1
|
Guijarro-Hernández A, Hurtado C, Urizar-Compains E, Ezcurra B, Galiana-Sáenz A, Baquero E, Cabello J, Vizmanos JL. Myeloproliferative Neoplasm-like Mutations of Calreticulin Induce Phenotypes Associated with Calreticulin Dysfunction in C. elegans. Int J Mol Sci 2024; 25:11606. [PMID: 39519157 PMCID: PMC11546369 DOI: 10.3390/ijms252111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In previous research, we created a C. elegans model with homozygous mutations in calreticulin similar to those found in patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF), two myeloproliferative neoplasms (MPNs). This model, lacking JAK orthologs, enabled us to examine the transcriptomic effects caused by mutant calreticulin without the influence of JAK/STAT activation, the primary pathogenic mechanism associated with calreticulin mutations known to date. Most of the gene expression changes observed seemed to be due to a partial loss of protein function, with the alteration of the extracellular matrix being particularly notable. In this study, our aim was to determine whether this model exhibited any phenotype related to these transcriptomic alterations. The results demonstrate that these strains exhibit multiple phenotypes related to the alteration of the extracellular matrix, fat levels, and fertility, which could be a possible consequence of a partial loss of calreticulin function. These phenotypes resemble some of the clinical and molecular characteristics described in patients with MPNs, but they had never before been linked to a loss of protein function in humans. Thus, these results collectively suggest that CALR mutations could have significant effects on MPNs due to loss of protein function. Delving deeper into these effects to develop innovative therapies for these patients offers considerable potential and interest, given that targeted therapies for these patients have not yielded very promising results so far.
Collapse
Affiliation(s)
- Ana Guijarro-Hernández
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| | - Cristina Hurtado
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| | - Estibaliz Urizar-Compains
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| | - Begoña Ezcurra
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (B.E.); (J.C.)
| | - Alberto Galiana-Sáenz
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (B.E.); (J.C.)
| | - Enrique Baquero
- Department of Environmental Biology, School of Sciences, University of Navarra, 31008 Pamplona, Spain;
- Institute for Biodiversity and Environment BIOMA, University of Navarra, 31008 Pamplona, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (B.E.); (J.C.)
| | - José Luis Vizmanos
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain; (A.G.-H.); (C.H.); (E.U.-C.); (A.G.-S.)
| |
Collapse
|
2
|
Mishra S, Manzanares MA, Prater J, Culp D, Gold LI. Calreticulin accelerates corneal wound closure and mitigates fibrosis: Potential therapeutic applications. J Cell Mol Med 2024; 28:e18027. [PMID: 37985392 PMCID: PMC10902309 DOI: 10.1111/jcmm.18027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
The processes involved in regeneration of cutaneous compared to corneal tissues involve different intrinsic mechanisms. Importantly, cutaneous wounds involve healing by angiogenesis but vascularization of the cornea obscures vision. Previous studies showed that topically applied calreticulin (CALR) healed full-thickness excisional animal wounds by a tissue regenerative process markedly enhancing repair without evoking angiogenesis. In the current study, the application of CALR in a rabbit corneal injury model: (1) accelerated full wound closure by 3 days (2) accelerated delayed healing caused by corticosteroids, routinely used to prevent post-injury inflammation, by 6 days and (3) healed wounds without vascularization or fibrosis/hazing. In vitro, CALR stimulated proliferation of human corneal epithelial cells (CE) and corneal stromal cells (keratocytes) by 1.5-fold and 1.4-fold, respectively and induced migration of CE cells and keratocytes, by 72% and 85% compared to controls of 44% and 59%, respectively. As a marker of decreased fibrosis, CALR treated corneal wounds showed decreased immunostaining for α-smooth muscle actin (α-SMA) by keratocytes and following CALR treatment in vitro, decreased the levels of TGF-β2 in human CE cells and α-SMA in keratocytes. CALR has the potential to be a novel therapeutic both, to accelerate corneal healing from various injuries and in conjunction with corticosteroids.
Collapse
Affiliation(s)
- Sarita Mishra
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Miguel A. Manzanares
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| | - Justin Prater
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - David Culp
- Powered Research, Research Triangle ParkNorth CarolinaNew YorkUSA
| | - Leslie I. Gold
- Department of Medicine, Division of Precision MedicineNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
- Department of PathologyNew York University School of Medicine Langone HealthNew YorkNew YorkUSA
| |
Collapse
|
3
|
Zhao Y, Li M, Mao J, Su Y, Huang X, Xia W, Leng X, Zan T. Immunomodulation of wound healing leading to efferocytosis. SMART MEDICINE 2024; 3:e20230036. [PMID: 39188510 PMCID: PMC11235971 DOI: 10.1002/smmd.20230036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 08/28/2024]
Abstract
Effectively eliminating apoptotic cells is precisely controlled by a variety of signaling molecules and a phagocytic effect known as efferocytosis. Abnormalities in efferocytosis may bring about the development of chronic conditions, including angiocardiopathy, chronic inflammatory diseases and autoimmune diseases. During wound healing, failure of efferocytosis leads to the collection of apoptosis, the release of necrotic material and chronic wounds that are difficult to heal. In addition to the traditional phagocytes-macrophages, other important cell species including dendritic cells, neutrophils, vascular endothelial cells, fibroblasts and keratinocytes contribute to wounding healing. This review summarizes how efferocytosis-mediated immunomodulation plays a repair-promoting role in wound healing, providing new insights for patients suffering from various cutaneous wounds.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Minxiong Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinghong Su
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenzheng Xia
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangfeng Leng
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Murphy-Ullrich JE. Thrombospondin-1 Signaling Through the Calreticulin/LDL Receptor Related Protein 1 Axis: Functions and Possible Roles in Glaucoma. Front Cell Dev Biol 2022; 10:898772. [PMID: 35693935 PMCID: PMC9185677 DOI: 10.3389/fcell.2022.898772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular extracellular matrix protein. Matricellular proteins are components of the extracellular matrix (ECM) that regulate key cellular functions and impact ECM organization, but which lack direct primary structural roles in the ECM. TSP-1 expression is upregulated in response to injury, hypoxia, growth factor stimulation, inflammation, glucose, and by reactive oxygen species. Relevant to glaucoma, TSP-1 is also a mechanosensitive molecule upregulated by mechanical stretch. TSP-1 expression is increased in ocular remodeling in glaucoma in both the trabecular meshwork and in the optic nerve head. The exact roles of TSP-1 in glaucoma remain to be defined, however. It plays important roles in cell behavior and in ECM remodeling during wound healing, fibrosis, angiogenesis, and in tumorigenesis and metastasis. At the cellular level, TSP-1 can modulate cell adhesion and migration, protease activity, growth factor activity, anoikis resistance, apoptosis, and collagen secretion and matrix assembly and cross-linking. These multiple functions and macromolecular and receptor interactions have been ascribed to specific domains of the TSP-1 molecule. In this review, we will focus on the cell regulatory activities of the TSP-1 N-terminal domain (NTD) sequence that binds to cell surface calreticulin (Calr) and which regulates cell functions via signaling through Calr complexed with LDL receptor related protein 1 (LRP1). We will describe TSP-1 actions mediated through the Calr/LRP1 complex in regulating focal adhesion disassembly and cytoskeletal reorganization, cell motility, anoikis resistance, and induction of collagen secretion and matrix deposition. Finally, we will consider the relevance of these TSP-1 functions to the pathologic remodeling of the ECM in glaucoma.
Collapse
Affiliation(s)
- Joanne E. Murphy-Ullrich
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Joanne E. Murphy-Ullrich,
| |
Collapse
|
5
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Collagen's enigmatic, highly conserved N-glycan has an essential proteostatic function. Proc Natl Acad Sci U S A 2021; 118:2026608118. [PMID: 33674390 DOI: 10.1073/pnas.2026608118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular procollagen folding begins at the protein's C-terminal propeptide (C-Pro) domain, which initiates triple-helix assembly and defines the composition and chain register of fibrillar collagen trimers. The C-Pro domain is later proteolytically cleaved and excreted from the body, while the mature triple helix is incorporated into the extracellular matrix. The procollagen C-Pro domain possesses a single N-glycosylation site that is widely conserved in all the fibrillar procollagens across humans and diverse other species. Given that the C-Pro domain is removed once procollagen folding is complete, the N-glycan might be presumed to be important for folding. Surprisingly, however, there is no difference in the folding and secretion of N-glycosylated versus non-N-glycosylated collagen type-I, leaving the function of the N-glycan unclear. We hypothesized that the collagen N-glycan might have a context-dependent function, specifically, that it could be required to promote procollagen folding only when proteostasis is challenged. We show that removal of the N-glycan from misfolding-prone C-Pro domain variants does indeed cause serious procollagen and ER proteostasis defects. The N-glycan promotes folding and secretion of destabilized C-Pro variants by providing access to the ER's lectin-based chaperone machinery. Finally, we show that the C-Pro N-glycan is actually critical for the folding and secretion of even wild-type procollagen under ER stress conditions. Such stress is commonly incurred during development, wound healing, and other processes in which collagen production plays a key role. Collectively, these results establish an essential, context-dependent function for procollagen's previously enigmatic N-glycan, wherein the carbohydrate moiety buffers procollagen folding against proteostatic challenge.
