1
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Jeon MS, Luo J, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. Cancer Cell 2025; 43:144-160.e7. [PMID: 39672168 PMCID: PMC11732716 DOI: 10.1016/j.ccell.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis despite aggressive therapy. Here, we hypothesized that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We find daily glucocorticoids promote or suppress GBM growth through glucocorticoid receptor (GR) signaling depending on time of day and the clock genes, Bmal1 and Cry. Blocking circadian signals, like vasoactive intestinal peptide or glucocorticoids, dramatically slows GBM growth and disease progression. Analysis of human GBM samples from The Cancer Genome Atlas (TCGA) shows that high GR expression significantly increases hazard of mortality. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, modulating its growth through clock-controlled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anna R Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Myung Sik Jeon
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Tanese K, Ogata D. The role of macrophage migration inhibitory factor family and CD74 in the pathogenesis of melanoma. Exp Dermatol 2024; 33:e15122. [PMID: 38884501 DOI: 10.1111/exd.15122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Melanoma is an aggressive tumour with poor prognosis that arises from the malignant transformation of melanocytes. Over the past few decades, intense research into the pathogenesis of melanoma has led to the development of BRAF and immune checkpoint inhibitors, including antibodies against programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which have shown clinically significant efficacy. However, some tumours do not respond to these therapies initially or become treatment resistant. Most melanoma tissues appear to possess biological characteristics that allow them to evade these treatments, and identifying these characteristics is one of the major challenges facing cancer researchers. One such characteristic that has recently gained attention is the role of macrophage migration inhibitory factor (MIF) and its receptor CD74. This review outlines the cellular and molecular functions of CD74, MIF and their family of proteins. We then review their roles in tumours based on previous reports, highlight their pathological significance in melanoma and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Keiji Tanese
- Department of Dermatology, Toho University School of Medicine, Tokyo, Japan
| | - Dai Ogata
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592418. [PMID: 38766060 PMCID: PMC11100585 DOI: 10.1101/2024.05.03.592418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults with a poor prognosis despite aggressive therapy. A recent, retrospective clinical study found that administering Temozolomide in the morning increased patient overall survival by 6 months compared to evening. Here, we tested the hypothesis that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We found daily Dexamethasone promoted or suppressed GBM growth depending on time of day of administration and on the clock gene, Bmal1. Blocking circadian signals, like VIP or glucocorticoids, dramatically slowed GBM growth and disease progression. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, which modulates its growth through clockcontrolled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F. Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anna R. Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joshua B. Rubin
- Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erik D. Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
4
|
Matejuk A, Benedek G, Bucala R, Matejuk S, Offner H, Vandenbark AA. MIF contribution to progressive brain diseases. J Neuroinflammation 2024; 21:8. [PMID: 38178143 PMCID: PMC10765708 DOI: 10.1186/s12974-023-02993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disability and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine functions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF's crucial role in neurological diseases such as multiple sclerosis (MS), Alzheimer's disease (AD) and glioblastoma (GBM).
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland.
| | - Gil Benedek
- Tissue Typing and Immunogenetics Unit, Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Bucala
- Department of Internal Medicine, Section of Rheumatology, Allergy and Immunology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Jarmula J, Lee J, Lauko A, Rajappa P, Grabowski MM, Dhawan A, Chen P, Bucala R, Vogelbaum MA, Lathia JD. Macrophage migration inhibitory factor as a therapeutic target in neuro-oncology: A review. Neurooncol Adv 2024; 6:vdae142. [PMID: 39233830 PMCID: PMC11372298 DOI: 10.1093/noajnl/vdae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Primary central nervous system (CNS) tumors affect tens of thousands of patients each year, and there is a significant need for new treatments. Macrophage migration inhibitory factor (MIF) is a cytokine implicated in multiple tumorigenic processes such as cell proliferation, vascularization, and immune evasion and is therefore a promising therapeutic target in primary CNS tumors. There are several MIF-directed treatments available, including small-molecule inhibitors, peptide drugs, and monoclonal antibodies. However, only a small number of these drugs have been tested in preclinical models of primary CNS tumors, and even fewer have been studied in patients. Moreover, the brain has unique therapeutic requirements that further make effective targeting challenging. In this review, we summarize the latest functions of MIF in primary CNS tumor initiation and progression. We also discuss advances in MIF therapeutic development and ongoing preclinical studies and clinical trials. Finally, we discuss potential future MIF therapies and the strategies required for successful clinical translation.
Collapse
Affiliation(s)
- Jakub Jarmula
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Adam Lauko
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Matthew M Grabowski
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Andrew Dhawan
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Peiwen Chen
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard Bucala
- Section of Rheumatology, Allergy, and Immunology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Justin D Lathia
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Arora H, Mammi M, Patel NM, Zyfi D, Dasari HR, Yunusa I, Simjian T, Smith TR, Mekary RA. Dexamethasone and overall survival and progression free survival in patients with newly diagnosed glioblastoma: a meta-analysis. J Neurooncol 2024; 166:17-26. [PMID: 38151699 DOI: 10.1007/s11060-023-04549-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/29/2023]
Abstract
PURPOSE Glioblastomas, the most common primary malignant brain tumors in adults, still hold poor prognosis. Corticosteroids, such as dexamethasone, are usually prescribed to reduce peritumoral edema and limit neurological symptoms, although potential detrimental effects of these drugs have been described. The present meta-analysis aimed to explore the association of dexamethasone with overall survival (OS) and progression free survival (PFS) in patients with newly diagnosed glioblastoma. METHODS PubMed, Cochrane Library, Embase, and ClinicalTrials.gov were searched for pertinent studies following the Preferred Reporting Items of Systematic Review and Meta-Analysis checklist. Pooled multivariable-adjusted hazard ratios (HR) for OS and PFS and their associated 95% confidence intervals (CIs) were calculated using the random-effects model and the heterogeneity among studies was assessed using I2. The quality of evidence was assessed using the GRADE criteria. RESULTS Seven studies were included, pooling data of 1,257 patients, with age varying from 11 to 81 years. Glioblastoma patients on pre- or peri-operative dexamethasone were associated with a significantly poorer overall survival (HR: 1.33, 95% CI: 1.15, 1.55; 7 studies; I2: 59.9%) and progression free survival (HR: 1.77, 95% CI: 1.05, 2.97; 3 studies; I2: 71.1%) compared to patients not on dexamethasone. The quality of evidence was moderate for overall survival and low for progression free survival. CONCLUSION Dexamethasone appeared to be associated with poor survival outcomes of glioblastoma patients.
Collapse
Affiliation(s)
- Harshit Arora
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Mammi
- Neurosurgery Division, "M. Bufalini" Hospital, Cesena, Italy
| | - Naisargi Manishkumar Patel
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Dea Zyfi
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Hema Reddy Dasari
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Ismael Yunusa
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
- College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Thomas Simjian
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rania A Mekary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, MA, USA.
| |
Collapse
|
7
|
Cohen Shvefel S, Pai JA, Cao Y, Pal LR, Levy R, Yao W, Cheng K, Zemanek M, Bartok O, Weller C, Yin Y, Du PP, Yakubovich E, Orr I, Ben-Dor S, Oren R, Fellus-Alyagor L, Golani O, Goliand I, Ranmar D, Savchenko I, Ketrarou N, Schäffer AA, Ruppin E, Satpathy AT, Samuels Y. Temporal genomic analysis of melanoma rejection identifies regulators of tumor immune evasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569032. [PMID: 38077050 PMCID: PMC10705560 DOI: 10.1101/2023.11.29.569032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH. We compared the temporal growth of homogeneous, genetically-similar single-cell clones that are rejected vs. those that are not-rejected after transplantation in-vivo using single-cell RNA sequencing and immunophenotyping. Non-rejected clones showed high infiltration of tumor-associated-macrophages (TAMs), lower T-cell infiltration, and increased T-cell exhaustion compared to rejected clones. Comparative analysis of rejection-associated gene expression programs, combined with in-vivo CRISPR knockout screens of candidate mediators, identified Mif (macrophage migration inhibitory factor) as a regulator of immune rejection. Mif knockout led to smaller tumors and reversed non-rejection-associated immune composition, particularly, leading to the reduction of immunosuppressive macrophage infiltration. Finally, we validated these results in melanoma patient data.
Collapse
Affiliation(s)
- Sapir Cohen Shvefel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Joy A Pai
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Yingying Cao
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lipika R Pal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ronen Levy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Winnie Yao
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kuoyuan Cheng
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- MSD R&D (China) Co., Ltd
| | - Marie Zemanek
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Osnat Bartok
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Weller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yajie Yin
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Elizabeta Yakubovich
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Goliand
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Dean Ranmar
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ilya Savchenko
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Ketrarou
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Falter J, Lohmeier A, Eberl P, Stoerr EM, Koskimäki J, Falter L, Rossmann J, Mederer T, Schmidt NO, Proescholdt M. CXCR2-Blocking Has Context-Sensitive Effects on Rat Glioblastoma Cell Line Outgrowth (S635) in an Organotypic Rat Brain Slice Culture Depending on Microglia-Depletion (PLX5622) and Dexamethasone Treatment. Int J Mol Sci 2023; 24:16803. [PMID: 38069130 PMCID: PMC10706712 DOI: 10.3390/ijms242316803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors-dexamethasone, PLX5622, and CXCL2-in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment.
Collapse
Affiliation(s)
- Johannes Falter
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Annette Lohmeier
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Petra Eberl
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Eva-Maria Stoerr
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Janne Koskimäki
- Department of Neurosurgery, Oulu University Hospital, P.O. Box 25, 90029 Oulu, Finland
| | - Lena Falter
- Department of Anesthesiology, Caritas Hospital St. Josef Regensburg, 93053 Regensburg, Germany
| | - Jakob Rossmann
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Tobias Mederer
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93042 Regensburg, Germany
| |
Collapse
|
9
|
Spiller L, Manjula R, Leissing F, Basquin J, Bourilhon P, Sinitski D, Brandhofer M, Levecque S, Gerra S, Sabelleck B, Zhang L, Feederle R, Flatley A, Hoffmann A, Panstruga R, Bernhagen J, Lolis E. Plant MDL proteins synergize with the cytokine MIF at CXCR2 and CXCR4 receptors in human cells. Sci Signal 2023; 16:eadg2621. [PMID: 37988455 DOI: 10.1126/scisignal.adg2621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.
