Here, we describe the state of the art in the production of an effective and specific CephC acylase.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy.
| | | | | |
Collapse
|
12
|
Heck T, Geueke B, Kohler HPE. Bacterialβ-Aminopeptidases: Structural Insights and Applications for Biocatalysis. Chem Biodivers 2012; 9:2388-409. [DOI: 10.1002/cbdv.201200305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 12/12/2022]
|
13
|
Buller AR, Labonte JW, Freeman MF, Wright NT, Schildbach JF, Townsend CA. Autoproteolytic activation of ThnT results in structural reorganization necessary for substrate binding and catalysis. J Mol Biol 2012; 422:508-18. [PMID: 22706025 PMCID: PMC3428426 DOI: 10.1016/j.jmb.2012.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 11/01/2022]
Abstract
cis-Autoproteolysis is a post-translational modification necessary for the function of ThnT, an enzyme involved in the biosynthesis of the β-lactam antibiotic thienamycin. This modification generates an N-terminal threonine nucleophile that is used to hydrolyze the pantetheinyl moiety of its natural substrate. We determined the crystal structure of autoactivated ThnT to 1.8Å through X-ray crystallography. Comparison to a mutationally inactivated precursor structure revealed several large conformational rearrangements near the active site. To probe the relevance of these transitions, we designed a pantetheine-like chloromethyl ketone inactivator and co-crystallized it with ThnT. Although this class of inhibitor has been in use for several decades, the mode of inactivation had not been determined for an enzyme that uses an N-terminal nucleophile. The co-crystal structure revealed the chloromethyl ketone bound to the N-terminal nucleophile of ThnT through an ether linkage, and analysis suggests inactivation through a direct displacement mechanism. More importantly, this inactivated complex shows that three regions of ThnT that are critical to the formation of the substrate binding pocket undergo rearrangement upon autoproteolysis. Comparison of ThnT with other autoproteolytic enzymes of disparate evolutionary lineage revealed a high degree of similarity within the proenzyme active site, reflecting shared chemical constraints. However, after autoproteolysis, many enzymes, like ThnT, are observed to rearrange in order to accommodate their specific substrate. We propose that this is a general phenomenon, whereby autoprocessing systems with shared chemistry may possess similar structural features that dissipate upon rearrangement into a mature state.
Collapse
Affiliation(s)
- Andrew R. Buller
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason W. Labonte
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael F. Freeman
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nathan T. Wright
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joel F. Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Craig A. Townsend
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
14
|
Insights into cis-autoproteolysis reveal a reactive state formed through conformational rearrangement. Proc Natl Acad Sci U S A 2012; 109:2308-13. [PMID: 22308359 DOI: 10.1073/pnas.1113633109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ThnT is a pantetheine hydrolase from the DmpA/OAT superfamily involved in the biosynthesis of the β-lactam antibiotic thienamycin. We performed a structural and mechanistic investigation into the cis-autoproteolytic activation of ThnT, a process that has not previously been subject to analysis within this superfamily of enzymes. Removal of the γ-methyl of the threonine nucleophile resulted in a rate deceleration that we attribute to a reduction in the population of the reactive rotamer. This phenomenon is broadly applicable and constitutes a rationale for the evolutionary selection of threonine nucleophiles in autoproteolytic systems. Conservative substitution of the nucleophile (T282C) allowed determination of a 1.6-Å proenzyme ThnT crystal structure, which revealed a level of structural flexibility not previously observed within an autoprocessing active site. We assigned the major conformer as a nonreactive state that is unable to populate a reactive rotamer. Our analysis shows the system is activated by a structural rearrangement that places the scissile amide into an oxyanion hole and forces the nucleophilic residue into a forbidden region of Ramachandran space. We propose that conformational strain may drive autoprocessing through the destabilization of nonproductive states. Comparison of our data with previous reports uncovered evidence that many inactivated structures display nonreactive conformations. For penicillin and cephalosporin acylases, this discrepancy between structure and function may be resolved by invoking the presence of a hidden conformational state, similar to that reported here for ThnT.
Collapse
|
15
|
Yin J, Deng Z, Zhao G, Huang X. The N-terminal nucleophile serine of cephalosporin acylase executes the second autoproteolytic cleavage and acylpeptide hydrolysis. J Biol Chem 2011; 286:24476-86. [PMID: 21576250 DOI: 10.1074/jbc.m111.242313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cephalosporin acylase (CA) precursor is translated as a single polypeptide chain and folds into a self-activating pre-protein. Activation requires two peptide bond cleavages that excise an internal spacer to form the mature αβ heterodimer. Using Q-TOF LC-MS, we located the second cleavage site between Glu(159) and Gly(160), and detected the corresponding 10-aa spacer (160)GDPPDLADQG(169) of CA mutants. The site of the second cleavage depended on Glu(159): moving Glu into the spacer or removing 5-10 residues from the spacer sequence resulted in shorter spacers with the cleavage at the carboxylic side of Glu. The mutant E159D was cleaved more slowly than the wild-type, as were mutants G160A and G160L. This allowed kinetic measurements showing that the second cleavage reaction was a first-order, intra-molecular process. Glutaryl-7-aminocephalosporanic acid is the classic substrate of CA, in which the N-terminal Ser(170) of the β-subunit, is the nucleophile. Glu and Asp resemble glutaryl, suggesting that CA might also remove N-terminal Glu or Asp from peptides. This was indeed the case, suggesting that the N-terminal nucleophile also performed the second proteolytic cleavage. We also found that CA is an acylpeptide hydrolase rather than a previously expected acylamino acid acylase. It only exhibited exopeptidase activity for the hydrolysis of an externally added peptide, supporting the intra-molecular interaction. We propose that the final CA activation is an intra-molecular process performed by an N-terminal nucleophile, during which large conformational changes in the α-subunit C-terminal region are required to bridge the gap between Glu(159) and Ser(170).
