1
|
Skou LD, Johansen SK, Okarmus J, Meyer M. Pathogenesis of DJ-1/PARK7-Mediated Parkinson's Disease. Cells 2024; 13:296. [PMID: 38391909 PMCID: PMC10887164 DOI: 10.3390/cells13040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.
Collapse
Affiliation(s)
- Line Duborg Skou
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Steffi Krudt Johansen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Justyna Okarmus
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (L.D.S.); (S.K.J.); (J.O.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
2
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
3
|
Bisello G, Rossignoli G, Choi S, Phillips RS, Bertoldi M. Active site serine-193 modulates activity of human aromatic amino acid decarboxylase. Biochem Biophys Res Commun 2023; 679:6-14. [PMID: 37651872 DOI: 10.1016/j.bbrc.2023.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Aromatic amino acid decarboxylase is a pyridoxal 5'-phosphate-dependent enzyme responsible for the synthesis of the neurotransmitters, dopamine and serotonin. Here, by a combination of bioinformatic predictions and analyses, phosphorylation assays, spectroscopic investigations and activity measurements, we determined that Ser-193, a conserved residue located at the active site, can be phosphorylated, increasing catalytic efficiency. In order to determine the molecular basis for this functional improvement, we determined the structural and kinetic properties of the site-directed variants S193A, S193D and S193E. While S193A retains 27% of the catalytic efficiency of wild-type, the two acidic side chain variants are impaired in catalysis with efficiencies of about 0.15% with respect to the wild-type. Thus, even if located at the active site, Ser-193 is not essential for enzyme activity. We advance the idea that this residue is fundamental for the correct architecture of the active site in terms of network of interactions triggering catalysis. This role has been compared with the properties of the Ser-194 of the highly homologous enzyme histidine decarboxylase whose catalytic loop is visible in the spatial structure, allowing us to propose the validation for the effect of the phosphorylation. The effect could be interesting for AADC deficiency, a rare monogenic disease, whose broad clinical phenotype could be also related to post translational AADC modifications.
Collapse
Affiliation(s)
- Giovanni Bisello
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, Verona, Italy
| | - Giada Rossignoli
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, Verona, Italy
| | - Sarah Choi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| | - Mariarita Bertoldi
- Section of Biochemistry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 8, Verona, Italy.
| |
Collapse
|
4
|
Pal P, Roy S, Chowdhury A, Chatterjee R, Ray K, Ray J. Parkinson's disease-associated 18 bp promoter variant of DJ-1 alters REST binding and regulates its expression. Neurosci Lett 2023; 795:137051. [PMID: 36603736 DOI: 10.1016/j.neulet.2023.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/17/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Presence of autosomal mutations in PARK7/DJ-1 gene has been associated with early-onset PD. Growing evidence has suggested that DJ-1 acts as a putative sensor of oxidative stress. Reduced levels of DJ-1 protein have been reported in the cerebrospinal fluid of sporadic PD patients. Several case-control association studies have identified DJ-1 g.168_185del (rs200968609) variants conferring susceptibility towards PD pathogenesis. Similarly, among the PD patients in eastern India, the deletion allele (g.168_185) of this DJ-1 promoter polymorphism was found to be associated with PD. Hence, we aimed to find out the functional contribution of this promoter variant of DJ-1 in PD pathogenesis. The expression of DJ-1 was observed to be significantly reduced in the presence of both deletion and duplication sequences as identified from the luciferase promoter activity assay. The transcription factor binding prediction tool identified DJ-1 promoter 18 bp insertion polymorphism as the only binding partner of REST (RE1 Silencing Transcription Factor). Transient Chromatin Immuno-precipitation (ChIP) assay further confirmed this prediction. Previous reports have highlighted the role of REST in regulating the expression of stress-responsive genes. Our study has identified the functional involvement of DJ-1 promoter variants and REST-mediated regulation of DJ-1 expression in PD pathogenesis.
Collapse
Affiliation(s)
- Prosenjit Pal
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India.