Collapse
Affiliation(s)
- Lukas Spiller
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Ramu Manjula
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jerome Basquin
- Department of Structural Cell Biology and Crystallization Facility, Max-Planck-Institute for Biochemistry, 82152 Martinsried, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Sophie Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
| | - Björn Sabelleck
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Lin Zhang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Department of Anesthesiology, LMU University Hospital, 81377 Munich, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, 52056 Aachen, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU) München, LMU University Hospital, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Elias Lolis
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
10
|
Alban TJ, Grabowski MM, Otvos B, Bayik D, Wang W, Zalavadia A, Makarov V, Troike K, McGraw M, Rabljenovic A, Lauko A, Neumann C, Roversi G, Waite KA, Cioffi G, Patil N, Tran TT, McCortney K, Steffens A, Diaz CM, Brown JM, Egan KM, Horbinski CM, Barnholtz-Sloan JS, Rajappa P, Vogelbaum MA, Bucala R, Chan TA, Ahluwalia MS, Lathia JD. The MIF promoter SNP rs755622 is associated with immune activation in glioblastoma. JCI Insight 2023; 8:e160024. [PMID: 37252795 PMCID: PMC10371339 DOI: 10.1172/jci.insight.160024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023] Open
Abstract
Intratumoral heterogeneity is a defining hallmark of glioblastoma, driving drug resistance and ultimately recurrence. Many somatic drivers of microenvironmental change have been shown to affect this heterogeneity and, ultimately, the treatment response. However, little is known about how germline mutations affect the tumoral microenvironment. Here, we find that the single-nucleotide polymorphism (SNP) rs755622 in the promoter of the cytokine macrophage migration inhibitory factor (MIF) is associated with increased leukocyte infiltration in glioblastoma. Furthermore, we identified an association between rs755622 and lactotransferrin expression, which could also be used as a biomarker for immune-infiltrated tumors. These findings demonstrate that a germline SNP in the promoter region of MIF may affect the immune microenvironment and further reveal a link between lactotransferrin and immune activation.
Collapse
Affiliation(s)
- Tyler J. Alban
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
- Center for Immunotherapy and Precision Oncology, and
| | - Matthew M. Grabowski
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Balint Otvos
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Defne Bayik
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Wesley Wang
- Nationwide Children’s Hospital, Institute for Genomic Medicine, Departments of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ajay Zalavadia
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Vlad Makarov
- Center for Immunotherapy and Precision Oncology, and
| | - Katie Troike
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Mary McGraw
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anja Rabljenovic
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Adam Lauko
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Chase Neumann
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Gustavo Roversi
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
| | - Kristin A. Waite
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Nirav Patil
- University Hospitals Research and Education Institute, Cleveland, Ohio, USA
| | - Thuy T. Tran
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Kathleen McCortney
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alicia Steffens
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - J. Mark Brown
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Kathleen M. Egan
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Craig M. Horbinski
- Departments of Pathology and Neurosurgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jill S. Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Prajwal Rajappa
- Nationwide Children’s Hospital, Institute for Genomic Medicine, Departments of Pediatrics and Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael A. Vogelbaum
- Departments of Cancer Epidemiology and Neuro-Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Richard Bucala
- Yale School of Medicine and Yale Cancer Center, New Haven, Connecticut, USA
| | - Timothy A. Chan
- Center for Immunotherapy and Precision Oncology, and
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | | | - Justin D. Lathia
- Department of Cardiovascular & Metabolic Sciences and Imaging Core, Lerner Research Institute
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Wei J, Arber C, Wray S, Hardy J, Piers TM, Pocock JM. Human myeloid progenitor glucocorticoid receptor activation causes genomic instability, type 1 IFN- response pathway activation and senescence in differentiated microglia; an early life stress model. Glia 2023; 71:1036-1056. [PMID: 36571248 DOI: 10.1002/glia.24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-α splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Jingzhang Wei
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Charles Arber
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Selina Wray
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, UK
| | - Thomas M Piers
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, University College London Institute of Neurology, London, UK
| |
Collapse
|
12
|
Ngo MT, Sarkaria JN, Harley BA. Perivascular Stromal Cells Instruct Glioblastoma Invasion, Proliferation, and Therapeutic Response within an Engineered Brain Perivascular Niche Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201888. [PMID: 36109186 PMCID: PMC9631060 DOI: 10.1002/advs.202201888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) tumor cells are found in the perivascular niche microenvironment and are believed to associate closely with the brain microvasculature. However, it is largely unknown how the resident cells of the perivascular niche, such as endothelial cells, pericytes, and astrocytes, influence GBM tumor cell behavior and disease progression. A 3D in vitro model of the brain perivascular niche developed by encapsulating brain-derived endothelial cells, pericytes, and astrocytes in a gelatin hydrogel is described. It is shown that brain perivascular stromal cells, namely pericytes and astrocytes, contribute to vascular architecture and maturation. Cocultures of patient-derived GBM tumor cells with brain microvascular cells are used to identify a role for pericytes and astrocytes in establishing a perivascular niche environment that modulates GBM cell invasion, proliferation, and therapeutic response. Engineered models provide unique insight regarding the spatial patterning of GBM cell phenotypes in response to a multicellular model of the perivascular niche. Critically, it is shown that engineered perivascular models provide an important resource to evaluate mechanisms by which intercellular interactions modulate GBM tumor cell behavior, drug response, and provide a framework to consider patient-specific disease phenotypes.
Collapse
Affiliation(s)
- Mai T. Ngo
- Department Chemical and Biomolecular EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | | | - Brendan A.C. Harley
- Department Chemical and Biomolecular EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
- Cancer Center at IllinoisUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
13
|
Zhang H, Wang Y, Zhao Y, Liu T, Wang Z, Zhang N, Dai Z, Wu W, Cao H, Feng S, Zhang L, Cheng Q, Liu Z. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther 2022; 28:1748-1766. [PMID: 35855654 PMCID: PMC9532932 DOI: 10.1111/cns.13913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Pentraxin 3 (PTX3) is an essential regulator of the immune system. However, the immune‐modulatory role of PTX3 in the tumor microenvironment of glioma has not been elucidated. Methods The RNA seq samples were obtained from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA) datasets. The single‐cell sequencing data of glioblastoma (GBM) samples were obtained from the Single Cell Portal platform (http://singlecell.broadinstitute.org). Immunohistochemistry was used to assess PTX3 expression, HAVCR2, PD‐1, PD‐L1, and CD276 in glioma sections from the Xiangya cohort (n = 60). Multiplex immunofluorescence staining of PTX3, CD68, and CD163 was performed in several solid cancer types, including GBM. HMC3 was cocultured with U251 and U87, and transwell assay and flow cytometry assay were performed to explore the migration and polarization activity of HMC3. Results PTX3 expression is significantly increased in GBM. PTX3 expression predicts worse survival in the Xiangya cohort. PTX3 is closely related to the expression of PD‐1, PD‐L1, CD276, and HAVCR2 in the tumor microenvironment. Additionally, PTX3 is involved in tumorigenic and immunogenic processes, especially the activity of macrophages based on various signaling pathways in cellular communications and critical transcription factors. Specifically, PTX3 actively mediates macrophages' infiltration, migration, and inflammation‐resolving‐polarization. PTX3 could also predict immunotherapy response. Conclusion PTX3 is critically involved in macrophage infiltration, migration, and inflammation‐resolving‐polarization and modulates an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yifan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Tao Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wantao Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Songshan Feng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Bielecka-Wajdman AM, Ludyga T, Smyk D, Smyk W, Mularska M, Świderek P, Majewski W, Mullins CS, Linnebacher M, Obuchowicz E. Glucose Influences the Response of Glioblastoma Cells to Temozolomide and Dexamethasone. Cancer Control 2022; 29:10732748221075468. [PMID: 35225010 PMCID: PMC8891890 DOI: 10.1177/10732748221075468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective Current research indicates that weakness of glucose metabolism plays an important role in silencing of invasiveness and growth of hypoxic tumors such as GBM. Moreover, there are indications that DXM, frequently used in treatment, may support GBM energy metabolism and provoke its recurrence. Methods We carried out in vitro experiments on the commercial T98G cell line and two primary GBM lines (HROG02, HROG17) treated with TMZ and/or DXM in physiological oxygen conditions for GBM (2.5% oxygen) and for comparison, in standard laboratory conditions (20% oxygen). The influence of different glucose levels on selected malignancy features of GBM cells-cellular viability and division, dynamic of cell culture changes, colony formation and concentration of InsR have been elevated. Results Under 2.5% oxygen and high glucose concentration, an attenuated cytotoxic effect of TMZ and intensification of malignancy features in all glioblastoma cell lines exposed to DXM was seen. Furthermore, preliminary retrospective analysis to assess the correlation between serum glucose levels and Ki-67 expression in surgical specimens derived from patients with GBM (IV) treated with radio-chemotherapy and prophylactic DXM therapy was performed. Conclusion The data suggest a link between the in vitro study results and clinical data. High glucose can influence on GBM progression through the promotion of the following parameters: cell viability, dispersal, InsR expression and cell proliferation (Ki-67). However, this problem needs more studies and explain the mechanism of action studied drugs.
Collapse
Affiliation(s)
- Anna M Bielecka-Wajdman
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
- Anna Bielecka-Wajdman, Department of Pharmacology, Medical University of Silesia, Medyków 18, Katowice 40-055, Poland.
| | - Tomasz Ludyga
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daria Smyk
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Smyk
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Mularska
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Świderek
- Student Research Circle at the Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Majewski
- Department of Radiotherapy, Maria Sklodowska-Curie Institute Oncology Center, Branch in Gliwice, Gliwice, Poland
| | | | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock, Germany
| | - Ewa Obuchowicz
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
15
|
Oishi T, Koizumi S, Kurozumi K. Molecular Mechanisms and Clinical Challenges of Glioma Invasion. Brain Sci 2022; 12:brainsci12020291. [PMID: 35204054 PMCID: PMC8870089 DOI: 10.3390/brainsci12020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/17/2022] Open
Abstract
Glioma is the most common primary brain tumor, and its prognosis is poor. Glioma cells are highly invasive to the brain parenchyma. It is difficult to achieve complete resection due to the nature of the brain tissue, and tumors that invade the parenchyma often recur. The invasiveness of tumor cells has been studied from various aspects, and the related molecular mechanisms are gradually becoming clear. Cell adhesion factors and extracellular matrix factors have a strong influence on glioma invasion. The molecular mechanisms that enhance the invasiveness of glioma stem cells, which have been investigated in recent years, have also been clarified. In addition, it has been discussed from both basic and clinical perspectives that current therapies can alter the invasiveness of tumors, and there is a need to develop therapeutic approaches to glioma invasion in the future. In this review, we will summarize the factors that influence the invasiveness of glioma based on the environment of tumor cells and tissues, and describe the impact of the treatment of glioma on invasion in terms of molecular biology, and the novel therapies for invasion that are currently being developed.