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | |
Collapse
|
16
|
Chang HP, Liang WC, Lyu RC, Chi MC, Wang TF, Su KL, Hung HC, Lin LL. Effects of C-terminal truncation on autocatalytic processing of Bacillus licheniformis gamma-glutamyl transpeptidase. BIOCHEMISTRY (MOSCOW) 2010; 75:919-29. [PMID: 20673217 DOI: 10.1134/s0006297910070151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the C-terminal region of Bacillus licheniformis gamma-glutamyl transpeptidase (BlGGT) was investigated by deletion analysis. Seven C-terminally truncated BlGGTs lacking 581-585, 577-585, 576-585, 566-585, 558-585, 523-585, and 479-585 amino acids, respectively, were generated by site-directed mutagenesis. Deletion of the last nine amino acids had no appreciable effect on the autocatalytic processing of the enzyme, and the engineered protein was active towards the synthetic substrate L-gamma-glutamyl-p-nitroanilide. However, a further deletion to Val576 impaired the autocatalytic processing. In vitro maturation experiments showed that the truncated BlGGT precursors, pro-Delta(576-585), pro-Delta(566-585), and pro-Delta(558-585), could partially precede a time-dependent autocatalytic process to generate the L- and S-subunits, and these proteins showed a dramatic decrease in catalytic activity with respect to the wild-type enzyme. The parental enzyme (BlGGT-4aa) and BlGGT were unfolded biphasically by guanidine hydrochloride (GdnCl), but Delta(577-585), Delta(576-585), Delta(566-585), Delta(558-585), Delta(523-585), and Delta(479-585) followed a monophasic unfolding process and showed a sequential reduction in the GdnCl concentration corresponding to half effect and DeltaG(0) for the unfolding. BlGGT-4aa and BlGGT sedimented at ~4.85 S and had a heterodimeric structure of approximately 65.23 kDa in solution, and this structure was conserved in all of the truncated proteins. The frictional ratio (f/f(o)) of BlGGT-4aa, BlGGT, Delta(581-585), and Delta(577-585) was 1.58, 1.57, 1.46, and 1.39, respectively, whereas the remaining enzymes existed exclusively as precursor form with a ratio of less than 1.18. Taken together, these results provide direct evidence for the functional role of the C-terminal region in the autocatalytic processing of BlGGT.
Collapse
Affiliation(s)
- Hui-Ping Chang
- Department of Applied Chemistry, National Chiayi University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Guo HC. Crystallographic snapshot of glycosylasparaginase precursor poised for autoprocessing. J Mol Biol 2010; 403:120-130. [PMID: 20800597 DOI: 10.1016/j.jmb.2010.08.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
Glycosylasparaginase belongs to a family of N-terminal nucleophile hydrolases that autoproteolytically generate their mature enzymes from single-chain protein precursors. Previously, based on a precursor structure paused at pre-autoproteolysis stage by a reversible inhibitor (glycine), we proposed a mechanism of intramolecular autoproteolysis. A key structural feature, a highly strained conformation at the scissile peptide bond, had been identified and was hypothesized to be critical for driving autoproteolysis through an N-O acyl shift. To examine this "twist-and-break" hypothesis, we report here a 1. 9-Å-resolution structure of an autoproteolysis-active precursor (a T152C mutant) that is free of inhibitor or ligand and is poised to undergo autoproteolysis. The current crystallographic study has provided direct evidence for the natural conformation of the glycosylasparaginase autocatalytic site without influence from any inhibitor or ligand. This finding has confirmed our previous proposal that conformational strain is an intrinsic feature of an active precursor.
Collapse
Affiliation(s)
- Yeming Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526, USA
| | - Hwai-Chen Guo
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526, USA.
| |
Collapse
|
18
|
Bokhove M, Yoshida H, Hensgens CMH, van der Laan JM, Sutherland JD, Dijkstra BW. Structures of an isopenicillin N converting Ntn-hydrolase reveal different catalytic roles for the active site residues of precursor and mature enzyme. Structure 2010; 18:301-8. [PMID: 20223213 DOI: 10.1016/j.str.2010.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/06/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
Penicillium chrysogenum Acyl coenzyme A:isopenicillin N acyltransferase (AT) performs the last step in the biosynthesis of hydrophobic penicillins, exchanging the hydrophilic side chain of a precursor for various hydrophobic side chains. Like other N-terminal nucleophile hydrolases AT is produced as an inactive precursor that matures upon posttranslational cleavage. The structure of a Cys103Ala precursor mutant shows that maturation is autoproteolytic, initiated by Cys103 cleaving its preceding peptide bond. The crystal structure of the mature enzyme shows that after autoproteolysis residues 92-102 fold outwards, exposing a buried pocket. This pocket is structurally and chemically flexible and can accommodate substrates of different size and polarity. Modeling of a substrate-bound state indicates the residues important for catalysis. Comparison of the proposed autoproteolytic and substrate hydrolysis mechanisms shows that in both events the same catalytic residues are used, but that they perform different roles in catalysis.
Collapse
Affiliation(s)
- Marcel Bokhove
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 4, Groningen, Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci U S A 2009; 107:686-91. [PMID: 20080736 DOI: 10.1073/pnas.0911839107] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many Gram-negative pathogens, their virulent behavior is regulated by quorum sensing, in which diffusible signals such as N-acyl homoserine lactones (AHLs) act as chemical messaging compounds. Enzymatic degradation of these diffusible signals by, e.g., lactonases or amidohydrolases abolishes AHL regulated virulence, a process known as quorum quenching. Here we report the first crystal structure of an AHL amidohydrolase, the AHL acylase PvdQ from Pseudomonas aeruginosa. PvdQ has a typical alpha/beta heterodimeric Ntn-hydrolase fold, similar to penicillin G acylase and cephalosporin acylase. However, it has a distinct, unusually large, hydrophobic binding pocket, ideally suited to recognize C12 fatty acid-like chains of AHLs. Binding of a C12 fatty acid or a 3-oxo-C12 fatty acid induces subtle conformational changes to accommodate the aliphatic chain. Furthermore, the structure of a covalent ester intermediate identifies Serbeta1 as the nucleophile and Asnbeta269 and Valbeta70 as the oxyanion hole residues in the AHL degradation process. Our structures show the versatility of the Ntn-hydrolase scaffold and can serve as a structural paradigm for Ntn-hydrolases with similar substrate preference. Finally, the quorum-quenching capabilities of PvdQ may be utilized to suppress the quorum-sensing machinery of pathogens.