Collapse
|
7
|
Zhang J, Ji Y, Jiang S, Shi M, Cai W, Miron RJ, Zhang Y. Calcium-Collagen Coupling is Vital for Biomineralization Schedule. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100363. [PMID: 34047068 PMCID: PMC8336496 DOI: 10.1002/advs.202100363] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Indexed: 05/08/2023]
Abstract
Biomineralization is a chemical reaction that occurs in organisms in which collagen initiates and guides the growth and crystallization of matched apatite minerals. However, there is little known about the demand pattern for calcium salts and collagen needed by biomineralization. In this study, natural bone biomineralization is analyzed, and a novel interplay between calcium concentration and collagen production is observed. Any quantitative change in one of the entities causes a corresponding change in the other. Translocation-associated membrane protein 2 (TRAM2) is identified as an intermediate factor whose silencing disrupts this relationship and causes poor mineralization. TRAM2 directly interacts with the sarcoplasmic/endoplasmic reticulum calcium ATPase 2b (SERCA2b) and modulates SERCA2b activity to couple calcium enrichment with collagen biosynthesis. Collectively, these findings indicate that osteoblasts can independently and directly regulate the process of biomineralization via this coupling. This knowledge has significant implications for the developmentally inspired design of biomaterials for bone regenerative applications.
Collapse
Affiliation(s)
- Jinglun Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Yaoting Ji
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Shuting Jiang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Miusi Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Wenjin Cai
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| | - Richard J. Miron
- Centre for Collaborative ResearchNova Southeastern UniversityCell Therapy InstituteFort LauderdaleFL33314‐7796USA
- Department of PeriodontologyCollege of Dental MedicineNova Southeastern UniversityFort LauderdaleFL33314‐7796USA
- Department of Periodontics and Oral SurgeryUniversity of Ann ArborAnn ArborMI48109USA
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) and Key Laboratory of Oral BiomedicineMinistry of EducationSchool and Hospital of StomatologyWuhan UniversityWuhan430079China
| |
Collapse
|
8
|
Proteomic Analysis Reveals Commonly Secreted Proteins of Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Synovial Membrane to Show Potential for Cartilage Regeneration in Knee Osteoarthritis. Stem Cells Int 2021; 2021:6694299. [PMID: 34306096 PMCID: PMC8264516 DOI: 10.1155/2021/6694299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Paracrine factors secreted by mesenchymal stem cells (MSCs) reportedly modulate inflammation and reparative processes in damaged tissues and have been explored for knee osteoarthritis (OA) therapy. Although various studies have reported the effects of paracrine factors in knee OA, it is not yet clear which paracrine factors directly affect the regeneration of damaged cartilage and which are secreted under various knee OA conditions. In this study, we cultured MSCs derived from three types of tissues and treated each type with IL-1β and TNF-α or not to obtain conditioned medium. Each conditioned medium was used to analyse the paracrine factors related to cartilage regeneration using liquid chromatography-tandem mass spectrometry. Bone marrow-, adipose tissue-, and synovial membrane-MSCs (all-MSCs) exhibited expression of 93 proteins under normal conditions and 105 proteins under inflammatory conditions. It was confirmed that the types of secreted proteins differed depending on the environmental conditions, and the proteins were validated using ELISA. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using a list of proteins secreted by all-MSCs under each condition confirmed that the secreted proteins were closely related to cartilage repair under inflammatory conditions. Protein-protein interaction networks were confirmed to change depending on environmental differences and were found to enhance the secretion of paracrine factors related to cartilage regeneration under inflammatory conditions. In conclusion, our results demonstrated that compared with knee OA conditions, the differential expression proteins may contribute to the regeneration of damaged cartilage. In addition, the detailed information on commonly secreted proteins by all-MSCs provides a comprehensive basis for understanding the potential of paracrine factors to influence tissue repair and regeneration in knee OA.
Collapse
|
9
|
Gawish RIAR, El Aggan HAM, Mahmoud SAH, Mortada SAM. A novel biomarker of chronic allograft dysfunction in renal transplant recipients (serum calreticulin and CD47). THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2020. [DOI: 10.1186/s43162-020-00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic allograft dysfunction (CAD) is considered the leading cause of late allograft loss. The cluster of differentiation 47 (CD47) and calreticulin (CRT) are involved in many and diverse cellular processes. The present study was designed to study the role of the pro-phagocytic CRT and anti-phagocytic CD47 signals in patients with renal transplantation in relation to graft function.
Thirty renal transplantation recipients (RTR) for more than 6 months [15 with stable renal function and 15 with chronic allograft dysfunction (CAD)] and 15 healthy controls were enrolled in the study. Quantification of CRT, CD47, and high-sensitivity C-reactive protein (hsCRP) levels in serum was done using standardized enzyme-linked immunosorbent assay (ELISA) kits. Measurement of renal function and urinary alkaline phosphatase (U.ALP) was done. Renal interstitial fibrosis (IF) was graded in renal biopsies of CAD.
Results
Serum CRT and urinary ALP levels were statistically significant higher (P < 0.001) while serum CD47 level was statistically significant lower (P < 0.001) in patients with CAD than patients with stable graft function and controls. There was statistically insignificant difference between controls and patients with stable graft function. Serum CRT and serum CD47 levels were positively correlated with each other and with worsening renal and tubular function, serum hsCRP in RTR and with degree of renal IF in patients with CAD (P < 0.05).
Conclusions
The activation and dysregulation of CRT and CD47 could play a role in the development of CAD and could be a potential biomarker for renal allograft dysfunction.
Collapse
|
10
|
Ros M, Nguyen AT, Chia J, Le Tran S, Le Guezennec X, McDowall R, Vakhrushev S, Clausen H, Humphries MJ, Saltel F, Bard FA. ER-resident oxidoreductases are glycosylated and trafficked to the cell surface to promote matrix degradation by tumour cells. Nat Cell Biol 2020; 22:1371-1381. [PMID: 33077910 DOI: 10.1038/s41556-020-00590-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
Tumour growth and invasiveness require extracellular matrix (ECM) degradation and are stimulated by the GALA pathway, which induces protein O-glycosylation in the endoplasmic reticulum (ER). ECM degradation requires metalloproteases, but whether other enzymes are required is unclear. Here, we show that GALA induces the glycosylation of the ER-resident calnexin (Cnx) in breast and liver cancer. Glycosylated Cnx and its partner ERp57 are trafficked to invadosomes, which are sites of ECM degradation. We find that disulfide bridges are abundant in connective and liver ECM. Cell surface Cnx-ERp57 complexes reduce these extracellular disulfide bonds and are essential for ECM degradation. In vivo, liver cancer cells but not hepatocytes display cell surface Cnx. Liver tumour growth and lung metastasis of breast and liver cancer cells are inhibited by anti-Cnx antibodies. These findings uncover a moonlighting function of Cnx-ERp57 at the cell surface that is essential for ECM breakdown and tumour development.
Collapse
Affiliation(s)
- Manon Ros
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000 Bordeaux, France, Bordeaux, France
| | - Anh Tuan Nguyen
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Joanne Chia
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Son Le Tran
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | | | - Ruth McDowall
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sergey Vakhrushev
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin James Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Frederic Saltel
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000 Bordeaux, France, Bordeaux, France
| | - Frederic André Bard
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Lu A, Pallero MA, Owusu BY, Borovjagin AV, Lei W, Sanders PW, Murphy-Ullrich JE. Calreticulin is important for the development of renal fibrosis and dysfunction in diabetic nephropathy. Matrix Biol Plus 2020; 8:100034. [PMID: 33543033 PMCID: PMC7852315 DOI: 10.1016/j.mbplus.2020.100034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Previously, our lab showed that the endoplasmic reticulum (ER) and calcium regulatory protein, calreticulin (CRT), is important for collagen transcription, secretion, and assembly into the extracellular matrix (ECM) and that ER CRT is critical for TGF-β stimulation of type I collagen transcription through stimulation of ER calcium release and NFAT activation. Diabetes is the leading cause of end stage renal disease. TGF-β is a key factor in the pathogenesis of diabetic nephropathy. However, the role of calreticulin (Calr) in fibrosis of diabetic nephropathy has not been investigated. In current work, we used both in vitro and in vivo approaches to assess the role of ER CRT in TGF-β and glucose stimulated ECM production by renal tubule cells and in diabetic mice. Knockdown of CALR by siRNA in a human proximal tubular cell line (HK-2) showed reduced induction of soluble collagen when stimulated by TGF-β or high glucose as compared to control cells, as well as a reduction in fibronectin and collagen IV transcript levels. CRT protein is increased in kidneys of mice made diabetic with streptozotocin and subjected to uninephrectomy to accelerate renal tubular injury as compared to controls. We used renal-targeted ultrasound delivery of Cre-recombinase plasmid to knockdown specifically CRT expression in the remaining kidney of uninephrectomized Calr fl/fl mice with streptozotocin-induced diabetes. This approach reduced CRT expression in the kidney, primarily in the tubular epithelium, by 30-55%, which persisted over the course of the studies. Renal function as measured by the urinary albumin/creatinine ratio was improved in the mice with knockdown of CRT as compared to diabetic mice injected with saline or subjected to ultrasound and injected with control GFP plasmid. PAS staining of kidneys and immunohistochemical analyses of collagen types I and IV show reduced glomerular and tubulointerstitial fibrosis. Renal sections from diabetic mice with CRT knockdown showed reduced nuclear NFAT in renal tubules and treatment of diabetic mice with 11R-VIVIT, an NFAT inhibitor, reduced proteinuria and renal fibrosis. These studies identify ER CRT as an important regulator of TGF-β stimulated ECM production in the diabetic kidney, potentially through regulation of NFAT-dependent ECM transcription.
