1
|
Cingolani M, Lugli F, Zaffagnini M, Genovese D. Fluorogenic Hyaluronan Nanogels Track Individual Early Protein Aggregates Originated under Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3056-3063. [PMID: 38194274 PMCID: PMC10811615 DOI: 10.1021/acsami.3c13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Proteins are broadly versatile biochemical materials, whose functionality is tightly related to their folding state. Native folding can be lost to yield misfolded conformations, often leading to formation of protein oligomers, aggregates, and biomolecular phase condensates. The fluorogenic hyaluronan HA-RB, a nonsulfonated glycosaminoglycan with a combination of polyanionic character and of hydrophobic spots due to rhodamine B dyes, binds to early aggregates of the model protein cytoplasmic glyceraldehyde-3-phosphate dehydrogenase 1 from Arabidopsis thaliana (AtGAPC1) since the very onset of the oligomeric phase, making them brightly fluorescent. This initial step of aggregation has, until now, remained elusive with other fluorescence- or scattering-based techniques. The information gathered from nanotracking (via light-sheet fluorescence microscopy) and from FCS in a confocal microscope converges to highlight the ability of HA-RB to bind protein aggregates from the very early steps of aggregation and with high affinity. Altogether, this fluorescence-based approach allows one to monitor and track individual early AtGAPC1 aggregates in the size range from 10 to 100 nm with high time (∼10-2 s) and space (∼250 nm) resolution.
Collapse
Affiliation(s)
- Matteo Cingolani
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Francesca Lugli
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| | - Mirko Zaffagnini
- Dipartimento
di Farmacia e Biotecnologie, Università
di Bologna, 40126 Bologna, Italy
| | - Damiano Genovese
- Dipartimento
di Chimica “Giacomo Ciamician”, Università di Bologna, 40126 Bologna, Italy
| |
Collapse
|
2
|
Cascella R, Banchelli M, Abolghasem Ghadami S, Ami D, Gagliani MC, Bigi A, Staderini T, Tampellini D, Cortese K, Cecchi C, Natalello A, Adibi H, Matteini P, Chiti F. An in situ and in vitro investigation of cytoplasmic TDP-43 inclusions reveals the absence of a clear amyloid signature. Ann Med 2023; 55:72-88. [PMID: 36495262 PMCID: PMC9746631 DOI: 10.1080/07853890.2022.2148734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-β-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-β structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-β structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino, Italy
| | | | - Diletta Ami
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy.,Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Maria Cristina Gagliani
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Davide Tampellini
- U 1195 INSERM-Université Paris-Saclay, Paris, France.,Institut Professeur Baulieu, Paris, France
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy.,Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
3
|
Martínez-Rodríguez S, Cámara-Artigas A, Gavira JA. First 3-D structural evidence of a native-like intertwined dimer in the acylphosphatase family. Biochem Biophys Res Commun 2023; 682:85-90. [PMID: 37804591 DOI: 10.1016/j.bbrc.2023.09.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/09/2023]
Abstract
Acylphosphatase (AcP, EC 3.6.1.7) is a small model protein conformed by a ferredoxin-like fold, profoundly studied to get insights into protein folding and aggregation processes. Numerous studies focused on the aggregation and/or amyloidogenic properties of AcPs suggest the importance of edge-β-strands in the process. In this work, we present the first crystallographic structure of Escherichia coli AcP (EcoAcP), showing notable differences with the only available NMR structure for this enzyme. EcoAcP is crystalised as an intertwined dimer formed by replacing a single C-terminal β-strand between two protomers, suggesting a flexible character of the C-terminal edge of EcoAcP. Despite numerous works where AcP from different sources have been used as a model system for protein aggregation, our domain-swapped EcoAcP structure is the first 3-D structural evidence of native-like aggregated species for any AcP reported to date, providing clues on molecular determinants unleashing aggregation.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Avenida de La Investigación 11, Granada, 18071, Spain; Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain.
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Centro de Investigación en Agrosistemas Intensivos Mediterráneos y Biotecnología Agroalimentaria (CIAMBITAL), Carretera de Sacramento S/n, Almería, 04120, Spain
| | - Jose Antonio Gavira
- Laboratorio de Estudios Cristalográficos, CSIC-UGR, Avda. de Las Palmeras 4, Armilla, Granada, 18100, Spain
| |
Collapse
|
4
|
Nishitsuji K, Uchimura K. Contribution of Sulfated Glycosaminoglycans to the Pathology of Amyloidosis. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2105.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille
| |
Collapse
|
5
|
Nishitsuji K, Uchimura K. Contribution of Sulfated Glycosaminoglycans to the Pathology of Amyloidosis. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2105.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Kenji Uchimura
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille
| |
Collapse
|
6
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
7
|
Zsila F, Samsonov SA, Maszota-Zieleniak M. Mind Your Dye: The Amyloid Sensor Thioflavin T Interacts with Sulfated Glycosaminoglycans Used To Induce Cross-β-Sheet Motifs. J Phys Chem B 2020; 124:11625-11633. [DOI: 10.1021/acs.jpcb.0c08273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Sergey A. Samsonov
- Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | |
Collapse
|
8
|
Jeon YM, Kwon Y, Jo M, Lee S, Kim S, Kim HJ. The Role of Glial Mitochondria in α-Synuclein Toxicity. Front Cell Dev Biol 2020; 8:548283. [PMID: 33262983 PMCID: PMC7686475 DOI: 10.3389/fcell.2020.548283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The abnormal accumulation of alpha-synuclein (α-syn) aggregates in neurons and glial cells is widely known to be associated with many neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple system atrophy (MSA). Mitochondrial dysfunction in neurons and glia is known as a key feature of α-syn toxicity. Studies aimed at understanding α-syn-induced toxicity and its role in neurodegenerative diseases have primarily focused on neurons. However, a growing body of evidence demonstrates that glial cells such as microglia and astrocytes have been implicated in the initial pathogenesis and the progression of α-Synucleinopathy. Glial cells are important for supporting neuronal survival, synaptic functions, and local immunity. Furthermore, recent studies highlight the role of mitochondrial metabolism in the normal function of glial cells. In this work, we review the complex relationship between glial mitochondria and α-syn-mediated neurodegeneration, which may provide novel insights into the roles of glial cells in α-syn-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Myungjin Jo
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seyeon Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
- Department of Brain and Cognitive Sciences, DGIST, Daegu, South Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute, Daegu, South Korea
| |
Collapse
|
9
|