Collapse
|
20
|
Cho KJ, Kim JK, Lee JH, Shin HJ, Park SS, Kim KH. Structural features of cephalosporin acylase reveal the basis of autocatalytic activation. Biochem Biophys Res Commun 2009; 390:342-8. [PMID: 19800869 DOI: 10.1016/j.bbrc.2009.09.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Cephalosporin acylase (CA), a member of the N-terminal nucleophile hydrolase family, is activated through two steps of intramolecular autoproteolysis, the first mediated by a serine residue, and the second by a glutamate, which releases the pro-segment and produces an active enzyme. In this study, we have determined the crystal structures of mutants which could affect primary or secondary auto-cleavage and of sequential intermediates of a slow-processing mutant at 2.0-2.5A resolutions. The pro-segments of the mutants undergo dynamic conformational changes during activation and adopt surprisingly different loop conformations from one another. However, the autoproteolytic site was found to form a catalytically competent conformation with a solvent water molecule, which was essentially conserved in the CA mutants.
Collapse
Affiliation(s)
- Ki Joon Cho
- Department of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Lakomek K, Dickmanns A, Kettwig M, Urlaub H, Ficner R, Lübke T. Initial insight into the function of the lysosomal 66.3 kDa protein from mouse by means of X-ray crystallography. BMC STRUCTURAL BIOLOGY 2009; 9:56. [PMID: 19706171 PMCID: PMC2739207 DOI: 10.1186/1472-6807-9-56] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/25/2009] [Indexed: 08/30/2023]
Abstract
Background The lysosomal 66.3 kDa protein from mouse is a soluble, mannose 6-phosphate containing protein of so far unknown function. It is synthesized as a glycosylated 75 kDa precursor that undergoes limited proteolysis leading to a 28 kDa N- and a 40 kDa C-terminal fragment. Results In order to gain insight into the function and the post-translational maturation process of the glycosylated 66.3 kDa protein, three crystal structures were determined that represent different maturation states. These structures demonstrate that the 28 kDa and 40 kDa fragment which have been derived by a proteolytic cleavage remain associated. Mass spectrometric analysis confirmed the subsequent trimming of the C-terminus of the 28 kDa fragment making a large pocket accessible, at the bottom of which the putative active site is located. The crystal structures reveal a significant similarity of the 66.3 kDa protein to several bacterial hydrolases. The core αββα sandwich fold and a cysteine residue at the N-terminus of the 40 kDa fragment (C249) classify the 66.3 kDa protein as a member of the structurally defined N-terminal nucleophile (Ntn) hydrolase superfamily. Conclusion Due to the close resemblance of the 66.3 kDa protein to members of the Ntn hydrolase superfamily a hydrolytic activity on substrates containing a non-peptide amide bond seems reasonable. The structural homology which comprises both the overall fold and essential active site residues also implies an autocatalytic maturation process of the lysosomal 66.3 kDa protein. Upon the proteolytic cleavage between S248 and C249, a deep pocket becomes solvent accessible, which harbors the putative active site of the 66.3 kDa protein.
Collapse
Affiliation(s)
- Kristina Lakomek
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, GZMB, Georg-August University Goettingen, Justus-von-Liebig-Weg 11, D-37077 Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
22
|
Chen CN, Chen CJ, Liao CT, Lee CY. A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 2009; 9:89. [PMID: 19426552 PMCID: PMC2686713 DOI: 10.1186/1471-2180-9-89] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 05/09/2009] [Indexed: 11/24/2022] Open
Abstract
Background The infection and virulence functions of diverse plant and animal pathogens that possess quorum sensing systems are regulated by N-acylhomoserine lactones (AHLs) acting as signal molecules. AHL-acylase is a quorum quenching enzyme and degrades AHLs by removing the fatty acid side chain from the homoserine lactone ring of AHLs. This blocks AHL accumulation and pathogenic phenotypes in quorum sensing bacteria. Results An aac gene of undemonstrated function from Ralstonia solanacearum GMI1000 was cloned, expressed in Escherichia coli; it inactivated four AHLs that were tested. The sequence of the 795 amino acid polypeptide was considerably similar to the AHL-acylase from Ralstonia sp. XJ12B with 83% identity match and shared 39% identity with an aculeacin A acylase precursor from the gram-positive actinomycete Actinoplanes utahensis. Aculeacin A is a neutral lipopeptide antibiotic and an antifungal drug. An electrospray ionisation mass spectrometry (ESI-MS) analysis verified that Aac hydrolysed the amide bond of AHL, releasing homoserine lactone and the corresponding fatty acids. However, ESI-MS analysis demonstrated that the Aac could not catalyze the hydrolysis of the palmitoyl moiety of the aculeacin A. Moreover, the results of MIC test of aculeacin A suggest that Aac could not deacylate aculeacin A. The specificity of Aac for AHLs showed a greater preference for long acyl chains than for short acyl chains. Heterologous expression of the aac gene in Chromobacterium violaceum CV026 effectively inhibited violacein and chitinase activity, both of which were regulated by the quorum-sensing mechanism. These results indicated that Aac could control AHL-dependent pathogenicity. Conclusion This is the first study to find an AHL-acylase in a phytopathogen. Our data provide direct evidence that the functioning of the aac gene (NP520668) of R. solanacearum GMI1000 is via AHL-acylase and not via aculeacin A acylase. Since Aac is a therapeutic potential quorum-quenching agent, its further biotechnological applications in agriculture, clinical and bio-industrial fields should be evaluated in the near future.
Collapse
Affiliation(s)
- Chin-Nung Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | | | | | | |
Collapse
|
23
|
Ekici OD, Paetzel M, Dalbey RE. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci 2008; 17:2023-37. [PMID: 18824507 DOI: 10.1110/ps.035436.108] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called "classical" catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of "nonclassical" serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.