Collapse
Key Words
- 4-PBA, 4-phenylbutyrate
- CRT, calreticulin
- Calreticulin
- Collagen
- Diabetic nephropathy
- ECM, extracellular matrix
- EMT, epithelial to mesenchymal transition
- ER, endoplasmic reticulum
- Fibrosis
- GRP78, glucose related protein 78
- MB/US, microbubble/ultrasound
- NFAT
- NFAT, nuclear factor of activated T cells
- PAS, Periodic Acid-Schiff
- STZ, streptozotocin
- TGF-β, transforming growth factor-β
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Ailing Lu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Manuel A. Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Benjamin Y. Owusu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Anton V. Borovjagin
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Weiqi Lei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294-0019, USA
| | - Paul W. Sanders
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Department of Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | | |
Collapse
|
12
|
Pandya UM, Manzanares MA, Tellechea A, Egbuta C, Daubriac J, Jimenez-Jaramillo C, Samra F, Fredston-Hermann A, Saadipour K, Gold LI. Calreticulin exploits TGF-β for extracellular matrix induction engineering a tissue regenerative process. FASEB J 2020; 34:15849-15874. [PMID: 33015849 DOI: 10.1096/fj.202001161r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Topical application of extracellular calreticulin (eCRT), an ER chaperone protein, in animal models enhances wound healing and induces tissue regeneration evidenced by epidermal appendage neogenesis and lack of scarring. In addition to chemoattraction of cells critical to the wound healing process, eCRT induces abundant neo-dermal extracellular matrix (ECM) formation by 3 days post-wounding. The purpose of this study was to determine the mechanisms involved in eCRT induction of ECM. In vitro, eCRT strongly induces collagen I, fibronectin, elastin, α-smooth muscle actin in human adult dermal (HDFs) and neonatal fibroblasts (HFFs) mainly via TGF-β canonical signaling and Smad2/3 activation; RAP, an inhibitor of LRP1 blocked eCRT ECM induction. Conversely, eCRT induction of α5 and β1 integrins was not mediated by TGF-β signaling nor inhibited by RAP. Whereas eCRT strongly induces ECM and integrin α5 proteins in K41 wild-type mouse embryo fibroblasts (MEFs), CRT null MEFs were unresponsive. The data show that eCRT induces the synthesis and release of TGF-β3 first via LRP1 or other receptor signaling and later induces ECM proteins via LRP1 signaling subsequently initiating TGF-β receptor signaling for intracellular CRT (iCRT)-dependent induction of TGF-β1 and ECM proteins. In addition, TGF-β1 induces 2-3-fold higher level of ECM proteins than eCRT. Whereas eCRT and iCRT converge for ECM induction, we propose that eCRT attenuates TGF-β-mediated fibrosis/scarring to achieve tissue regeneration.
Collapse
Affiliation(s)
- Unnati M Pandya
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Miguel A Manzanares
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Ana Tellechea
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Chinaza Egbuta
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Julien Daubriac
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Couger Jimenez-Jaramillo
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Fares Samra
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Alexa Fredston-Hermann
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Khalil Saadipour
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA
| | - Leslie I Gold
- Division of Translational Medicine, Department of Medicine, New York University School of Medicine-Langone Health, New York, NY, USA.,Pathology Department, New York University School of Medicine-Langone Health, New York, NY, USA
| |
Collapse
|
13
|
Abstract
Calreticulin (CALR) is an endoplasmic reticulum (ER)-resident protein involved in a spectrum of cellular processes. In healthy cells, CALR operates as a chaperone and Ca2+ buffer to assist correct protein folding within the ER. Besides favoring the maintenance of cellular proteostasis, these cell-intrinsic CALR functions support Ca2+-dependent processes, such as adhesion and integrin signaling, and ensure normal antigen presentation on MHC Class I molecules. Moreover, cancer cells succumbing to immunogenic cell death (ICD) expose CALR on their surface, which promotes the uptake of cell corpses by professional phagocytes and ultimately supports the initiation of anticancer immunity. Thus, loss-of-function CALR mutations promote oncogenesis not only as they impair cellular homeostasis in healthy cells, but also as they compromise natural and therapy-driven immunosurveillance. However, the prognostic impact of total or membrane-exposed CALR levels appears to vary considerably with cancer type. For instance, while genetic CALR defects promote pre-neoplastic myeloproliferation, patients with myeloproliferative neoplasms bearing CALR mutations often experience improved overall survival as compared to patients bearing wild-type CALR. Here, we discuss the context-dependent impact of CALR on malignant transformation, tumor progression and response to cancer therapy.
Collapse
|
14
|
Korfei M, MacKenzie B, Meiners S. The ageing lung under stress. Eur Respir Rev 2020; 29:29/156/200126. [DOI: 10.1183/16000617.0126-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
Healthy ageing of the lung involves structural changes but also numerous cell-intrinsic and cell-extrinsic alterations. Among them are the age-related decline in central cellular quality control mechanisms such as redox and protein homeostasis. In this review, we would like to provide a conceptual framework of how impaired stress responses in the ageing lung, as exemplified by dysfunctional redox and protein homeostasis, may contribute to onset and progression of COPD and idiopathic pulmonary fibrosis (IPF). We propose that age-related imbalanced redox and protein homeostasis acts, amongst others (e.g.cellular senescence), as a “first hit” that challenges the adaptive stress-response pathways of the cell, increases the level of oxidative stress and renders the lung susceptible to subsequent injury and disease. In both COPD and IPF, additional environmental insults such as smoking, air pollution and/or infections then serve as “second hits” which contribute to persistently elevated oxidative stress that overwhelms the already weakened adaptive defence and repair pathways in the elderly towards non-adaptive, irremediable stress thereby promoting development and progression of respiratory diseases. COPD and IPF are thus distinct horns of the same devil, “lung ageing”.
Collapse
|
15
|
Endoplasmic Reticulum Stress Regulates Scleral Remodeling in a Guinea Pig Model of Form-Deprivation Myopia. J Ophthalmol 2020; 2020:3264525. [PMID: 32587758 PMCID: PMC7303736 DOI: 10.1155/2020/3264525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/22/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose This study aimed to investigate the role of endoplasmic reticulum (ER) stress in scleral remodeling in a guinea pig model of form-deprivation myopia (FDM). Methods Guinea pigs were form deprived to induce myopia. ER ultrastructural changes in the sclera were examined by transmission electron microscopy (TEM). The protein levels of ER stress chaperones, including GRP78, CHOP, and calreticulin (CRT), were analyzed by western blotting at 24 hours, 1 week, and 4 weeks of FD. Scleral fibroblasts from guinea pigs were cultured and exposed to the ER stress inducer tunicamycin (TM) or the ER stress inhibitor 4-phenylbutyric acid (4-PBA). CRT was knocked down by lentivirus-mediated CRT shRNA transfection. The expression levels of GRP78, CHOP, TGF-β1, and COL1A1 were analyzed by qRT-PCR or western blotting. Results The sclera of FDM eyes exhibited swollen and distended ER at 4 weeks, as well as significantly increased protein expression of GRP78 and CRT at 1 week and 4 weeks, compared to the sclera of the control eyes. In vitro, TM induced ER stress in scleral fibroblasts, which was suppressed by 4-PBA. The mRNA expression of TGF-β1 and COL1A1 was upregulated after TM stimulation for 24 hours, but downregulated for 48 hours. Additionally, change of TGF-β1 and COL1A1 transcription induced by TM was suppressed by CRT knockdown. Conclusions ER stress was an important modulator which could influence the expression of the scleral collagen. CRT might be a new target for the intervention of the FDM scleral remodeling process.
Collapse
|
16
|
Doan ND, Hosseini AS, Bikovtseva AA, Huang MS, DiChiara AS, Papa LJ, Koller A, Shoulders MD. Elucidation of proteostasis defects caused by osteogenesis imperfecta mutations in the collagen-α2(I) C-propeptide domain. J Biol Chem 2020; 295:9959-9973. [PMID: 32482890 DOI: 10.1074/jbc.ra120.014071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Intracellular collagen assembly begins with the oxidative folding of ∼30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature. Moreover, it is unclear whether or not recognition and quality control of misfolded C-Pro domains is mediated by recognizing stalled assembly of triple-helical domains or by direct engagement of the C-Pro itself. Here, we integrate biochemical and cellular approaches to illuminate the proteostasis defects associated with osteogenesis imperfecta-causing mutations within the collagen-α2(I) C-Pro domain. We first show that "C-Pro-only" constructs recapitulate key aspects of the behavior of full-length Colα2(I) constructs. Of the variants studied, perhaps the most severe assembly defects are associated with C1163R C-Proα2(I), which is incapable of forming stable trimers and is retained within cells. We find that the presence or absence of an unassembled triple-helical domain is not the key feature driving cellular retention versus secretion. Rather, the proteostasis network directly engages the misfolded C-Pro domain itself to prevent secretion and initiate clearance. Using MS-based proteomics, we elucidate how the endoplasmic reticulum (ER) proteostasis network differentially engages misfolded C1163R C-Proα2(I) and targets it for ER-associated degradation. These results provide insights into collagen folding and quality control with the potential to inform the design of proteostasis network-targeted strategies for managing collagenopathies.