Collapse
|
16
|
Advantages and drawbacks of dexamethasone in glioblastoma multiforme. Crit Rev Oncol Hematol 2022; 172:103625. [PMID: 35158070 DOI: 10.1016/j.critrevonc.2022.103625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
The most widespread, malignant, and deadliest type of glial tumor is glioblastoma multiforme (GBM). Despite radiation, chemotherapy, and radical surgery, the median survival of afflicted individuals is about 12 months. Unfortunately, existing therapeutic interventions are abysmal. Dexamethasone (Dex), a synthetic glucocorticoid, has been used for many years to treat brain edema and inflammation caused by GBM. Several investigations have recently shown that Dex also exerts antitumoral effects against GBM. On the other hand, more recent disputed findings have questioned the long-held dogma of Dex treatment for GBM. Unfortunately, steroids are associated with various undesirable side effects, including severe immunosuppression and metabolic changes like hyperglycemia, which may impair the survival of GBM patients. Current ideas and concerns about Dex's effects on GBM cerebral edema, cell proliferation, migration, and its clinical outcomes were investigated in this study.
Collapse
|
17
|
Ives A, Le Roy D, Théroude C, Bernhagen J, Roger T, Calandra T. Macrophage migration inhibitory factor promotes the migration of dendritic cells through CD74 and the activation of the Src/PI3K/myosin II pathway. FASEB J 2021; 35:e21418. [PMID: 33774873 DOI: 10.1096/fj.202001605r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022]
Abstract
Constitutively expressed by innate immune cells, the cytokine macrophage migration inhibitory factor (MIF) initiates host immune responses and drives pathogenic responses in infectious, inflammatory, and autoimmune diseases. Dendritic cells (DCs) express high levels of MIF, but the role of MIF in DC function remains poorly characterized. As migration is critical for DC immune surveillance, we investigated whether MIF promoted the migration of DCs. In classical transwell experiments, MIF-/- bone marrow-derived DCs (BMDCs) or MIF+/+ BMDCs treated with ISO-1, an inhibitor of MIF, showed markedly reduced spontaneous migration and chemotaxis. CD74-/- BMDCs that are deficient in the ligand-binding component of the cognate MIF receptor exhibited a migration defect similar to that of MIF-/- BMDCs. Adoptive transfer experiments of LPS-matured MIF+/+ and MIF-/- and of CD74+/+ and CD74-/- BMDCs injected into the hind footpads of homologous or heterologous mice showed that the autocrine and paracrine MIF activity acting via CD74 contributed to the recruitment of DCs to the draining lymph nodes. Mechanistically, MIF activated the Src/PI3K signaling pathway and myosin II complexes, which were required for the migration of BMDCs. Altogether, these data show that the cytokine MIF exerts chemokine-like activity for DC motility and trafficking.
Collapse
Affiliation(s)
- Annette Ives
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charlotte Théroude
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München (KUM), Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Upadhyayula PS, Higgins DM, Argenziano MG, Spinazzi EF, Wu CC, Canoll P, Bruce JN. The Sledgehammer in Precision Medicine: Dexamethasone and Immunotherapeutic Treatment of Glioma. Cancer Invest 2021; 40:554-566. [PMID: 34151678 DOI: 10.1080/07357907.2021.1944178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Dominique M Higgins
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Peter Canoll
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Manhattan, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| |
Collapse
|
19
|
Mohammadi L, Mosayyebi B, Imani M, Rahmati M. Dexamethasone Reduces Cell Adhesion and Migration of T47D Breast Cancer Cell Line. Anticancer Agents Med Chem 2020; 22:2494-2501. [PMID: 33319693 DOI: 10.2174/1871520621666201214150427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aberrant expression of cell adhesion molecules and matrix metalloproteinase (MMPs) plays a pivotal role in tumor biological processes including progression and metastasis of cancer cells. Targeting these processes and detailed understanding of their underlying molecular mechanism is an essential step in cancer treatment. Dexamethasone (Dex) is a type of synthetic corticosteroid hormone used as adjuvant therapy in combination with current cancer treatments such as chemotherapy in order to alleviate its side effects like acute nausea and vomiting. Recent evidences have suggested that Dex may have antitumor characteristics. OBJECTIVE Dex affects the migration and adhesion of T47D breast cancer cells as well as cell adhesion molecules e.g., cadherin and integrin, and MMPs by regulating the expression levels of associated genes. METHODS In this study, we evaluated the cytotoxicity of Dex on the T47D breast cancer cell line through MTT assay. Cell adhesion assay and wound healing assay were performed to determine the impact of Dex on cell adhesion and cell migration, respectively. Moreover, real-time PCR was used to measure the levels of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9. RESULTS Dex decreased the viability of T47D cells in a time and dose-dependent manner. Cell adhesion and migration of T47D cells were reduced upon Dex treatment. The expression of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9 were altered in response to the Dex treatment. CONCLUSION Our findings demonstrated that Dex may have a role in the prevention of metastasis in this cell line.
Collapse
Affiliation(s)
- Leila Mohammadi
- Student Research Committee, Tabriz University of Medical Science, Tabriz. Iran
| | - Bashir Mosayyebi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mahsa Imani
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz. Iran
| |
Collapse
|
20
|
Zhang W, Wei Y, Zhang D, Xu EY. ZIAQ: a quantile regression method for differential expression analysis of single-cell RNA-seq data. Bioinformatics 2020; 36:3124-3130. [PMID: 32053182 DOI: 10.1093/bioinformatics/btaa098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/11/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION Single-cell RNA sequencing (scRNA-seq) has enabled the simultaneous transcriptomic profiling of individual cells under different biological conditions. scRNA-seq data have two unique challenges that can affect the sensitivity and specificity of single-cell differential expression analysis: a large proportion of expressed genes with zero or low read counts ('dropout' events) and multimodal data distributions. RESULTS We have developed a zero-inflation-adjusted quantile (ZIAQ) algorithm, which is the first method to account for both dropout rates and complex scRNA-seq data distributions in the same model. ZIAQ demonstrates superior performance over several existing methods on simulated scRNA-seq datasets by finding more differentially expressed genes. When ZIAQ was applied to the comparison of neoplastic and non-neoplastic cells from a human glioblastoma dataset, the ranking of biologically relevant genes and pathways showed clear improvement over existing methods. AVAILABILITY AND IMPLEMENTATION ZIAQ is implemented in the R language and available at https://github.com/gefeizhang/ZIAQ. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wenfei Zhang
- Department of Biostatistics and Programming, Sanofi, Framingham, MA 01701, USA
| | - Ying Wei
- Department of Biostatistics, Columbia University, New York, NY 10032, USA
| | - Donghui Zhang
- Department of Biostatistics and Programming, Sanofi, Framingham, MA 01701, USA
| | - Ethan Y Xu
- Translational Sciences, Sanofi, Framingham, MA 01701, USA
| |
Collapse
|
21
|
Huang Q, Fu Y, Zhang S, Zhang Y, Chen S, Zhang Z. Ethyl pyruvate inhibits glioblastoma cells migration and invasion through modulation of NF-κB and ERK-mediated EMT. PeerJ 2020; 8:e9559. [PMID: 32742812 PMCID: PMC7380274 DOI: 10.7717/peerj.9559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Background Glioblastoma is a grade IV glioma with the highest degree of malignancy and extremely high incidence. Because of the poor therapeutic effect of surgery and radiochemotherapy, glioblastoma has a high recurrence rate and lethality, and is one of the most challenging tumors in the field of oncology. Ethyl pyruvate (EP), a stable lipophilic pyruvic acid derivative, has anti-inflammatory, antioxidant, immunomodulatory and other cellular protective effects. It has been reported that EP has potent anti-tumor effects on many types of tumors, including pancreatic cancer, prostate cancer, liver cancer, gastric cancer. However, whether EP has anti-tumor effect on glioblastoma or not is still unclear. Methods Glioblastoma U87 and U251 cells were treated with different concentrations of EP for 24 h or 48 h. CCK8 assay and Colony-Formation assay were performed to test the viability and proliferation. Wound-healing assay and Transwell assay were carried out to measure cell invasion and migration. Western blot was not only used to detect the protein expression of epithelial-mesenchymal transition (EMT)-related molecules, but also to detect the expression and activation levels of NF-κB (p65) and Extracellular Signal Regulated Kinase (ERK). Results In glioblastoma U87 and U251 cells treated with EP, the viability, proliferation, migration, invasion abilities were inhibited in a dose-dependent manner. EP inhibited EMT and the activation of NF-κB (p65) and ERK. With NF-κB (p65) and ERK activated, EMT, migration and invasion of U87 and U251 cells were promoted. However the activation of NF-κB (p65) and ERK were decreased, EMT, migration and invasion abilities were inhibited in U87 and U251 cells treated with EP. Conclusion EP inhibits glioblastoma cells migration and invasion by blocking NF-κB and ERK-mediated EMT.
Collapse
Affiliation(s)
- Qing Huang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Yongming Fu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Shan Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Youxiang Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Simin Chen
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| | - Zuping Zhang
- Department of Pathogen Biology, School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
22
|
Wang S, Zheng M, Pang X, Zhang M, Yu X, Wu J, Gao X, Wu J, Yang X, Tang Y, Tang Y, Liang X. Macrophage migration inhibitory factor promotes the invasion and metastasis of oral squamous cell carcinoma through matrix metalloprotein‐2/9. Mol Carcinog 2019; 58:1809-1821. [PMID: 31219646 DOI: 10.1002/mc.23067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sha‐Sha Wang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Min Zheng
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
- Department of Stomatolog, Zhoushan HospitalWenzhou Medical University Zhoushan Zhejiang China
| | - Xin Pang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xiang‐Hua Yu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Jing‐Biao Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xiao‐Lei Gao
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Jia‐Shun Wu
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Ya‐Jie Tang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial FermentationHubei University of Technology Wuhan China
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, Department of Oral Pathology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology Sichuan University Chengdu Sichuan China
| |
Collapse
|
23
|
Cenciarini M, Valentino M, Belia S, Sforna L, Rosa P, Ronchetti S, D'Adamo MC, Pessia M. Dexamethasone in Glioblastoma Multiforme Therapy: Mechanisms and Controversies. Front Mol Neurosci 2019; 12:65. [PMID: 30983966 PMCID: PMC6449729 DOI: 10.3389/fnmol.2019.00065] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant of the glial tumors. The world-wide estimates of new cases and deaths annually are remarkable, making GBM a crucial public health issue. Despite the combination of radical surgery, radio and chemotherapy prognosis is extremely poor (median survival is approximately 1 year). Thus, current therapeutic interventions are highly unsatisfactory. For many years, GBM-induced brain oedema and inflammation have been widely treated with dexamethasone (DEX), a synthetic glucocorticoid (GC). A number of studies have reported that DEX also inhibits GBM cell proliferation and migration. Nevertheless, recent controversial results provided by different laboratories have challenged the widely accepted dogma concerning DEX therapy for GBM. Here, we have reviewed the main clinical features and genetic and epigenetic abnormalities underlying GBM. Finally, we analyzed current notions and concerns related to DEX effects on cerebral oedema, cancer cell proliferation and migration and clinical outcome.