Chandrasekhar G, Rajasekaran R. Investigating the pernicious effects of heparan sulfate in serum amyloid A1 protein aggregation: a structural bioinformatics approach. J Biomol Struct Dyn 2020; 40:1776-1790. [PMID: 33050843 DOI: 10.1080/07391102.2020.1833756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid-A mediated (AA) amyloidosis is the pathogenic byproduct of body's prolonged exposure to inflammatory conditions. It is described by the aggregation of mutated/misfolded serum amyloid A1 (SAA1) protein in various tissues and organs. Genetic polymorphism G90D is suspected to cause AA amyloidosis, although the causal mechanism remains cryptic. Recent experimental findings insinuate that heparan sulphate (HS), a glycosaminoglycans, exhibits binding with SAA1 to promote its aggregation. To foster the enhanced binding of HS, we computationally determined the pernicious modifications in G90D mutant SAA1 protein. Also, we examined the influence of HS on the dynamic conformation of mutant SAA1 that could potentially succor amyloidosis. Accordingly, the protein-ligand binding studies indicate that upon SNP G90D, SAA1 protein exhibited an augmented association with HS. Further, the simulation of HS bound mutant SAA1 complex delineates an increase in RMSD, Rg, and RMSF. Also, both RMSD and Rg evinced a fluctuating trajectory. Further, the complex showed increase of beta turn in its secondary structural composition. Additionally, the free energy landscape of mutant SAA1-HS complex posits the occurrence of multiple global minima conformers as opposed to the presence of a single global energy minima conformation in native SAA1 protein. In conclusion, the aforementioned conformational ramifications induced by HS on SAA1 could potentially be the proteopathic incendiary behind AA amyloidosis; this incendiary will need to be considered in future studies for developing effective therapeutics against AA amyloidosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Lin Y, Sahoo BR, Ozawa D, Kinoshita M, Kang J, Lim MH, Okumura M, Huh YH, Moon E, Jang JH, Lee HJ, Ryu KY, Ham S, Won HS, Ryu KS, Sugiki T, Bang JK, Hoe HS, Fujiwara T, Ramamoorthy A, Lee YH. Diverse Structural Conversion and Aggregation Pathways of Alzheimer's Amyloid-β (1-40). ACS NANO 2019; 13:8766-8783. [PMID: 31310506 PMCID: PMC11585080 DOI: 10.1021/acsnano.9b01578] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Complex amyloid aggregation of amyloid-β (1-40) (Aβ1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aβ1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aβ1-40 induced by low solvent polarity accelerated cytotoxic Aβ1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of β-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aβ1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Chemistry , Sookmyung Women's University , Cheongpa-ro 47-gil 100 , Yongsan-gu, Seoul 04310 , South Korea
| | - Bikash R Sahoo
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Daisaku Ozawa
- Department of Neurotherapeutics , Osaka University Graduate School of Medicine , 2-2 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Misaki Kinoshita
- Frontier Research Institute for Interdisciplinary Sciences , Tohoku University , 6-3 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8578 , Japan
| | - Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea
- Department of Chemistry , Ulsan National Institute of Science and Technology , Ulsan 44919 , South Korea
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology , Daejeon 34141 , South Korea
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences , Tohoku University , 6-3 Aramaki-Aza-Aoba , Aoba-ku, Sendai 980-8578 , Japan
| | | | | | | | - Hyun-Ju Lee
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Ka-Young Ryu
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Sihyun Ham
- Department of Chemistry , Sookmyung Women's University , Cheongpa-ro 47-gil 100 , Yongsan-gu, Seoul 04310 , South Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute and College of Biomedical and Health Science , Konkuk University , Chungju , Chungbuk 27478 , South Korea
| | | | - Toshihiko Sugiki
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | | | - Hyang-Sook Hoe
- Department of Neural Development and Disease , Korea Brain Research Institute , 61 Cheomdan-ro , Dong-gu, Daegu 41068 , South Korea
| | - Toshimichi Fujiwara
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering , University of Michigan , Ann Arbor , Michigan 48109-1055 , United States
| | - Young-Ho Lee
- Institute for Protein Research , Osaka University , Yamadaoka 3-2 , Suita , Osaka 565-0871 , Japan
- Bio-Analytical Science , University of Science and Technology , Daejeon 34113 , South Korea
| |
Collapse
|
11
|
Heparan sulfate S-domains and extracellular sulfatases (Sulfs): their possible roles in protein aggregation diseases. Glycoconj J 2018; 35:387-396. [PMID: 30003471 DOI: 10.1007/s10719-018-9833-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/25/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
Highly sulfated domains of heparan sulfate (HS), also known as HS S-domains, consist of repeated trisulfated disaccharide units [iduronic acid (2S)-glucosamine (NS, 6S)-]. The expression of HS S-domains at the cell surface is determined by two mechanisms: tightly regulated biosynthetic machinery and enzymatic remodeling by extracellular endoglucosamine 6-sulfatases, Sulf-1 and Sulf-2. Intracellular or extracellular deposits of misfolded and aggregated proteins are characteristic of protein aggregation diseases. Although proteins can aggregate alone, deposits of protein aggregates in vivo contain a number of proteinaceous and non-protein components. HS S-domains are one non-protein component of these aggregated deposits. HS S-domains are considered to be critical for signal transduction of several growth factors and several disease conditions, such as tumor progression, but their roles in protein aggregation diseases are not yet fully understood. This review summarizes the current understanding of the possible roles of HS S-domains and Sulfs in the formation and cytotoxicity of protein aggregates.
Collapse
|
12
|
Maïza A, Chantepie S, Vera C, Fifre A, Huynh MB, Stettler O, Ouidja MO, Papy-Garcia D. The role of heparan sulfates in protein aggregation and their potential impact on neurodegeneration. FEBS Lett 2018; 592:3806-3818. [PMID: 29729013 DOI: 10.1002/1873-3468.13082] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/29/2022]
Abstract
Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of β-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aβ, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration.
Collapse
Affiliation(s)
- Auriane Maïza
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Sandrine Chantepie
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Cecilia Vera
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Alexandre Fifre
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Minh Bao Huynh
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Olivier Stettler
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Mohand Ouidir Ouidja
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Dulce Papy-Garcia
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| |
Collapse
|
13
|
Townsend D, Hughes E, Akien G, Stewart KL, Radford SE, Rochester D, Middleton DA. Epigallocatechin-3-gallate remodels apolipoprotein A-I amyloid fibrils into soluble oligomers in the presence of heparin. J Biol Chem 2018; 293:12877-12893. [PMID: 29853648 PMCID: PMC6102129 DOI: 10.1074/jbc.ra118.002038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/25/2018] [Indexed: 11/06/2022] Open
Abstract
Amyloid deposits of WT apolipoprotein A-I (apoA-I), the main protein component of high-density lipoprotein, accumulate in atherosclerotic plaques where they may contribute to coronary artery disease by increasing plaque burden and instability. Using CD analysis, solid-state NMR spectroscopy, and transmission EM, we report here a surprising cooperative effect of heparin and the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), a known inhibitor and modulator of amyloid formation, on apoA-I fibrils. We found that heparin, a proxy for glycosaminoglycan (GAG) polysaccharides that co-localize ubiquitously with amyloid in vivo, accelerates the rate of apoA-I formation from monomeric protein and associates with insoluble fibrils. Mature, insoluble apoA-I fibrils bound EGCG (KD = 30 ± 3 μm; Bmax = 40 ± 3 μm), but EGCG did not alter the kinetics of apoA-I amyloid assembly from monomer in the presence or absence of heparin. EGCG selectively increased the mobility of specific backbone and side-chain sites of apoA-I fibrils formed in the absence of heparin, but the fibrils largely retained their original morphology and remained insoluble. By contrast, fibrils formed in the presence of heparin were mobilized extensively by the addition of equimolar EGCG, and the fibrils were remodeled into soluble 20-nm-diameter oligomers with a largely α-helical structure that were nontoxic to human umbilical artery endothelial cells. These results argue for a protective effect of EGCG on apoA-I amyloid associated with atherosclerosis and suggest that EGCG-induced remodeling of amyloid may be tightly regulated by GAGs and other amyloid co-factors in vivo, depending on EGCG bioavailability.