Collapse
Affiliation(s)
- Ngoc-Duc Doan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Azade S Hosseini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Agata A Bikovtseva
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michelle S Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Louis J Papa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Antonius Koller
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Ghilardi SJ, O'Reilly BM, Sgro AE. Intracellular signaling dynamics and their role in coordinating tissue repair. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1479. [PMID: 32035001 PMCID: PMC7187325 DOI: 10.1002/wsbm.1479] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022]
Abstract
Tissue repair is a complex process that requires effective communication and coordination between cells across multiple tissues and organ systems. Two of the initial intracellular signals that encode injury signals and initiate tissue repair responses are calcium and extracellular signal-regulated kinase (ERK). However, calcium and ERK signaling control a variety of cellular behaviors important for injury repair including cellular motility, contractility, and proliferation, as well as the activity of several different transcription factors, making it challenging to relate specific injury signals to their respective repair programs. This knowledge gap ultimately hinders the development of new wound healing therapies that could take advantage of native cellular signaling programs to more effectively repair tissue damage. The objective of this review is to highlight the roles of calcium and ERK signaling dynamics as mechanisms that link specific injury signals to specific cellular repair programs during epithelial and stromal injury repair. We detail how the signaling networks controlling calcium and ERK can now also be dissected using classical signal processing techniques with the advent of new biosensors and optogenetic signal controllers. Finally, we advocate the importance of recognizing calcium and ERK dynamics as key links between injury detection and injury repair programs that both organize and execute a coordinated tissue repair response between cells across different tissues and organs. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Biological Mechanisms > Cell Signaling Laboratory Methods and Technologies > Imaging Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
Affiliation(s)
- Samuel J. Ghilardi
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Breanna M. O'Reilly
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| | - Allyson E. Sgro
- Department of Biomedical Engineering and the Biological Design CenterBoston UniversityBostonMassachusetts
| |
Collapse
|
18
|
Murphy-Ullrich JE. Thrombospondin 1 and Its Diverse Roles as a Regulator of Extracellular Matrix in Fibrotic Disease. J Histochem Cytochem 2019; 67:683-699. [PMID: 31116066 PMCID: PMC6713974 DOI: 10.1369/0022155419851103] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/26/2019] [Indexed: 01/06/2023] Open
Abstract
Thrombospondin 1 (TSP1) is a matricellular extracellular matrix protein that has diverse roles in regulating cellular processes important for the pathogenesis of fibrotic diseases. We will present evidence for the importance of TSP1 control of latent transforming growth factor beta activation in renal fibrosis with an emphasis on diabetic nephropathy. Other functions of TSP1 that affect renal fibrosis, including regulation of inflammation and capillary density, will be addressed. Emerging roles for TSP1 N-terminal domain regulation of collagen matrix assembly, direct effects of TSP1-collagen binding, and intracellular functions of TSP1 in mediating endoplasmic reticulum stress responses in extracellular matrix remodeling and fibrosis, which could potentially affect renal fibrogenesis, will also be discussed. Finally, we will address possible strategies for targeting TSP1 functions to treat fibrotic renal disease.
Collapse
Affiliation(s)
- Joanne E Murphy-Ullrich
- Departments of Pathology, Cell Developmental and Integrative Biology, and Ophthalmology, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
19
|
Jovanovic M, Schmidt FN, Guterman-Ram G, Khayyeri H, Hiram-Bab S, Orenbuch A, Katchkovsky S, Aflalo A, Isaksson H, Busse B, Jähn K, Levaot N. Perturbed bone composition and integrity with disorganized osteoblast function in zinc receptor/Gpr39-deficient mice. FASEB J 2018; 32:2507-2518. [PMID: 29295862 DOI: 10.1096/fj.201700661rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Changes in bone matrix composition are frequently found with bone diseases and may be associated with increased fracture risk. Bone is rich in the trace element zinc. Zinc was established to play a significant role in the growth, development, and maintenance of healthy bones; however, the mechanisms underlying zinc effects on the integrity of the skeleton are poorly understood. Here, we show that the zinc receptor (ZnR)/Gpr39 is required for normal bone matrix deposition by osteoblasts. Initial analysis showed that Gpr39-deficient ( Gpr39-/-) mice had weaker bones as a result of altered bone composition. Fourier transform infrared spectroscopy analysis showed high mineral-to-matrix ratios in the bones of Gpr39-/- mice. Histologic analysis showed abnormally high numbers of active osteoblasts but normal osteoclast numbers on the surfaces of bones from Gpr39-/- mice. Furthermore, Gpr39-/- osteoblasts had disorganized matrix deposition in vitro with cultures exhibiting abnormally low collagen and high mineral contents, findings that demonstrate a cell-intrinsic role for ZnR/Gpr39 in these cells. We show that both collagen synthesis and deposition by Gpr39-/- osteoblasts are perturbed. Finally, the expression of the zinc transporter Zip13 and a disintegrin and metalloproteinase with thrombospondin motifs family of zinc-dependent metalloproteases that regulate collagen processing was downregulated in Gpr39-/- osteoblasts. Altogether, our results suggest that zinc sensing by ZnR/Gpr39 affects the expression levels of zinc-dependent enzymes in osteoblasts and regulates collagen processing and deposition.-Jovanovic, M., Schmidt, F. N., Guterman-Ram, G., Khayyeri, H., Hiram-Bab, S., Orenbuch, A., Katchkovsky, S., Aflalo, A., Isaksson, H., Busse, B., Jähn, K., Levaot, N. Perturbed bone composition and integrity with disorganized osteoblast function in zinc receptor/Gpr39-deficient mice.
Collapse
Affiliation(s)
- Milena Jovanovic
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gali Guterman-Ram
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hanifeh Khayyeri
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Ayelet Orenbuch
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Svetlana Katchkovsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anastasia Aflalo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hanna Isaksson
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
20
|
Charonis AS, Michalak M, Groenendyk J, Agellon LB. Endoplasmic reticulum in health and disease: the 12th International Calreticulin Workshop, Delphi, Greece. J Cell Mol Med 2017; 21:3141-3149. [PMID: 29160038 PMCID: PMC5706586 DOI: 10.1111/jcmm.13413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Starting from 1994, every 2 years, an international workshop is organized focused on calreticulin and other endoplasmic reticulum chaperones. In 2017, the workshop took place at Delphi Greece. Participants from North and South America, Europe, Asia and Australia presented their recent data and discussed them extensively with their colleagues. Presentations dealt with structural aspects of calreticulin and calnexin, the role of Ca2+ in cellular signalling and in autophagy, the endoplasmic reticulum stress and the unfolded protein response, the role of calreticulin in immune responses. Several presentations focused on the role of calreticulin and other ER chaperones in a variety of disease states, including haemophilia, obesity, diabetes, Sjogren's syndrome, Chagas diseases, multiple sclerosis, amyotrophic lateral sclerosis, neurological malignancies (especially glioblastoma), haematological malignancies (especially essential thrombocythemia and myelofibrosis), lung adenocarcinoma, renal pathology with emphasis in fibrosis and drug toxicity. In addition, the role of calreticulin and calnexin in growth and wound healing was discussed, as well as the possible use of extracellular calreticulin as a marker for certain diseases. It was agreed that the 13th International Calreticulin Workshop will be organized in 2019 in Montreal, Quebec, Canada.
Collapse
Affiliation(s)
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
21
|
Owusu BY, Zimmerman KA, Murphy-Ullrich JE. The role of the endoplasmic reticulum protein calreticulin in mediating TGF-β-stimulated extracellular matrix production in fibrotic disease. J Cell Commun Signal 2017; 12:289-299. [PMID: 29080087 DOI: 10.1007/s12079-017-0426-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a key factor contributing to fibrotic disease. Although ER stress is a short-term adaptive response, with chronic stimulation, it can activate pathways leading to fibrosis. ER stress can induce TGF-β signaling, a central driver of extracellular matrix production in fibrosis. This review will discuss the role of an ER protein, calreticulin (CRT), which has both chaperone and calcium regulatory functions, in fibrosis. CRT expression is upregulated in multiple different fibrotic diseases. The roles of CRT in regulation of fibronectin extracellular matrix assembly, extracellular matrix transcription, and collagen secretion and processing into the extracellular matrix will be discussed. Evidence for the importance of CRT in ER calcium release and NFAT activation downstream of TGF-β signaling will be presented. Finally, we will summarize evidence from animal models in which CRT expression is genetically reduced or experimentally downregulated in targeted tissues of adult animals and discuss how these models define a key role for CRT in fibrotic diseases.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Pathology, University of Alabama at Birmingham, G001A Volker Hall, Birmingham, AL, 35294, USA
| | - Kurt A Zimmerman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, G001A Volker Hall, Birmingham, AL, 35294, USA. .,Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
22
|
Mao Y, Xiong L, Li L. Comparison of the proteomes of mouse Skin Derived Precursors (SKPs) and SKP‐derived fibroblasts (SFBs) by iTRAQ. J Cell Biochem 2017; 119:1134-1140. [PMID: 28745444 DOI: 10.1002/jcb.26281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/10/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Yujie Mao
- Department of Dermatology, Sichuan Academy of Science & Sichuan Provincial People's HospitalUniversity of Electronic Science and TechnologyChengduChina
- Department of DermatologyWest China Hospital, Sichuan UniversityChengduChina
| | - Lidan Xiong
- Department of DermatologyWest China Hospital, Sichuan UniversityChengduChina
| | - Li Li
- Department of DermatologyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
23
|
Karimzadeh F, Opas M. Calreticulin Is Required for TGF-β-Induced Epithelial-to-Mesenchymal Transition during Cardiogenesis in Mouse Embryonic Stem Cells. Stem Cell Reports 2017; 8:1299-1311. [PMID: 28434939 PMCID: PMC5425659 DOI: 10.1016/j.stemcr.2017.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
Calreticulin, a multifunctional endoplasmic reticulum resident protein, is required for TGF-β-induced epithelial-to-mesenchymal transition (EMT) and subsequent cardiomyogenesis. Using embryoid bodies (EBs) derived from calreticulin-null and wild-type (WT) embryonic stem cells (ESCs), we show that expression of EMT and cardiac differentiation markers is induced during differentiation of WT EBs. This induction is inhibited in the absence of calreticulin and can be mimicked by inhibiting TGF-β signaling in WT cells. The presence of calreticulin in WT cells permits TGF-β-mediated signaling via AKT/GSK3β and promotes repression of E-cadherin by SNAIL2/SLUG. This is paralleled by induction of N-cadherin in a process known as the cadherin switch. We show that regulated Ca2+ signaling between calreticulin and calcineurin is critical for the unabated TGF-β signaling that is necessary for the exit from pluripotency and the cadherin switch during EMT. Calreticulin is thus a key mediator of TGF-β-induced commencement of cardiomyogenesis in mouse ESCs.