| | - Shubhrajit Roy
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Abhishek Chowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Molecular and Human Genetics Division, Kolkata, India
| | | | - Kunal Ray
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, India
| | - Jharna Ray
- S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| |
Collapse
|
5
|
cDNA Cloning and Partial Characterization of the DJ-1 Gene from Tribolium castaneum. Antioxidants (Basel) 2021; 10:antiox10121970. [PMID: 34943073 PMCID: PMC8750249 DOI: 10.3390/antiox10121970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
The DJ-1 gene is highly conserved across a wide variety of organisms and it plays a role in anti-oxidative stress mechanisms in cells. The red flour beetle, Tribolium castaneum, is widely used as a model insect species because it is easy to evaluate gene function in this species using RNA interference (RNAi). The T. castaneum DJ-1 (TcDJ-1) sequence is annotated in the T. castaneum genome database; however, the function and characteristics of the TcDJ-1 gene have not been elucidated. Here, we investigated the cDNA sequence of TcDJ-1 and partially characterized its function. First, we examined the TcDJ-1 amino acid sequence and found that it was highly conserved with sequences from other species. TcDJ-1 mRNA expression was higher in the early pupal and adult developmental stages. We evaluated oxidant tolerance in TcDJ-1 knockdown adults using paraquat and found that adults with TcDJ-1 knockdown exhibited increased sensitivity to paraquat. Our findings show that TcDJ-1 has an antioxidant function, as observed for DJ-1 from other insects. Therefore, these results suggest that TcDJ-1 protects against oxidative stress during metamorphosis.
Collapse
|
6
|
Personalized Medicine to Improve Treatment of Dopa-Responsive Dystonia-A Focus on Tyrosine Hydroxylase Deficiency. J Pers Med 2021; 11:jpm11111186. [PMID: 34834538 PMCID: PMC8625014 DOI: 10.3390/jpm11111186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Dopa-responsive dystonia (DRD) is a rare movement disorder associated with defective dopamine synthesis. This impairment may be due to the fact of a deficiency in GTP cyclohydrolase I (GTPCHI, GCH1 gene), sepiapterin reductase (SR), tyrosine hydroxylase (TH), or 6-pyruvoyl tetrahydrobiopterin synthase (PTPS) enzyme functions. Mutations in GCH1 are most frequent, whereas fewer cases have been reported for individual SR-, PTP synthase-, and TH deficiencies. Although termed DRD, a subset of patients responds poorly to L-DOPA. As this is regularly observed in severe cases of TH deficiency (THD), there is an urgent demand for more adequate or personalized treatment options. TH is a key enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, and THD patients often present with complex and variable phenotypes, which results in frequent misdiagnosis and lack of appropriate treatment. In this expert opinion review, we focus on THD pathophysiology and ongoing efforts to develop novel therapeutics for this rare disorder. We also describe how different modeling approaches can be used to improve genotype to phenotype predictions and to develop in silico testing of treatment strategies. We further discuss the current status of mathematical modeling of catecholamine synthesis and how such models can be used together with biochemical data to improve treatment of DRD patients.
Collapse
|
7
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
8
|
Tang X, Yu D, Wang H, Meng W, Lei Z, Zhai Y, Wang Y, Wang X. Biochemical and cytotoxic evaluation of latroeggtoxin-VI against PC12 cells. J Biochem Mol Toxicol 2021; 35:e22825. [PMID: 34047418 DOI: 10.1002/jbt.22825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/27/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Latroeggtoxin-VI (LETX-VI) is a peptide neurotoxin discovered from Latrodectus tredecimguttatus eggs. In the current study, the action features of the neurotoxin on PC12 cells were systematically investigated. LETX-VI could promote dopamine release from PC12 cells in the absence and presence of Ca2+, involving an even more complex action mechanism in the presence of Ca2+ and when the treatment time was longer. Although LETX-VI enchanced the autophagy and secretion activity in PC 12 cells, it showed no remarkable influence on the proliferation, cell cycle, apoptosis and ultrastructure of the cells. Pulldown combined with CapLC-MS/MS analysis suggested that LETX-VI affected PC12 cells by interacting with multiple proteins involved in the metabolism, transport, and release of neurotransmitters, particularly dopamine. The low cytotoxicity and effective regulatory action of LETX-VI on PC12 cells suggest the potential of the active peptide in the development of drugs for the treatment of some dopamine-related psychotic diseases and cancers.
Collapse
Affiliation(s)
- Xiaochao Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Wenwen Meng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Ying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
9
|
Tang X, Yu D, Wang H, Meng W, Zhai Y, Lei Z, Liu Z, Wang X. Pull-Down Assay-Guided Insights into the Effects of Latroeggtoxin-VI on Nerve Cells. Toxins (Basel) 2021; 13:136. [PMID: 33673184 PMCID: PMC7918074 DOI: 10.3390/toxins13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Latroeggtoxin-VI (LETX-VI) is a peptide neurotoxin newly found from the eggs of spider L. tredecimguttatus. To explore the mechanism of action of the LETX-VI on nerve cells, the effects of LETX-VI on PC12 cells, a commonly used neuron model, were analyzed using a pull-down assay-guided strategy. LETX-VI was shown to interact with 164 PC12 cell proteins that have diverse molecular functions such as binding, catalysis, regulation, structural activity, etc., thereby extensively affecting the biological processes in the PC12 cells, particularly protein metabolism, response to stimulus, substance transport, and nucleic acid metabolism, with 56.71%, 42.07%, 29.88% and 28.66% of the identified proteins being involved in these biological processes, respectively. By interacting with the relevant proteins, LETX-VI enhanced the synthesis of dopamine; positively regulated cell division and proliferation; and negatively regulated cell cycle arrest, cell death, and apoptotic processes, and therefore has limited cytotoxicity against the PC12 cells, which were further experimentally confirmed. In general, the effects of LETX-VI on PC12 cells are more regulatory than cytotoxic. These findings have deepened our understanding of the action mechanism of LETX-VI on nerve cells and provided valuable clues for further related researches including those on Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (X.T.); (D.Y.); (H.W.); (W.M.); (Y.Z.); (Z.L.); (Z.L.)