Collapse
Affiliation(s)
- David Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Geoffrey Akien
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | - Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David Rochester
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB
| | | |
Collapse
|
14
|
Li Y, Li ZX, Jin T, Wang ZY, Zhao P. Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases. J Alzheimers Dis 2018; 57:395-409. [PMID: 28234253 PMCID: PMC5366250 DOI: 10.3233/jad-160804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyaluronic acid (HA) is the backbone of the extracellular matrix (ECM) and provides biochemical and physical support to aggrecan-based perineuronal nets (PNNs), which are associated with the selective vulnerability of neurons in Alzheimer's disease (AD). Here, we showed that HA synthases (HASs), including Has1, Has2, and Has3, were widely expressed in murine central nervous system. All types of HASs were localized to cell bodies of neurons; only Has1 existed in the membranes of neural axons. By using TauP301S transgenic (Tg) mouse model, we found that the axonal-localization of Has1 was abolished in TauP301S overexpressed mouse brain, and the redistribution of Has1 was also observed in human AD brains, suggesting that the localization of Has1 is dependent on intact microtubules which are regulated partially by the phosphorylation and dephosphorylation cycles of tau proteins. Furthermore, Has1 was reduced and Has3 was increased in TauP301S Tg mouse brain, resulting in the upregulation of shorter-chain HA in the ECM. These findings suggest that by abolishing the axonal-localization of Has1 and promoting the expression of Has3 and the synthesis of shorter-chain HA, the tau pathology breaks the balance of ECM components, promotes the reorganization of the ECM, and inhibits the formation of PNNs in the hippocampus, and then regulates neuronal plasticity during the progression of AD.
Collapse
Affiliation(s)
| | | | | | - Zhan-You Wang
- Correspondence to: Zhan-You Wang and Pu Zhao, M.D., Ph.D., College of Life and Health Sciences, Northeastern University, 3-11 Wen Hua Road, Shenyang 110819, China. Tel.: +86 13352453082; E-mails: (P. Zhao); (Z.-Y Wang)
| | - Pu Zhao
- Correspondence to: Zhan-You Wang and Pu Zhao, M.D., Ph.D., College of Life and Health Sciences, Northeastern University, 3-11 Wen Hua Road, Shenyang 110819, China. Tel.: +86 13352453082; E-mails: (P. Zhao); (Z.-Y Wang)
| |
Collapse
|
15
|
Boraldi F, Moscarelli P, Bochicchio B, Pepe A, Salvi AM, Quaglino D. Heparan sulfates facilitate harmless amyloidogenic fibril formation interacting with elastin-like peptides. Sci Rep 2018; 8:3115. [PMID: 29449596 PMCID: PMC5814424 DOI: 10.1038/s41598-018-21472-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfates (HSs) modulate tissue elasticity in physiopathological conditions by interacting with various matrix constituents as tropoelastin and elastin-derived peptides. HSs bind also to protein moieties accelerating amyloid formation and influencing cytotoxic properties of insoluble fibrils. Interestingly, amyloidogenic polypeptides, despite their supposed pathogenic role, have been recently explored as promising bio-nanomaterials due to their unique and interesting properties. Therefore, we investigated the interactions of HSs, obtained from different sources and exhibiting various degree of sulfation, with synthetic amyloidogenic elastin-like peptides (ELPs), also looking at the effects of these interactions on cell viability and cell behavior using in vitro cultured fibroblasts, as a prototype of mesenchymal cells known to modulate the soft connective tissue environment. Results demonstrate, for the first time, that HSs, with differences depending on their sulfation pattern and chain length, interact with ELPs accelerating aggregation kinetics and amyloid-like fibril formation as well as self-association. Furthermore, these fibrils do not negatively affect fibroblasts’ cell growth and parameters of redox balance, and influence cellular adhesion properties. Data provide information for a better understanding of the interactions altering the elastic component in aging and in pathologic conditions and may pave the way for the development of composite matrix-based biomaterials.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pasquale Moscarelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Antonietta Pepe
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna M Salvi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
16
|
Nitani A, Muta H, Adachi M, So M, Sasahara K, Sakurai K, Chatani E, Naoe K, Ogi H, Hall D, Goto Y. Heparin-dependent aggregation of hen egg white lysozyme reveals two distinct mechanisms of amyloid fibrillation. J Biol Chem 2017; 292:21219-21230. [PMID: 29101231 DOI: 10.1074/jbc.m117.813097] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin, a biopolymer possessing high negative charge density, is known to accelerate amyloid fibrillation by various proteins. Using hen egg white lysozyme, we studied the effects of heparin on protein aggregation at low pH, raised temperature, and applied ultrasonic irradiation, conditions under which amyloid fibrillation was promoted. Heparin exhibited complex bimodal concentration-dependent effects, either accelerating or inhibiting fibrillation at pH 2.0 and 60 °C. At concentrations lower than 20 μg/ml, heparin accelerated fibrillation through transient formation of hetero-oligomeric aggregates. Between 0.1 and 10 mg/ml, heparin rapidly induced amorphous heteroaggregation with little to no accompanying fibril formation. Above 10 mg/ml, heparin again induced fibrillation after a long lag time preceded by oligomeric aggregate formation. Compared with studies performed using monovalent and divalent anions, the results suggest two distinct mechanisms of heparin-induced fibrillation. At low heparin concentrations, initial hen egg white lysozyme cluster formation and subsequent fibrillation is promoted by counter ion binding and screening of repulsive charges. At high heparin concentrations, fibrillation is caused by a combination of salting out and macromolecular crowding effects probably independent of protein net charge. Both fibrillation mechanisms compete against amorphous aggregation, producing a complex heparin concentration-dependent phase diagram. Moreover, the results suggest an active role for amorphous oligomeric aggregates in triggering fibrillation, whereby breakdown of supersaturation takes place through heterogeneous nucleation of amyloid on amorphous aggregates.
Collapse
Affiliation(s)
- Ayame Nitani
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Hiroya Muta
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masayuki Adachi
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Masatomo So
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kenji Sasahara
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | - Kazumasa Sakurai
- Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Hyogo 657-8501, Japan
| | - Kazumitsu Naoe
- National Institute of Technology, Nara College, Nara 639-1080, Japan
| | - Hirotsugu Ogi
- Graduate School of Engineering, Suita, Osaka 565-0871, Japan, and
| | - Damien Hall
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.,Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Yuji Goto
- From the Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan,
| |
Collapse
|
17
|
Lessons learned from protein aggregation: toward technological and biomedical applications. Biophys Rev 2017; 9:501-515. [PMID: 28905328 DOI: 10.1007/s12551-017-0317-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson's disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.
