1
|
Berkeley B, Tang MNH, Brittan M. Mechanisms regulating vascular and lymphatic regeneration in the heart after myocardial infarction. J Pathol 2023; 260:666-678. [PMID: 37272582 PMCID: PMC10953458 DOI: 10.1002/path.6093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
2
|
Pajula J, Lähteenvuo J, Lähteenvuo M, Honkonen K, Halonen P, Hätinen OP, Kuivanen A, Heikkilä M, Nurro J, Hartikainen J, Ylä-Herttuala S. Adenoviral VEGF-D ΔN ΔC gene therapy for myocardial ischemia. Front Bioeng Biotechnol 2022; 10:999226. [PMID: 36619378 PMCID: PMC9817830 DOI: 10.3389/fbioe.2022.999226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Cardiovascular diseases are the leading cause of death globally. In spite of the availability of improved treatments, there is still a large group of chronic ischemia patients who suffer from significant symptoms and disability. Thus, there is a clear need to develop new treatment strategies for these patients. Therapeutic angiogenesis is a novel therapy method which has shown promising results in preclinical studies. In this study, we evaluated safety and efficacy of adenoviral (Ad) VEGF-DΔNΔC gene transfer for the treatment of myocardial ischemia in a pig model. Methods: Adenoviral VEGF-DΔNΔC gene transfer was given to pigs (n = 26) via intramyocardial injections using an electromechanical injection catheter. Angiogenic effects were evaluated in an acute myocardial infarction model (n = 18) and functionality of the lymphatic vessels were tested in healthy porcine myocardium (n = 8). AdLacZ was used as a control. Results: AdVEGF-DΔNΔC induced safe and effective myocardial angiogenesis by inducing a four-fold increase in mean capillary area at the edge of the myocardial infarct six days after the gene transfer relative to the control AdLacZ group. The effect was sustained over 21 days after the gene transfer, and there were no signs of vessels regression. AdVEGF-DΔNΔC also increased perfusion 3.4-fold near the infarct border zone relative to the control as measured by fluorescent microspheres. Ejection fraction was 8.7% higher in the AdVEGF-DΔNΔC treated group 21 days after the gene transfer relative to the AdLacZ control group. Modified Miles assay detected a transient increase in plasma protein extravasation after the AdVEGF-DΔNΔC treatment and a mild accumulation of pericardial effusate was observed at d6. However, AdVEGF-DΔNΔC also induced the growth of functional lymphatic vasculature, and the amount of pericardial fluid and level of vascular permeability had returned to normal by d21. Conclusion: Endovascular intramyocardial AdVEGF-DΔNΔC gene therapy proved to be safe and effective in the acute porcine myocardial infarction model and provides a new potential treatment option for patients with severe coronary heart disease.
Collapse
Affiliation(s)
- Juho Pajula
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Markku Lähteenvuo
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Krista Honkonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Paavo Halonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | - Antti Kuivanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Minja Heikkilä
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jussi Nurro
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juha Hartikainen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland,*Correspondence: Seppo Ylä-Herttuala,
| |
Collapse
|
3
|
Puranen J, Koponen S, Nieminen T, Kanerva I, Kokki E, Toivanen P, Urtti A, Ylä-Herttuala S, Ruponen M. Antiangiogenic AAV2 gene therapy with a truncated form of soluble VEGFR-2 reduces the growth of choroidal neovascularization in mice after intravitreal injection. Exp Eye Res 2022; 224:109237. [PMID: 36096189 DOI: 10.1016/j.exer.2022.109237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
Abstract
Pathological angiogenesis related to neovascularization in the eye is mediated through vascular endothelial growth factors (VEGFs) and their receptors. Ocular neovascular-related diseases are mainly treated with anti-VEGF agents. In this study we evaluated the efficacy and safety of novel gene therapy using adeno associated virus 2 vector expressing a truncated form of soluble VEGF receptor-2 fused to the Fc-part of human IgG1 (AAV2-sVEGFR-2-Fc) to inhibit ocular neovascularization in laser induced choroidal neovascularization (CNV) in mice. The biological activity of sVEGFR-2-Fc was determined in vitro. It was shown that sVEGFR-2-Fc secreted from ARPE-19 cells was able to bind to VEGF-A165 and reduce VEGF-A165 induced cell growth and survival. A single intravitreal injection (IVT) of AAV2-sVEGFR-2-Fc (1 μl, 4.7 × 1012 vg/ml) one-month prior laser photocoagulation did not cause any changes in the retinal morphology and significantly suppressed fluorescein leakage at 7, 14, 21 and 28 days post-lasering compared to controls. Macrophage infiltration was observed after the injection of both AAV2-sVEGFR-2-Fc and PBS. Our findings indicate that AAV2 mediated gene delivery of the sVEGFR-2-Fc efficiently reduces formation of CNV and could be developed to a therapeutic tool for the treatment of retinal diseases associated with neovascularization.