Collapse
Affiliation(s)
- Ozlem Doğan Ekici
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
24
|
Wang J, Zhao LY, Uyama T, Tsuboi K, Tonai T, Ueda N. Amino acid residues crucial in pH regulation and proteolytic activation of N-acylethanolamine-hydrolyzing acid amidase. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:710-7. [PMID: 18793752 DOI: 10.1016/j.bbalip.2008.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/04/2008] [Accepted: 08/14/2008] [Indexed: 11/17/2022]
Abstract
N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme which hydrolyzes bioactive N-acylethanolamines, including anandamide and N-palmitoylethanolamine. NAAA shows acidic pH optimum in terms of both catalytic activity and maturation by specific proteolysis. However, molecular mechanism involved in this characteristic pH dependency remained unclear. Here we report the important role of Glu-195 of human NAAA by analyzing the mutants E195A and E195Q overexpressed in human embryonic kidney 293 cells. Concanamycin A, raising lysosomal pH, inhibited maturation of the wild-type, but not of the Glu-195 mutants. The purified precursors of the mutants, but not the wild-type, were proteolytically cleaved at pH 7.4 during 24-h incubation. Furthermore, when assayed for N-palmitoylethanolamine-hydrolyzing activity at different pH, the mutants did not exhibit a sharp peak around pH 4.5 in the pH-dependent activity profile. Mutants of other seven glutamic acid residues did not show such an abnormality. These results suggested a unique role of Glu-195 in the pH-dependent activity and proteolytic maturation. Moreover, Arg-142, Asp-145, and Asn-287 as well as previously identified Cys-126 were shown to be essential for the proteolytic activation. Since these residues were predicted to be catalytically important, the results strongly suggested that the proteolysis occurs through an autocatalytic mechanism.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Sun Y, Guo HC. Structural constraints on autoprocessing of the human nucleoporin Nup98. Protein Sci 2008; 17:494-505. [PMID: 18287282 DOI: 10.1110/ps.073311808] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nucleoporin Nup98, a 98-kDa protein component of the nuclear pore complex, plays an important role in both protein and RNA transport. During its maturation process, Nup98 undergoes post-translational autoproteolysis, which is critical for targeting to the NPC. Here we present high-resolution crystal structures of the C-terminal autoproteolytic domains of Nup98 (2.3 A for the wild type and 1.9 A for the S864A precursor), and propose a detailed autoproteolysis mechanism through an N-O acyl shift. Structural constraints are found at the autocleavage site, and could thus provide a driving force for autocleavage at the scissile peptide bond. Such structural constraints appear to be generated, at least in part, by anchoring a conserved phenylalanine side chain into a highly conserved hydrophobic pocket at the catalytic site. Our high-resolution crystal structures also reveal that three highly conserved residues, Tyr866, Gly867, and Leu868, provide most of the interactions between the autoproteolytic domain and the C-terminal tail. These results suggest that Nup98 may represent a new subtype of protein that utilizes autoprocessing to control biogenesis pathways and intracellular translocation.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118-2526, USA
| | | |
Collapse
|
26
|
Sandberg A, Johansson DG, Macao B, Härd T. SEA Domain Autoproteolysis Accelerated by Conformational Strain: Energetic Aspects. J Mol Biol 2008; 377:1117-29. [DOI: 10.1016/j.jmb.2008.01.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 12/28/2007] [Accepted: 01/18/2008] [Indexed: 11/25/2022]
|
27
|
Ong PL, Yao YF, Weng YM, Hsu WH, Lin LL. Residues Arg114 and Arg337 are critical for the proper function of Escherichia coli gamma-glutamyltranspeptidase. Biochem Biophys Res Commun 2007; 366:294-300. [PMID: 18036555 DOI: 10.1016/j.bbrc.2007.11.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/08/2007] [Indexed: 11/16/2022]
Abstract
To evaluate the importance of conserved Arg114 and Arg337 residues of Escherichia coli gamma-glutamyltranspeptidase (EcGGT), Lys, Leu, or Asp-substituted mutants were constructed by site-directed mutagenesis. The wild-type and mutant enzymes were overexpressed in the recombinant E. coli M15 and purified by nickel-chelate chromatography to near homogeneity. With the exception of R114K, all the other mutants significantly lost GGT activity, confirming the importance of these two residues in EcGGT. Kinetic analysis of R114L, R114D, R337K, and R337L revealed a significant increase in K(m) with a minor change in k(cat), leading to more than an 8-fold decrease in k(cat)/K(m) values. Mutations of Arg337 impaired the capability of autocatalytic processing of the enzyme. In vitro maturation experiments revealed that EcGGT precursor mutants, pro-R337K and pro-R337L, could precede a time-dependent autocatalytic process to generate the small and large subunits, while no autocatalytic processing was observed in pro-R337D. Computer modeling showed that the critical bonding distance of Gln390 O-Thr391 HG1 and Gln390 C-Thr391 OG1 are significantly increased in Arg337 replacements, implying that these distance changes might be responsible for the lack of enzyme maturation.
Collapse
Affiliation(s)
- Ping-Lin Ong
- Department of Biochemical Science and Technology, National Chiayi University, 300 University Road, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Li Z, Huang Y, Ge J, Fan H, Zhou X, Li S, Bartlam M, Wang H, Rao Z. The Crystal Structure of MCAT from Mycobacterium tuberculosis Reveals Three New Catalytic Models. J Mol Biol 2007; 371:1075-83. [PMID: 17604051 DOI: 10.1016/j.jmb.2007.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
The malonyl coenzyme A (CoA)-acyl carrier protein (ACP) transacylase (MCAT) plays a key role in cell wall biosynthesis in Mycobacterium tuberculosis and other bacteria. The M. tuberculosis MCAT (MtMCAT) is encoded by the FabD gene and catalyzes the transacylation of malonate from malonyl-CoA to holo-ACP. Malonyl-ACP is the substrate in fatty acid biosynthesis and is a by-product of the transacylation reaction. This ability for fatty acid biosynthesis enables M. tuberculosis to survive in hostile environments, and thus understanding the mechanism of biosynthesis is important for the design of new anti-tuberculosis drugs. The 2.3 A crystal structure of MtMCAT reported here shows that its catalytic mechanism differs from those of ScMCAT and EcMCAT, whose structures have previously been determined. In MtMCAT, the C(beta)-O(gamma) bond of Ser91 turns upwards, resulting in a different orientation and thus an overall change of the active pocket compared to other known MCAT enzymes. We identify three new nucleophilic attack chains from the MtMCAT structure: His90-Ser91, Asn155-Wat6-Ser91 and Asn155-His90-Ser91. Enzyme activity assays show that His90A, Asn155A and His90A-Asn155A mutants all have substantially reduced MCAT activity, indicating that M. tuberculosis MCAT supports a unique means of proton transfer. Furthermore, His194 cannot form part of a His-Ser catalytic dyad and only stabilizes the substrate. This new discovery should provide a deeper insight into the catalytic mechanisms of MCATs.