Collapse
|
18
|
Stewart KL, Hughes E, Yates EA, Middleton DA, Radford SE. Molecular Origins of the Compatibility between Glycosaminoglycans and Aβ40 Amyloid Fibrils. J Mol Biol 2017; 429:2449-2462. [PMID: 28697887 PMCID: PMC5548265 DOI: 10.1016/j.jmb.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 10/25/2022]
Abstract
The Aβ peptide forms extracellular plaques associated with Alzheimer's disease. In addition to protein fibrils, amyloid plaques also contain non-proteinaceous components, including glycosaminoglycans (GAGs). We have shown previously that the GAG low-molecular-weight heparin (LMWH) binds to Aβ40 fibrils with a three-fold-symmetric (3Q) morphology with higher affinity than Aβ40 fibrils in alternative structures, Aβ42 fibrils, or amyloid fibrils formed from other sequences. Solid-state NMR analysis of the GAG-3Q fibril complex revealed an interaction site at the corners of the 3Q fibril structure, but the origin of the binding specificity remained obscure. Here, using a library of short heparin polysaccharides modified at specific sites, we show that the N-sulfate or 6-O-sulfate of glucosamine, but not the 2-O-sulfate of iduronate within heparin is required for 3Q binding, indicating selectivity in the interactions of the GAG with the fibril that extends beyond general electrostatic complementarity. By creating 3Q fibrils containing point substitutions in the amino acid sequence, we also show that charged residues at the fibril three-fold apices provide the majority of the binding free energy, while charged residues elsewhere are less critical for binding. The results indicate, therefore, that LMWH binding to 3Q fibrils requires a precise molecular complementarity of the sulfate moieties on the GAG and charged residues displayed on the fibril surface. Differences in GAG binding to fibrils with distinct sequence and/or structure may thus contribute to the diverse etiology and progression of amyloid diseases.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Eleri Hughes
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - David A Middleton
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YB, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
19
|
Abstract
Aggregation of the amyloid-β (Aβ) peptide is strongly correlated with Alzheimer's disease (AD). Recent research has improved our understanding of the kinetics of amyloid fibril assembly and revealed new details regarding different stages in plaque formation. Presently, interest is turning toward studying this process in a holistic context, focusing on cellular components which interact with the Aβ peptide at various junctures during aggregation, from monomer to cross-β amyloid fibrils. However, even in isolation, a multitude of factors including protein purity, pH, salt content, and agitation affect Aβ fibril formation and deposition, often producing complicated and conflicting results. The failure of numerous inhibitors in clinical trials for AD suggests that a detailed examination of the complex interactions that occur during plaque formation, including binding of carbohydrates, lipids, nucleic acids, and metal ions, is important for understanding the diversity of manifestations of the disease. Unraveling how a variety of key macromolecular modulators interact with the Aβ peptide and change its aggregation properties may provide opportunities for developing therapies. Since no protein acts in isolation, the interplay of these diverse molecules may differentiate disease onset, progression, and severity, and thus are worth careful consideration.
Collapse
Affiliation(s)
- Katie L Stewart
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Nishitsuji K, Uchimura K. Sulfated glycosaminoglycans in protein aggregation diseases. Glycoconj J 2017; 34:453-466. [DOI: 10.1007/s10719-017-9769-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/01/2023]
|
21
|
Braconi D, Millucci L, Bernini A, Spiga O, Lupetti P, Marzocchi B, Niccolai N, Bernardini G, Santucci A. Homogentisic acid induces aggregation and fibrillation of amyloidogenic proteins. Biochim Biophys Acta Gen Subj 2017; 1861:135-146. [DOI: 10.1016/j.bbagen.2016.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
22
|
Chaturvedi SK, Khan JM, Siddiqi MK, Alam P, Khan RH. Comparative insight into surfactants mediated amyloidogenesis of lysozyme. Int J Biol Macromol 2016; 83:315-25. [DOI: 10.1016/j.ijbiomac.2015.11.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
|
23
|
Khan JM, Khan MS, Ali MS, Al-Shabib NA, Khan RH. Cetyltrimethylammonium bromide (CTAB) promote amyloid fibril formation in carbohydrate binding protein (concanavalin A) at physiological pH. RSC Adv 2016. [DOI: 10.1039/c6ra03707k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Low concentration of CTAB provoked cross β-sheet formation whereas high concentrations of CTAB direct to alpha helix induction in Con A.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition
- Faculty of Food and Agricultural Sciences
- King Saud University
- 2460 Riyadh 11451
- Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair
- Department of Biochemistry
- College of Science
- King Saud University
- Riyadh
| | - Mohd Sajid Ali
- Department of Chemistry
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition
- Faculty of Food and Agricultural Sciences
- King Saud University
- 2460 Riyadh 11451
- Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
24
|
Nguyen PT, Sharma R, Rej R, De Carufel CA, Roy R, Bourgault S. Low generation anionic dendrimers modulate islet amyloid polypeptide self-assembly and inhibit pancreatic β-cell toxicity. RSC Adv 2016. [DOI: 10.1039/c6ra15373a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The self-assembly and cytotoxicity of the amyloidogenic peptide IAPP can be controlled with low generation anionic dendrimers.
Collapse
Affiliation(s)
- Phuong T. Nguyen
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Rishi Sharma
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Rabindra Rej
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | | | - René Roy
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| | - Steve Bourgault
- Department of Chemistry
- Pharmaqam
- University of Québec in Montreal
- Montreal
- Canada
| |
Collapse
|
25
|
Kuwabara K, Nishitsuji K, Uchimura K, Hung SC, Mizuguchi M, Nakajima H, Mikawa S, Kobayashi N, Saito H, Sakashita N. Cellular interaction and cytotoxicity of the iowa mutation of apolipoprotein A-I (ApoA-IIowa) amyloid mediated by sulfate moieties of heparan sulfate. J Biol Chem 2015; 290:24210-21. [PMID: 26292220 DOI: 10.1074/jbc.m115.652545] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Indexed: 11/06/2022] Open
Abstract
The single amino acid mutation G26R in human apolipoprotein A-I (apoA-I) is associated with familial amyloid polyneuropathy III. ApoA-I carrying this mutation (apoA-IIowa) forms amyloid fibrils in vitro. Heparan sulfate (HS) is a glycosaminoglycan that is abundant at the cell surface and in the extracellular matrix. Although HS and its highly sulfated domains are involved in aggregation of amyloid-β and accumulate in cerebral amyloid plaques of patients with Alzheimer disease and mouse models of this disease, the role of HS in familial amyloid polyneuropathy III has never been addressed. Here, we used cell models to investigate the possible role of HS in the cytotoxicity of apoA-IIowa amyloid. Wild-type CHO cells, but not pgsD-677 cells, an HS-deficient CHO mutant, demonstrated uptake of apoA-IIowa amyloid after incubation with the amyloid. Addition of sulfated glycosaminoglycans to culture media prevented interaction with and cytotoxicity of apoA-IIowa amyloid to CHO cells. Elimination of cell surface HS or inhibition of HS sulfation with chemical reagents interfered with interaction of apoA-IIowa amyloid with CHO cells. We also found that cellular interaction and cytotoxicity of apoA-IIowa amyloid were significantly attenuated in CHO cells that stably expressed the human extracellular endoglucosamine 6-sulfatases HSulf-1 and HSulf-2. Our results thus suggest that cell surface HS mediates cytotoxicity of apoA-IIowa amyloid and that enzymatic remodeling of HS mitigates the cytotoxicity.
Collapse
Affiliation(s)
- Kaori Kuwabara
- From the Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan, the Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Kazuchika Nishitsuji
- From the Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan,
| | - Kenji Uchimura
- the Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shang-Cheng Hung
- the Genomics Research Center, Academia Sinica, Nankang, Taipei 11529, Taiwan, and
| | - Makoto Mizuguchi
- From the Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiroyuki Nakajima
- From the Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan, the Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Shiho Mikawa
- the Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Norihiro Kobayashi
- the Department of Bioanalytical Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Hiroyuki Saito
- the Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | - Naomi Sakashita
- From the Department of Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
26
|
Potter KJ, Werner I, Denroche HC, Montane J, Plesner A, Chen Y, Lei D, Soukhatcheva G, Warnock GL, Oberholzer J, Fraser PE, Verchere CB. Amyloid formation in human islets is enhanced by heparin and inhibited by heparinase. Am J Transplant 2015; 15:1519-30. [PMID: 25833002 DOI: 10.1111/ajt.13134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 11/16/2014] [Accepted: 11/16/2014] [Indexed: 01/25/2023]
Abstract
Islet transplantation is a promising therapy for patients with diabetes, but its long-term success is limited by many factors, including the formation of islet amyloid deposits. Heparin is employed in clinical islet transplantation to reduce clotting but also promotes fibrillization of amyloidogenic proteins. We hypothesized that heparin treatment of islets during pre-transplant culture may enhance amyloid formation leading to beta cell loss and graft dysfunction. Heparin promoted the fibrillization of human islet amyloid polypeptide (IAPP) and enhanced its toxicity to INS-1 beta cells. Heparin increased amyloid deposition in cultured human islets, but surprisingly decreased islet cell apoptosis. Treatment of human islets with heparin prior to transplantation increased the likelihood of graft failure. Removal of islet heparan sulfate glycosaminoglycans, which localize with islet amyloid deposits in type 2 diabetes, by heparinase treatment decreased amyloid deposition and protected against islet cell death. These findings raise the possibility that pretransplant treatment of human islets with heparin could potentiate IAPP aggregation and amyloid formation and may be detrimental to subsequent graft function.