| |
Collapse
|
10
|
Jungling A, Reglodi D, Maasz G, Zrinyi Z, Schmidt J, Rivnyak A, Horvath G, Pirger Z, Tamas A. Alterations of Nigral Dopamine Levels in Parkinson's Disease after Environmental Enrichment and PACAP Treatment in Aging Rats. Life (Basel) 2021; 11:life11010035. [PMID: 33429934 PMCID: PMC7827131 DOI: 10.3390/life11010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The neuroprotective effects of environmental enrichment and PACAP (pituitary adenylate cyclase-activating polypeptide) are well-described in Parkinson’s disease. The aim of our study is to investigate the beneficial effects of these factors in aging parkinsonian rats. Newborn Wistar rats were divided into standard and enriched groups according to their environmental conditions. Standard animals were raised under regular conditions. During the first five postnatal weeks, enriched pups were placed in larger cages with different objects. Aging animals received (1) saline, (2) 6-hydroxidopamine (6-OHDA), or (3) 6-OHDA + PACAP injections into the left substantia nigra (s.n.). On the seventh postoperative day, the left and right s.n. were collected. The s.n. of young and aging unoperated animals were also examined in our experiment. We determined the dopamine (DA) levels by the HPLC-MS technique, while the sandwich ELISA method was used to measure the Parkinson disease protein 7 (PARK7) protein levels. In healthy animals, we found an age-related decrease of DA levels. In aging parkinsonian-enriched rats, the operation did not result in a significant DA loss. PACAP treatment could prevent the DA loss in both the standard and enriched groups. All injured PACAP-treated rats showed remarkably higher protective PARK7 levels. The protective effect of PACAP correlated with the increase of the DA and PARK7 levels.
Collapse
Affiliation(s)
- Adel Jungling
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Dora Reglodi
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Gabor Maasz
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Zita Zrinyi
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Janos Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Adam Rivnyak
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Gabor Horvath
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
| | - Zsolt Pirger
- MTA-OK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary; (G.M.); (Z.Z.); (Z.P.)
| | - Andrea Tamas
- MTA-PTE PACAP Research Team, Department of Anatomy, Medical School, University of Pecs, 7624 Pecs, Hungary; (A.J.); (D.R.); (A.R.); (G.H.)
- Correspondence: or ; Tel.: +36-72-536-001 (ext. 36421)
| |
Collapse
|
11
|
Zhang L, Wang J, Wang J, Yang B, He Q, Weng Q. Role of DJ-1 in Immune and Inflammatory Diseases. Front Immunol 2020; 11:994. [PMID: 32612601 PMCID: PMC7308417 DOI: 10.3389/fimmu.2020.00994] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
The DJ-1 protein, known as an oxidative stress sensor, participates in the onset of oxidative stress-related diseases such as cancer, neurodegenerative disorders, type 2 diabetes, and male infertility. Although DJ-1 has been extensively studied for more than two decades, evidence has only recently emerged that it plays a key role in immune and inflammatory disorders. The immune regulatory function of DJ-1 is achieved by modulating the activation of several immune cells including macrophages, mast cells, and T cells via reactive oxygen species (ROS)-dependent and/or ROS-independent mechanisms. This review describes the current knowledge on DJ-1, focusing on its immune and inflammatory regulatory roles, and highlights the significance of DJ-1 as a novel therapeutic target for immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lulu Zhang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Pandey S, Dhusia K, Katara P, Singh S, Gautam B. An in silico analysis of deleterious single nucleotide polymorphisms and molecular dynamics simulation of disease linked mutations in genes responsible for neurodegenerative disorder. J Biomol Struct Dyn 2019; 38:4259-4272. [DOI: 10.1080/07391102.2019.1682047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sapna Pandey
- Department of Computational Biology & Bioinformatics, Jacob Institute of Biotechnology & Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Science (SHUATS), Allahabad, India
| | - Kalyani Dhusia
- Department of Computational Biology & Bioinformatics, Jacob Institute of Biotechnology & Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Science (SHUATS), Allahabad, India
- Department of Biomedical Engineering, Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Pramod Katara
- Centre of Bioinformatics, University of Allahabad, Allahabad, India
| | - Satendra Singh
- Department of Computational Biology & Bioinformatics, Jacob Institute of Biotechnology & Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Science (SHUATS), Allahabad, India
| | - Budhayash Gautam
- Department of Computational Biology & Bioinformatics, Jacob Institute of Biotechnology & Bio-Engineering, Sam Higginbottom University of Agriculture, Technology and Science (SHUATS), Allahabad, India
| |
Collapse
|
13
|