Collapse
Affiliation(s)
- Jooseppi Puranen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland.
| | - Sanna Koponen
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O Box 1627, 70211, Kuopio, Finland
| | - Tiina Nieminen
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O Box 1627, 70211, Kuopio, Finland; Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Iiris Kanerva
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O Box 1627, 70211, Kuopio, Finland
| | - Emmi Kokki
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O Box 1627, 70211, Kuopio, Finland
| | - Pyry Toivanen
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O Box 1627, 70211, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790, University of Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O Box 1627, 70211, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, 70211, Kuopio, Finland
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1, 70210, Kuopio, Finland
| |
Collapse
|
4
|
Ryan CT, Patel V, Rosengart TK. Clinical potential of angiogenic therapy and cellular reprogramming. ACTA ACUST UNITED AC 2021; 6:108-115. [PMID: 34746874 PMCID: PMC8570572 DOI: 10.1016/j.xjon.2020.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christopher T Ryan
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Vivek Patel
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Todd K Rosengart
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| |
Collapse
|
5
|
Abstract
The lymphatic vasculature, which accompanies the blood vasculature in most organs, is indispensable in the maintenance of tissue fluid homeostasis, immune cell trafficking, and nutritional lipid uptake and transport, as well as in reverse cholesterol transport. In this Review, we discuss the physiological role of the lymphatic system in the heart in the maintenance of cardiac health and describe alterations in lymphatic structure and function that occur in cardiovascular pathology, including atherosclerosis and myocardial infarction. We also briefly discuss the role that immune cells might have in the regulation of lymphatic growth (lymphangiogenesis) and function. Finally, we provide examples of how the cardiac lymphatics can be targeted therapeutically to restore lymphatic drainage in the heart to limit myocardial oedema and chronic inflammation.
Collapse
Affiliation(s)
- Ebba Brakenhielm
- Normandy University, UniRouen, INSERM (Institut National de la Santé et de la Recherche Médicale) UMR1096 (EnVI Laboratory), FHU REMOD-VHF, Rouen, France.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Biomedicum Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Tirronen A, Vuorio T, Kettunen S, Hokkanen K, Ramms B, Niskanen H, Laakso H, Kaikkonen MU, Jauhiainen M, Gordts PLSM, Ylä-Herttuala S. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants. Arterioscler Thromb Vasc Biol 2019; 38:2327-2337. [PMID: 30354205 DOI: 10.1161/atvbaha.118.311549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Taina Vuorio
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Sanna Kettunen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Krista Hokkanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Bastian Ramms
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Henri Niskanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Hanne Laakso
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Minna U Kaikkonen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.J.)
| | - Philip L S M Gordts
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Glycobiology Research and Training Center (P.L.S.M.G.), University of California San Diego, La Jolla, CA
| | - Seppo Ylä-Herttuala
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.).,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
7
|
Hartikainen J, Hassinen I, Hedman A, Kivelä A, Saraste A, Knuuti J, Husso M, Mussalo H, Hedman M, Rissanen TT, Toivanen P, Heikura T, Witztum JL, Tsimikas S, Ylä-Herttuala S. Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J 2018; 38:2547-2555. [PMID: 28903476 PMCID: PMC5837555 DOI: 10.1093/eurheartj/ehx352] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/02/2017] [Indexed: 12/18/2022] Open
Abstract
Aims We evaluated for the first time the effects of angiogenic and lymphangiogenic AdVEGF-DΔNΔC gene therapy in patients with refractory angina. Methods and results Thirty patients were randomized to AdVEGF-DΔNΔC (AdVEGF-D) or placebo (control) groups. Electromechanical NOGA mapping and radiowater PET were used to identify hibernating viable myocardium where treatment was targeted. Safety, severity of symptoms, quality of life, lipoprotein(a) [Lp(a)] and routine clinical chemistry were measured. Myocardial perfusion reserve (MPR) was assessed with radiowater PET at baseline and after 3- and 12-months follow-up. Treatment was well tolerated. Myocardial perfusion reserve increased significantly in the treated area in the AdVEGF-D group compared with baseline (1.00 ± 0.36) at 3 months (1.31 ± 0.46, P = 0.045) and 12 months (1.44 ± 0.48, P = 0.009) whereas MPR in the reference area tended to decrease (2.05 ± 0.69, 1.76 ± 0.62, and 1.87 ± 0.69; baseline, 3 and 12 months, respectively, P = 0.551). Myocardial perfusion reserve in the control group showed no significant change from baseline to 3 and 12 months (1.26 ± 0.37, 1.57 ± 0.55, and 1.48 ± 0.48; respectively, P = 0.690). No major changes were found in clinical chemistry but anti-adenovirus antibodies increased in 54% of the treated patients compared with baseline. AdVEGF-D patients in the highest Lp(a) tertile at baseline showed the best response to therapy (MPR 0.94 ± 0.32 and 1.76 ± 0.41 baseline and 12 months, respectively, P = 0.023). Conclusion AdVEGF-DΔNΔC gene therapy was safe, feasible, and well tolerated. Myocardial perfusion increased at 1 year in the treated areas with impaired MPR at baseline. Plasma Lp(a) may be a potential biomarker to identify patients that may have the greatest benefit with this therapy.