Collapse
Affiliation(s)
- K J Potter
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - I Werner
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - H C Denroche
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - J Montane
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - A Plesner
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Y Chen
- Department of Medical Biophysics, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada
| | - D Lei
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - G Soukhatcheva
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - G L Warnock
- Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - J Oberholzer
- Surgery, and Bioengineering, University of Illinois, Chicago, IL
| | - P E Fraser
- Department of Medical Biophysics, Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada
| | - C B Verchere
- Departments of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
27
|
Nguyen PT, Andraka N, De Carufel CA, Bourgault S. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis. J Diabetes Res 2015; 2015:515307. [PMID: 26576436 PMCID: PMC4630397 DOI: 10.1155/2015/515307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/24/2023] Open
Abstract
Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Nagore Andraka
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Carole Anne De Carufel
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- *Steve Bourgault:
| |
Collapse
|
28
|
Khan JM, Chaturvedi SK, Rahman SK, Ishtikhar M, Qadeer A, Ahmad E, Khan RH. Protonation favors aggregation of lysozyme with SDS. SOFT MATTER 2014; 10:2591-2599. [PMID: 24647567 DOI: 10.1039/c3sm52435c] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Different proteins have different amino acid sequences as well as conformations, and therefore different propensities to aggregate. Electrostatic interactions have an important role in the aggregation of proteins as revealed by our previous report (J. M. Khan et al., PLoS One, 2012, 7, e29694). In this study, we designed and executed experiments to gain knowledge of the role of charge variations on proteins during the events of protein aggregation with lysozyme as a model protein. To impart positive and negative charges to proteins, we incubated lysozyme at different pH values of below and above the pI (∼11). Negatively charged SDS was used to 'antagonize' positive charges on lysozyme. We examined the effects of pH variations on SDS-induced amyloid fibril formation by lysozyme using methods such as far-UV circular dichroism, Rayleigh scattering, turbidity measurements, dye binding assays and dynamic light scattering. We found that sub-micellar concentrations of SDS (0.1 to 0.6 mM) induced amyloid fibril formation by lysozyme in the pH range of 10.0-1.0 and maximum aggregation was observed at pH 1.0. The morphology of aggregates was fibrillar in structure, as visualized by transmission electron microscopy. Isothermal titration calorimetry studies demonstrated that fibril formation is exothermic. To the best of our current understanding of the mechanism of aggregation, this study demonstrates the crucial role of electrostatic interactions during amyloid fibril formation. The model proposed here will help in designing molecules that can prevent or reverse the amyloid fibril formation or the aggregation.
Collapse
Affiliation(s)
- Javed M Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ávila CL, Torres-Bugeau CM, Barbosa LRS, Sales EM, Ouidja MO, Socías SB, Celej MS, Raisman-Vozari R, Papy-Garcia D, Itri R, Chehín RN. Structural characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase protofibrils preventing α-synuclein oligomeric species toxicity. J Biol Chem 2014; 289:13838-50. [PMID: 24671416 DOI: 10.1074/jbc.m113.544288] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease.
Collapse
Affiliation(s)
- César L Ávila
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - Clarisa M Torres-Bugeau
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina
| | - Leandro R S Barbosa
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Elisa Morandé Sales
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Mohand O Ouidja
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France, the Laboratoire Croissance, Réparation et Régénération Tissulaires, CNRS EAC 7149, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France, and
| | - Sergio B Socías
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - M Soledad Celej
- the Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba, CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Rita Raisman-Vozari
- INSERM U1127, CNRS UMR 7225, Institut de Cerveau et de la Moelle Epinière, Paris, France
| | - Dulce Papy-Garcia
- the Laboratoire Croissance, Réparation et Régénération Tissulaires, CNRS EAC 7149, Université Paris Est Créteil, Université Paris Est, F-94000, Créteil, France, and
| | - Rosangela Itri
- the Instituto de Física da Universidade de São Paulo, Rua do Matão, Travessa R, 187, São Paulo, Brazil
| | - Rosana N Chehín
- From the Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj," FBQF-UNT, Chacabuco 461, T4000ILI Tucumán, Argentina,
| |
Collapse
|
30
|
Khan JM, Abdulrehman SA, Zaidi FK, Gourinath S, Khan RH. Hydrophobicity alone can not trigger aggregation in protonated mammalian serum albumins. Phys Chem Chem Phys 2014; 16:5150-61. [DOI: 10.1039/c3cp54941k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Merlini G, Comenzo RL, Seldin DC, Wechalekar A, Gertz MA. Immunoglobulin light chain amyloidosis. Expert Rev Hematol 2013; 7:143-56. [PMID: 24350907 DOI: 10.1586/17474086.2014.858594] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Primary light chain amyloidosis is the most common form of systemic amyloidosis and is caused by misfolded light chains that cause proteotoxicity and rapid decline of vital organ function. Early diagnosis is essential in order to deliver effective therapy and prevent irreversible organ damage. Accurate diagnosis requires clinical skills and advanced technologies. The disease can be halted and the function of target organs preserved by the prompt reduction and elimination of the plasma cell clone producing the toxic light chains in the bone marrow. Heart damage is the major determinant of survival, and staging with cardiac biomarkers guides treatment. Two-thirds of patients can benefit from treatment with improved quality of life and extended survival. Future efforts should be directed at early diagnosis, improving the tolerability and efficacy of anti-plasma cell therapy, accelerating recovery of organ function via promoting resorption of amyloid deposits, and developing novel approaches to counter light chain proteotoxicity.
Collapse
Affiliation(s)
- Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Foundation Scientific Institute San Matteo, Amyloidosis Research and Treatment Center, V.le Golgi 19 27100, Pavia, Italy
| | | | | | | | | |
Collapse
|
32
|
De Carufel CA, Nguyen PT, Sahnouni S, Bourgault S. New insights into the roles of sulfated glycosaminoglycans in islet amyloid polypeptide amyloidogenesis and cytotoxicity. Biopolymers 2013; 100:645-55. [DOI: 10.1002/bip.22243] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/11/2013] [Accepted: 03/17/2013] [Indexed: 01/16/2023]
Affiliation(s)
| | - Phuong Trang Nguyen
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| | - Sabrina Sahnouni
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| | - Steve Bourgault
- Department of Chemistry; University of Québec in Montreal; Montreal QC H3C 3P8 Canada
| |
Collapse
|
33
|
Bleiholder C, Do TD, Wu C, Economou NJ, Bernstein SS, Buratto SK, Shea JE, Bowers MT. Ion mobility spectrometry reveals the mechanism of amyloid formation of Aβ(25-35) and its modulation by inhibitors at the molecular level: epigallocatechin gallate and scyllo-inositol. J Am Chem Soc 2013; 135:16926-37. [PMID: 24131107 DOI: 10.1021/ja406197f] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Amyloid cascades leading to peptide β-sheet fibrils and plaques are central to many important diseases. Recently, intermediate assemblies of these cascades were identified as the toxic agents that interact with the cellular machinery. The relationship between the transformation from natively unstructured assembly to the β-sheet oligomers to disease is important in understanding disease onset and the development of therapeutic agents. Research on this early oligomeric region has largely been unsuccessful since traditional techniques measure only ensemble average oligomer properties. Here, ion mobility methods are utilized to deduce the modulation of peptide self-assembly pathways in the amyloid-β protein fragment Aβ(25-35) by two amyloid inhibitors (epigallocatechin gallate and scyllo-inositol) that are currently in clinical trials for Alzheimer's Disease. We provide evidence that suppression of β-extended oligomers from the onset of the conversion into β-oligomer conformations is essential for effective attenuation of β-structured amyloid oligomeric species often associated with oligomer toxicity. Furthermore, we demonstrate the ease with which ion mobility spectrometry-mass spectrometry can guide the development of therapeutic agents and drug evaluation by providing molecular level insight into the amyloid formation process and its modulation by small molecule assembly modulators.