Xu X, Wang R, Hao Z, Wang G, Mu C, Ding J, Sun W, Ren H. DJ-1 regulates tyrosine hydroxylase expression through CaMKKβ/CaMKIV/CREB1 pathway in vitro and in vivo. J Cell Physiol 2019; 235:869-879. [PMID: 31232473 DOI: 10.1002/jcp.29000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/04/2019] [Indexed: 01/27/2023]
Abstract
Lack of dopamine production and neurodegeneration of dopaminergic neurons in the substantia nigra are considered as the major characteristics of Parkinson's disease, a prevalent movement disorder worldwide. DJ-1 mutation leading to loss of its protein functions is a genetic factor of PD. In this study, our results illustrated that DJ-1 can directly interact with Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) and modifies the cAMP-responsive element binding protein 1 (CREB1) activity, thus regulates tyrosine hydroxylase (TH) expression. In Dj-1 knockout mouse substantia nigra, the levels of TH and the phosphorylation of CREB1 Ser133 are significantly decreased. Moreover, Dj-1 deficiency suppresses the phosphorylation of CaMKIV (Thr196/200) and CREB1 (Ser133), subsequently inhibits TH expression in vitro. Furthermore, Knockdown of Creb1 abolishes the effects of DJ-1 on TH regulation. Our data reveal a novel pathway in which DJ-1 regulates CaMKKβ/CaMKIV/CREB1 activities to facilitate TH expression.
Collapse
Affiliation(s)
- Xingyun Xu
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jianqing Ding
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanping Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
Weinert M, Millet A, Jonas EA, Alavian KN. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β. FASEB J 2019; 33:8925-8934. [PMID: 31034784 PMCID: PMC6988861 DOI: 10.1096/fj.201802754r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial metabolic plasticity is a key adaptive mechanism in response to changes in cellular metabolic demand. Changes in mitochondrial metabolic efficiency have been linked to pathophysiological conditions, including cancer, neurodegeneration, and obesity. The ubiquitously expressed DJ-1 (Parkinsonism-associated deglycase) is known as a Parkinson's disease gene and an oncogene. The pleiotropic functions of DJ-1 include reactive oxygen species scavenging, RNA binding, chaperone activity, endocytosis, and modulation of major signaling pathways involved in cell survival and metabolism. Nevertheless, how these functions are linked to the role of DJ-1 in mitochondrial plasticity is not fully understood. In this study, we describe an interaction between DJ-1 and 14-3-3β that regulates the localization of DJ-1, in a hypoxia-dependent manner, either to the cytosol or to mitochondria. This interaction acts as a modulator of mitochondrial metabolic efficiency and a switch between glycolysis and oxidative phosphorylation. Modulation of this novel molecular mechanism of mitochondrial metabolic efficiency is potentially involved in the neuroprotective function of DJ-1 as well as its role in proliferation of cancer cells.-Weinert, M., Millet, A., Jonas, E. A., Alavian, K. N. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β.
Collapse
Affiliation(s)
- Maria Weinert
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aurelie Millet
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elizabeth A Jonas
- Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom.,Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
16
|
Mita Y, Kataoka Y, Saito Y, Kashi T, Hayashi K, Iwasaki A, Imanishi T, Miyasaka T, Noguchi N. Distribution of oxidized DJ-1 in Parkinson's disease-related sites in the brain and in the peripheral tissues: effects of aging and a neurotoxin. Sci Rep 2018; 8:12056. [PMID: 30104666 PMCID: PMC6089991 DOI: 10.1038/s41598-018-30561-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
DJ-1 plays an important role in antioxidant defenses, and a reactive cysteine at position 106 (Cys106) of DJ-1, a critical residue of its biological function, is oxidized under oxidative stress. DJ-1 oxidation has been reported in patients with Parkinson's disease (PD), but the relationship between DJ-1 oxidation and PD is still unclear. In the present study using specific antibody for Cys106-oxidized DJ-1 (oxDJ-1), we analyzed oxDJ-1 levels in the brain and peripheral tissues in young and aged mice and in a mouse model of PD induced using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). OxDJ-1 levels in the brain, heart, and skeletal muscle were high compared with other tissues. In the brain, oxDJ-1 was detected in PD-related brain sites such as the substantia nigra (SN) of the midbrain, olfactory bulb (OB), and striatum. In aged wild-type mice, oxDJ-1 levels in the OB, striatum, and heart tended to decrease, while those in the skeletal muscle increased significantly. Expression of dopamine-metabolizing enzymes significantly increased in the SN and OB of aged DJ-1-/- mice, accompanied by a complementary increase in glutathione peroxidase 1. MPTP treatment concordantly changed oxDJ-1 levels in PD-related brain sites and heart. These results indicate that the effects of physiological metabolism, aging, and neurotoxin change oxDJ-1 levels in PD-related brain sites, heart, and skeletal muscle where mitochondrial load is high, suggesting a substantial role of DJ-1 in antioxidant defenses and/or dopamine metabolism in these tissues.