Collapse
Affiliation(s)
- Marta Cenciarini
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Mario Valentino
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Silvia Belia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Polo Pontino, Latina, Italy
| | - Simona Ronchetti
- Section of Pharmacology, Department of Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Maria Cristina D'Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Mauro Pessia
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
24
|
Altinoz MA, Nalbantoglu J, Ozpinar A, Emin Ozcan M, Del Maestro RF, Elmaci I. From epidemiology and neurodevelopment to antineoplasticity. Medroxyprogesterone reduces human glial tumor growth in vitro and C6 glioma in rat brain in vivo. Clin Neurol Neurosurg 2018; 173:20-30. [PMID: 30055402 DOI: 10.1016/j.clineuro.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Glial tumor growth may accelerate during gestation, but epidemiological studies consistently demonstrated that parousity reduces life long risk of glial tumors. Pregnancy may also accelerate growth of medulloblastoma and meningioma, but parousity does not confer protection against these tumors. We were the first to show that medroxyprogesterone acetate (MPA) reduces rat C6 glioma growth in vitro. Now we aimed to determine the effects of MPA on human brain cancers (particularly glioblastoma) in vitro and C6 glioma in vivo. PATIENTS AND METHODS We evaluated the effects of MPA on: i) monolayer growth of human U87 and U251 glioblastoma, ii) 3D-spheroid growth and invasion of C6 rat glioma and human U251 glioma, iii) interactions with PI3-Kinase inhibitors and coxsackie-adenovirus receptor (CAR) in modifying 3D-spheroid invasion of glioma. RESULTS MPA at low doses (3.25-13 μM) insignificantly stimulated and at high doses (above 52 μM) strongly suppressed the growth of human U87 and U251 cells in vitro. MPA also binds to glucocorticoid receptors similar to dexamethasone (Dex) and unexpectedly, PI3-Kinase inhibitors at low doses suppressed anti-invasive efficacies of MPA and Dex. MPA exerted higher invasion-inhibitory effects on CAR-expressing human glioma cells. Lastly, MPA suppressed growth of C6 glioma implanted into rat brain. CONCLUSION Progesterone analogues deserve to be studied in future experimental models of high grade glial brain tumors.
Collapse
Affiliation(s)
- Meric A Altinoz
- Neuroacademy Research Group, Istanbul, Turkey; Department of Psychiatry, Maastricht University, Holland, Netherlands.
| | - Josephine Nalbantoglu
- Department of Neuroimmunology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Aysel Ozpinar
- Department of Medical Biochemistry, Acibadem University, Istanbul, Turkey
| | - M Emin Ozcan
- Department of Neurology, Kizilay Hospital, Bakirkoy, Istanbul, Turkey
| | | | - Ilhan Elmaci
- Neuroacademy Research Group, Istanbul, Turkey; Department of Neurosurgery, Memorial Hospital, Istanbul, Turkey
| |
Collapse
|
25
|
Mangano K, Mazzon E, Basile MS, Di Marco R, Bramanti P, Mammana S, Petralia MC, Fagone P, Nicoletti F. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach. Oncotarget 2018; 9:17951-17970. [PMID: 29707160 PMCID: PMC5915168 DOI: 10.18632/oncotarget.24885] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Santa Mammana
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Formative Processes, University of Catania, Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Guan Y, Chen J, Zhan Y, Lu H. Effects of dexamethasone on C6 cell proliferation, migration and invasion through the upregulation of AQP1. Oncol Lett 2018; 15:7595-7602. [PMID: 29740485 PMCID: PMC5934719 DOI: 10.3892/ol.2018.8269] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Dexamethasone (Dex) is commonly used to treat glioma; however, the mechanism underlying the action of Dex remains unclear. In the present study, the hypothesis that aquaporin-1 (AQP1) may participate in tumor cell proliferation, apoptosis, migration and invasion was tested using small interfering RNA (siRNA). The results of the current study indicated that Dex could inhibit the proliferation, in addition to promoting the migration, of C6 cells. Dex was indicated to promote the expression of AQP1. Downregulation of AQP1, achieved using siRNAs, demonstrated the inhibition of cell proliferation, promotion of cell migration and suppression of invasion; therefore, Dex was indicated to serve a role in these effects in the C6 cells, via the upregulation of AQP1. This demonstrated that AQP1 could be utilized as a novel therapeutic target, with the aim of inhibiting the proliferation and metastasis of gliomas.
Collapse
Affiliation(s)
- Ying Guan
- Department of Ultrasonography, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan 570102, P.R. China
| | - Jianqiang Chen
- Department of Radiology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Yuefu Zhan
- Department of Radiology, Haikou People's Hospital, Haikou, Hainan 570208, P.R. China
| | - Hong Lu
- Department of Radiology, The Seventh People's Hospital of Chongqing, Chongqing 400054, P.R. China
| |
Collapse
|
27
|
Macrophage migration inhibitory factor: A multifaceted cytokine implicated in multiple neurological diseases. Exp Neurol 2017; 301:83-91. [PMID: 28679106 DOI: 10.1016/j.expneurol.2017.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a conserved cytokine found as a homotrimer protein. It is found in a wide spectrum of cell types in the body including neuronal and non-neuronal cells. MIF is implicated in several biological processes; chemo-attraction, cytokine activity, and receptor binding, among other functions. More recently, a chaperone-like activity has been added to its repertoire. In this review, we focus on the implication of MIF in the central nervous system and peripheries, its role in neurological disorders, and the mechanisms by which MIF is regulated. Numerous studies have associated MIF with various disease settings. MIF plays an important role in advocating tumorigenic processes, Alzheimer's disease, and is also upregulated in autism-spectrum disorders and spinal cord injury where it contributes to the severity of the injured area. The protective effect of MIF has been reported in amyotrophic lateral sclerosis by its reduction of aggregated misfolded SOD1, subsequently reducing the severity of this disease. Interestingly, a protective as well as pathological role for MIF has been implicated in stroke and cerebral ischemia, as well as depression. Thus, the role of MIF in neurological disorders appears to be diverse with both beneficial and adversary effects. Furthermore, its modulation is rather complex and it is regulated by different proteins, either on a molecular or protein level. This complexity might be dependent on the pathophysiological context and/or cellular microenvironment. Hence, further clarification of its diverse roles in neurological pathologies is warranted to provide new mechanistic insights which may lead in the future to the development of therapeutic strategies based on MIF, to fight some of these neurological disorders.
Collapse
|
28
|
Ciarlo E, Heinonen T, Lugrin J, Acha-Orbea H, Le Roy D, Auwerx J, Roger T. Sirtuin 3 deficiency does not alter host defenses against bacterial and fungal infections. Sci Rep 2017. [PMID: 28634345 PMCID: PMC5478639 DOI: 10.1038/s41598-017-04263-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase. SIRT3 regulates cell metabolism and redox homeostasis, and protects from aging and age-associated pathologies. SIRT3 may drive both oncogenic and tumor-suppressive effects. SIRT3 deficiency has been reported to promote chronic inflammation-related disorders, but whether SIRT3 impacts on innate immune responses and host defenses against infections remains essentially unknown. This aspect is of primary importance considering the great interest in developing SIRT3-targeted therapies. Using SIRT3 knockout mice, we show that SIRT3 deficiency does not affect immune cell development and microbial ligand-induced proliferation and cytokine production by splenocytes, macrophages and dendritic cells. Going well along with these observations, SIRT3 deficiency has no major impact on cytokine production, bacterial burden and survival of mice subjected to endotoxemia, Escherichia coli peritonitis, Klebsiella pneumoniae pneumonia, listeriosis and candidiasis of diverse severity. These data suggest that SIRT3 is not critical to fight infections and support the safety of SIRT3-directed therapies based on SIRT3 activators or inhibitors for treating metabolic, oncologic and neurodegenerative diseases without putting patients at risk of infection.
Collapse
Affiliation(s)
- Eleonora Ciarlo
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, CH-1066, Epalinges, Switzerland
| | - Tytti Heinonen
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, CH-1066, Epalinges, Switzerland
| | - Jérôme Lugrin
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, CH-1066, Epalinges, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, University of Lausanne, CH-1066, Epalinges, Switzerland
| | - Didier Le Roy
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, CH-1066, Epalinges, Switzerland
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
29
|
Castro BA, Flanigan P, Jahangiri A, Hoffman D, Chen W, Kuang R, De Lay M, Yagnik G, Wagner JR, Mascharak S, Sidorov M, Shrivastav S, Kohanbash G, Okada H, Aghi MK. Macrophage migration inhibitory factor downregulation: a novel mechanism of resistance to anti-angiogenic therapy. Oncogene 2017; 36:3749-3759. [PMID: 28218903 PMCID: PMC5491354 DOI: 10.1038/onc.2017.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Anti-angiogenic therapies for cancer such as VEGF neutralizing antibody bevacizumab have limited durability. While mechanisms of resistance remain undefined, it is likely that acquired resistance to anti-angiogenic therapy will involve alterations of the tumor microenvironment. We confirmed increased tumor-associated macrophages in bevacizumab-resistant glioblastoma patient specimens and two novel glioblastoma xenograft models of bevacizumab resistance. Microarray analysis suggested downregulated macrophage migration inhibitory factor (MIF) to be the most pertinent mediator of increased macrophages. Bevacizumab-resistant patient glioblastomas and both novel xenograft models of resistance had less MIF than bevacizumab-naive tumors, and harbored more M2/protumoral macrophages that specifically localized to the tumor edge. Xenografts expressing MIF-shRNA grew more rapidly with greater angiogenesis and had macrophages localizing to the tumor edge which were more prevalent and proliferative, and displayed M2 polarization, whereas bevacizumab-resistant xenografts transduced to upregulate MIF exhibited the opposite changes. Bone marrow-derived macrophage were polarized to an M2 phenotype in the presence of condition-media derived from bevacizumab-resistant xenograft-derived cells, while recombinant MIF drove M1 polarization. Media from macrophages exposed to bevacizumab-resistant tumor cell conditioned media increased glioma cell proliferation compared with media from macrophages exposed to bevacizumab-responsive tumor cell media, suggesting that macrophage polarization in bevacizumab-resistant xenografts is the source of their aggressive biology and results from a secreted factor. Two mechanisms of bevacizumab-induced MIF reduction were identified: (1) bevacizumab bound MIF and blocked MIF-induced M1 polarization of macrophages; and (2) VEGF increased glioma MIF production in a VEGFR2-dependent manner, suggesting that bevacizumab-induced VEGF depletion would downregulate MIF. Site-directed biopsies revealed enriched MIF and VEGF at the enhancing edge in bevacizumab-naive patients. This MIF enrichment was lost in bevacizumab-resistant glioblastomas, driving a tumor edge M1-to-M2 transition. Thus, bevacizumab resistance is driven by reduced MIF at the tumor edge causing proliferative expansion of M2 macrophages, which in turn promotes tumor growth.