Collapse
Affiliation(s)
- Juha Hartikainen
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,Institute of Clinical Medicine, University of Eastern Finland, Kuopio 70211, Finland
| | - Iiro Hassinen
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland
| | - Antti Hedman
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland
| | - Antti Kivelä
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital, Turku 20521, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital, Turku 20521, Finland
| | - Minna Husso
- Center of Diagnostic Imaging, Kuopio University Hospital, Kuopio 70029, Finland
| | - Hanna Mussalo
- Center of Diagnostic Imaging, Kuopio University Hospital, Kuopio 70029, Finland
| | - Marja Hedman
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,Center of Diagnostic Imaging, Kuopio University Hospital, Kuopio 70029, Finland
| | - Tuomas T Rissanen
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,Heart Center, Central Hospital of North Karelia, Joensuu 80210, Finland
| | - Pyry Toivanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | - Tommi Heikura
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland
| | | | | | - Seppo Ylä-Herttuala
- Heart Center, Kuopio University Hospital, Kuopio 70029, Finland.,A.I. Virtanen Institute, University of Eastern Finland, Kuopio 70211, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio 70029, Finland
| |
Collapse
|
8
|
Grillo E, Ravelli C, Corsini M, Ballmer-Hofer K, Zammataro L, Oreste P, Zoppetti G, Tobia C, Ronca R, Presta M, Mitola S. Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist. Oncotarget 2018; 7:35353-68. [PMID: 27174917 PMCID: PMC5085234 DOI: 10.18632/oncotarget.9286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/31/2016] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis plays a key role in various physiological and pathological conditions, including inflammation and tumor growth. The bone morphogenetic protein (BMP) antagonist gremlin has been identified as a novel pro-angiogenic factor. Gremlin promotes neovascular responses via a BMP-independent activation of the vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2). BMP antagonists may act as covalent or non-covalent homodimers or in a monomeric form, while VEGFRs ligands are usually dimeric. However, the oligomeric state of gremlin and its role in modulating the biological activity of the protein remain to be elucidated. Here we show that gremlin is expressed in vitro and in vivo both as a monomer and as a covalently linked homodimer. Mutagenesis of amino acid residue Cys141 prevents gremlin dimerization leading to the formation of gremlinC141A monomers. GremlinC141A monomer retains a BMP antagonist activity similar to the wild-type dimer, but is devoid of a significant angiogenic capacity. Notably, we found that gremlinC141A mutant engages VEGFR2 in a non-productive manner, thus acting as receptor antagonist. Accordingly, both gremlinC141A and wild-type monomers inhibit angiogenesis driven by dimeric gremlin or VEGF-A165. Moreover, by acting as a VEGFR2 antagonist, gremlinC141A inhibits the angiogenic and tumorigenic potential of murine breast and prostate cancer cells in vivo. In conclusion, our data show that gremlin exists in multiple forms endowed with specific bioactivities and provide new insights into the molecular bases of gremlin dimerization. Furthermore, we propose gremlin monomer as a new inhibitor of VEGFR2 signalling during tumor growth.