Collapse
Affiliation(s)
- Fereshteh Karimzadeh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
24
|
Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta. PLoS Genet 2016; 12:e1006156. [PMID: 27441836 PMCID: PMC4956114 DOI: 10.1371/journal.pgen.1006156] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022] Open
Abstract
Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. Osteogenesis imperfecta (OI) is a heritable disorder of connective tissues characterized by fracture susceptibility and growth deficiency. Most OI cases are caused by autosomal dominant mutations in the genes encoding type I collagen, COL1A1 and COL1A2. Delineation of novel gene defects causing dominant and recessive forms of OI has led to the understanding that the bone pathology results not only from abnormalities in type I collagen quantity and primary structure, but also from defects in post-translational modification, folding, intracellular transport and extracellular matrix incorporation. Recently, mutations in TMEM38B, which encodes the integral ER membrane K+ channel TRIC-B, have been identified as causative for the OI phenotype. However, the mechanism by which absence of TRIC-B causes OI has not been reported. Using cell lines established from three independent probands, we have demonstrated that absence of TRIC-B leads to abnormal ER Ca2+ flux and store-operated calcium entry (SOCE), although ER steady state Ca2+ is normal. Disruption of intracellular calcium dynamics alters the expression and activity of multiple collagen interacting chaperones and modifying enzymes within the ER. Thus TRIC-B deficiency causes OI by dysregulation of collagen synthesis, through the impairment of calcium-dependent gene expression and protein-protein interactions within the ER.
Collapse
|
25
|
Groenendyk J, Lee D, Jung J, Dyck JRB, Lopaschuk GD, Agellon LB, Michalak M. Inhibition of the Unfolded Protein Response Mechanism Prevents Cardiac Fibrosis. PLoS One 2016; 11:e0159682. [PMID: 27441395 PMCID: PMC4956237 DOI: 10.1371/journal.pone.0159682] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/05/2016] [Indexed: 12/24/2022] Open
Abstract
Background Cardiac fibrosis attributed to excessive deposition of extracellular matrix proteins is a major cause of heart failure and death. Cardiac fibrosis is extremely difficult and challenging to treat in a clinical setting due to lack of understanding of molecular mechanisms leading to cardiac fibrosis and effective anti-fibrotic therapies. The objective in this study was to examine whether unfolded protein response (UPR) pathway mediates cardiac fibrosis and whether a pharmacological intervention to modulate UPR can prevent cardiac fibrosis and preserve heart function. Methodology/Principal Findings We demonstrate here that the mechanism leading to development of fibrosis in a mouse with increased expression of calreticulin, a model of heart failure, stems from impairment of endoplasmic reticulum (ER) homeostasis, transient activation of the unfolded protein response (UPR) pathway and stimulation of the TGFβ1/Smad2/3 signaling pathway. Remarkably, sustained pharmacologic inhibition of the UPR pathway by tauroursodeoxycholic acid (TUDCA) is sufficient to prevent cardiac fibrosis, and improved exercise tolerance. Conclusions We show that the mechanism leading to development of fibrosis in a mouse model of heart failure stems from transient activation of UPR pathway leading to persistent remodelling of cardiac tissue. Blocking the activation of the transiently activated UPR pathway by TUDCA prevented cardiac fibrosis, and improved prognosis. These findings offer a window for additional interventions that can preserve heart function.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Dukgyu Lee
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- School of Dietetics and Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Joanna Jung
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Jason R. B. Dyck
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Gary D. Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Luis B. Agellon
- School of Dietetics and Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec, H9X 3V9, Canada
- * E-mail: (MM); (LBA)
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
- * E-mail: (MM); (LBA)
| |
Collapse
|
26
|
Mezawa M, Pinto VI, Kazembe MP, Lee WS, McCulloch CA. Filamin A regulates the organization and remodeling of the pericellular collagen matrix. FASEB J 2016; 30:3613-3627. [DOI: 10.1096/fj.201600354rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Masaru Mezawa
- Department of PeriodontologyNihon University School of Dentistry at Matsudo Matsudo Japan
| | - Vanessa I. Pinto
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Mwayi P. Kazembe
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | - Wilson S. Lee
- Matrix Dynamics GroupFaculty of DentistryUniversity of Toronto Toronto Ontario Canada
| | | |
Collapse
|
27
|
Zhao C, Ichimura A, Qian N, Iida T, Yamazaki D, Noma N, Asagiri M, Yamamoto K, Komazaki S, Sato C, Aoyama F, Sawaguchi A, Kakizawa S, Nishi M, Takeshima H. Mice lacking the intracellular cation channel TRIC-B have compromised collagen production and impaired bone mineralization. Sci Signal 2016; 9:ra49. [PMID: 27188440 DOI: 10.1126/scisignal.aad9055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The trimeric intracellular cation (TRIC) channels TRIC-A and TRIC-B localize predominantly to the endoplasmic reticulum (ER) and likely support Ca(2+) release from intracellular stores by mediating cationic flux to maintain electrical neutrality. Deletion and point mutations in TRIC-B occur in families with autosomal recessive osteogenesis imperfecta. Tric-b knockout mice develop neonatal respiratory failure and exhibit poor bone ossification. We investigated the cellular defect causing the bone phenotype. Bone histology indicated collagen matrix deposition was reduced in Tric-b knockout mice. Osteoblasts, the bone-depositing cells, from Tric-b knockout mice exhibited reduced Ca(2+) release from ER and increased ER Ca(2+) content, which was associated with ER swelling. These cells also had impaired collagen release without a decrease in collagen-encoding transcripts, consistent with a defect in trafficking of collagen through ER. In contrast, osteoclasts, the bone-degrading cells, from Tric-b knockout mice were similar to those from wild-type mice. Thus, TRIC-B function is essential to support the production and release of large amounts of collagen by osteoblasts, which is necessary for bone mineralization.
Collapse
Affiliation(s)
- Chengzhu Zhao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Atsuhiko Ichimura
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan. Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Kyoto University, Kyoto 606-8501, Japan
| | - Nianchao Qian
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tsunaki Iida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Daiju Yamazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naruto Noma
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masataka Asagiri
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Koji Yamamoto
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | - Chikara Sato
- National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8568, Japan
| | - Fumiyo Aoyama
- Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Akira Sawaguchi
- Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Sho Kakizawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Miyuki Nishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
28
|
Kim TK, Ibelli AMG, Mulenga A. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade. Ticks Tick Borne Dis 2016; 6:91-101. [PMID: 25454607 DOI: 10.1016/j.ttbdis.2014.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/08/2014] [Accepted: 10/13/2014] [Indexed: 01/02/2023]
Abstract
In this study we characterized Amblyomma americanum (Aam) tick calreticulin (CRT) homolog in tick feeding physiology. In nature, different tick species can be found feeding on the same animal host. This suggests that different tick species found feeding on the same host can modulate the same host anti-tick defense pathways to successfully feed. From this perspective it's plausible that different tick species can utilize universally conserved proteins such as CRT to regulate and facilitate feeding. CRT is a multi-functional protein found in most taxa that is injected into the vertebrate host during tick feeding. Apart from it's current use as a biomarker for human tick bites, role(s) of this protein in tick feeding physiology have not been elucidated. Here we show that annotated functional CRT amino acid motifs are well conserved in tick CRT. However our data show that despite high amino acid identity levels to functionally characterized CRT homologs in other organisms, AamCRT is apparently functionally different. Pichia pastoris expressed recombinant (r) AamCRT bound C1q, the first component of the classical complement system, but it did not inhibit activation of this pathway. This contrast with reports of other parasite CRT that inhibited activation of the classical complement pathway through sequestration of C1q. Furthermore rAamCRT did not bind factor Xa in contrast to reports of parasite CRT binding factor Xa, an important protease in the blood clotting system. Consistent with this observation, rAamCRT did not affect plasma clotting or platelet aggregation. We discuss our findings in the context of tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Texas A & M University AgriLife Research, Department of Entomology, 2475 TAMU, College Station, TX 77843, United States
| | | | | |
Collapse
|
29
|
Zimmerman KA, Xing D, Pallero MA, Lu A, Ikawa M, Black L, Hoyt KL, Kabarowski JH, Michalak M, Murphy-Ullrich JE. Calreticulin Regulates Neointima Formation and Collagen Deposition following Carotid Artery Ligation. J Vasc Res 2016; 52:306-20. [PMID: 26910059 DOI: 10.1159/000443884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 01/07/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS The endoplasmic reticulum (ER) stress protein, calreticulin (CRT), is required for the production of TGF-β-stimulated extracellular matrix (ECM) by fibroblasts. Since TGF-β regulates vascular fibroproliferative responses and collagen deposition, we investigated the effects of CRT knockdown on vascular smooth-muscle cell (VSMC) fibroproliferative responses and collagen deposition. METHODS Using a carotid artery ligation model of vascular injury, Cre-recombinase-IRES-GFP plasmid was delivered with microbubbles (MB) to CRT-floxed mice using ultrasound (US) to specifically reduce CRT expression in the carotid artery. RESULTS In vitro, Cre-recombinase-mediated CRT knockdown in isolated, floxed VSMCs decreased the CRT transcript and protein, and attenuated the induction of collagen I protein in response to TGF-β. TGF-β stimulation of collagen I was partly blocked by the NFAT inhibitor 11R-VIVIT. Following carotid artery ligation, CRT staining was upregulated with enhanced expression in the neointima 14-21 days after injury. Furthermore, Cre-recombinase-IRES-GFP plasmid delivered by targeted US reduced CRT expression in the neointima of CRT-floxed mice and led to a significant reduction in neointima formation and collagen deposition. The neointimal cell number was also reduced in mice, with a local, tissue-specific knockdown of CRT. CONCLUSIONS This work establishes a novel role for CRT in mediating VSMC responses to injury through the regulation of collagen deposition and neointima formation.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Ala., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kii I, Nishiyama T, Kudo A. Periostin promotes secretion of fibronectin from the endoplasmic reticulum. Biochem Biophys Res Commun 2016; 470:888-93. [PMID: 26820539 DOI: 10.1016/j.bbrc.2016.01.139] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/22/2016] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) proteins are synthesized in the endoplasmic reticulum (ER), transported to the extracellular milieu through the secretory pathway, and assembled into an extracellular architecture. A previous study of ours showed that periostin, a secretory protein, interacts with fibronectin and is involved in ECM remodeling. Here we show that periostin played a role in fibronectin secretion from the ER. Co-immunoprecipitation and in situ proximity ligation assays revealed an interaction between periostin and fibronectin in the ER. Although accumulation of fibronectin was detected in the ER of fibroblastic C3H10T1/2 cells, forced expression of periostin in those cells decreased the accumulation of fibronectin in the ER, suggesting that periostin promoted the secretion of fibronectin. A substitution mutant of tryptophan at the position 65 to alanine in the EMI domain of periostin, which caused periostin to lose its ability to interact with fibronectin, did not decrease the accumulation. Furthermore, targeted disruption of periostin in mice caused the non-fibrillar and ectopic deposition of fibronectin in the periodontal ligament. Thus, these results demonstrate a subcellular role of periostin in promotion of fibronectin secretion from the ER.