Collapse
Affiliation(s)
- B A Castro
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - P Flanigan
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - A Jahangiri
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - D Hoffman
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - W Chen
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - R Kuang
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - M De Lay
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - G Yagnik
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - J R Wagner
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - S Mascharak
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - M Sidorov
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - S Shrivastav
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - G Kohanbash
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - H Okada
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| | - M K Aghi
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, USA
| |
Collapse
|
30
|
Ismail FS, Moinfar Z, Prochnow N, Dambach H, Hinkerohe D, Haase CG, Förster E, Faustmann PM. Dexamethasone and levetiracetam reduce hetero-cellular gap-junctional coupling between F98 glioma cells and glial cells in vitro. J Neurooncol 2017; 131:469-476. [PMID: 27848138 PMCID: PMC5350227 DOI: 10.1007/s11060-016-2324-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/08/2016] [Indexed: 01/25/2023]
Abstract
Gap junctions (GJs) in astrocytes and glioma cells are important channels for cell-to-cell communication that contribute to homo- and heterocellular coupling. According to recent studies, heterocellular gap-junctional communication (H-GJC) between glioma cells and their surrounding environment enhances glioma progression. Therefore, we developed a new in vitro model to examine H-GJC between glioma cells, astrocytes and microglia. Consequently, F98 rat glioma cells were double-labeled with GJ-impermeable (CM-DiI) and GJ-permeable dye (calcein AM) and were seeded on unlabeled astrocyte-microglia co-cultures. Dual whole cell voltage clamp recordings were carried out on selected cell pairs to characterize the functional properties of H-GJC in vitro. The expression of four types of connexins (Cxs), including Cx32, Cx36, Cx43 and Cx45, and microglial phenotypes were analyzed by immunocytochemistry. The H-GJC between glioma cells and astrocytes/microglia increased after a longer incubation period with a higher number of glioma cells. We provided evidence for the direct GJ coupling of microglia and glioma cells under native in vitro conditions. In addition, we exploited this model to evaluate H-GJC after incubation with levetiracetam (LEV) and/or dexamethasone (DEX). Previous in vitro studies suggest that LEV and DEX are frequently used to control seizure and edema in glioma. Our findings showed that LEV and/or DEX decrease the number of heterocellular coupled cells significantly. In conclusion, our newly developed model demonstrated H-GJC between glioma cells and both astrocytes and microglia. The reduced H-GJC by LEV and DEX suggests a potential effect of both drugs on glioma progression.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
- Department of Neurology, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany.
| | - Zahra Moinfar
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Nora Prochnow
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Hannes Dambach
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Daniel Hinkerohe
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Claus Gert Haase
- Department of Neurology and Clinical Neurophysiology, Evangelical Hospital Gelsenkirchen, Gelsenkirchen, Germany
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Pedro Michael Faustmann
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Peddi P, Ajit NE, Burton GV, El-Osta H. Regression of a glioblastoma multiforme: spontaneous versus a potential antineoplastic effect of dexamethasone and levetiracetam. BMJ Case Rep 2016; 2016:bcr-2016-217393. [PMID: 28011886 PMCID: PMC5237800 DOI: 10.1136/bcr-2016-217393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with grade IV astrocytoma or glioblastoma multiforme (GBM) have a median survival of <12 months, increased to 14.6 months by maximal safe resection with radiation and temozolamide. In the absence of chemotherapy, radiotherapy or chemoradiotherapy, spontaneous regression of GBM or regression while only being on dexamethasone (DEX) and levetiracetam (LEV) have seldom been reported. Here, we present a case of a patient who had significant regression of the GBM with DEX and LEV alone. In this study, we hypothesise a plausible antineoplastic role of DEX and or LEV in GBM and highlight molecular, preclinical and clinical studies supporting this role.
Collapse
Affiliation(s)
- Prakash Peddi
- Louisiana State University Health Sciences Center Shreveport School of Medicine, Shreveport, Louisiana, USA
| | - Nisha Elizabeth Ajit
- Department of Internal Medicine, Louisiana State University Health Sciences Center Shreveport School of Medicine, Shreveport, Louisiana, USA
| | - Gary Von Burton
- Department of Hematology and Oncology, Louisiana State University Health Sciences Center Shreveport School of Medicine, Shreveport, Louisiana, USA
| | - Hazem El-Osta
- Louisiana State University Health Sciences Center Shreveport School of Medicine, Shreveport, Louisiana, USA
| |
Collapse
|
32
|
Xu Z, Liu Y, Zhou S, Fu Y, Li C. Response to the Letter to the Editor by D. Richardson: Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques. Int J Mol Sci 2016; 17:ijms17111917. [PMID: 27854349 PMCID: PMC5133914 DOI: 10.3390/ijms17111917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
This response refers to: Xu, Z.; Liu, Y.; Zhou, S.; Fu, Y.; Li, C. Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques. Int. J. Mol. Sci. 2016, 17, 1042. Merlot, A.M.; Sahni, S.; Lane, D.J.R.; Richardson, V.; Huang, M.L.H.; Kalinowski, D.S.; Richardson, D.R. Letter to the Editor: Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniques and. Int. J. Mol. Sci. 2016, 17, 1916.
Collapse
Affiliation(s)
- Zhongjie Xu
- College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.
| | - Youxun Liu
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, China.
| | - Sufeng Zhou
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, China.
| | - Yun Fu
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, China.
| | - Changzheng Li
- Department of Molecular Biology & Biochemistry, Xinxiang Medical University, Xinxiang 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnostics and Laboratory Medicine, Xinxiang 453003, China.
| |
Collapse
|
33
|
Choi YJ, Oh SG, Singh TD, Ha JH, Kim DW, Lee SW, Jeong SY, Ahn BC, Lee J, Jeon YH. Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging. Neoplasia 2016; 18:133-41. [PMID: 26992914 PMCID: PMC4796806 DOI: 10.1016/j.neo.2016.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 01/24/2023]
Abstract
We sought to visualize the migration of tumor-associated macrophages (TAMs) to tumor lesions and to evaluate the effects of anti-inflammatory drugs on TAM-modulated tumor progression in mice with colon cancer using a multimodal optical reporter gene system. Murine macrophage Raw264.7 cells expressing an enhanced firefly luciferase (Raw/effluc) and murine colon cancer CT26 cells coexpressing Rluc and mCherry (CT26/Rluc-mCherry, CT26/RM) were established. CT26/RM tumor-bearing mice received Raw/effluc via their tail veins, and combination of bioluminescence imaging (BLI) and fluorescence imaging (FLI) was conducted for in vivo imaging of TAMs migration and tumor progression. Dexamethasone (DEX), a potent anti-inflammatory drug, was administered intraperitoneally to tumor-bearing mice following the intravenous transfer of Raw/effluc cells. The migration of TAMs and tumor growth was monitored by serial FLI and BLI. The migration of Raw/effluc cells to tumor lesions was observed at day 1, and BLI signals were still distinct at tumor lesions on day 4. Localization of BLI signals from migrated Raw/effluc cells corresponded to that of FLI signals from CT26/RM tumors. In vivo FLI of tumors demonstrated enhanced tumor growth associated with macrophage migration to tumor lesions. Treatment with DEX inhibited the influx of Raw/effluc cells to tumor lesions and abolished the enhanced tumor growth associated with macrophage migration. These findings suggest that molecular imaging approach for TAM tracking is a valuable tool for evaluating the role of TAMs in the tumor microenvironment as well as for the development of new drugs to control TAM involvement in the modulation of tumor progression.
Collapse
Affiliation(s)
- Yun Ju Choi
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Seul-Gi Oh
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | | | - Jeoung-Hee Ha
- Department of Pharmacology, Kyungpook National University, Daegu, Korea
| | - Dong Wook Kim
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Sang Woo Lee
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea; Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea.
| | - Young Hyun Jeon
- Department of Nuclear Medicine, Kyungpook National University, Daegu, Korea; Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.
| |
Collapse
|
34
|
Khan NA, Willemarck N, Talebi A, Marchand A, Binda MM, Dehairs J, Rueda-Rincon N, Daniels VW, Bagadi M, Raj DBTG, Vanderhoydonc F, Munck S, Chaltin P, Swinnen JV. Identification of drugs that restore primary cilium expression in cancer cells. Oncotarget 2016; 7:9975-92. [PMID: 26862738 PMCID: PMC4891097 DOI: 10.18632/oncotarget.7198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/08/2015] [Indexed: 12/19/2022] Open
Abstract
The development of cancer is often accompanied by a loss of the primary cilium, a microtubule-based cellular protrusion that functions as a cellular antenna and that puts a break on cell proliferation. Hence, restoration of the primary cilium in cancer cells may represent a novel promising approach to attenuate tumor growth. Using a high content analysis-based approach we screened a library of clinically evaluated compounds and marketed drugs for their ability to restore primary cilium expression in pancreatic ductal cancer cells. A diverse set of 118 compounds stimulating cilium expression was identified. These included glucocorticoids, fibrates and other nuclear receptor modulators, neurotransmitter regulators, ion channel modulators, tyrosine kinase inhibitors, DNA gyrase/topoisomerase inhibitors, antibacterial compounds, protein inhibitors, microtubule modulators, and COX inhibitors. Certain compounds also dramatically affected the length of the cilium. For a selection of compounds (Clofibrate, Gefitinib, Sirolimus, Imexon and Dexamethasone) their ability to restore ciliogenesis was confirmed in a panel of human cancer cell line models representing different cancer types (pancreas, lung, kidney, breast). Most compounds attenuated cell proliferation, at least in part through induction of the primary cilium, as demonstrated by cilium removal using chloral hydrate. These findings reveal that several commonly used drugs restore ciliogenesis in cancer cells, and warrant further investigation of their antineoplastic properties.