Collapse
Affiliation(s)
- Yuichiro Mita
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuto Kataoka
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| | - Takuma Kashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kojiro Hayashi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Asa Iwasaki
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Takanori Imanishi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Tomohiro Miyasaka
- Neuropathology, Department of Life and Medical Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Noriko Noguchi
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan.
| |
Collapse
|
17
|
Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR. Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cell Mol Neurobiol 2018; 38:1153-1178. [PMID: 29700661 PMCID: PMC6061130 DOI: 10.1007/s10571-018-0587-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Parkinson disease (PD) is known as a common progressive neurodegenerative disease which is clinically diagnosed by the manifestation of numerous motor and nonmotor symptoms. PD is a genetically heterogeneous disorder with both familial and sporadic forms. To date, researches in the field of Parkinsonism have identified 23 genes or loci linked to rare monogenic familial forms of PD with Mendelian inheritance. Biochemical studies revealed that the products of these genes usually play key roles in the proper protein and mitochondrial quality control processes, as well as synaptic transmission and vesicular recycling pathways within neurons. Despite this, large number of patients affected with PD typically tends to show sporadic forms of disease with lack of a clear family history. Recent genome-wide association studies (GWAS) meta-analyses on the large sporadic PD case-control samples from European populations have identified over 12 genetic risk factors. However, the genetic etiology that underlies pathogenesis of PD is also discussed, since it remains unidentified in 40% of all PD-affected cases. Nowadays, with the emergence of new genetic techniques, international PD genomics consortiums and public online resources such as PDGene, there are many hopes that future large-scale genetics projects provide further insights into the genetic etiology of PD and improve diagnostic accuracy and therapeutic clinical trial designs.
Collapse
Affiliation(s)
- Amin Karimi-Moghadam
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Saeid Charsouei
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Benjamin Bell
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Mohammad Reza Jabalameli
- Division of Genetics, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran.
- Human Genetics & Genomic Medicine, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK.
| |
Collapse
|
18
|
Zeng XS, Geng WS, Jia JJ, Chen L, Zhang PP. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Front Aging Neurosci 2018; 10:109. [PMID: 29719505 PMCID: PMC5913322 DOI: 10.3389/fnagi.2018.00109] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022] Open
Abstract
It has been 200 years since Parkinson disease (PD) was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1) linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity) in PD, and expect the development direction for treatment of PD.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Wen-Shuo Geng
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jin-Jing Jia
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lei Chen
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Peng-Peng Zhang
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
19
|
Saito Y. DJ-1 as a Biomarker of Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1037:149-171. [PMID: 29147908 DOI: 10.1007/978-981-10-6583-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1 has been identified as a causative gene of a familial form of Parkinson's disease, PARK7, and plays a significant role in antioxidative defense, protecting cells from oxidative stress. A cysteine residue of DJ-1 at position 106 (Cys-106) is preferentially oxidized under oxidative stress. This reactive Cys-106 plays a critical role in the biological function of DJ-1, which could act as a sensor of oxidative stress by regulating antioxidative defense depending on Cys-106 oxidation. Thus, the levels of Cys-106-oxidized DJ-1 (oxDJ-1) could be a possible biomarker of oxidative stress. This chapter focuses on the properties of DJ-1 and oxDJ-1 levels as a biomarker of Parkinson's disease. In particular, the usability of these biomarkers to prevent and treat this neurodegenerative disease is discussed. Further, this section deals with the importance of identifying a biomarker of early-phase Parkinson's disease. Finally, this chapter summarizes the features of oxDJ-1 levels in the brain and blood as a biomarker candidate for early-phase Parkinson's disease based on our results using oxDJ-1-specific antibodies.