Collapse
Affiliation(s)
- Elisabetta Grillo
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Cosetta Ravelli
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Michela Corsini
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, National Institute of Neurosciences, University of Brescia, Brescia, 25123, Italy
| | - Kurt Ballmer-Hofer
- Biomolecular Research, Molecular Cell Biology, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Luca Zammataro
- Center of Genomics Science of IIT@SEMM, Milan, 20139, Italy
| | | | | | - Chiara Tobia
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Marco Presta
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy.,Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, National Institute of Neurosciences, University of Brescia, Brescia, 25123, Italy
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| |
Collapse
|
9
|
Davydova N, Harris NC, Roufail S, Paquet-Fifield S, Ishaq M, Streltsov VA, Williams SP, Karnezis T, Stacker SA, Achen MG. Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D. J Biol Chem 2016; 291:27265-27278. [PMID: 27852824 PMCID: PMC5207153 DOI: 10.1074/jbc.m116.736801] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/14/2016] [Indexed: 12/31/2022] Open
Abstract
VEGF-C and VEGF-D are secreted glycoproteins that induce angiogenesis and lymphangiogenesis in cancer, thereby promoting tumor growth and spread. They exhibit structural homology and activate VEGFR-2 and VEGFR-3, receptors on endothelial cells that signal for growth of blood vessels and lymphatics. VEGF-C and VEGF-D were thought to exhibit similar bioactivities, yet recent studies indicated distinct signaling mechanisms (e.g. tumor-derived VEGF-C promoted expression of the prostaglandin biosynthetic enzyme COX-2 in lymphatics, a response thought to facilitate metastasis via the lymphatic vasculature, whereas VEGF-D did not). Here we explore the basis of the distinct bioactivities of VEGF-D using a neutralizing antibody, peptide mapping, and mutagenesis to demonstrate that the N-terminal α-helix of mature VEGF-D (Phe93–Arg108) is critical for binding VEGFR-2 and VEGFR-3. Importantly, the N-terminal part of this α-helix, from Phe93 to Thr98, is required for binding VEGFR-3 but not VEGFR-2. Surprisingly, the corresponding part of the α-helix in mature VEGF-C did not influence binding to either VEGFR-2 or VEGFR-3, indicating distinct determinants of receptor binding by these growth factors. A variant of mature VEGF-D harboring a mutation in the N-terminal α-helix, D103A, exhibited enhanced potency for activating VEGFR-3, was able to promote increased COX-2 mRNA levels in lymphatic endothelial cells, and had enhanced capacity to induce lymphatic sprouting in vivo. This mutant may be useful for developing protein-based therapeutics to drive lymphangiogenesis in clinical settings, such as lymphedema. Our studies shed light on the VEGF-D structure/function relationship and provide a basis for understanding functional differences compared with VEGF-C.
Collapse
Affiliation(s)
- Natalia Davydova
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Nicole C Harris
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Sally Roufail
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Sophie Paquet-Fifield
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Musarat Ishaq
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Victor A Streltsov
- the Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052, and
| | - Steven P Williams
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Tara Karnezis
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000
| | - Steven A Stacker
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000.,the Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| | - Marc G Achen
- From the Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, .,the Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
10
|
Pulmonary Vasculopathy Associated with FIGF Gene Mutation. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:25-32. [PMID: 27846380 DOI: 10.1016/j.ajpath.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
Vascular endothelial growth factor (VEGF)-D is capable of inducing angiogenesis and lymphangiogenesis through signaling via VEGF receptor (VEGFR)-2 and VEGFR-3, respectively. Mutations in the FIGF (c-fos-induced growth factor) gene encoding VEGF-D have not been reported previously. We describe a young male with a hemizygous mutation in the X-chromosome gene FIGF (c.352 G>A) associated with early childhood respiratory deficiency. Histologically, lungs showed ectatic pulmonary arteries and pulmonary veins. The mutation resulted in a substitution of valine to methionine at residue 118 of the VEGF-D protein. The resultant mutant protein had increased dimerization, induced elevated VEGFR-2 signaling, and caused aberrant angiogenesis in vivo. Our observations characterize a new subtype of congenital diffuse lung disease, provide a histological correlate, and support a critical role for VEGF-D in lung vascular development and homeostasis.
Collapse
|
11
|
Mangialardi G, Madeddu P. New vascular endothelial growth factor isoforms promise to increase myocardial perfusion without stealing. Heart 2016; 102:1697-1698. [PMID: 27465052 DOI: 10.1136/heartjnl-2016-309845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Giuseppe Mangialardi
- Bristol Heart Institute, School of Clinical Sciences University of Bristol Level 7, Bristol Royal Infirmary, Bristol, UK
| | - Paolo Madeddu
- Bristol Heart Institute, School of Clinical Sciences University of Bristol Level 7, Bristol Royal Infirmary, Bristol, UK
| |
Collapse
|
12
|
Laakkonen JP, Ylä-Herttuala S. Recent Advancements in Cardiovascular Gene Therapy and Vascular Biology. Hum Gene Ther 2015; 26:518-24. [DOI: 10.1089/hum.2015.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johanna P. Laakkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
13
|
Kurppa KJ, Denessiouk K, Johnson MS, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene 2015; 35:1283-91. [PMID: 26050618 DOI: 10.1038/onc.2015.185] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 01/13/2023]
Abstract
Recent efforts to comprehensively characterize the mutational landscape of non-small cell lung cancer have identified frequent mutations in the receptor tyrosine kinase ERBB4. However, the significance of mutated ERBB4 in non-small cell lung cancer remains elusive. Here, we have functionally characterized nine ERBB4 mutations previously identified in lung adenocarcinoma. Four out of the nine mutations, Y285C, D595V, D931Y and K935I, were found to be activating, increasing both basal and ligand-induced ErbB4 phosphorylation. According to structural analysis, the four activating mutations were located at critical positions at the dimerization interfaces of the ErbB4 extracellular (Y285C and D595V) and kinase (D931Y and K935I) domains. Consistently, the mutations enhanced ErbB4 dimerization and increased the trans activation in ErbB4 homodimers and ErbB4-ErbB2 heterodimers. The expression of the activating ERBB4 mutants promoted survival of NIH 3T3 cells in the absence of serum. Interestingly, serum starvation of NIH 3T3 cells expressing the ERBB4 mutants only moderately increased the phosphorylation of canonical ErbB signaling pathway effectors Erk1/2 and Akt as compared with wild-type ERBB4. In contrast, the mutations clearly enhanced the proteolytic release of signaling-competent ErbB4 intracellular domain. These results suggest the presence of activating driver mutations of ERBB4 in non-small cell lung cancer.