Collapse
Affiliation(s)
- Niamat Ali Khan
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Nicolas Willemarck
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Ali Talebi
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | | | - Maria Mercedes Binda
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Jonas Dehairs
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Natalia Rueda-Rincon
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Veerle W. Daniels
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Muralidhararao Bagadi
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Deepak Balaji Thimiri Govinda Raj
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation and Unit of Virus Host-Cell Interactions (UVHCI), UJF-EMBL-CNRS, CS 90181, France
| | - Frank Vanderhoydonc
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| | - Sebastian Munck
- VIB Bio Imaging Core and Center for the Biology of Disease, 3000 Leuven, Belgium
- KU Leuven - University of Leuven, Center for Human Genetics, 3000 Leuven, Belgium
| | - Patrick Chaltin
- Cistim Leuven vzw, Bioincubator 2, 3001 Leuven, Belgium
- Centre for Drug Design and Discovery (CD3) KU Leuven R & D, Bioincubator 2, 3001 Leuven, Belgium
| | - Johannes V. Swinnen
- KU Leuven - University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, 3000 Leuven, Belgium
| |
Collapse
|
35
|
O'Reilly C, Doroudian M, Mawhinney L, Donnelly SC. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities. Med Res Rev 2016; 36:440-60. [PMID: 26777977 DOI: 10.1002/med.21385] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Seamas C Donnelly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.,Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
36
|
Zhang D, Liu H, Zeng J, Miao X, Huang W, Chen H, Huang Y, Li Y, Ye D. Glucocorticoid exposure in early placentation induces preeclampsia in rats via interfering trophoblast development. Gen Comp Endocrinol 2016; 225:61-70. [PMID: 26407501 DOI: 10.1016/j.ygcen.2015.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 12/29/2022]
Abstract
In pregnancy, placenta can be exposed to glucocorticoids (GCs) via several ways, which may disturb placentation and adversely affect pregnancy. Preeclampsia (PE) is thought to be attributed, in part, to impaired trophoblast development. The purpose of the present study was to confirm that GC exposure in early placentation could lead to PE in rats, with the mechanisms involving dysregulated trophoblast development. In the study, pregnant rats were administered with 2.5mg/kg Dex subcutaneously once per day from gestational day 7 to 13. Maternal systolic blood pressure and urinary albumin were increased, while both fetus and placenta were restricted after GC exposure relative to the control group. GC exposure also contributed to placental abnormalities and renal impairment. Moreover, placental oxidative damage was increased along with placental hypoxia-inducible factor 1-alpha (HIF1A) overexpression after GC treatment. Mechanically, GC induced PE in rat partially through inhibiting trophoblast proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), which involved phospho-extracellular signal regulated kinase (p-ERK) downregulation. Furthermore, GC receptor was required for the inhibition of GC on trophoblast proliferation, migration, invasion and EMT in vitro. These findings suggest that GC exposure in early placentation could contribute to PE in pregnant rats, with the mechanisms involving inhibition of trophoblast proliferation, migration, invasion and EMT by GC.
Collapse
Affiliation(s)
- Dongxin Zhang
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, People's Republic of China; Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Haojing Liu
- Department of Internal Medicine, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, People's Republic of China
| | - Ji Zeng
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, People's Republic of China
| | - Xili Miao
- Department of Clinical Laboratory, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, People's Republic of China
| | - Wei Huang
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Yinping Huang
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325003, People's Republic of China
| | - Yongsheng Li
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Duyun Ye
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
37
|
Subbannayya T, Leal-Rojas P, Barbhuiya MA, Raja R, Renuse S, Sathe G, Pinto SM, Syed N, Nanjappa V, Patil AH, Garcia P, Sahasrabuddhe NA, Nair B, Guerrero-Preston R, Navani S, Tiwari PK, Santosh V, Sidransky D, Prasad TSK, Gowda H, Roa JC, Pandey A, Chatterjee A. Macrophage migration inhibitory factor - a therapeutic target in gallbladder cancer. BMC Cancer 2015; 15:843. [PMID: 26530123 PMCID: PMC4632274 DOI: 10.1186/s12885-015-1855-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/27/2015] [Indexed: 12/20/2022] Open
Abstract
Background Poor prognosis in gallbladder cancer is due to late presentation of the disease, lack of reliable biomarkers for early diagnosis and limited targeted therapies. Early diagnostic markers and novel therapeutic targets can significantly improve clinical management of gallbladder cancer. Methods Proteomic analysis of four gallbladder cancer cell lines based on the invasive property (non-invasive to highly invasive) was carried out using the isobaric tags for relative and absolute quantitation labeling-based quantitative proteomic approach. The expression of macrophage migration inhibitory factor was analysed in gallbladder adenocarcinoma tissues using immunohistochemistry. In vitro cellular assays were carried out in a panel of gallbladder cancer cell lines using MIF inhibitors, ISO-1 and 4-IPP or its specific siRNA. Results The quantitative proteomic experiment led to the identification of 3,653 proteins, among which 654 were found to be overexpressed and 387 were downregulated in the invasive cell lines (OCUG-1, NOZ and GB-d1) compared to the non-invasive cell line, TGBC24TKB. Among these, macrophage migration inhibitory factor (MIF) was observed to be highly overexpressed in two of the invasive cell lines. MIF is a pleiotropic proinflammatory cytokine that plays a causative role in multiple diseases, including cancer. MIF has been reported to play a central role in tumor cell proliferation and invasion in several cancers. Immunohistochemical labeling of tumor tissue microarrays for MIF expression revealed that it was overexpressed in 21 of 29 gallbladder adenocarcinoma cases. Silencing/inhibition of MIF using siRNA and/or MIF antagonists resulted in a significant decrease in cell viability, colony forming ability and invasive property of the gallbladder cancer cells. Conclusions Our findings support the role of MIF in tumor aggressiveness and suggest its potential application as a therapeutic target for gallbladder cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1855-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Pamela Leal-Rojas
- Department of Pathology, Center of Genetic and Immunological Studies (CEGIN) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Mustafa A Barbhuiya
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Adrienne Helis Malvin Research Foundation, New Orleans, LA, 70130, USA.
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Manipal University, Madhav Nagar, Manipal, 576104, India.
| | - Sneha M Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| | - Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Arun H Patil
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Patricia Garcia
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), CITO, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | - Bipin Nair
- Amrita School of Biotechnology, Amrita University, Kollam, 690525, India.
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | | | - Pramod K Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, 474011, India. .,School of Studies in Zoology, Jiwaji University, Gwalior, India.
| | - Vani Santosh
- Department of Pathology, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Amrita School of Biotechnology, Amrita University, Kollam, 690525, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India. .,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India.
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| | - Juan Carlos Roa
- Department of Pathology, Advanced Center for Chronic Diseases (ACCDiS), CITO, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Manipal University, Madhav Nagar, Manipal, 576104, India. .,YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, 575018, India.
| |
Collapse
|
38
|
Huynh TP, Barwe SP, Lee SJ, McSpadden R, Franco OE, Hayward SW, Damoiseaux R, Grubbs SS, Petrelli NJ, Rajasekaran AK. Glucocorticoids suppress renal cell carcinoma progression by enhancing Na,K-ATPase beta-1 subunit expression. PLoS One 2015; 10:e0122442. [PMID: 25836370 PMCID: PMC4383530 DOI: 10.1371/journal.pone.0122442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 02/21/2015] [Indexed: 11/28/2022] Open
Abstract
Glucocorticoids are commonly used as palliative or chemotherapeutic clinical agents for treatment of a variety of cancers. Although steroid treatment is beneficial, the mechanisms by which steroids improve outcome in cancer patients are not well understood. Na,K-ATPase beta-subunit isoform 1 (NaK-β1) is a cell-cell adhesion molecule, and its expression is down-regulated in cancer cells undergoing epithelial-to mesenchymal-transition (EMT), a key event associated with cancer progression to metastatic disease. In this study, we performed high-throughput screening to identify small molecules that could up-regulate NaK-β1 expression in cancer cells. Compounds related to the glucocorticoids were identified as drug candidates enhancing NaK-β1 expression. Of these compounds, triamcinolone, dexamethasone, and fluorometholone were validated to increase NaK-β1 expression at the cell surface, enhance cell-cell adhesion, attenuate motility and invasiveness and induce mesenchymal to epithelial like transition of renal cell carcinoma (RCC) cells in vitro. Treatment of NaK-β1 knockdown cells with these drug candidates confirmed that these compounds mediate their effects through up-regulating NaK-β1. Furthermore, we demonstrated that these compounds attenuate tumor growth in subcutaneous RCC xenografts and reduce local invasiveness in orthotopically-implanted tumors. Our results strongly indicate that the addition of glucocorticoids in the treatment of RCC may improve outcome for RCC patients by augmenting NaK-β1 cell-cell adhesion function.
Collapse
MESH Headings
- Animals
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/enzymology
- Carcinoma, Renal Cell/pathology
- Cell Adhesion/drug effects
- Cell Line, Tumor
- Dexamethasone/pharmacology
- Disease Progression
- Fluorometholone/pharmacology
- Glucocorticoids/pharmacology
- HeLa Cells
- High-Throughput Screening Assays
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/enzymology
- Kidney Neoplasms/pathology
- Male
- Mice
- Mice, Hairless
- Mice, SCID
- Neoplasm Invasiveness/prevention & control
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sodium-Potassium-Exchanging ATPase/genetics
- Sodium-Potassium-Exchanging ATPase/metabolism
- Triamcinolone/pharmacology
- Up-Regulation/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Thu P. Huynh
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Sonali P. Barwe
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Seung J. Lee
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Ryan McSpadden
- Nemours Center for Childhood Cancer Research, A. I. DuPont Hospital for Children, Wilmington, Delaware, United States of America
| | - Omar E. Franco
- Department of Urologic Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephen S. Grubbs
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware, United States of America
| | - Nicholas J. Petrelli
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware, United States of America
| | - Ayyappan K. Rajasekaran
- Helen F. Graham Cancer Center, Christiana Care Health System, Newark, Delaware, United States of America
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
- Therapy Architects, 2700 Silverside Road, Wilmington, Delaware, United States of America
| |
Collapse
|
39
|
Lee KP, Choi NH, Kim JT, Park IS. The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum. Nutr Res Pract 2015; 9:256-61. [PMID: 26060537 PMCID: PMC4460057 DOI: 10.4162/nrp.2015.9.3.256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND/OBJECTIVES Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). MATERIALS/METHODS Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. RESULTS Yacon (300 µg/mL) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and 300 µg/mL) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and 300 µg/mL) induced TIMP-1 expression. CONCLUSIONS On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels.