Collapse
Affiliation(s)
- Zexuan Li
- Tsinghua-Nankai-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K. Crystal structure of the gamma-glutamyltranspeptidase precursor protein from Escherichia coli. Structural changes upon autocatalytic processing and implications for the maturation mechanism. J Biol Chem 2006; 282:2433-9. [PMID: 17135273 DOI: 10.1074/jbc.m607490200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gamma-glutamyltranspeptidase (GGT) is an extracellular enzyme that plays a key role in glutathione metabolism. The mature GGT is a heterodimer consisting of L- and S-subunits that is generated by posttranslational cleavage of the peptide bond between Gln-390 and Thr-391 in the precursor protein. Thr-391, which becomes the N-terminal residue of the S-subunit, acts as the active residue in the catalytic reaction. The crystal structure of a mutant GGT, T391A, that is unable to undergo autocatalytic processing, has been determined at 2.55-A resolution. Structural comparison of the precursor protein and mature GGT demonstrates that the structures of the core regions in the two proteins are unchanged, but marked differences are found near the active site. In particular, in the precursor, the segment corresponding to the C-terminal region of the L-subunit occupies the site where the loop (residues 438-449) forms the lid of the gamma-glutamyl group-binding pocket in the mature GGT. This result demonstrates that, upon cleavage of the N-terminal peptide bond of Thr-391, the newly produced C terminus (residues 375-390) flips out, allowing the 438-449 segment to form the gamma-glutamyl group-binding pocket. The electron density map for the T391A protein also identified a water molecule near the carbonyl carbon atom of Gln-390. The spatial arrangement around the water and Thr-391 relative to the scissile peptide bond appears suitable for the initiation of autocatalytic processing, as in other members of the N-terminal nucleophile hydrolase superfamily.
Collapse
Affiliation(s)
- Toshihiro Okada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
30
|
Yao YF, Weng YM, Hu HY, Ku KL, Lin LL. Expression Optimization and Biochemical Characterization of a Recombinant γ-Glutamyltranspeptidase from Escherichia coli Novablue. Protein J 2006; 25:431-41. [PMID: 17094029 DOI: 10.1007/s10930-006-9037-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A truncated Escherichia coli Novablue gamma-glutamyltranspeptidase (EcGGT) gene lacking the first 48-bp coding sequence for part of the signal sequence was amplified by polymerase chain reaction and cloned into expression vector pQE-30 to generate pQE-EcGGT. The maximum production of His(6)-tagged enzyme by E. coli M15 (pQE-EcGGT) was achieved with 0.1 mM IPTG induction for 12 h at 20 degrees C. The overexpressed enzyme was purified to homogeneity by nickel-chelate chromatography to a specific transpeptidase activity of 4.25 U/mg protein and a final yield of 83%. The molecular masses of the subunits of the purified enzyme were estimated to be 41 and 21 kDa respectively by SDS-PAGE, indicating EcGGT still undergoes the post-translational cleavage even in the truncation of signal sequence. The optimum temperature and pH for the recombinant enzyme were 40 degrees C and 9, respectively. The apparent K (m) and V (max) values for gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor in the transpeptidation reaction were 37.9 microM and 53.7 x 10(-3) mM min(-1), respectively. The synthesis of L -theanine was performed in a reaction mixture containing 10 mM L -Gln, 40 mM ethylamine, and 1.04 U His(6)-tagged EcGGT/ml, pH 10, and a conversion rate of 45% was obtained.
Collapse
Affiliation(s)
- Ya-Feng Yao
- Graduate Institute of Food Science, National Chiayi University, 300 University Road, Chiayi, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Lin LL, Chou PR, Hua YW, Hsu WH. Overexpression, one-step purification, and biochemical characterization of a recombinant gamma-glutamyltranspeptidase from Bacillus licheniformis. Appl Microbiol Biotechnol 2006; 73:103-12. [PMID: 16850301 DOI: 10.1007/s00253-006-0440-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Revised: 03/18/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
A truncated gene from Bacillus lichenifromis ATCC 27811 encoding a recombinant gamma-glutamyltranspeptidase (BLrGGT) was cloned into pQE-30 to generate pQE-BLGGT, and the overexpressed enzyme was purified from the crude extract of IPTG-induced E. coli M15 (pQE-BLGGT) to homogeneity by nickel-chelate chromatography. This protocol yielded over 25 mg of purified BLrGGT per liter of growth culture under optimum conditions. The molecular masses of the subunits of the purified enzyme were determined to be 41 and 22 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pH and temperature for the recombinant enzyme were 6-8 and 40 degrees C, respectively. The chloride salt of metal ions Mg(2+), K(+), and Na(+) can activate BLrGGT, whereas that of Pb(2+) dramatically inhibited it. The substrate specificity study showed that L-gamma-glutamyl-p-nitroanilide (L-gamma-Glu-p-NA) is a preference for the enzyme. Steady-state kinetic study revealed that BLrGGT has a k (cat) of 105 s(-1) and a K (m) of 21 microM when using L-gamma-Glu-p-NA as the substrate. With this overexpression and purification system, BLrGGT can now be obtained in quantities necessary for structural characterization and synthesis of commercially important gamma-glutamyl compounds.