Collapse
Affiliation(s)
- Christian Bleiholder
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9510, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Amyloid is an abnormal extracellular fibrillar protein deposit in the tissues. In humans, more than 25 different proteins can adopt a fibrillar conformation in vivo that results in the pathognomonic tinctorial property of amyloid (that is, green birefringence when an affected tissue specimen is stained with Congo red dye and viewed by microscopy under cross-polarized light). Amyloid deposition is associated with disturbance of organ function and causes a wide variety of clinical syndromes that are classified according to the respective fibril protein precursor. Systemic amyloidosis, in which amyloid deposits are widespread and typically accumulate gradually, continues to be fatal and is responsible for about one in 1,500 deaths per year in the UK. Advances in our understanding of the pathogenesis of systemic amyloidosis have resulted in the identification of new therapeutic targets, and several drugs with novel mechanisms of action are currently under development. Meanwhile, an increased awareness of amyloidosis coupled with enhancements to existing diagnostic techniques and therapeutic strategies have already resulted in better outcomes for patients with the disease.
Collapse
|
35
|
Heparan Sulfate Subdomains that are Degraded by Sulf Accumulate in Cerebral Amyloid ß Plaques of Alzheimer's Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2056-67. [DOI: 10.1016/j.ajpath.2012.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/29/2011] [Accepted: 01/19/2012] [Indexed: 11/21/2022]
|
36
|
Motamedi-Shad N, Garfagnini T, Penco A, Relini A, Fogolari F, Corazza A, Esposito G, Bemporad F, Chiti F. Rapid oligomer formation of human muscle acylphosphatase induced by heparan sulfate. Nat Struct Mol Biol 2012; 19:547-54, S1-2. [PMID: 22522822 DOI: 10.1038/nsmb.2286] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 03/22/2012] [Indexed: 11/09/2022]
Abstract
Many human diseases are caused by the conversion of proteins from their native state into amyloid fibrils that deposit in the extracellular space. Heparan sulfate, a component of the extracellular matrix, is universally associated with amyloid deposits and promotes fibril formation. The formation of cytotoxic prefibrillar oligomers is challenging to study because of its rapidity, transient appearance and the heterogeneity of species generated. The process is even more complex with agents such as heparan sulfate. Here we have used a stopped-flow device coupled to turbidometry detection to monitor the rapid conversion of human muscle acylphosphatase into oligomers with varying heparan sulfate and protein concentrations. We also analyzed mutants of the 15 basic amino acids of acylphosphatase, identifying the residues primarily involved in heparan sulfate-induced oligomerization of this protein and tracing the process with unprecedented molecular detail.
Collapse
|
37
|
In vitro aggregation behavior of a non-amyloidogenic λ light chain dimer deriving from U266 multiple myeloma cells. PLoS One 2012; 7:e33372. [PMID: 22432016 PMCID: PMC3303827 DOI: 10.1371/journal.pone.0033372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 02/14/2012] [Indexed: 11/19/2022] Open
Abstract
Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic IgE λ light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are applied (acidic pH with salt at large concentration or heating at melting temperature Tm at pH 7.4). The produced aggregates are spherical, amorphous oligomers. Despite the larger β-sheet content of such oligomers with respect to the native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed according to the following order: SO4−≫Cl−>H2PO4−, confirming the peculiar role of sulfate in promoting protein aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein secondary structure changes induced by anion binding.
Collapse
|
38
|
Saridaki T, Zampagni M, Mannini B, Evangelisti E, Taddei N, Cecchi C, Chiti F. Glycosaminoglycans (GAGs) suppress the toxicity of HypF-N prefibrillar aggregates. J Mol Biol 2012; 421:616-30. [PMID: 22326346 DOI: 10.1016/j.jmb.2012.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/08/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
A group of diverse human pathologies is associated with proteins unable to retain their native state and convert into prefibrillar and fibrillar amyloid aggregates that are then deposited in the extracellular space. Glycosaminoglycans (GAGs) have been found to physically associate with these deposits and also to promote their formation in vitro. However, the effect of GAGs on the toxicity of these aggregates has been investigated in only one protein system, the amyloid β peptide associated with Alzheimer's disease. In this study, we investigate whether GAGs affect the toxicity of the N-terminal domain of Escherichia coli HypF (HypF-N) oligomers on Chinese hamster ovarian cells and the mechanism by which such suppression is mediated. The results show that heparin and other GAGs inhibit the toxicity observed by HypF-N oligomers in a dose-dependent manner. GAGs were not found to bind preformed HypF-N oligomers, change their morphological and structural characteristics or disaggregate them. Nevertheless, they were found to bind to the cells' surface and prevent the interaction of the oligomers with the cells. Overall, the results indicate that GAGs have a generic ability to inhibit the toxicity of aberrant protein oligomers and that such toxicity suppression can occur through different mechanisms, such as through binding to the oligomers with consequent loss of interaction of the oligomers to the GAGs present on the cell surface, as proposed previously for amyloid β aggregates, or through mechanisms independent of direct GAG-oligomer binding, as shown here for HypF-N aggregates.
Collapse
Affiliation(s)
- Theodora Saridaki
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Ramachandran G, Udgaonkar JB. Understanding the kinetic roles of the inducer heparin and of rod-like protofibrils during amyloid fibril formation by Tau protein. J Biol Chem 2011; 286:38948-59. [PMID: 21931162 DOI: 10.1074/jbc.m111.271874] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aggregation of the natively disordered protein, Tau, to form lesions called neurofibrillary tangles is a characteristic feature of several neurodegenerative tauopathies. The polyanion, heparin, is commonly used as an inducer in studies of Tau aggregation in vitro, but there is surprisingly no comprehensive model describing, quantitatively, all aspects of the heparin-induced aggregation reaction. In this study, rate constants and extents of fibril formation by the four repeat domain of Tau (Tau4RD) have been reproducibly determined over a full range of heparin and protein concentrations. The kinetic role of heparin in the nucleation-dependent fibril formation reaction is shown to be limited to participation in the initial rate-limiting steps; a single heparin molecule binds two Tau4RD molecules, forming an aggregation-competent protein dimer, which then serves as a building block for further fibril growth. Importantly, the minimal kinetic model that is proposed can quantitatively account for the characteristic bell-shaped dependence of the aggregation kinetics on the stoichiometry of protein to heparin. Very importantly, this study also identifies for the first time short and thin, rod-like protofibrils that are populated transiently, early during the time course of fibril formation. The identification of these protofibrils as bona fide off-pathway species has implications for the development of therapies for tauopathies based on driving fibril formation as a means of protecting the cell from smaller, putatively toxic aggregates.