Collapse
Affiliation(s)
- K J Kurppa
- MediCity Research Laboratories, Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Turku Doctoral Programme of Molecular Medicine, Turku, Finland
| | - K Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Sciences and Engineering, Åbo Akademi University, Turku, Finland
| | - M S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Sciences and Engineering, Åbo Akademi University, Turku, Finland
| | - K Elenius
- MediCity Research Laboratories, Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Department of Oncology, Turku University Hospital, Turku, Finland
| |
Collapse
|
14
|
Chiu J, Wong JWH, Gerometta M, Hogg PJ. Mechanism of dimerization of a recombinant mature vascular endothelial growth factor C. Biochemistry 2013; 53:7-9. [PMID: 24354278 DOI: 10.1021/bi401518b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vascular endothelial growth factors (VEGFs) and their tyrosine kinase receptors play a pivotal role in angiogenesis and lymphangiogenesis during development and in pathologies such as tumor growth. The VEGFs function as disulfide-linked antiparallel homodimers. The lymphangiogenic factors, VEGF-C and VEGF-D, exist as monomers and dimers, and dimerization is regulated by a unique unpaired cysteine. In this study, we have characterized the redox state of this unpaired cysteine in a recombinant mature monomeric and dimeric VEGF-C by mass spectrometry. Our findings indicate that the unpaired cysteine regulates dimerization via thiol-disulfide exchange involving the interdimer disulfide bond.
Collapse
Affiliation(s)
- Joyce Chiu
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales , Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
15
|
Butera D, Wind T, Lay AJ, Beck J, Castellino FJ, Hogg PJ. Characterization of a reduced form of plasma plasminogen as the precursor for angiostatin formation. J Biol Chem 2013; 289:2992-3000. [PMID: 24338014 DOI: 10.1074/jbc.m113.539924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma plasminogen is the precursor of the tumor angiogenesis inhibitor, angiostatin. Generation of angiostatin in blood involves activation of plasminogen to the serine protease plasmin and facilitated cleavage of two disulfide bonds and up to three peptide bonds in the kringle 5 domain of the protein. The mechanism of reduction of the two allosteric disulfides has been explored in this study. Using thiol-alkylating agents, mass spectrometry, and an assay for angiostatin formation, we show that the Cys(462)-Cys(541) disulfide bond is already cleaved in a fraction of plasma plasminogen and that this reduced plasminogen is the precursor for angiostatin formation. From the crystal structure of plasminogen, we propose that plasmin ligands such as phosphoglycerate kinase induce a conformational change in reduced kringle 5 that leads to attack by the Cys(541) thiolate anion on the Cys(536) sulfur atom of the Cys(512)-Cys(536) disulfide bond, resulting in reduction of the bond by thiol/disulfide exchange. Cleavage of the Cys(512)-Cys(536) allosteric disulfide allows further conformational change and exposure of the peptide backbone to proteolysis and angiostatin release. The Cys(462)-Cys(541) and Cys(512)-Cys(536) disulfides have -/+RHHook and -LHHook configurations, respectively, which are two of the 20 different measures of the geometry of a disulfide bond. Analysis of the structures of the known allosteric disulfide bonds identified six other bonds that have these configurations, and they share some functional similarities with the plasminogen disulfides. This suggests that the -/+RHHook and -LHHook disulfides, along with the -RHStaple bond, are potential allosteric configurations.