Collapse
Affiliation(s)
- Long-Liu Lin
- Department of Applied Chemistry, National Chiayi University, 300 University Road, Chiayi, Taiwan, 60083, Republic of China.
| | | | | | | |
Collapse
|
32
|
Kim JK, Yang IS, Shin HJ, Cho KJ, Ryu EK, Kim SH, Park SS, Kim KH. Insight into autoproteolytic activation from the structure of cephalosporin acylase: a protein with two proteolytic chemistries. Proc Natl Acad Sci U S A 2006; 103:1732-7. [PMID: 16446446 PMCID: PMC1413634 DOI: 10.1073/pnas.0507862103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Indexed: 11/18/2022] Open
Abstract
Cephalosporin acylase (CA), a member of the N-terminal nucleophile hydrolase family, is activated through sequential primary and secondary autoproteolytic reactions with the release of a pro segment. We have determined crystal structures of four CA mutants. Two mutants are trapped after the primary cleavage, and the other two undergo secondary cleavage slowly. These structures provide a look at pro-segment conformation during activation in N-terminal nucleophile hydrolases. The highly strained helical pro segment of precursor is transformed into a relaxed loop in the intermediates, suggesting that the relaxation of structural constraints drives the primary cleavage reaction. The secondary autoproteolytic step has been proposed to be intermolecular. However, our analysis provides evidence that CA is processed in two sequential steps of intramolecular autoproteolysis involving two distinct residues in the active site, the first a serine and the second a glutamate.
Collapse
Affiliation(s)
- Jin Kwang Kim
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - In Seok Yang
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Hye Jeong Shin
- Department of Bio-Microsystem Technology, Korea University, Seoul 136-701, Korea; and
| | - Ki Joon Cho
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Eui Kyung Ryu
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Sun Hwa Kim
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Sung Soo Park
- *Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, and
| | - Kyung Hyun Kim
- Department of Bio-Microsystem Technology, Korea University, Seoul 136-701, Korea; and
- Department of Biotechnology, College of Science and Technology, Korea University, Jochiwon 339-700, Korea
| |
Collapse
|
33
|
Giordano RC, Ribeiro MPA, Giordano RLC. Kinetics of β-lactam antibiotics synthesis by penicillin G acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization. Biotechnol Adv 2006; 24:27-41. [PMID: 15990267 DOI: 10.1016/j.biotechadv.2005.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 05/15/2005] [Indexed: 11/17/2022]
Abstract
Competition with well-established, fine-tuned chemical processes is a major challenge for the industrial implementation of the enzymatic synthesis of beta-lactam antibiotics. Enzyme-based routes are acknowledged as an environmental-friendly approach, avoiding organochloride solvents and working at room temperatures. Among different alternatives, the kinetically controlled synthesis, using immobilized penicillin G acylase (PGA) in aqueous environment, with the simultaneous crystallization of the product, is the most promising one. However, PGA may act either as a transferase or as a hydrolase, catalyzing two undesired side reactions: the hydrolysis of the acyl side-chain precursor (an ester or amide, a parallel reaction) and the hydrolysis of the antibiotic itself (a consecutive reaction). This review focuses specially on aspects of the reactions' kinetics that may affect the performance of the enzymatic reactor.
Collapse
|
34
|
Otten LG, Sio CF, van der Sloot AM, Cool RH, Quax WJ. Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. Chembiochem 2005; 5:820-5. [PMID: 15174165 DOI: 10.1002/cbic.200300764] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
beta-Lactam acylases are crucial for the synthesis of semisynthetic cephalosporins and penicillins. Unfortunately, there are no cephalosporin acylases known that can efficiently hydrolyse the amino-adipic side chain of Cephalosporin C. In a previous directed evolution experiment, residue Asn266 of the glutaryl acylase from Pseudomonas SY-77 was identified as being important for substrate specificity. In order to explore the function of this residue in substrate specificity, we performed a complete mutational analysis of position 266. Codons for all amino acids were introduced in the gene, 16 proteins that could be functionally expressed in Escherichia coli were purified to homogeneity and their catalytic parameters were determined. The mutant enzymes displayed a broad spectrum of affinities and activities, pointing to the flexibility of the enzyme at this position. Mutants in which Asn266 was changed into Phe, Gln, Trp and Tyr displayed up to twofold better catalytic efficiency (k(cat)/K(m))than the wild-type enzyme when adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) was used as substrate, due to a decreased K(m). Only mutants SY-77(N266H) and SY-77(N266M) showed an improvement of both catalytic parameters, resulting in 10- and 15-times higher catalytic efficiency with adipyl-7-ADCA, respectively. Remarkably, the catalytic activity (k(cat)) of SY-77(N266M) when using adipyl-7-ADCA as substrate was as high as when glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) was used, and approaches commercially interesting activity. SY-77(N266Q), SY-77(N266H) and SY-77(N266M) mutants showed a modest improvement in hydrolysing Cephalosporin C. Since these mutants also have a good catalytic efficiency when adipyl-7-ADCA is used and are still active towards glutaryl-7-ACA, they can be regarded as broad substrate acylases. These results demonstrate that the combination of directed evolution for the identification of important positions, together with saturation mutagenesis for finding the optimal amino acid, is a very effective method for finding improved biocatalysts.
Collapse
Affiliation(s)
- Linda G Otten
- University of Groningen, University Centre for Pharmacy, Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
35
|
Chandra PM, Brannigan JA, Prabhune A, Pundle A, Turkenburg JP, Dodson GG, Suresh CG. Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants. Acta Crystallogr Sect F Struct Biol Cryst Commun 2004; 61:124-7. [PMID: 16508111 PMCID: PMC1952408 DOI: 10.1107/s1744309104031227] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/29/2004] [Indexed: 11/10/2022]
Abstract
The crystallization of three catalytically inactive mutants of penicillin V acylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide three-dimensional structures of precursor PVA forms, plus open a route to the study of enzyme-substrate complexes for this industrially important enzyme.
Collapse
Affiliation(s)
- P. Manish Chandra
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | - James A. Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
- Correspondence e-mail: ,
| | - Asmita Prabhune
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | - Archana Pundle
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - G. Guy Dodson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, England
| | - C. G. Suresh
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
- Correspondence e-mail: ,
| |
Collapse
|
36
|
Abstract
Whereas the beta-lactam acylases are traditionally used for the hydrolytic processing of penicillin G and cephalosporin C, new and mutated acylases can be used for the hydrolysis of alternative fermentation products as well as for the synthesis of semisynthetic beta-lactam antibiotics. Three-dimensional structural analyses and site-directed mutagenesis studies have increased the understanding of the catalytic mechanism of these enzymes. The yield of hydrolysis and synthesis has been greatly improved by process design, including immobilization of the enzyme and the use of alternative reaction media. Significant advances have also been made in the resolution of racemic mixtures by means of stereoselective acylation/hydrolysis using beta-lactam acylases.