Collapse
Affiliation(s)
- Gayathri Ramachandran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | |
Collapse
|
40
|
Heparin induces harmless fibril formation in amyloidogenic W7FW14F apomyoglobin and amyloid aggregation in wild-type protein in vitro. PLoS One 2011; 6:e22076. [PMID: 21779376 PMCID: PMC3135624 DOI: 10.1371/journal.pone.0022076] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/14/2011] [Indexed: 12/02/2022] Open
Abstract
Glycosaminoglycans (GAGs) are frequently associated with amyloid deposits in most amyloid diseases, and there is evidence to support their active role in amyloid fibril formation. The purpose of this study was to obtain structural insight into GAG-protein interactions and to better elucidate the molecular mechanism underlying the effect of GAGs on the amyloid aggregation process and on the related cytotoxicity. To this aim, using Fourier transform infrared and circular diochroism spectroscopy, electron microscopy and thioflavin fluorescence dye we examined the effect of heparin and other GAGs on the fibrillogenesis and cytotoxicity of aggregates formed by the amyloidogenic W7FW14 apomyoglobin mutant. Although this protein is unrelated to human disease, it is a suitable model for in vitro studies because it forms amyloid-like fibrils under physiological conditions of pH and temperature. Heparin strongly stimulated aggregation into amyloid fibrils, thereby abolishing the lag-phase normally detected following the kinetics of the process, and increasing the yield of fibrils. Moreover, the protein aggregates were harmless when assayed for cytotoxicity in vitro. Neutral or positive compounds did not affect the aggregation rate, and the early aggregates were highly cytotoxic. The surprising result that heparin induced amyloid fibril formation in wild-type apomyoglobin and in the partially folded intermediate state of the mutant, i.e., proteins that normally do not show any tendency to aggregate, suggested that the interaction of heparin with apomyoglobin is highly specific because of the presence, in protein turn regions, of consensus sequences consisting of alternating basic and non-basic residues that are capable of binding heparin molecules. Our data suggest that GAGs play a dual role in amyloidosis, namely, they promote beneficial fibril formation, but they also function as pathological chaperones by inducing amyloid aggregation.
Collapse
|
41
|
Cheng F, Cappai R, Ciccotosto GD, Svensson G, Multhaup G, Fransson LÅ, Mani K. Suppression of amyloid beta A11 antibody immunoreactivity by vitamin C: possible role of heparan sulfate oligosaccharides derived from glypican-1 by ascorbate-induced, nitric oxide (NO)-catalyzed degradation. J Biol Chem 2011; 286:27559-72. [PMID: 21642435 DOI: 10.1074/jbc.m111.243345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Amyloid β (Aβ) is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate, there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-nitrosothiol. We investigated whether these oligosaccharides interact with Aβ during APP processing and plaque formation. anMan immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C terminus of APP, but not Aβ oligomers detected by the anti-Aβ A11 antibody, colocalized with anMan immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, sodium dodecyl sulfate-stable, anMan- and Aβ-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C terminus). anMan-containing HS oligo- and disaccharide preparations modulated or suppressed A11 immunoreactivity and oligomerization of Aβ42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by 3-β[2(diethylamino)ethoxy]androst-5-en-17-one (U18666A) and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the Aβ domain and small, anMan-containing oligosaccharides may preclude formation of toxic Aβ oligomers. A portion of the oligosaccharides are co-secreted with the Aβ peptides and deposited in plaques. These results support the notion that an inadequate supply of vitamin C could contribute to late onset AD in humans.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Division of Neuroscience, Glycobiology Group, Lund University, Biomedical Center A13, SE-221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
42
|
Brummitt RK, Nesta DP, Chang L, Chase SF, Laue TM, Roberts CJ. Nonnative Aggregation of an IgG1 Antibody in Acidic Conditions: Part 1. Unfolding, Colloidal Interactions, and Formation of High-Molecular-Weight Aggregates. J Pharm Sci 2011; 100:2087-103. [DOI: 10.1002/jps.22448] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 10/09/2010] [Accepted: 11/17/2010] [Indexed: 01/26/2023]
|
43
|
Martin DJ, Ramirez-Alvarado M. Glycosaminoglycans promote fibril formation by amyloidogenic immunoglobulin light chains through a transient interaction. Biophys Chem 2011; 158:81-9. [PMID: 21640469 DOI: 10.1016/j.bpc.2011.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/02/2011] [Accepted: 05/10/2011] [Indexed: 12/20/2022]
Abstract
Amyloid formation occurs when a precursor protein misfolds and aggregates, forming a fibril nucleus that serves as a template for fibril growth. Glycosaminoglycans are highly charged polymers known to associate with tissue amyloid deposits that have been shown to accelerate amyloidogenesis in vitro. We studied two immunoglobulin light chain variable domains from light chain amyloidosis patients with 90% sequence identity, analyzing their fibril formation kinetics and binding properties with different glycosaminoglycan molecules. We find that the less amyloidogenic of the proteins shows a weak dependence on glycosaminoglycan size and charge, while the more amyloidogenic protein responds only minimally to changes in the glycosaminoglycan. These glycosaminoglycan effects on fibril formation do not depend on a stable interaction between the two species but still show characteristic traits of an interaction-dependent mechanism. We propose that transient, predominantly electrostatic interactions between glycosaminoglycans and the precursor proteins mediate the acceleration of fibril formation in vitro.
Collapse
Affiliation(s)
- Douglas J Martin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
44
|
Makwana PK, Jethva PN, Roy I. Coumarin 6 and 1,6-diphenyl-1,3,5-hexatriene (DPH) as fluorescent probes to monitor protein aggregation. Analyst 2011; 136:2161-7. [PMID: 21445407 DOI: 10.1039/c0an00829j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the use of Coumarin 6 and 1,6-diphenyl-1,3,5-hexatriene (DPH) for the identification of protein aggregates for the first time. The two dyes can be used at very low (nanomolar) concentrations and do not interfere with the aggregation process, as is reported for other commonly used fluorescent protein probes. In the presence of protein aggregates, their quantum yields are significantly high. DPH is able to recognize both amorphous and fibrillar aggregates but cannot distinguish between them. Coumarin 6 can distinguish between both types of aggregates. It also exhibits the characteristic sigmoidal curve of amyloid formation, with higher sensitivity for detection of fibrillation than the conventionally used Thioflavin T.
Collapse
Affiliation(s)
- Pinakin K Makwana
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | | | | |
Collapse
|
45
|
Solomon JP, Bourgault S, Powers ET, Kelly JW. Heparin binds 8 kDa gelsolin cross-β-sheet oligomers and accelerates amyloidogenesis by hastening fibril extension. Biochemistry 2011; 50:2486-98. [PMID: 21348501 DOI: 10.1021/bi101905n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycosaminoglycans (GAGs) are highly sulfated linear polysaccharides prevalent in the extracellular matrix, and they associate with virtually all amyloid deposits in vivo. GAGs accelerate the aggregation of many amyloidogenic peptides in vitro, but little mechanistic evidence is available to explain why. Herein, spectroscopic methods demonstrate that GAGs do not affect the secondary structure of the monomeric 8 kDa amyloidogenic fragment of human plasma gelsolin. Moreover, monomerized 8 kDa gelsolin does not bind to heparin under physiological conditions. In contrast, 8 kDa gelsolin cross-β-sheet oligomers and amyloid fibrils bind strongly to heparin, apparently because of electrostatic interactions between the negatively charged polysaccharide and a positively charged region of the 8 kDa gelsolin assemblies. Our observations are consistent with a scaffolding mechanism whereby cross-β-sheet oligomers, upon formation, bind to GAGs, accelerating the fibril extension phase of amyloidogenesis, possibly by concentrating and orienting the oligomers to more efficiently form amyloid fibrils. Notably, heparin decreases the 8 kDa gelsolin concentration necessary for amyloid fibril formation, likely a consequence of fibril stabilization through heparin binding. Because GAG overexpression, which is common in amyloidosis, may represent a strategy for minimizing cross-β-sheet oligomer toxicity by transforming them into amyloid fibrils, the mechanism described herein for GAG-mediated acceleration of 8 kDa gelsolin amyloidogenesis provides a starting point for therapeutic strategy development. The addition of GAG mimetics, small molecule sulfonates shown to reduce the amyloid load in animal models of amyloidosis, to a heparin-accelerated 8 kDa gelsolin aggregation reaction mixture neither significantly alters the rate of amyloidogenesis nor prevents oligomers from binding to GAGs, calling into question their commonly accepted mechanism.
