1
|
Abstract
Acute liver injury (ALI), that is, the development of reduced liver function in patients without preexisting liver disease, can result from a wide range of causes, such as viral or bacterial infection, autoimmune disease, or adverse reaction to prescription and over-the-counter medications. ALI patients present with a complex coagulopathy, characterized by both hypercoagulable and hypocoagulable features. Similarly, ALI patients display a profound dysregulation of the fibrinolytic system with the vast majority of patients presenting with a hypofibrinolytic phenotype. Decades of research in experimental acute liver injury in mice suggest that fibrinolytic proteins, including plasmin(ogen), plasminogen activators, fibrinolysis inhibitors, and fibrin(ogen), can contribute to initial hepatotoxicity and/or stimulate liver repair. This review summarizes major experimental findings regarding the role of fibrinolytic factors in ALI from the last approximately 30 years and identifies unanswered questions, as well as highlighting areas for future research.
Collapse
Affiliation(s)
- Gina E Capece
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan
| | - Lauren G Poole
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, New Jersey
| |
Collapse
|
2
|
Dai W, Castleberry M, Zheng Z. Tale of two systems: the intertwining duality of fibrinolysis and lipoprotein metabolism. J Thromb Haemost 2023; 21:2679-2696. [PMID: 37579878 PMCID: PMC10599797 DOI: 10.1016/j.jtha.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023]
Abstract
Fibrinolysis is an enzymatic process that breaks down fibrin clots, while dyslipidemia refers to abnormal levels of lipids and lipoproteins in the blood. Both fibrinolysis and lipoprotein metabolism are critical mechanisms that regulate a myriad of functions in the body, and the imbalance of these mechanisms is linked to the development of pathologic conditions, such as thrombotic complications in atherosclerotic cardiovascular diseases. Accumulated evidence indicates the close relationship between the 2 seemingly distinct and complicated systems-fibrinolysis and lipoprotein metabolism. Observational studies in humans found that dyslipidemia, characterized by increased blood apoB-lipoprotein and decreased high-density lipoprotein, is associated with lower fibrinolytic potential. Genetic variants of some fibrinolytic regulators are associated with blood lipid levels, supporting a causal relationship between these regulators and lipoprotein metabolism. Mechanistic studies have elucidated many pathways that link the fibrinolytic system and lipoprotein metabolism. Moreover, profibrinolytic therapies improve lipid panels toward an overall cardiometabolic healthier phenotype, while some lipid-lowering treatments increase fibrinolytic potential. The complex relationship between lipoprotein and fibrinolysis warrants further research to improve our understanding of the bidirectional regulation between the mediators of fibrinolysis and lipoprotein metabolism.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, USA.
| | | | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, USA.
| |
Collapse
|
3
|
Miura A, Ishiguro K, Koizumi K, Yaita Y, Ozaki-Masuzawa Y, Hosono T, Seki T. Effects of pharmacological inhibition of plasminogen binding on liver regeneration in rats. Biosci Biotechnol Biochem 2017; 81:2105-2111. [PMID: 28914172 DOI: 10.1080/09168451.2017.1372180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The fibrinolysis system is thought to play an important role in liver regeneration. We previously found that plasminogen (Plg) is localized to the cell surface of regenerating liver tissue as well as proliferating hepatocytes in vitro. Here, we investigated the significance of Plg binding to the cell surface during liver regeneration. Pre-administration of tranexamic acid (TXA), which is a competitive inhibitor of Plg binding, to hepatectomized rats mildly delayed restoration of liver weight in vivo. Although binding of Plg to the cell membrane decreased following TXA administration, TXA showed little effect on hepatocyte proliferation in rats. We also discovered that Plg treatment did not stimulate proliferation of primary rat hepatocytes in vitro. These results suggest that Plg/plasmin potentiates liver regeneration via a pathway distinct from those through which hepatocyte proliferation is stimulated.