Collapse
Affiliation(s)
- Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
20
|
Yamagishi Y, Saigoh K, Saito Y, Ogawa I, Mitsui Y, Hamada Y, Samukawa M, Suzuki H, Kuwahara M, Hirano M, Noguchi N, Kusunoki S. Diagnosis of Parkinson’s disease and the level of oxidized DJ-1 protein. Neurosci Res 2018; 128:58-62. [PMID: 28705587 DOI: 10.1016/j.neures.2017.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Yuko Yamagishi
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazumasa Saigoh
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Ikuko Ogawa
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshiyuki Mitsui
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yukihiro Hamada
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Makoto Samukawa
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hidekazu Suzuki
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Motoi Kuwahara
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Makito Hirano
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan
| | - Susumu Kusunoki
- Department of Neurology, Faculty of Medicine, Kindai University, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
21
|
Antipova D, Bandopadhyay R. Expression of DJ-1 in Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:25-43. [DOI: 10.1007/978-981-10-6583-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Oh SE, Mouradian MM. Cytoprotective mechanisms of DJ-1 against oxidative stress through modulating ERK1/2 and ASK1 signal transduction. Redox Biol 2017; 14:211-217. [PMID: 28954246 PMCID: PMC5614756 DOI: 10.1016/j.redox.2017.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/09/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
DJ-1 is a highly conserved multifunctional protein linked to both neurodegeneration and neoplasia. Among its various activities is an antioxidant property leading to cytoprotection under oxidative stress conditions. This is associated with the ability to modulate signal transduction events that determine how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy in order to adapt to environmental stimuli and stresses. Alterations in DJ-1 expression or function can disrupt homeostatic signaling networks and initiate cascades that play a role in the pathogenesis of conditions such as Parkinson's disease and cancer. DJ-1 plays a major role in various signaling pathways. Related to its anti-oxidant properties, it mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation. Here, we review the ways through which DJ-1 regulates these pathways, focusing on how its regulation of signal transduction contributes to cellular homeostasis and the pathologic states that result from their dysregulation.
Collapse
Affiliation(s)
- Stephanie E Oh
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ 08854, United States.
| |
Collapse
|
23
|
Yasuda T, Niki T, Ariga H, Iguchi-Ariga SMM. Free radicals impair the anti-oxidative stress activity of DJ-1 through the formation of SDS-resistant dimer. Free Radic Res 2017; 51:397-412. [DOI: 10.1080/10715762.2017.1324201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatsuki Yasuda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takeshi Niki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Sanae M. M. Iguchi-Ariga
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
24
|
Oh SE, Mouradian MM. Regulation of Signal Transduction by DJ-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:97-131. [PMID: 29147906 DOI: 10.1007/978-981-10-6583-5_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The ability of DJ-1 to modulate signal transduction has significant effects on how the cell regulates normal processes such as growth, senescence, apoptosis, and autophagy to adapt to changing environmental stimuli and stresses. Perturbations of DJ-1 levels or function can disrupt the equilibrium of homeostatic signaling networks and set off cascades that play a role in the pathogenesis of conditions such as cancer and Parkinson's disease.DJ-1 plays a major role in various pathways. It mediates cell survival and proliferation by activating the extracellular signal-regulated kinase (ERK1/2) pathway and the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. It attenuates cell death signaling by inhibiting apoptosis signal-regulating kinase 1 (ASK1) activation as well as by inhibiting mitogen-activated protein kinase kinase kinase 1 (MEKK1/MAP3K1) activation of downstream apoptotic cascades. It also modulates autophagy through the ERK, Akt, or the JNK/Beclin1 pathways. In addition, DJ-1 regulates the transcription of genes essential for male reproductive function, such as spermatogenesis, by relaying nuclear receptor androgen receptor (AR) signaling. In this chapter, we summarize the ways that DJ-1 regulates these pathways, focusing on how its role in signal transduction contributes to cellular homeostasis and the pathologic states that result from dysregulation.
Collapse
Affiliation(s)
- Stephanie E Oh
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - M Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
25
|
Therapeutic Activities of DJ-1 and Its Binding Compounds Against Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:187-202. [DOI: 10.1007/978-981-10-6583-5_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Takahashi-Niki K, Niki T, Iguchi-Ariga SMM, Ariga H. Transcriptional Regulation of DJ-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1037:89-95. [PMID: 29147905 DOI: 10.1007/978-981-10-6583-5_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DJ-1 is an oncogene and also a causative gene for familial Parkinson's disease. DJ-1 has various functions, and the oxidative status of a cysteine residue at position 106 (C106) is crucial for determination of the activation level of DJ-1.DJ-1 binds to many proteins, including various transcription factors, and acts as a coactivator or corepressor for regulating their target genes without direct binding to DNA, thereby affecting various cell functions. DJ-1-regulating transcription factors and their modified proteins are the androgen receptor and its regulatory proteins, p53; polypyrimidine tract-binding protein-associated splicing factor (PSF); Keap1, an inhibitor for nuclear factor erythroid2-related factor 2 (Nrf2); sterol regulatory element-binding protein (SREBP); Ras-responsive element-binding protein (RREB1); signal transducer and activator of transcription 1 (STAT1); and Nurr1. Considering oxidative stress response and dopamine synthesis, the regulation of Nrf2, p53, and PSF by DJ-1 is especially important. In addition, SREBP1 and RREB1 functions that are positively regulated by DJ-1 may participate in the onset and pathogenesis of metabolic syndrome.DJ-1 is expressed ubiquitously with high levels in the testis and brain and moderate levels in other tissues. Furthermore, DJ-1 is translocated from the cytoplasm to nucleus during the cell cycle after mitogen stimulation, suggesting that DJ-1 has a growth-related function. In this review, we describe how DJ-1 regulates cell growth/death and dopamine synthesis by targeting various transcription factors.