Collapse
Affiliation(s)
- Diego Butera
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia and
| | | | | | | | | | | |
Collapse
|
16
|
Nieminen T, Toivanen PI, Rintanen N, Heikura T, Jauhiainen S, Airenne KJ, Alitalo K, Marjomäki V, Ylä-Herttuala S. The impact of the receptor binding profiles of the vascular endothelial growth factors on their angiogenic features. Biochim Biophys Acta Gen Subj 2013; 1840:454-63. [PMID: 24112971 DOI: 10.1016/j.bbagen.2013.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Vascular endothelial growth factors (VEGFs) are potential therapeutic agents for treatment of ischemic diseases. Their angiogenic effects are mainly mediated through VEGF receptor 2 (VEGFR2). METHODS Receptor binding, signaling, and biological efficacy of several VEGFR2 ligands were compared to determine their characteristics regarding angiogenic activity and vascular permeability. RESULTS Tested VEGFR2 ligands induced receptor tyrosine phosphorylation with different efficacy depending on their binding affinities. However, the tyrosine phosphorylation pattern and the activation of the major downstream signaling pathways were comparable. The maximal angiogenic effect stimulated by different VEGFR2 ligands was dependent on their ability to bind to co-receptor Neuropilin (Nrp), which was shown to form complexes with VEGFR2. The ability of these VEGFR2 ligands to induce vascular permeability was dependent on their concentration and VEGFR2 affinity, but not on Nrp binding. CONCLUSIONS VEGFR2 activation alone is sufficient for inducing endothelial cell proliferation, formation of tube-like structures and vascular permeability. The level of VEGFR2 activation is dependent on the binding properties of the ligand used. However, closely similar activation pattern of the receptor kinase domain is seen with all VEGFR2 ligands. Nrp binding strengthens the angiogenic potency without increasing vascular permeability. GENERAL SIGNIFICANCE This study sheds light on how different structurally closely related VEGFR2 ligands bind to and signal via VEGFR2/Nrp complex to induce angiogenesis and vascular permeability. The knowledge of this study could be used for designing VEGFR2/Nrp ligands with improved therapeutic properties.
Collapse
Affiliation(s)
- Tiina Nieminen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.
Collapse
Affiliation(s)
- Philip J Hogg
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
18
|
Abstract
Protein action in nature is largely controlled by the level of expression and by post-translational modifications. Post-translational modifications result in a proteome that is at least two orders of magnitude more diverse than the genome. There are three basic types of post-translational modifications: covalent modification of an amino acid side chain, hydrolytic cleavage or isomerization of a peptide bond, and reductive cleavage of a disulfide bond. This review addresses the modification of disulfide bonds. Protein disulfide bonds perform either a structural or a functional role, and there are two types of functional disulfide: the catalytic and allosteric bonds. The allosteric disulfide bonds control the function of the mature protein in which they reside by triggering a change when they are cleaved. The change can be in ligand binding, substrate hydrolysis, proteolysis, or oligomer formation. The allosteric disulfides are cleaved by oxidoreductases or by thiol/disulfide exchange, and the configurations of the disulfides and the secondary structures that they link share some recurring features. How these bonds are being identified using bioinformatics and experimental screens and what the future holds for this field of research are also discussed.
Collapse
Affiliation(s)
- Kristina M Cook
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney NSW2052, Australia
| | | |
Collapse
|
19
|
Abstract
Vascular endothelial growth factor-D (VEGF-D) is a secreted glycoprotein that promotes growth of blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis), and can induce remodeling of large lymphatics. VEGF-D enhances solid tumor growth and metastatic spread in animal models of cancer, and in some human cancers VEGF-D correlates with metastatic spread, poor patient outcome, and, potentially, with resistance to anti-angiogenic drugs. Hence, VEGF-D signaling is a potential target for novel anti-cancer therapeutics designed to enhance anti-angiogenic approaches and to restrict metastasis. In the cardiovascular system, delivery of VEGF-D in animal models enhanced angiogenesis and tissue perfusion, findings which have led to a range of clinical trials testing this protein for therapeutic angiogenesis in cardiovascular diseases. Despite these experimental and clinical developments, our knowledge of the signaling mechanisms driven by VEGF-D is still evolving--here we explore the biology of VEGF-D, its signaling mechanisms, and the clinical relevance of this growth factor.
Collapse
Affiliation(s)
- Marc G Achen
- Peter MacCallum Cancer Centre, 1 Saint Andrews Place, Locked Bag 1, A'Beckett Street, East Melbourne, Victoria 3002, Australia.