Collapse
Affiliation(s)
- Atsushi Miura
- a Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Japan
| | - Kyoko Ishiguro
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Kouta Koizumi
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Yuki Yaita
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Yori Ozaki-Masuzawa
- b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Takashi Hosono
- a Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Japan.,b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| | - Taiichiro Seki
- a Department of Applied Life Sciences , Nihon University Graduate School of Bioresource Sciences , Fujisawa , Japan.,b Department of Chemistry and Life Science , Nihon University College of Bioresource Sciences , Fujisawa , Japan
| |
Collapse
|
4
|
Bazzi ZA, Balun J, Cavallo-Medved D, Porter LA, Boffa MB. Activated thrombin-activatable fibrinolysis inhibitor attenuates the angiogenic potential of endothelial cells: potential relevance to the breast tumour microenvironment. Clin Exp Metastasis 2017; 34:155-169. [PMID: 28124276 DOI: 10.1007/s10585-017-9837-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/16/2017] [Indexed: 11/26/2022]
Abstract
Thrombin-activatable fibrinolysis inhibitor (TAFI) is a basic carboxypeptidase zymogen present in blood plasma. Proteolytic activation of TAFI by thrombin, thrombin in complex with the endothelial cell cofactor thrombomodulin, or plasmin results in an enzyme (TAFIa) that removes carboxyl-terminal lysine residues from protein and peptide substrates, including cell-surface plasminogen receptors. TAFIa is therefore capable of inhibiting plasminogen activation in the pericellular milieu. Since plasminogen activation has been linked to angiogenesis, TAFIa could therefore have anti-angiogenic properties, and indeed TAFIa has been shown to inhibit endothelial tube formation in a fibrin matrix. In this study, the TAFI pathway was manipulated by providing exogenous TAFI or TAFIa or by adding a potent and specific inhibitor of TAFIa. We found that TAFIa elicited a series of anti-angiogenic responses by endothelial cells, including decreased endothelial cell proliferation, cell invasion, cell migration, tube formation, and collagen degradation. Moreover, TAFIa decreased tube formation and proteolysis in endothelial cell culture grown alone and in co-culture with breast cancer cell lines. In accordance with these findings, inhibition of TAFIa increased secretion of matrix metalloprotease proenzymes by endothelial and breast cancer cells. Finally, treatment of endothelial cells with TAFIa significantly inhibited plasminogen activation. Taken together our results suggest a novel role for TAFI in inhibiting tumour angiogenic behaviors in breast cancer.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
- Department of Biochemistry, Room 4245A Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N5B 3P7, Canada
| | - Jennifer Balun
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Dora Cavallo-Medved
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Lisa A Porter
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada
| | - Michael B Boffa
- Department of Biochemistry, Room 4245A Robarts Research Institute, University of Western Ontario, 1151 Richmond Street North, London, ON, N5B 3P7, Canada.
| |
Collapse
|
5
|
Use of mouse liver mesothelial cells to prevent postoperative adhesion and promote liver regeneration after hepatectomy. J Hepatol 2015; 62:1141-7. [PMID: 25514558 DOI: 10.1016/j.jhep.2014.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/12/2014] [Accepted: 12/06/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Repeated hepatectomy is widely accepted as one of the most effective curative treatment for recurrent hepatocellular carcinoma or liver metastasis from colorectal cancer. It has, however, two critical issues; postoperative adhesion and decrease of liver regenerative capacity. Postoperative adhesion makes surgical operations technically more demanding, leading to increased mortality and morbidity rates. Although the liver has a remarkable regenerative ability, volume and functional restoration after multiple repeated hepatectomy is not generally complete. So a new procedure that overcomes these two issues is required. We examined if a fetal liver mesothelial cells (FL-MCs) sheet could solve these two clinical issues simultaneously. METHODS We established a novel mouse hepatectomy model that reproduces postoperative adhesion on the resected liver surface. We isolated FL-MCs from mouse fetal liver and prepared a cell sheet. The FL-MCs sheet was then transplanted to the resected liver surface. RESULTS The FL-MCs sheet effectively prevented postoperative adhesion by expressing PCLP1, one of the transmembrane sialomucin family proteins and by activating the fibrinolytic system. Furthermore, the FL-MCs sheet facilitated liver regeneration by providing growth factors for hepatocytes, allowing quick recovery of liver weight and function. Additionally, we showed that an allogeneic FL-MCs sheet was as effective as a syngeneic cell sheet. CONCLUSIONS We demonstrate that the FL-MCs sheet is able to not only prevent postoperative adhesion but also promote liver regeneration in both syngeneic and allogeneic transplantation, and hence FL-MCs may serve as a potentially useful cell source for regenerative medicine after hepatectomy.