Collapse
Affiliation(s)
- Isao Kii
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; Pathophysiological and Health Science Team, Imaging Application Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Takashi Nishiyama
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Akira Kudo
- Department of Biological Information, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
31
|
Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice. Sci Rep 2015; 5:15471. [PMID: 26494538 PMCID: PMC4616029 DOI: 10.1038/srep15471] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/23/2015] [Indexed: 01/14/2023] Open
Abstract
COPII (coat protein complex-II) vesicles transport proteins from the endoplasmic reticulum (ER) to the Golgi. Higher eukaryotes have two or more paralogs of most COPII components. Here we characterize mice deficient for SEC23A and studied interactions of Sec23a null allele with the previously reported Sec23b null allele. SEC23A deficiency leads to mid-embryonic lethality associated with defective development of extraembryonic membranes and neural tube opening in midbrain. Secretion defects of multiple collagen types are observed in different connective tissues, suggesting that collagens are primarily transported in SEC23A-containing vesicles in these cells. Other extracellular matrix proteins, such as fibronectin, are not affected by SEC23A deficiency. Intracellular accumulation of unsecreted proteins leads to strong induction of the unfolded protein response in collagen-producing cells. No collagen secretion defects are observed in SEC23B deficient embryos. We report that E-cadherin is a cargo that accumulates in acini of SEC23B deficient pancreas and salivary glands. Compensatory increase of one paralog is observed in the absence of the second paralog. Haploinsufficiency of the remaining Sec23 paralog on top of homozygous inactivation of the first paralog leads to earlier lethality of embryos. Our results suggest that mammalian SEC23A and SEC23B transport overlapping yet distinct spectra of cargo in vivo.
Collapse
|
32
|
Peters SB, Nelson DA, Kwon HR, Koslow M, DeSantis KA, Larsen M. TGFβ signaling promotes matrix assembly during mechanosensitive embryonic salivary gland restoration. Matrix Biol 2015; 43:109-24. [PMID: 25652203 DOI: 10.1016/j.matbio.2015.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/25/2015] [Accepted: 01/25/2015] [Indexed: 01/16/2023]
Abstract
Mechanical properties of the microenvironment regulate cell morphology and differentiation within complex organs. However, methods to restore morphogenesis and differentiation in organs in which compliance is suboptimal are poorly understood. We used mechanosensitive mouse salivary gland organ explants grown at different compliance levels together with deoxycholate extraction and immunocytochemistry of the intact, assembled matrices to examine the compliance-dependent assembly and distribution of the extracellular matrix and basement membrane in explants grown at permissive or non-permissive compliance. Extracellular matrix and basement membrane assembly were disrupted in the glands grown at low compliance compared to those grown at high compliance, correlating with defective morphogenesis and decreased myoepithelial cell differentiation. Extracellular matrix and basement membrane assembly as well as myoepithelial differentiation were restored by addition of TGFβ1 and by mechanical rescue, and mechanical rescue was prevented by inhibition of TGFβ signaling during the rescue. We detected a basal accumulation of active integrin β1 in the differentiating myoepithelial cells that formed a continuous peripheral localization around the proacini and in clefts within active sites of morphogenesis in explants that were grown at high compliance. The pattern and levels of integrin β1 activation together with myoepithelial differentiation were interrupted in explants grown at low compliance but were restored upon mechanical rescue or with application of exogenous TGFβ1. These data suggest that therapeutic application of TGFβ1 to tissues disrupted by mechanical signaling should be examined as a method to promote organ remodeling and regeneration.
Collapse
Affiliation(s)
- Sarah B Peters
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| | - Hae Ryong Kwon
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States; Graduate Program in Molecular, Cellular, Neural, and Developmental Biology, University at Albany, State University of New York, United States
| | - Matthew Koslow
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States; Graduate Program in Molecular, Cellular, Neural, and Developmental Biology, University at Albany, State University of New York, United States
| | - Kara A DeSantis
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States; Graduate Program in Molecular, Cellular, Neural, and Developmental Biology, University at Albany, State University of New York, United States
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| |
Collapse
|
33
|
Chang F, Lemmon CA, Nilaratanakul V, Rotter V, Romer L. Endothelial matrix assembly during capillary morphogenesis: insights from chimeric TagRFP-fibronectin matrix. J Histochem Cytochem 2014; 62:774-90. [PMID: 25063001 PMCID: PMC4209295 DOI: 10.1369/0022155414547419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/13/2014] [Indexed: 11/22/2022] Open
Abstract
Biologically relevant, three-dimensional extracellular matrix is an essential component of in vitro vasculogenesis models. WI-38 fibroblasts assemble a 3D matrix that induces endothelial tubulogenesis, but this model is challenged by fibroblast senescence and the inability to distinguish endothelial cell-derived matrix from matrix made by WI-38 fibroblasts. Matrices produced by hTERT-immortalized WI-38 recapitulated those produced by wild type fibroblasts. ECM fibrils were heavily populated by tenascin-C, fibronectin, and type VI collagen. Nearly half of the total type I collagen, but only a small fraction of the type IV collagen, were incorporated into ECM. Stable hTERT-WI-38 transfectants expressing TagRFP-fibronectin incorporated TagRFP into ~90% of the fibronectin in 3D matrices. TagRFP-fibronectin colocalized with tenascin-C and with type I collagen in a pattern that was similar to that seen in matrices from wild type WI-38. Human Umbilical Vein Endothelial Cells (HUVEC) formed 3D adhesions and tubes on WI38-hTERT-TagRFP-FN-derived matrices, and the TagRFP-fibronectin component of this new 3D human fibroblast matrix model facilitated the demonstration of concentrated membrane type 1 metalloprotease and new HUVEC FN and collagen type IV fibrils during EC tubulogenesis. These findings indicate that WI-38-hTERT- and WI-38-hTERT-TagRFP-FN-derived matrices provide platforms for the definition of new matrix assembly and remodeling events during vasculogenesis.
Collapse
Affiliation(s)
- Fumin Chang
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Christopher A Lemmon
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Voraphoj Nilaratanakul
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Varda Rotter
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| | - Lewis Romer
- Anesthesiology and Critical Care Medicine (FC, LR), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA (CAL)Cell Biology (LR), Johns Hopkins Medical Institutions, Baltimore, MDBiomedical Engineering (LR), Johns Hopkins Medical Institutions, Baltimore, MDPediatrics (LR), Johns Hopkins Medical Institutions, Baltimore, MDCenter for Cell Dynamics (LR), Johns Hopkins Medical Institutions, Baltimore, MDGraduate Program in Cellular and Molecular Medicine (VN), Johns Hopkins Medical Institutions, Baltimore, MDDepartment of Molecular and Cell Biology, The Weizmann Institute of Science, Rehovot, Israel (VR)
| |
Collapse
|
34
|
Calreticulin: roles in cell-surface protein expression. MEMBRANES 2014; 4:630-41. [PMID: 25230046 PMCID: PMC4194052 DOI: 10.3390/membranes4030630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 12/03/2022]
Abstract
In order to perform their designated functions, proteins require precise subcellular localizations. For cell-surface proteins, such as receptors and channels, they are able to transduce signals only when properly targeted to the cell membrane. Calreticulin is a multi-functional chaperone protein involved in protein folding, maturation, and trafficking. However, evidence has been accumulating that calreticulin can also negatively regulate the surface expression of certain receptors and channels. In these instances, depletion of calreticulin enhances cell-surface expression and function. In this review, we discuss the role of calreticulin with a focus on its negative effects on the expression of cell-surface proteins.