Collapse
Affiliation(s)
- Charles F Sio
- Pharmaceutical Biology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | | |
Collapse
|
37
|
Nagao K, Yamashita M, Ueda M. Production of autoproteolytically subunit-assembled 7-?-(4-carboxybutanamido)cephalosporanic acid (GL-7ACA) acylase from Pseudomonas sp. C427 using a chitin-binding domain. Appl Microbiol Biotechnol 2004; 65:407-13. [PMID: 15221226 DOI: 10.1007/s00253-004-1632-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 02/21/2004] [Accepted: 04/04/2004] [Indexed: 11/26/2022]
Abstract
7-Beta-(4-Carboxybutanamido)cephalosporanic acid (GL-7ACA) acylase from Pseudomonas sp. C427 is known as a proteolytically processed bacterial enzyme. GL-7ACA acylase from Pseudomonas sp. C427 (C427) consists of alpha- and beta-subunits that are processed from a precursor peptide by removing the spacer peptide. A chitin-binding domain (CBD) of chitinase A1 derived from Bacillus circulans was genetically fused into four different positions of the C427-encoding gene. In the four enzymes thereby produced, Nalpha427, SP427, Calpha427, and Cbeta427, it was fused, respectively, to the N-terminal region of the alpha-subunit; the C-terminal region of the alpha-subunit; the three-amino-acid upper region of the C-terminal of the alpha-subunit; and to the C-terminal region of the beta-subunit. All of the fusion enzymes, expressed in Eschericha coli, were successfully processed into active forms and had GL-7ACA acylase activity. The affinity-binding activity to crystalline chitin was affected by the fusing position of CBD. Nalpha427, Calpha427, and Cbeta427 remained fused to the CBD after their processing steps and could bind to chitin, but in the case of SP427 the fused CBD was cleaved away during the processing steps and binding activity was no longer observed. These results indicate that CBD is functional in such autoproteolytically subunit-assembled acylases.
Collapse
Affiliation(s)
- Koji Nagao
- Fermentation Development Laboratories, Fujisawa Pharmaceutical Co. Ltd, 156, Nakagawara, Shinkawa-cho, 452-0915, Nishikasugai-gun, Aichi, Japan.
| | | | | |
Collapse
|
38
|
Oh B, Kim K, Park J, Yoon J, Han D, Kim Y. Modifying the substrate specificity of penicillin G acylase to cephalosporin acylase by mutating active-site residues. Biochem Biophys Res Commun 2004; 319:486-92. [PMID: 15178432 DOI: 10.1016/j.bbrc.2004.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Indexed: 11/28/2022]
Abstract
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA.
Collapse
Affiliation(s)
- Bora Oh
- Division of Molecular Genomic Medicine, College of Medicine, Seoul National University, Yongon-Dong, Seoul 110-799, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Saarela J, Oinonen C, Jalanko A, Rouvinen J, Peltonen L. Autoproteolytic activation of human aspartylglucosaminidase. Biochem J 2004; 378:363-71. [PMID: 14616088 PMCID: PMC1223969 DOI: 10.1042/bj20031496] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 11/13/2003] [Accepted: 11/17/2003] [Indexed: 11/17/2022]
Abstract
Aspartylglucosaminidase (AGA) belongs to the N-terminal nucleophile (Ntn) hydrolase superfamily characterized by an N-terminal nucleophile as the catalytic residue. Three-dimensional structures of the Ntn hydrolases reveal a common folding pattern and equivalent stereochemistry at the active site. The activation of the precursor polypeptide occurs autocatalytically, and for some amidohydrolases of prokaryotes, the precursor structure is known and activation mechanisms are suggested. In humans, the deficient AGA activity results in a lysosomal storage disease, aspartylglucosaminuria (AGU) resulting in progressive neurodegeneration. Most of the disease-causing mutations lead to defective molecular maturation of AGA, and, to understand the structure-function relationship better, in the present study, we have analysed the effects of targeted amino acid substitutions on the activation process of human AGA. We have evaluated the effect of the previously published mutations and, in addition, nine novel mutations were generated. We could identify one novel amino acid, Gly258, with an important structural role on the autocatalytic activation of human AGA, and present the molecular mechanism for the autoproteolytic activation of the eukaryotic enzyme. Based on the results of the present study, and by comparing the available information on the activation of the Ntn-hydrolases, the autocatalytic processes of the prokaryotic and eukaryotic enzymes share common features. First, the critical nucleophile functions both as the catalytic and autocatalytic residue; secondly, the side chain of this nucleophile is oriented towards the scissile peptide bond; thirdly, conformational strain exists in the precursor at the cleavage site; finally, water molecules are utilized in the activation process.
Collapse
Affiliation(s)
- Jani Saarela
- Department of Medical Genetics and National Public Health Institute, University of Helsinki, Haartmaninkatu 8, FIN-00290 Helsinki, Finland
| | | | | | | | | |
Collapse
|
40
|
Sio CF, Otten LG, Cool RH, Quax WJ. Analysis of a substrate specificity switch residue of cephalosporin acylase. Biochem Biophys Res Commun 2004; 312:755-60. [PMID: 14680829 DOI: 10.1016/j.bbrc.2003.10.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Indexed: 11/20/2022]
Abstract
Residue Phe375 of cephalosporin acylase has been identified as one of the residues that is involved in substrate specificity. A complete mutational analysis was performed by substituting Phe375 with the 19 other amino acids and characterising all purified mutant enzymes. Several mutations cause a substrate specificity shift from the preferred substrate of the enzyme, glutaryl-7-ACA, towards the desired substrate, adipyl-7-ADCA. The catalytic efficiency ( [Formula: see text] (cat)/ [Formula: see text] (m)) of mutant SY-77(F375C) towards adipyl-7-ADCA was increased 6-fold with respect to the wild-type enzyme, due to a strong decrease of [Formula: see text] (m). The [Formula: see text] (cat) of mutant SY-77(F375H) towards adipyl-7-ADCA was increased 2.4-fold. The mutational effects point at two possible mechanisms by which residue 375 accommodates the long side chain of adipyl-7-ADCA, either by a widening of a hydrophobic ring-like structure that positions the aliphatic part of the side chain of the substrate, or by hydrogen bonding to the carboxylate head of the side chain.