Collapse
Affiliation(s)
- James P Solomon
- Department of Chemistry and Molecular and Experimental Medicine and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | |
Collapse
|
46
|
Bazar E, Sheynis T, Dorosz J, Jelinek R. Heparin Inhibits Membrane Interactions and Lipid-Induced Fibrillation of a Prion Amyloidogenic Determinant. Chembiochem 2011; 12:761-7. [DOI: 10.1002/cbic.201000486] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Indexed: 12/22/2022]
|
47
|
Bourgault S, Solomon JP, Reixach N, Kelly JW. Sulfated glycosaminoglycans accelerate transthyretin amyloidogenesis by quaternary structural conversion. Biochemistry 2011; 50:1001-15. [PMID: 21194234 DOI: 10.1021/bi101822y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycosaminoglycans (GAGs), which are found in association with all extracellular amyloid deposits in humans, are known to accelerate the aggregation of various amyloidogenic proteins in vitro. However, the precise molecular mechanism(s) by which GAGs accelerate amyloidogenesis remains elusive. Herein, we show that sulfated GAGs, especially heparin, accelerate transthyretin (TTR) amyloidogenesis by quaternary structural conversion. The clustering of sulfate groups on heparin and its polymeric nature are essential features for accelerating TTR amyloidogenesis. Heparin does not influence TTR tetramer stability or TTR dissociation kinetics, nor does it alter the folded monomer-misfolded monomer equilibrium directly. Instead, heparin accelerates the conversion of preformed TTR oligomers into larger aggregates. The more rapid disappearance of monomeric TTR in the presence of heparin likely reflects the fact that the monomer-misfolded amyloidogenic monomer-oligomer-TTR fibril equilibria are all linked, a hypothesis that is strongly supported by the light scattering data. TTR aggregates prepared in the presence of heparin exhibit a higher resistance to trypsin and proteinase K proteolysis and a lower exposure of hydrophobic side chains comprising hydrophobic clusters, suggesting an active role for heparin in amyloidogenesis. Our data suggest that heparin accelerates TTR aggregation by a scaffold-based mechanism, in which the sulfate groups comprising GAGs interact primarily with TTR oligomers through electrostatic interactions, concentrating and orienting the oligomers, facilitating the formation of higher molecular weight aggregates. This model raises the possibility that GAGs may play a protective role in human amyloid diseases by interacting with proteotoxic oligomers and promoting their association into less toxic amyloid fibrils.
Collapse
Affiliation(s)
- Steve Bourgault
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
48
|
Ren R, Hong Z, Gong H, Laporte K, Skinner M, Seldin DC, Costello CE, Connors LH, Trinkaus-Randall V. Role of glycosaminoglycan sulfation in the formation of immunoglobulin light chain amyloid oligomers and fibrils. J Biol Chem 2010; 285:37672-82. [PMID: 20870723 DOI: 10.1074/jbc.m110.149575] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Primary amyloidosis (AL) results from overproduction of unstable monoclonal immunoglobulin light chains (LCs) and the deposition of insoluble fibrils in tissues, leading to fatal organ disease. Glycosaminoglycans (GAGs) are associated with AL fibrils and have been successfully targeted in the treatment of other forms of amyloidosis. We investigated the role of GAGs in LC fibrillogenesis. Ex vivo tissue amyloid fibrils were extracted and examined for structure and associated GAGs. The GAGs were detected along the length of the fibril strand, and the periodicity of heparan sulfate (HS) along the LC fibrils generated in vitro was similar to that of the ex vivo fibrils. To examine the role of sulfated GAGs on AL oligomer and fibril formation in vitro, a κ1 LC purified from urine of a patient with AL amyloidosis was incubated in the presence or absence of GAGs. The fibrils generated in vitro at physiologic concentration, temperature, and pH shared morphologic characteristics with the ex vivo κ1 amyloid fibrils. The presence of HS and over-O-sulfated-heparin enhanced the formation of oligomers and fibrils with HS promoting the most rapid transition. In contrast, GAGs did not enhance fibril formation of a non-amyloidogenic κ1 LC purified from urine of a patient with multiple myeloma. The data indicate that the characteristics of the full-length κ1 amyloidogenic LC, containing post-translational modifications, possess key elements that influence interactions of the LC with HS. These findings highlight the importance of the variable and constant LC regions in GAG interaction and suggest potential therapeutic targets for treatment.
Collapse
Affiliation(s)
- Ruiyi Ren
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bazar E, Jelinek R. Divergent Heparin-Induced Fibrillation Pathways of a Prion Amyloidogenic Determinant. Chembiochem 2010; 11:1997-2002. [DOI: 10.1002/cbic.201000207] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Monsellier E, Ramazzotti M, Taddei N, Chiti F. A computational approach for identifying the chemical factors involved in the glycosaminoglycans-mediated acceleration of amyloid fibril formation. PLoS One 2010; 5:e11363. [PMID: 20613870 PMCID: PMC2894048 DOI: 10.1371/journal.pone.0011363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/18/2010] [Indexed: 11/19/2022] Open
Abstract
Background Amyloid fibril formation is the hallmark of many human diseases, including Alzheimer's disease, type II diabetes and amyloidosis. Amyloid fibrils deposit in the extracellular space and generally co-localize with the glycosaminoglycans (GAGs) of the basement membrane. GAGs have been shown to accelerate the formation of amyloid fibrils in vitro for a number of protein systems. The high number of data accumulated so far has created the grounds for the construction of a database on the effects of a number of GAGs on different proteins. Methodology/Principal Findings In this study, we have constructed such a database and have used a computational approach that uses a combination of single parameter and multivariate analyses to identify the main chemical factors that determine the GAG-induced acceleration of amyloid formation. We show that the GAG accelerating effect is mainly governed by three parameters that account for three-fourths of the observed experimental variability: the GAG sulfation state, the solute molarity, and the ratio of protein and GAG molar concentrations. We then combined these three parameters into a single equation that predicts, with reasonable accuracy, the acceleration provided by a given GAG in a given condition. Conclusions/Significance In addition to shedding light on the chemical determinants of the protein∶GAG interaction and to providing a novel mathematical predictive tool, our findings highlight the possibility that GAGs may not have such an accelerating effect on protein aggregation under the conditions existing in the basement membrane, given the values of salt molarity and protein∶GAG molar ratio existing under such conditions.
Collapse
Affiliation(s)
- Elodie Monsellier
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italy
| | - Matteo Ramazzotti
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italy
| | - Niccolò Taddei
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italy
| | - Fabrizio Chiti
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italy
- Consorzio interuniversitario “Istituto Nazionale Biostrutture e Biosistemi” (I.N.B.B.), Roma, Italy
- * E-mail:
| |
Collapse
|