Collapse
|
35
|
Lim Y, Lee D, Kalichamy K, Hong SE, Michalak M, Ahnn J, Kim DH, Lee SK. Sumoylation regulates ER stress response by modulating calreticulin gene expression in XBP-1-dependent mode in Caenorhabditis elegans. Int J Biochem Cell Biol 2014; 53:399-408. [DOI: 10.1016/j.biocel.2014.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/21/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
|
36
|
Edogawa S, Sakai A, Inoue T, Harada S, Takeuchi T, Umegaki E, Hayashi H, Higuchi K. Down-regulation of collagen I biosynthesis in intestinal epithelial cells exposed to indomethacin: a comparative proteome analysis. J Proteomics 2014; 103:35-46. [PMID: 24698663 DOI: 10.1016/j.jprot.2014.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 01/16/2023]
Abstract
UNLABELLED In contrast to accumulated knowledge about gastroduodenal injury associated with nonsteroidal antiinflammatory drugs (NSAIDs) such as indomethacin, small intestinal mucosal injuries have been noticed only recently, and the precise mechanism remains to be elucidated. To clarify the mechanism, we performed 2-DE on IEC-6 rat normal intestinal cells that were treated with indomethacin (200μΜ, 24h) or a vehicle control and identified 18 up-regulated and 8 down-regulated proteins through MALDI-TOF/TOF mass spectrometry. Among these proteins, collagen I and proteins involved in collagen I biosynthesis and maturation, including prolyl 4-hydroxylase subunit α1, protein disulfide isomerase A3 (PDIA3), calreticulin, and endoplasmin, were all down-regulated by indomethacin. Immunohistochemical staining of the intestinal mucosa of indomethacin-administered rats showed a decrease of collagen I on the apical surface of intestinal cells. Cell death induced by indomethacin was prominently suppressed when IEC-6 cells were grown on collagen I-coated plates. cis-4-Hydroxy-l-proline, a proline analog that inhibits collagen synthesis, depressed IEC-6 cell viability in a concentration-dependent manner. Cell death was also induced by short interfering RNA knockdown of endogenous collagen I in IEC-6 cells. In conclusion, by comparative proteome analysis, we identified down-regulation of collagen I as an important mechanism in NSAID-induced intestinal injury. BIOLOGICAL SIGNIFICANCE Small intestinal lesions induced by NSAIDs are of great concern in clinical settings. Various hypotheses have been proposed for the origin of these inflammatory responses, such as reduction in the blood flow, intestinal hypermotility, abnormal intestinal mucosal permeability, mitochondrial dysfunction, and reactive oxygen species, many of which are related to the inhibition of prostaglandin synthesis. However, the precise mechanism is yet to be known. The cellular process of the lesions must involve up- and down-regulations of a large number of proteins and complex interactions between them. To elucidate it, global and systematic identification of the proteins in intestinal cells affected by NSAIDs is essential. We found that the proteins exhibiting reduced expression by indomethacin treatment are collagen I and the proteins involved in collagen I synthesis and maturation. Consistent with this, immunohistochemical analysis showed that the indomethacin-treated rat intestinal mucosal cells exhibits decreased collagen I expression on its apical surface. Furthermore, the cell-protective effect of collagen on intestinal mucosal cells was demonstrated by the use of a collagen-synthesis inhibitor, short interfering RNA (siRNA) knockdown of endogenous collagen I, and cell cultivation on collagen I-coated plates versus uncoated plates. These results give important information on the role of the collagen synthesis in intestinal mucosa in the mechanism of NSAID-induced small intestinal lesions.
Collapse
Affiliation(s)
- Shoko Edogawa
- 2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan.
| | - Akiko Sakai
- Department of Chemistry, Osaka Medical College, Osaka, Japan
| | - Takuya Inoue
- 2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Satoshi Harada
- 2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Toshihisa Takeuchi
- 2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | - Eiji Umegaki
- 2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| | | | - Kazuhide Higuchi
- 2nd Department of Internal Medicine, Osaka Medical College, Osaka, Japan
| |
Collapse
|
37
|
Burns TA, Dours-Zimmermann MT, Zimmermann DR, Krug EL, Comte-Walters S, Reyes L, Davis MA, Schey KL, Schwacke JH, Kern CB, Mjaatvedt CH. Imbalanced expression of Vcan mRNA splice form proteins alters heart morphology and cellular protein profiles. PLoS One 2014; 9:e89133. [PMID: 24586547 PMCID: PMC3930639 DOI: 10.1371/journal.pone.0089133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023] Open
Abstract
The fundamental importance of the proteoglycan versican to early heart formation was clearly demonstrated by the Vcan null mouse called heart defect (hdf). Total absence of the Vcan gene halts heart development at a stage prior to the heart’s pulmonary/aortic outlet segment growth. This creates a problem for determining the significance of versican’s expression in the forming valve precursors and vascular wall of the pulmonary and aortic roots. This study presents data from a mouse model, Vcan(tm1Zim), of heart defects that results from deletion of exon 7 in the Vcan gene. Loss of exon 7 prevents expression of two of the four alternative splice forms of the Vcan gene. Mice homozygous for the exon 7 deletion survive into adulthood, however, the inability to express the V2 or V0 forms of versican results in ventricular septal defects, smaller cushions/valve leaflets with diminished myocardialization and altered pulmonary and aortic outflow tracts. We correlate these phenotypic findings with a large-scale differential protein expression profiling to identify compensatory alterations in cardiac protein expression at E13.5 post coitus that result from the absence of Vcan exon 7. The Vcan(tm1Zim) hearts show significant changes in the relative abundance of several cytoskeletal and muscle contraction proteins including some previously associated with heart disease. These alterations define a protein fingerprint that provides insight to the observed deficiencies in pre-valvular/septal cushion mesenchyme and the stability of the myocardial phenotype required for alignment of the outflow tract with the heart ventricles.
Collapse
Affiliation(s)
- Tara A. Burns
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | | | - Dieter R. Zimmermann
- Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Edward L. Krug
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Susana Comte-Walters
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Leticia Reyes
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Monica A. Davis
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - John H. Schwacke
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Christine B. Kern
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Corey H. Mjaatvedt
- Departments of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
38
|
Prakoura N, Politis PK, Ihara Y, Michalak M, Charonis AS. Epithelial calreticulin up-regulation promotes profibrotic responses and tubulointerstitial fibrosis development. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1474-1487. [PMID: 24035512 DOI: 10.1016/j.ajpath.2013.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 02/07/2023]
Abstract
Renal fibrosis is the common anatomical feature underlying the progression of chronic kidney disease, a leading cause of morbidity and mortality worldwide. In a previous study, we demonstrated that during development of renal fibrosis in a rat model of unilateral ureteric obstruction, calreticulin (CRT) is up-regulated in tubular epithelial cells (TECs). In the present study, we used in vitro and in vivo approaches to examine the role of CRT in TECs and its contribution to the progression of fibrosis. In cultured renal TECs, CRT overexpression induced acquisition of an altered, profibrotic cellular phenotype. Consistently, the opposite effects were observed for CRT knockdown. Subsequently, we confirmed that critical changes observed in vitro were also apparent in tubular cells in vivo in the animal model of unilateral ureteric obstruction. In agreement with these results, we demonstrate that substantial (50%) reduction in the expression of CRT reduced the development of tubulointerstitial fibrosis at a comparable level through regulation of inflammation, transcriptional activation, transforming growth factor β1-associated effects, and apoptosis. In summary, our findings establish that CRT is critically involved in the molecular mechanisms that drive renal fibrosis progression and indicate that inhibition of CRT expression might be a therapeutic target for reduction of fibrosis and chronic kidney disease development.
Collapse
Affiliation(s)
- Niki Prakoura
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aristidis S Charonis
- Section of Histology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
39
|
Alford AI, Golicz AZ, Cathey AL, Reddy AB. Thrombospondin-2 facilitates assembly of a type-I collagen-rich matrix in marrow stromal cells undergoing osteoblastic differentiation. Connect Tissue Res 2013; 54:275-82. [PMID: 23763373 PMCID: PMC4091640 DOI: 10.3109/03008207.2013.811236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the effects of Thrombospondin-2 (TSP2) deficiency on assembly of collagenous extracellular matrix (ECM) by primary marrow-derived mesenchymal stromal cells (MSC) undergoing osteoblast differentiation in culture. After 30 d, wild-type cells had accumulated and mineralized a collagen-rich insoluble matrix, whereas the TSP2-null cultures contained markedly lower amounts of matrix collagen and displayed reduced mineral. Differences in matrix collagen were seen as early as day 9, at which time wild-type cultures contained more total collagen per cell than did TSP2-null cells. Collagen was unevenly distributed amongst different extracellular compartments in the two cell-types. Collagen levels in conditioned medium of wild-type cells were higher than those of TSP2-null cells, but were roughly equivalent in the acid-soluble, newly cross-linked matrixes. Conversely, the mature, cross-linked acid-insoluble matrix layer of wild-type cells contained about twice as much collagen as TSP2-null cell-derived matrix. Western blot analysis of type-I collagen in detergent-soluble and insoluble matrix fractions supported the premise that matrix collagen levels were reduced in TSP2-null MSC undergoing osteoblastic differentiation in vitro. Western blot and immunofluorescent analysis suggested that assembly of fibronectin into matrix was not affected by TSP2 deficiency. Instead, western blots of conditioned medium demonstrated a marked reduction in mature, fully processed type-I collagen in the absence of TSP2. Our data suggest that in the context of osteoblast differentiation, TSP2 promotes the assembly of a type-I collagen-rich matrix by facilitating pro-collagen processing.
Collapse
Affiliation(s)
- Andrea I. Alford
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| | - Andrew Z. Golicz
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| | - Amber Lee Cathey
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| | - Anita B. Reddy
- University of Michigan School of Medicine, Department of Orthopaedic Surgery, A. Alfred Taubman Biological Sciences Research Building, Ann Arbor, MI 48109
| |
Collapse
|
40
|
Zimmerman KA, Graham LV, Pallero MA, Murphy-Ullrich JE. Calreticulin regulates transforming growth factor-β-stimulated extracellular matrix production. J Biol Chem 2013; 288:14584-14598. [PMID: 23564462 DOI: 10.1074/jbc.m112.447243] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is an emerging factor in fibrotic disease, although precise mechanisms are not clear. Calreticulin (CRT) is an ER chaperone and regulator of Ca(2+) signaling up-regulated by ER stress and in fibrotic tissues. Previously, we showed that ER CRT regulates type I collagen transcript, trafficking, secretion, and processing into the extracellular matrix (ECM). To determine the role of CRT in ECM regulation under fibrotic conditions, we asked whether CRT modified cellular responses to the pro-fibrotic cytokine, TGF-β. These studies show that CRT-/- mouse embryonic fibroblasts (MEFs) and rat and human idiopathic pulmonary fibrosis lung fibroblasts with siRNA CRT knockdown had impaired TGF-β stimulation of type I collagen and fibronectin. In contrast, fibroblasts with increased CRT expression had enhanced responses to TGF-β. The lack of CRT does not impact canonical TGF-β signaling as TGF-β was able to stimulate Smad reporter activity in CRT-/- MEFs. CRT regulation of TGF-β-stimulated Ca(2+) signaling is important for induction of ECM. CRT-/- MEFs failed to increase intracellular Ca(2+) levels in response to TGF-β. NFAT activity is required for ECM stimulation by TGF-β. In CRT-/- MEFs, TGF-β stimulation of NFAT nuclear translocation and reporter activity is impaired. Importantly, CRT is required for TGF-β stimulation of ECM under conditions of ER stress, as tunicamycin-induced ER stress was insufficient to induce ECM production in TGF-β stimulated CRT-/- MEFs. Together, these data identify CRT-regulated Ca(2+)-dependent pathways as a critical molecular link between ER stress and TGF-β fibrotic signaling.