| | | |
Collapse
|
20
|
Preparation of human vascular endothelial growth factor-D for structural and preclinical therapeutic studies. Protein Expr Purif 2012; 82:232-9. [DOI: 10.1016/j.pep.2012.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 12/21/2011] [Accepted: 01/03/2012] [Indexed: 12/31/2022]
|
21
|
Patil A, Sable R, Kothari R. Occurrence, biochemical profile of vascular endothelial growth factor (VEGF) isoforms and their functions in endochondral ossification. J Cell Physiol 2012; 227:1298-308. [DOI: 10.1002/jcp.22846] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Vuorio T, Jauhiainen S, Ylä-Herttuala S. Pro- and anti-angiogenic therapy and atherosclerosis with special emphasis on vascular endothelial growth factors. Expert Opin Biol Ther 2011; 12:79-92. [DOI: 10.1517/14712598.2012.641011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Jauhiainen S, Häkkinen SK, Toivanen PI, Heinonen SE, Jyrkkänen HK, Kansanen E, Leinonen H, Levonen AL, Ylä-Herttuala S. Vascular Endothelial Growth Factor (VEGF)-D Stimulates VEGF-A, Stanniocalcin-1, and Neuropilin-2 and Has Potent Angiogenic Effects. Arterioscler Thromb Vasc Biol 2011; 31:1617-24. [DOI: 10.1161/atvbaha.111.225961] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective—
The mature form of human vascular endothelial growth factor-D (hVEGF-D
ΔNΔC
) is an efficient angiogenic factor, but its full mechanism of action has remained unclear. We studied the effects of hVEGF-D
ΔNΔC
in endothelial cells using gene array, signaling, cell culture, and in vivo gene transfer techniques.
Methods and Results—
Concomitant with the angiogenic and proliferative responses, hVEGF-D
ΔNΔC
enhanced the phosphorylation of VEGF receptor-2, Akt, and endothelial nitric oxide synthase. Gene arrays, quantitative reverse transcription–polymerase chain reaction, and Western blot revealed increases in VEGF-A, stanniocalcin-1 (STC1), and neuropilin (NRP) 2 expression by hVEGF-D
ΔNΔC
stimulation, whereas induction with hVEGF-A
165
altered the expression of STC1 and NRP1, another coreceptor for VEGFs. The effects of hVEGF-D
ΔNΔC
were seen only under high-serum conditions, whereas for hVEGF-A
165
, the strongest response was observed under low-serum conditions. The hVEGF-D
ΔNΔC
-induced upregulation of STC1 and NRP2 was also evident in vivo in mouse skeletal muscle treated with hVEGF-D
ΔNΔC
by adenoviral gene delivery. The importance of NRP2 in hVEGF-D
ΔNΔC
signaling was further studied with NRP2 small interfering RNA and NRP antagonist, which were able to block hVEGF-D
ΔNΔC
-induced survival of endothelial cells.
Conclusion—
In this study, the importance of serum and upregulation of NRP2 and STC1 for VEGF-D
ΔNΔC
effects were demonstrated. Better knowledge of VEGF-D
ΔNΔC
signaling and regulation is valuable for the development of efficient and safe VEGF-D
ΔNΔC
-based therapeutic applications for cardiovascular diseases.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Sanna-Kaisa Häkkinen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Pyry I. Toivanen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Suvi E. Heinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Henna-Kaisa Jyrkkänen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Emilia Kansanen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Hanna Leinonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Anna-Liisa Levonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences (S.J., S.-K.H., P.I.T., S.E.H., H.-K.J., E.K., H.L., A.-L.L., S.Y.-H.) and Department of Medicine (S.Y.-H.), University of Eastern Finland, Kuopio, Finland; Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland (S.Y.-H.)
| |
Collapse
|
24
|
Structural determinants of vascular endothelial growth factor-D receptor binding and specificity. Blood 2010; 117:1507-15. [PMID: 21148085 DOI: 10.1182/blood-2010-08-301549] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their tyrosine kinase receptors (VEGFR-1-3) are central mediators of angiogenesis and lymphangiogenesis. VEGFR-3 ligands VEGF-C and VEGF-D are produced as precursor proteins with long N- and C-terminal propeptides and show enhanced VEGFR-2 and VEGFR-3 binding on proteolytic removal of the propeptides. Two different proteolytic cleavage sites have been reported in the VEGF-D N-terminus. We report here the crystal structure of the human VEGF-D Cys117Ala mutant at 2.9 Å resolution. Comparison of the VEGF-D and VEGF-C structures shows similar extended N-terminal helices, conserved overall folds, and VEGFR-2 interacting residues. Consistent with this, the affinity and the thermodynamic parameters for VEGFR-2 binding are very similar. In comparison with VEGF-C structures, however, the VEGF-D N-terminal helix was extended by 2 more turns because of a better resolution. Both receptor binding and functional assays of N-terminally truncated VEGF-D polypeptides indicated that the residues between the reported proteolytic cleavage sites are important for VEGF-D binding and activation of VEGFR-3, but not of VEGFR-2. Thus, we define here a VEGFR-2-specific form of VEGF-D that is angiogenic but not lymphangiogenic. These results provide important new insights into VEGF-D structure and function.