Collapse
Affiliation(s)
- Kang Pa Lee
- Department of Medical Science, School of Medicine, Konkuk University, Seoul 143-701, Korea
| | - Nan Hee Choi
- Department of Anatomy, college of Korean Medicine, Dongguk University Gyeongju Campus 123, Dongdae-ro, Gyeongju-si, Gyengbuk, 780-714, Korea
| | - Jin Teak Kim
- Department of Anatomy, college of Korean Medicine, Dongguk University Gyeongju Campus 123, Dongdae-ro, Gyeongju-si, Gyengbuk, 780-714, Korea
| | - In-Sik Park
- Department of Anatomy, college of Korean Medicine, Dongguk University Gyeongju Campus 123, Dongdae-ro, Gyeongju-si, Gyengbuk, 780-714, Korea
| |
Collapse
|
40
|
Zeiner PS, Preusse C, Blank AE, Zachskorn C, Baumgarten P, Caspary L, Braczynski AK, Weissenberger J, Bratzke H, Reiß S, Pennartz S, Winkelmann R, Senft C, Plate KH, Wischhusen J, Stenzel W, Harter PN, Mittelbronn M. MIF Receptor CD74 is Restricted to Microglia/Macrophages, Associated with a M1-Polarized Immune Milieu and Prolonged Patient Survival in Gliomas. Brain Pathol 2014; 25:491-504. [PMID: 25175718 DOI: 10.1111/bpa.12194] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/18/2014] [Indexed: 01/05/2023] Open
Abstract
The macrophage migration inhibitory factor (MIF) receptor CD74 is overexpressed in various neoplasms, mainly in hematologic tumors, and currently investigated in clinical studies. CD74 is quickly internalized and recycles after antibody binding, therefore it constitutes an attractive target for antibody-based treatment strategies. CD74 has been further described as one of the most up-regulated molecules in human glioblastomas. To assess the potential relevance for anti-CD74 treatment, we determined the cellular source and clinicopathologic relevance of CD74 expression in human gliomas by immunohistochemistry, immunofluorescence, immunoblotting, cell sorting analysis and quantitative polymerase chain reaction (qPCR). Furthermore, we fractionated glioblastoma cells and glioma-associated microglia/macrophages (GAMs) from primary tumors and compared CD74 expression in cellular fractions with whole tumor lysates. Our results show that CD74 is restricted to GAMs in vivo, while being absent in tumor cells, the latter strongly expressing its ligand MIF. Most interestingly, a higher amount of CD74-positive GAMs was associated with beneficial patient survival constituting an independent prognostic parameter and with an anti-tumoral M1 polarization. In summary, CD74 expression in human gliomas is restricted to GAMs and positively associated with patient survival. In conclusion, CD74 represents a positive prognostic marker most probably because of its association with an M1-polarized immune milieu in high-grade gliomas.
Collapse
Affiliation(s)
- Pia S Zeiner
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Anna-Eva Blank
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Cornelia Zachskorn
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Baumgarten
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Neurosurgery, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lixi Caspary
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anne K Braczynski
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob Weissenberger
- Department of Experimental Neurosurgery, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hansjürgen Bratzke
- Institute of Forensic Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sandy Reiß
- Miltenyi Biotec, Bergisch Gladbach, Germany
| | | | - Ria Winkelmann
- Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Senft
- Department of Experimental Neurosurgery, Goethe University Frankfurt, Frankfurt am Main, Germany.,Department of Neurosurgery, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Karl H Plate
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Wischhusen
- Junior Research Group "Tumour Progression and Immune Escape", Interdisciplinary Center for Clinical Research, Department for Obstetrics and Gynecology, University of Würzburg, Würzburg, Germany
| | | | - Patrick N Harter
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michel Mittelbronn
- Edinger Institute, Institute of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
41
|
Glucocorticoid Receptor β Acts as a Co-activator of T-Cell Factor 4 and Enhances Glioma Cell Proliferation. Mol Neurobiol 2014; 52:1106-1118. [PMID: 25301232 DOI: 10.1007/s12035-014-8900-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022]
Abstract
We previously reported that glucocorticoid receptor β (GRβ) regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activity. The aim of this study was to characterize the mechanism behind cross-talk between GRβ and β-catenin/TCF in the progression of glioma. Here, we reported that GRβ knockdown reduced U118 and Shg44 glioma cell proliferation in vitro and in vivo. Mechanistically, we found that GRβ knockdown decreased TCF/LEF transcriptional activity without affecting β-catenin/TCF complex. Both GRα and GRβ directly interact with TCF-4, while only GRβ is required for sustaining TCF/LEF activity under hormone-free condition. GRβ bound to the N-terminus domain of TCF-4 its influence on Wnt signaling required both ligand- and DNA-binding domains (LBD and DBD, respectively). GRβ and TCF-4 interaction is enough to maintain the TCF/LEF activity at a high level in the absence of β-catenin stabilization. Taken together, these results suggest a novel cross-talk between GRβ and TCF-4 which regulates Wnt signaling and the proliferation in gliomas.
Collapse
|
42
|
Ioannou K, Cheng KF, Crichlow GV, Birmpilis AI, Lolis EJ, Tsitsilonis OE, Al-Abed Y. ISO-66, a novel inhibitor of macrophage migration, shows efficacy in melanoma and colon cancer models. Int J Oncol 2014; 45:1457-68. [PMID: 25050663 PMCID: PMC4432716 DOI: 10.3892/ijo.2014.2551] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 01/11/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic pro-inflammatory cytokine, which possesses a contributing role in cancer progression and metastasis and, thus, is now considered a promising anticancer drug target. Many MIF-inactivating strategies have proven successful in delaying cancer growth. Here, we report on the synthesis of ISO-66, a novel, highly stable, small-molecule MIF inhibitor, an analog of ISO-1 with improved characteristics. The MIF:ISO-66 co-crystal structure demonstrated that ISO-66 ligates the tautomerase active site of MIF, which has previously been shown to play an important role in its biological functions. In vitro, ISO-66 enhanced specific and non-specific anticancer immune responses, whereas prolonged administration of ISO-66 in mice with established syngeneic melanoma or colon cancer was non-toxic and resulted in a significant decrease in tumor burden. Subsequent ex vivo analysis of mouse splenocytes revealed that the observed decrease in tumor growth rates was likely mediated by the selective in vivo expansion of antitumor-reactive effector cells induced by ISO-66. Compared to other MIF-inactivating strategies employed in vivo, the anticancer activity of ISO-66 is demonstrated to be of equal or better efficacy. Our findings suggest that targeting MIF, via highly specific and stable compounds, such as ISO-66, may be effective for cancer treatment and stimulation of anticancer immune responses.
Collapse
Affiliation(s)
- Kyriaki Ioannou
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Gregg V Crichlow
- Department of Pharmacology, Yale University, New Haven, CT 06510, USA
| | - Anastasios I Birmpilis
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Elias J Lolis
- Department of Pharmacology, Yale University, New Haven, CT 06510, USA
| | - Ourania E Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
43
|
Takahashi H, Nakayama R, Hayashi S, Nemoto T, Murase Y, Nomura K, Takahashi T, Kubo K, Marui S, Yasuhara K, Nakamura T, Sueo T, Takahashi A, Tsutsumiuchi K, Ohta T, Kawai A, Sugita S, Yamamoto S, Kobayashi T, Honda H, Yoshida T, Hasegawa T. Macrophage migration inhibitory factor and stearoyl-CoA desaturase 1: potential prognostic markers for soft tissue sarcomas based on bioinformatics analyses. PLoS One 2013; 8:e78250. [PMID: 24167613 PMCID: PMC3805525 DOI: 10.1371/journal.pone.0078250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022] Open
Abstract
The diagnosis and treatment of soft tissue sarcomas (STSs) has been particularly difficult, because STSs are a group of highly heterogeneous tumors in terms of histopathology, histological grade, and primary site. Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis, treatment selection, and investigation of therapeutic targets. We had previously developed a novel bioinformatics method for marker gene selection and applied this method to gene expression data from STS patients. This previous analysis revealed that the extracted gene combination of macrophage migration inhibitory factor (MIF) and stearoyl-CoA desaturase 1 (SCD1) is an effective diagnostic marker to discriminate between subtypes of STSs with highly different outcomes. In the present study, we hypothesize that the combination of MIF and SCD1 is also a prognostic marker for the overall outcome of STSs. To prove this hypothesis, we first analyzed microarray data from 88 STS patients and their outcomes. Our results show that the survival rates for MIF- and SCD1-positive groups were lower than those for negative groups, and the p values of the log-rank test are 0.0146 and 0.00606, respectively. In addition, survival rates are more significantly different (p = 0.000116) between groups that are double-positive and double-negative for MIF and SCD1. Furthermore, in vitro cell growth inhibition experiments by MIF and SCD1 inhibitors support the hypothesis. These results suggest that the gene set is useful as a prognostic marker associated with tumor progression.
Collapse
Affiliation(s)
- Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| | - Robert Nakayama
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Transcriptome Project, National Cancer Center Research Institute, Tokyo, Japan
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shuhei Hayashi
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Takeshi Nemoto
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Dermatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuyuki Murase
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Koji Nomura
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Teruyoshi Takahashi
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Kenji Kubo
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Shigetaka Marui
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Koji Yasuhara
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Tetsuro Nakamura
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Takuya Sueo
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Anna Takahashi
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Kaname Tsutsumiuchi
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Tsutomu Ohta
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Kawai
- Orthopedics Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shintaro Sugita
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Shinjiro Yamamoto
- Department of Applied Life Science, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto, Japan
| | - Takeshi Kobayashi
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
- Plant Biology Research Center, Chubu University, Kasugai, Aichi, Japan
| | - Hiroyuki Honda
- Department of Biotechnology, School of Engineering, Nagoya University, Nagoya, Aichi, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
- Pathology Division, National Cancer Center Hospital, Tokyo, Japan,
| |
Collapse
|
44
|
Lewis KM, Harford-Wright E, Vink R, Ghabriel MN. NK1 receptor antagonists and dexamethasone as anticancer agents in vitro and in a model of brain tumours secondary to breast cancer. Anticancer Drugs 2013; 24:344-54. [PMID: 23407059 DOI: 10.1097/cad.0b013e32835ef440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Emend, an NK1 antagonist, and dexamethasone are used to treat complications associated with metastatic brain tumours and their treatment. It has been suggested that these agents exert anticancer effects apart from their current use. The effects of the NK1 antagonists, Emend and N-acetyl-L-tryptophan, and dexamethasone on tumour growth were investigated in vitro and in vivo at clinically relevant doses. For animal experiments, a stereotaxic injection model of Walker 256 rat breast carcinoma cells into the striatum of Wistar rats was used. Emend treatment led to a decrease in tumour cell viability in vitro, although this effect was not replicated by N-acetyl-L-tryptophan. Dexamethasone did not decrease tumour cell viability in vitro but decreased tumour volume in vivo, likely to be through a reduction in tumour oedema, as indicated by the increase in tumour cell density. None of the agents investigated altered tumour cell replication or apoptosis in vivo. Inoculated animals showed increased glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 immunoreactivity indicative of astrocytes and microglia in the peritumoral area, whereas treatment with Emend and dexamethasone reduced the labelling for both glial cells. These results do not support the hypothesis that NK1 antagonists or dexamethasone exert a cytotoxic action on tumour cells, although these conclusions may be specific to this model and cell line.