Collapse
Affiliation(s)
- Charles F Sio
- Pharmaceutical Biology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
41
|
Schmitzberger F, Kilkenny ML, Lobley CMC, Webb ME, Vinkovic M, Matak-Vinkovic D, Witty M, Chirgadze DY, Smith AG, Abell C, Blundell TL. Structural constraints on protein self-processing in L-aspartate-alpha-decarboxylase. EMBO J 2004; 22:6193-204. [PMID: 14633979 PMCID: PMC291833 DOI: 10.1093/emboj/cdg575] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aspartate decarboxylase, which is translated as a pro-protein, undergoes intramolecular self-cleavage at Gly24-Ser25. We have determined the crystal structures of an unprocessed native precursor, in addition to Ala24 insertion, Ala26 insertion and Gly24-->Ser, His11-->Ala, Ser25-->Ala, Ser25-->Cys and Ser25-->Thr mutants. Comparative analyses of the cleavage site reveal specific conformational constraints that govern self-processing and demonstrate that considerable rearrangement must occur. We suggest that Thr57 Ogamma and a water molecule form an 'oxyanion hole' that likely stabilizes the proposed oxyoxazolidine intermediate. Thr57 and this water molecule are probable catalytic residues able to support acid-base catalysis. The conformational freedom in the loop preceding the cleavage site appears to play a determining role in the reaction. The molecular mechanism of self-processing, presented here, emphasizes the importance of stabilization of the oxyoxazolidine intermediate. Comparison of the structural features shows significant similarity to those in other self-processing systems, and suggests that models of the cleavage site of such enzymes based on Ser-->Ala or Ser-->Thr mutants alone may lead to erroneous interpretations of the mechanism.
Collapse
|
42
|
Yoon J, Oh B, Kim K, Park J, Han D, Kim KK, Cha SS, Lee D, Kim Y. A Bound Water Molecule Is Crucial in Initiating Autocatalytic Precursor Activation in an N-terminal Hydrolase. J Biol Chem 2004; 279:341-7. [PMID: 14534294 DOI: 10.1074/jbc.m309281200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cephalosporin acylase is a member of the N-terminal hydrolase family, which is activated from an inactive precursor by autoproteolytic processing to generate a new N-terminal nucleophile Ser or Thr. The gene structure of the precursor cephalosporin acylases generally consists of a signal peptide that is followed by an alpha-subunit, a spacer sequence, and a beta-subunit. The cephalosporin acylase precursor is post-translationally modified into an active heterodimeric enzyme with alpha- and beta-subunits, first by intramolecular cleavage and, second, by intermolecular cleavage. Intramolecular autocatalytic proteolysis is initiated by nucleophilic attack of the residue Ser-1beta onto the adjacent scissile carbonyl carbon. This study determined the precursor structure after disabling the intramolecular cleavage. This study also provides experimental evidence showing that a conserved water molecule plays an important role in assisting the polarization of the OG atom of Ser-1beta to generate a strong nucleophile and to direct the OG atom of the Ser-1beta to a target carbonyl carbon. Intramolecular proteolysis is disabled as a result of a mutation of the residues causing conformational distortion to the active site. This is because distortion affects the existence of the catalytically crucial water at the proper position. This study provides the first evidence showing that a bound water molecule plays a critical role in initiating intramolecular cleavage in the post-translational modification of the precursor enzyme.
Collapse
Affiliation(s)
- Jongchul Yoon
- Division of Molecular Genomic Medicine, College of Medicine, Seoul National University, 28 Yongon-Dong, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oh B, Kim M, Yoon J, Chung K, Shin Y, Lee D, Kim Y. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochem Biophys Res Commun 2003; 310:19-27. [PMID: 14511642 DOI: 10.1016/j.bbrc.2003.08.110] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), mainly by environmentally toxic chemical deacylation of cephalosporin C (CPC). Thus, the enzymatic conversion of CPC to 7-ACA by cephalosporin acylase (CA) would be very interesting. However, CAs use glutaryl-7-ACA (GL-7-ACA) as a primary substrate and the enzymes have low turnover rates for CPC. The active-site residues of a CA were mutagenized to various residues to increase the deacylation activity of CPC, based on the active-site conformation of the CA structure. The aim was to generate sterically favored conformation of the active-site to accommodate the D-alpha-aminoadipyl moiety of CPC, the side-chain moiety that corresponds to the glutaryl moiety of GL-7-ACA. A triple mutant of the CA, Q50betaM/Y149alphaK/F177betaG, showed the greatest improvement of deacylation activity to CPC up to 790% of the wild-type. Our current study is an efficient method for improving the deacylation activity to CPC by employing the structure-based repetitive saturation mutagenesis.
Collapse
Affiliation(s)
- Bora Oh
- Division of Molecular Genomic Medicine, College of Medicine, Seoul National University, Yongon-Dong, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
gamma-Glutamyltranspeptidase is the key enzyme in glutathione metabolism, and we previously presented evidence suggesting that it belongs to the N-terminal nucleophile hydrolase superfamily. Enzymatically active gamma-glutamyltranspeptidase, which consists of one large subunit and one small subunit, is generated from an inactive common precursor through post-translational proteolytic processing. The processing mechanism for gamma-glutamyltranspeptidase of Escherichia coli K-12 has been analyzed by means of in vitro studies using purified precursors. Here we show that the processing of a precursor of gamma-glutamyltranspeptidase is an intramolecular autocatalytic event and that the catalytic nucleophile for the processing reaction is the oxygen atom of the side chain of Thr-391 (N-terminal residue of the small (beta) subunit), which is also the nucleophile for the enzymatic reaction.
Collapse
Affiliation(s)
- Hideyuki Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|