Collapse
Affiliation(s)
- Kazuko Takahashi-Niki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Takeshi Niki
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Sanae M M Iguchi-Ariga
- Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
27
|
Abdel-Aleem GA, Khaleel EF, Mostafa DG, Elberier LK. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem 2016; 122:200-213. [PMID: 27109835 DOI: 10.1080/13813455.2016.1182190] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the current study, we aimed to investigate the mechanistic role of DJ-1/PI3K/Akt survival pathway in ischemia/reperfusion (I/R) induced cerebral damage and to investigate if the resveratrol (RES) mediates its ischemic neuroptotection through this pathway. RES administration to Sham rats boosted glutathione level and superoxide dismutase activity and downregulated inducible nitric oxide synthase expression without affecting redox levels of DJ-1 forms or components of PI3K/Akt pathway including PTEN, p-Akt or p/p-GSK3b. However, RES pre-administration to I/R rats reduced infarction area, oxidative stress, inflammation and apoptosis. Concomitantly, RES ameliorated the decreased levels of oxidized forms of DJ-1 and enhancing its reduction, increased the nuclear protein expression of Nfr-2 and led to activation of PI3K/Akt survival pathway. In conclusion, overoxidation of DJ-1 is a major factor that contributes to post-I/R cerebral damage and its reduction by RES could explain the neuroprotection offered by RES.
Collapse
Affiliation(s)
- Ghada A Abdel-Aleem
- a Department of Medical Biochemistry , Faculty of Medicine, Tanta University , Tanta , Egypt
- b Department of Medical Biochemistry , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Eman F Khaleel
- c Department of Medical Physiology , Faculty of Medicine, Cairo University , Cairo , Egypt
- d Department of Medical Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| | - Dalia G Mostafa
- d Department of Medical Physiology , College of Medicine, King Khalid University , Abha , Saudi Arabia
- e Department of Medical Physiology , Faculty of Medicine, Assiut University , Assiut , Egypt
| | - Lydia K Elberier
- f Department of Histopathology , College of Medical Laboratory Technology, University of Science and Technology , Khartoum , Sudan , and
- g Department of Pathology , College of Medicine, King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
28
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
29
|
Zhang Y, Gong XG, Wang ZZ, Sun HM, Guo ZY, Gai C, Hu JH, Ma L, Li P, Chen NH. Protective effects of DJ-1 medicated Akt phosphorylation on mitochondrial function are promoted by Da-Bu-Yin-Wan in 1-methyl-4-phenylpyridinium-treated human neuroblastoma SH-SY5Y cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:83-93. [PMID: 27114059 DOI: 10.1016/j.jep.2016.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/11/2015] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Bu-Yin-Wan (DBYW), a historically traditional Chinese medicine formula, was originally defined over 600 years ago. In recent decades, DBYW was clinically employed to treat Parkinson's disease (PD). AIM OF THE STUDY To explore the underlying mechanism of DBYW on mitochondrial function, we investigated the effect of DBYW on mitochondrial function from the perspectives of DJ-1 and Akt signaling. MATERIALS AND METHODS Human derived neuroblastoma SH-SY5Y cells were transiently transfected with the plasmid pcDNA3-Flag-DJ-1 aimed to overexpress the DJ-1 protein. Transfected cells were treated with 1-methyl-4-phenylpyridinium (MPP(+)), a PD-related mitochondrial complex I inhibitor, in the absence and presence of DBYW. The cell viability was assessed by Cell Counting Kit-8 assay. The protein expressions of DJ-1 and Akt signaling were examined by western blotting. The mitochondrial mass was evaluated by confocal fluorescence microscopy. The mitochondrial complex I activity and cellular ATP content were measured by commercial kits. RESULTS Transfection with pcDNA3-Flag-DJ-1 decreased the MPP(+)-induced toxicity and overexpressed the DJ-1. In DJ-1 overexpressed cells, the mitochondrial mass was raised, mitochondrial complex I activity was improved, and cellular ATP content was increased. In addition, overexpression of DJ-1 augmented the Akt phosphorylation on threonine 308 and serine 473. Moreover, DBYW promoted the above effects in DJ-1 expressed cells. CONCLUSIONS These data suggest that DJ-1 protects the mitochondrial function by medicating Akt phosphorylation in MPP(+)-treated SH-SY5Y cells. Moreover, DBYW enhances the protective effect of DJ-1 medicated Akt phosphorylation on mitochondrial function.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiao-Gang Gong