Collapse
Affiliation(s)
- Kate M Lewis
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
45
|
Yin Y, Zhang X, Li Z, Deng L, Jiao G, Zhang B, Xie P, Mu H, Qiao W, Zou J. Glucocorticoid receptor β regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/TCF transcriptional activity. Neurobiol Dis 2013; 59:165-76. [PMID: 23906498 DOI: 10.1016/j.nbd.2013.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/16/2022] Open
Abstract
Astrocytes react to central nervous system (CNS) injury and participate in gliotic responses, imparting negative, as well as positive effects on axonal regeneration. Despite the considerable biochemical and morphological changes astrocytes undergo following insult, and the known influence of steroids on glial activation, details surrounding glucocorticoid receptor expression and activity are lacking. Such mechanistic information is essential for advancing and enhancing therapies in the treatment of CNS injuries. Using an in vitro wound-healing assay, we found glucocorticoid receptor β (GRβ), not GRα, is upregulated and acts as a regulator of gliosis after injury. In addition, our results suggest that GRβ interacts with β-catenin and is a necessary component for proliferation and migration in both injured astrocytes and glioma cells. Further analysis indicated GRβ/β-catenin interaction as a key modulator of astrocyte reactivity through sustained Wnt/β-catenin/TCF signaling in its dominant-negative effect on GRα mediated trans-repression by a GSK-3β-independent manner. These findings expand our knowledge of the mechanism of GRβ action in promoting astrocyte proliferation and migration following injury and in glioma. This information furthers our understanding the function of glucocorticoid receptor in CNS injury and disease, as well as in the basic biochemical responses astrocytes undergo in response to injury and glioma pathogenesis.
Collapse
Affiliation(s)
- Ying Yin
- Department of Clinical Laboratory Science, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China; Wuxi Clinical Science Research Institute, Wuxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li Q, Lv LL, Wu M, Zhang XL, Liu H, Liu BC. Dexamethasone prevents monocyte-induced tubular epithelial-mesenchymal transition in HK-2 cells. J Cell Biochem 2013; 114:632-8. [PMID: 23060286 DOI: 10.1002/jcb.24405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 09/21/2012] [Indexed: 01/30/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key cellular event in the early stage of tubulointerstitial fibrosis (TIF). Monocyte infiltration plays an important role in the progression of TIF. We have previously demonstrated that monocytes can directly induce HK-2 cell transition by direct contact. Dexamethasone, an important anti-inflammatory and immunosuppressant agent, has been widely used in renal disease for decades. Whether it could influence the monocyte and HK-2 cell interaction and prevent EMT is still uncertain. In this study, we found that the typical epithelial cell morphology of HK-2 cells disappeared 24 h after co-culture with monocytes, and dexamethasone significantly prevented this change in a dose-dependent manner. In addition, we found that dexamethasone prevented monocytes from binding to HK-2 cells by inhibiting ICAM-1 expression on HK-2 cells. Further analysis demonstrated that there was increased E-cadherin expression and decreased α-SMA and fibronectin expression after co-culture with dexamethasone, suggesting that dexamethasone prevents monocyte-induced HK-2 cell transition. The nuclear transcription factor κB (NF-κB) pathway played an important role in this process. These findings suggest a novel mechanism by which corticosteroids may delay the progression of TIF via preventing EMT.
Collapse
Affiliation(s)
- Qing Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
47
|
Savoy RM, Ghosh PM. Linking inflammation and neuroendocrine differentiation: the role of macrophage migration inhibitory factor-mediated signaling in prostate cancer. Endocr Relat Cancer 2013; 20:C1-4. [PMID: 23612613 DOI: 10.1530/erc-13-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new paper by Tawadros et al. in Endocrine-Related Cancer demonstrates a link between macrophage migration inhibitory factor and neuroendocrine differentiation in prostate cancer. This paper may have implications in explaining the effect of prostatitis and chronic inflammation on the development of aggressive prostate cancer.
Collapse
Affiliation(s)
- Rosalinda M Savoy
- Department of Urology, University of California Davis, Sacramento, California, USA
| | | |
Collapse
|
48
|
Yeung YT, McDonald KL, Grewal T, Munoz L. Interleukins in glioblastoma pathophysiology: implications for therapy. Br J Pharmacol 2013; 168:591-606. [PMID: 23062197 PMCID: PMC3579281 DOI: 10.1111/bph.12008] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/18/2012] [Accepted: 09/26/2012] [Indexed: 12/14/2022] Open
Abstract
Despite considerable amount of research, the poor prognosis of patients diagnosed with glioblastoma multiforme (GBM) critically needs new drug development to improve clinical outcomes. The development of an inflammatory microenvironment has long been considered important in the initiation and progression of glioblastoma; however, the success of developing therapeutic approaches to target inflammation for GBM therapy has yet been limited. Here, we summarize the accumulating evidence supporting a role for inflammation in the pathogenesis of glioblastoma, discuss anti-inflammatory targets that could be relevant for GBM treatment and provide a perspective on the challenges faced in the development of drugs that target GBM inflammation. In particular, we will review the function of IL-1β, IL-6 and IL-8 as well as the potential of kinase inhibitors targeting key players in inflammatory cell signalling cascades such as JAK, JNK and p38 MAPK.
Collapse
Affiliation(s)
- Y T Yeung
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
49
|
Ji SQ, Su XL, Cheng WL, Zhang HJ, Zhao YQ, Han ZX. Down-regulation of CD74 inhibits growth and invasion in clear cell renal cell carcinoma through HIF-1α pathway. Urol Oncol 2012; 32:153-61. [PMID: 23273913 DOI: 10.1016/j.urolonc.2012.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To investigate the expression and function of CD74 in normal renal tissue and clear cell-renal cell carcinoma (ccRCC), as well as related renal tubule epithelial lines. We also analyzed the association between clinicopathological characteristics of ccRCCs and the expression levels of CD74. METHODS Immunostaining of CD74 was performed in 107 patients' renal tissue and cell lines. We evaluated the association between clinicopathological characteristics of ccRCC and CD74 levels using image analysis. CD74 expression levels were also analyzed by Western blot. Lentivirus-mediated CD74 knockdown inhibited the growth and invasion, of ccRCC cell lines 786-O in vitro and in vivo. Cell proliferation, apoptosis, and invasion as well as HIF-1α pathway-related proteins, were estimated by Western blot. All experiments were repeated at least 3 times. RESULTS Immunostaining and image analysis showed strong immunoreactions of CD74 in all patients' ccRCC tissue and malignant cell lines, while CD74 expression levels were associated with tumor grade (P = 0.013). Western blot indicated that ccRCC tissue and malignant cell lines expressed higher levels of CD74 and hypoxia inducible factor 1α (HIF-1α) than adjacent normal renal tissue and normal cell HK-2. Vitro and vivo tests demonstrated that lentivirus-mediated CD74 knockdown inhibited the proliferation of ccRCC cell lines, induced G1/S arrest and apoptosis, and inhibited invasion. Inhibition of CD74 resulted in down-regulation of HIF-1α pathway proteins. CONCLUSIONS CD74 was overexpressed in human ccRCCs and associated with tumor grade, and inhibition of CD74 produced ccRCC proliferation arrest, induced apoptosis, and inhibited invasion, which impinged on HIF-1α pathway-related proteins. It might represent a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Shi-Qi Ji
- Department of Urology, Beijing DiTan Hospital Capital Medical University, Beijing, China
| | - Xiao-Lin Su
- Department of Medicine, Beijing ChaoYang District the Second Hospital, Beijing, China
| | - Wen-Long Cheng
- Department of Urology, Beijing DiTan Hospital Capital Medical University, Beijing, China
| | - Hai-Jian Zhang
- Department of Urology, Beijing DiTan Hospital Capital Medical University, Beijing, China
| | - Yu-Qian Zhao
- Department of Urology, Beijing DiTan Hospital Capital Medical University, Beijing, China
| | - Zhi-Xing Han
- Department of Urology, Beijing DiTan Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Xu HX, Ma WQ, Yang RJ, Wang YM, Wang LJ, Zang LQ, He XX. Small interfering RNA-mediated MIF knockdown reduces cell invasion in murine colorectal cancer cell line CT-26. Shijie Huaren Xiaohua Zazhi 2012; 20:3000-3004. [DOI: 10.11569/wcjd.v20.i31.3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of small interfering RNA (siRNA)-mediated knockdown of the macrophage migration-inhibitory factor (MIF) gene on cell invasion in murine colorectal cancer cell line CT-26 and to explore possible mechanisms involved.
METHODS: CT-26 cells were divided into three groups: experimental group, control group, and blank group. The experimental group and control group were treated with a siRNA specific for the MIF gene (MIF siRNA) and a nonspecific siRNA, respectively, while the blank group was not treated with any agent. Transwell assay was used to determine cell invasion. ELISA was used to determine the level of MIF protein in cell supernatants, and the expression of MIF, CD74, tiam1 and E-cadherin mRNAs was detected by RT-PCR.
RESULTS: Twenty-four hours after treatment, cell invasion was significantly inhibited and the level of MIF protein in supernatants significantly declined in the experimental group compared to the control and blank groups (P = 0.012, 0.020). Compared to the control and blank groups, the expression of MIF, CD74 and tiam1 mRNAs decreased significantly and that of E-cadherin mRNA increased significantly (PE-Cadherin = 0.001) in the experimental group. In addition, the levels of MIF and CD74 proteins significantly declined in the experimental group compared to the control and the blank groups (PMIF = 0.006; PCD74 = 0.016).
CONCLUSION: MIF siRNA inhibits the invasion of CT-26 cells possibly by down-regulating the expression of MIF, CD74 and tiam1 and up-regulating the expression of E-cadherin.
Collapse
|