Collapse
|
25
|
Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc Natl Acad Sci U S A 2010; 107:2425-30. [PMID: 20145116 DOI: 10.1073/pnas.0914318107] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel formation through activation of three receptor tyrosine kinases, VEGFR-1, -2, and -3. The extracellular domain of VEGF receptors consists of seven immunoglobulin homology domains, which, upon ligand binding, promote receptor dimerization. Dimerization initiates transmembrane signaling, which activates the intracellular tyrosine kinase domain of the receptor. VEGF-C stimulates lymphangiogenesis and contributes to pathological angiogenesis via VEGFR-3. However, proteolytically processed VEGF-C also stimulates VEGFR-2, the predominant transducer of signals required for physiological and pathological angiogenesis. Here we present the crystal structure of VEGF-C bound to the VEGFR-2 high-affinity-binding site, which consists of immunoglobulin homology domains D2 and D3. This structure reveals a symmetrical 22 complex, in which left-handed twisted receptor domains wrap around the 2-fold axis of VEGF-C. In the VEGFs, receptor specificity is determined by an N-terminal alpha helix and three peptide loops. Our structure shows that two of these loops in VEGF-C bind to VEGFR-2 subdomains D2 and D3, while one interacts primarily with D3. Additionally, the N-terminal helix of VEGF-C interacts with D2, and the groove separating the two VEGF-C monomers binds to the D2/D3 linker. VEGF-C, unlike VEGF-A, does not bind VEGFR-1. We therefore created VEGFR-1/VEGFR-2 chimeric proteins to further study receptor specificity. This biochemical analysis, together with our structural data, defined VEGFR-2 residues critical for the binding of VEGF-A and VEGF-C. Our results provide significant insights into the structural features that determine the high affinity and specificity of VEGF/VEGFR interactions.
Collapse
|
26
|
Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:567-80. [PMID: 19761875 DOI: 10.1016/j.bbapap.2009.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/22/2009] [Accepted: 09/04/2009] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factors (VEGFs) constitute a family of six polypeptides, VEGF-A, -B, -C, -D, -E and PlGF, that regulate blood and lymphatic vessel development. VEGFs specifically bind to three type V receptor tyrosine kinases (RTKs), VEGFR-1, -2 and -3, and to coreceptors such as neuropilins and heparan sulfate proteoglycans (HSPG). VEGFRs are activated upon ligand-induced dimerization mediated by the extracellular domain (ECD). A study using receptor constructs carrying artificial dimerization-promoting transmembrane domains (TMDs) showed that receptor dimerization is necessary, but not sufficient, for receptor activation and demonstrates that distinct orientation of receptor monomers is required to instigate transmembrane signaling. Angiogenic signaling by VEGF receptors also depends on cooperation with specific coreceptors such as neuropilins and HSPG. A number of VEGF isoforms differ in binding to coreceptors, and ligand-specific signal output is apparently the result of the specific coreceptor complex assembled by a particular VEGF isoform. Here we discuss the structural features of VEGF family ligands and their receptors in relation to their distinct signal output and angiogenic potential.
Collapse
|
27
|
Anisimov A, Alitalo A, Korpisalo P, Soronen J, Kaijalainen S, Leppänen VM, Jeltsch M, Ylä-Herttuala S, Alitalo K. Activated forms of VEGF-C and VEGF-D provide improved vascular function in skeletal muscle. Circ Res 2009; 104:1302-12. [PMID: 19443835 DOI: 10.1161/circresaha.109.197830] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The therapeutic potential of vascular endothelial growth factor (VEGF)-C and VEGF-D in skeletal muscle has been of considerable interest as these factors have both angiogenic and lymphangiogenic activities. Previous studies have mainly used adenoviral gene delivery for short-term expression of VEGF-C and VEGF-D in pig, rabbit, and mouse skeletal muscles. Here we have used the activated mature forms of VEGF-C and VEGF-D expressed via recombinant adeno-associated virus (rAAV), which provides stable, long-lasting transgene expression in various tissues including skeletal muscle. Mouse tibialis anterior muscle was transduced with rAAV encoding human or mouse VEGF-C or VEGF-D. Two weeks later, immunohistochemical analysis showed increased numbers of both blood and lymph vessels, and Doppler ultrasound analysis indicated increased blood vessel perfusion. The lymphatic vessels further increased at the 4-week time point were functional, as shown by FITC-lectin uptake and transport. Furthermore, receptor activation and arteriogenic activity were increased by an alanine substitution mutant of human VEGF-C (C137A) having an increased dimer stability and by a chimeric CAC growth factor that contained the VEGF receptor-binding domain flanked by VEGF-C propeptides, but only the latter promoted significantly more blood vessel perfusion when compared to the other growth factors studied. We conclude that long-term expression of VEGF-C and VEGF-D in skeletal muscle results in the generation of new functional blood and lymphatic vessels. The therapeutic value of intramuscular lymph vessels in draining tissue edema and lymphedema can now be evaluated using this model system.
Collapse
Affiliation(s)
- Andrey Anisimov
- Molecular/Cancer Biology Laboratory, Biomedicum Helsinki, Department of Pathology, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|