Collapse
|
6
|
Romagnuolo R, Marcovina SM, Boffa MB, Koschinsky ML. Inhibition of plasminogen activation by apo(a): role of carboxyl-terminal lysines and identification of inhibitory domains in apo(a). J Lipid Res 2014; 55:625-34. [PMID: 24478033 DOI: 10.1194/jlr.m036566] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apo(a), the distinguishing protein component of lipoprotein(a) [Lp(a)], exhibits sequence similarity to plasminogen and can inhibit binding of plasminogen to cell surfaces. Plasmin generated on the surface of vascular cells plays a role in cell migration and proliferation, two of the fibroproliferative inflammatory events that underlie atherosclerosis. The ability of apo(a) to inhibit pericellular plasminogen activation on vascular cells was therefore evaluated. Two isoforms of apo(a), 12K and 17K, were found to significantly decrease tissue-type plasminogen activator-mediated plasminogen activation on human umbilical vein endothelial cells (HUVECs) and THP-1 monocytes and macrophages. Lp(a) purified from human plasma decreased plasminogen activation on THP-1 monocytes and HUVECs but not on THP-1 macrophages. Removal of kringle V or the strong lysine binding site in kringle IV10 completely abolished the inhibitory effect of apo(a). Treatment with carboxypeptidase B to assess the roles of carboxyl-terminal lysines in cellular receptors leads in most cases to decreases in plasminogen activation as well as plasminogen and apo(a) binding; however, inhibition of plasminogen activation by apo(a) was unaffected. Our findings directly demonstrate that apo(a) inhibits pericellular plasminogen activation in all three cell types, although binding of apo(a) to cell-surface receptors containing carboxyl-terminal lysines does not appear to play a major role in the inhibition mechanism.
Collapse
Affiliation(s)
- Rocco Romagnuolo
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, Canada; and
| | | | | | | |
Collapse
|
7
|
Morser J, Gabazza EC, Myles T, Leung LLK. What has been learnt from the thrombin-activatable fibrinolysis inhibitor-deficient mouse? J Thromb Haemost 2010; 8:868-76. [PMID: 20128866 DOI: 10.1111/j.1538-7836.2010.03787.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUMMARY Thrombin-activatable fibrinolysis inhibitor (TAFI) is a circulating zymogen that is activated physiologically by the thrombin/thrombomodulin complex to activated TAFI (TAFIa) which is a basic carboxypeptidase. Substrates include fibrin, leading to a reduction in rate of plasmin generation, and several proinflammatory mediators such as bradykinin, thrombin-cleaved osteopontin and complement factor C5a. TAFI-deficient mice have no phenotype without being challenged and TAFIa appears to play a limited role in physiological fibrinolysis in vivo. In several disease models, the TAFI-deficient mice have different outcomes from the wild type (WT), but whether the difference is beneficial or an exacerbation of the disease depends on the model. The consequences of TAFI deficiency include increased plasmin as a result of enhanced incorporation of plasminogen and tissue plasminogen activator into the fibrin clot, but also loss of its ability to degrade other substrates, with the resultant up-regulation of several proinflammatory mediators, including C5a. Criteria are recommended to demonstrate that a substrate is a physiological substrate of TAFIa.
Collapse
Affiliation(s)
- J Morser
- Division of Hematology, Stanford University, School of Medicine, CA 94305, USA.
| | | | | | | |
Collapse
|