Collapse
Affiliation(s)
- Kurt A Zimmerman
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Lauren V Graham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Manuel A Pallero
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019
| | - Joanne E Murphy-Ullrich
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019.
| |
Collapse
|
41
|
Greives MR, Samra F, Pavlides SC, Blechman KM, Naylor SM, Woodrell CD, Cadacio C, Levine JP, Bancroft TA, Michalak M, Warren SM, Gold LI. Exogenous calreticulin improves diabetic wound healing. Wound Repair Regen 2013; 20:715-30. [PMID: 22985041 DOI: 10.1111/j.1524-475x.2012.00822.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A serious consequence of diabetes mellitus is impaired wound healing, which largely resists treatment. We previously reported that topical application of calreticulin (CRT), an endoplasmic reticulum chaperone protein, markedly enhanced the rate and quality of wound healing in an experimental porcine model of cutaneous repair. Consistent with these in vivo effects, in vitro CRT induced the migration and proliferation of normal human cells critical to the wound healing process. These functions are particularly deficient in poor healing diabetic wounds. Using a genetically engineered diabetic mouse (db/db) in a full-thickness excisional wound healing model, we now show that topical application of CRT induces a statistically significant decrease in the time to complete wound closure compared with untreated wounds by 5.6 days (17.6 vs. 23.2). Quantitative analysis of the wounds shows that CRT increases the rate of reepithelialization at days 7 and 10 and increases the amount of granulation tissue at day 7 persisting to day 14. Furthermore, CRT treatment induces the regrowth of pigmented hair follicles observed on day 28. In vitro, fibroblasts isolated from diabetic compared with wild-type mouse skin and human fibroblasts cultured under hyperglycemic compared with normal glucose conditions proliferate and strongly migrate in response to CRT compared with untreated controls. The in vitro effects of CRT on these functions are consistent with CRT's potent effects on wound healing in the diabetic mouse. These studies implicate CRT as a potential powerful topical therapeutic agent for the treatment of diabetic and other chronic wounds.
Collapse
Affiliation(s)
- Matthew R Greives
- Department of Medicine and Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jeong J, Walker JM, Wang F, Park JG, Palmer AE, Giunta C, Rohrbach M, Steinmann B, Eide DJ. Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc Natl Acad Sci U S A 2012; 109:E3530-8. [PMID: 23213233 PMCID: PMC3529093 DOI: 10.1073/pnas.1211775110] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zinc is essential but potentially toxic, so intracellular zinc levels are tightly controlled. A key strategy used by many organisms to buffer cytosolic zinc is to store it within vesicles and organelles.It is yet unknown whether vesicular or organellar sites perform this function in mammals. Human ZIP13, a member of the Zrt/Irt-like protein (ZIP) metal transporter family, might provide an answer to this question. Mutations in the ZIP13 gene, SLC39A13, previously were found to cause the spondylocheiro dysplastic form of Ehlers–Danlos syndrome (SCD-EDS), a heritable connective tissue disorder.Those previous studies suggested that ZIP13 transports excess zinc out of the early secretory pathway and that zinc overload in the endoplasmic reticulum (ER) occurs in SCD-EDS patients. In contrast,this study indicates that ZIP13’s role is to release labile zinc from vesicular stores for use in the ER and other compartments. We propose that SCD-EDS is the result of vesicular zinc trapping and ER zinc deficiency rather than overload.
Collapse
Affiliation(s)
- Jeeyon Jeong
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ramírez G, Valck C, Aguilar L, Kemmerling U, López-Muñoz R, Cabrera G, Morello A, Ferreira J, Maya JD, Galanti N, Ferreira A. Roles of Trypanosoma cruzi calreticulin in parasite-host interactions and in tumor growth. Mol Immunol 2012; 52:133-40. [PMID: 22673211 DOI: 10.1016/j.molimm.2012.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 12/14/2022]
Abstract
In Latin America, there are about 10-12 million people infected with Trypanosoma cruzi, the agent of Chagas' disease, one of the most important neglected tropical parasitism. Identification of molecular targets, specific for the aggressor or host cells or both, may be useful in the development of pharmacological and/or immunological therapeutic tools. Classic efforts in Chagas' disease explore those strategies. Although the immune system frequently controls parasite aggressions, sterile immunity is seldom achieved and chronic interactions are thus established. However, laboratory-modified immunologic probes aimed at selected parasite targets, may be more effective than their unmodified counterparts. Calreticulin (CRT) from vertebrates is a calcium binding protein, present mainly in the endoplasmic reticulum (ER), where it directs the conformation of proteins and controls calcium levels. We have isolated, gene-cloned, expressed and characterized T. cruzi calreticulin (TcCRT). Upon infection, the parasite can translocate this molecule from the ER to the surface, where it inhibits both the classical and lectin complement pathways. Moreover, by virtue of its capacity to bind and inactivate first complement component C1, it promotes parasite infectivity. These two related properties reside in the central domain of this molecule. A different domain, amino terminal, binds to endothelial cells, thus inhibiting their angiogenic capacity. Since tumor growth depends, to a large extent on angiogenesis, their growth is also inhibited.
Collapse
Affiliation(s)
- Galia Ramírez
- Department of Preventive Animal Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kopecka J, Campia I, Brusa D, Doublier S, Matera L, Ghigo D, Bosia A, Riganti C. Nitric oxide and P-glycoprotein modulate the phagocytosis of colon cancer cells. J Cell Mol Med 2011; 15:1492-504. [PMID: 20716130 PMCID: PMC3823194 DOI: 10.1111/j.1582-4934.2010.01137.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The anticancer drug doxorubicin induces the synthesis of nitric oxide, a small molecule that enhances the drug cytotoxicity and reduces the drug efflux through the membrane pump P-glycoprotein (Pgp). Doxorubicin also induces the translocation on the plasma membrane of the protein calreticulin (CRT), which allows tumour cells to be phagocytized by dendritic cells. We have shown that doxorubicin elicits nitric oxide synthesis and CRT exposure only in drug-sensitive cells, not in drug-resistant ones, which are indeed chemo-immunoresistant. In this work, we investigate the mechanisms by which nitric oxide induces the translocation of CRT and the molecular basis of this chemo-immunoresistance. In the drug-sensitive colon cancer HT29 cells doxorubicin increased nitric oxide synthesis, CRT exposure and cells phagocytosis. Nitric oxide promoted the translocation of CRT in a guanosine monophosphate (cGMP) and actin cytoskeleton-dependent way. CRT translocation did not occur in drug-resistant HT29-dx cells, where the doxorubicin-induced nitric oxide synthesis was absent. By increasing nitric oxide with stimuli other than doxorubicin, the CRT exposure was obtained also in HT29-dx cells. Although in sensitive cells the CRT translocation was followed by the phagocytosis, in drug-resistant cells the phagocytosis did not occur despite the CRT exposure. In HT29-dx cells CRT was bound to Pgp and only by silencing the latter the CRT-operated phagocytosis was restored, suggesting that Pgp impairs the functional activity of CRT and the tumour cells phagocytosis. Our work suggests that the levels of nitric oxide and Pgp critically modulate the recognition of the tumour cells by dendritic cells, and proposes a new potential therapeutic approach against chemo-immunoresistant tumours.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Genetics, Biology and Biochemistry, University of Turin, via Santena 5/bis, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Klein J, Kavvadas P, Prakoura N, Karagianni F, Schanstra JP, Bascands JL, Charonis A. Renal fibrosis: Insight from proteomics in animal models and human disease. Proteomics 2011; 11:805-15. [DOI: 10.1002/pmic.201000380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/27/2010] [Accepted: 09/15/2010] [Indexed: 12/31/2022]
|
46
|
Sweetwyne MT, Pallero MA, Lu A, Van Duyn Graham L, Murphy-Ullrich JE. The calreticulin-binding sequence of thrombospondin 1 regulates collagen expression and organization during tissue remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1710-24. [PMID: 20724603 DOI: 10.2353/ajpath.2010.090903] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Amino acids 17-35 of the thrombospondin1 (TSP1) N-terminal domain (NTD) bind cell surface calreticulin to signal focal adhesion disassembly, cell migration, and anoikis resistance in vitro. However, the in vivo relevance of this signaling pathway has not been previously determined. We engineered local in vivo expression of the TSP1 calreticulin-binding sequence to determine the role of TSP1 in tissue remodeling. Surgical sponges impregnated with a plasmid encoding the secreted calreticulin-binding sequence [NTD (1-35)-EGFP] or a control sequence [mod NTD (1-35)-EGFP] tagged with enhanced green fluorescent protein were implanted subcutaneously in mice. Sponges expressing NTD (1-35)-EFGP formed a highly organized capsule despite no differences in cellular composition, suggesting stimulation of collagen deposition by the calreticulin-binding sequence of TSP1. TSP1, recombinant NTD, or a peptide of the TSP1 calreticulin-binding sequence (hep I) increased both collagen expression and matrix deposition by fibroblasts in vitro. TSP1 stimulation of collagen was inhibited by a peptide that blocks TSP1 binding to calreticulin, demonstrating the requirement for cell surface calreticulin. Collagen stimulation was independent of TGF-β activity and Smad phosphorylation but was blocked by an Akt inhibitor, suggesting that signaling through the Akt pathway is important for regulation of collagen through TSP1 binding to calreticulin. These studies identify a novel function for the NTD of TSP1 as a mediator of collagen expression and deposition during tissue remodeling.
Collapse
Affiliation(s)
- Mariya T Sweetwyne
- Departments of Cell Biology, University of Alabama, Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | |
Collapse
|