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; College of Special Education, Beijing Union University, Beijing 100075, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zhen-Yu Guo
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong Gai
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Hong Hu
- Center for Scientific Research, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ling Ma
- Department of Anatomy, School of Preclinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
30
|
Takahashi-Niki K, Ganaha Y, Niki T, Nakagawa S, Kato-Ose I, Iguchi-Ariga SMM, Ariga H. DJ-1 activates SIRT1 through its direct binding to SIRT1. Biochem Biophys Res Commun 2016; 474:131-136. [PMID: 27105916 DOI: 10.1016/j.bbrc.2016.04.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 01/07/2023]
Abstract
The DJ-1 gene is a ras-dependent oncogene and also a causative gene for a familial form of Parkinson's disease park7. DJ-1 is a multi-functional protein and plays roles in regulation of cell growth, cells death, metabolism and mitochondrial homeostasis against oxidative stress. To explore various functions, DJ-1 associates with a number of proteins localized in the nucleus, cytoplasm and mitochondria. The oxidative status of a cysteine residue at an amino acid number 106 (C106) of DJ-1 determines the active level of DJ-1. Precise molecular mechanism of exploration of DJ-1 function is, however, not resolved. In this study, we identified Sirtuin family proteins (SIRT1, 2, and 4-6) as DJ-1-binding proteins, and DJ-1 associated with SIRT1 in cells. Sirtuins like DJ-1 also regulates growth, death and metabolism of cells and mitochondrial homeostasis. We found that DJ-1 stimulated deacetylase activity of SIRT1 and that SIRT1-suppressed transcriptional activity of SIRT1-target p53 was further decreased by DJ-1. Furthermore, SIRT1 activity was reduced in DJ-1-knockout cells, and this reduced activity was restored by re-introduction of wild-type DJ-1 but not of C106-mutant DJ-1 into DJ-1-knockout cells. It is first report showing direct connection of DJ-1 with SIRT1.
Collapse
Affiliation(s)
- Kazuko Takahashi-Niki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yoko Ganaha
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Takeshi Niki
- Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Shota Nakagawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Izumi Kato-Ose
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Sanae M M Iguchi-Ariga
- Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12 Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
31
|
Abstract
Onset of cancer and neurodegenerative disease occurs by abnormal cell growth and neuronal cell death, respectively, and the number of patients with both diseases has been increasing in parallel with an increase in mean lifetime, especially in developed countries. Although both diseases are sporadic, about 10% of the diseases are genetically inherited, and analyses of such familial forms of gene products have contributed to an understanding of the molecular mechanisms underlying the onset and pathogenesis of these diseases. I have been working on c-myc, a protooncogene, for a long time and identified various c-Myc-binding proteins that play roles in c-Myc-derived tumorigenesis. Among these proteins, some proteins have been found to be also responsible for the onset of neurodegenerative diseases, including Parkinson's disease, retinitis pigmentosa and cerebellar atrophy. In this review, I summarize our findings indicating the common mechanisms of onset between cancer and neurodegenerative diseases, with a focus on genes such as DJ-1 and Myc-Modulator 1 (MM-1) and signaling pathways that contribute to the onset and pathogenesis of cancer and neurodegenerative diseases.
Collapse
|
32
|
Lu L, Zhao S, Gao G, Sun X, Zhao H, Yang H. DJ-1/PARK7, But Not Its L166P Mutant Linked to Autosomal Recessive Parkinsonism, Modulates the Transcriptional Activity of the Orphan Nuclear Receptor Nurr1 In Vitro and In Vivo. Mol Neurobiol 2016; 53:7363-7374. [PMID: 26873851 DOI: 10.1007/s12035-016-9772-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Although mutations of DJ-1 have been linked to autosomal recessive Parkinsonism for years, its physiological function and the pathological mechanism of its mutants are not well understood. We report for the first time that exogenous application of DJ-1, but not its L166P mutant, enhances the nuclear translocation and the transcriptional activity of Nurr1, a transcription factor essential for dopaminergic neuron development and maturation, both in vitro and in vivo. Knockdown of DJ-1 attenuates Nurr1 activity. Further investigation showed that signaling of Raf/MEK/ERK MAPKs is involved in this regulatory process and that activation induced by exogenous DJ-1 is antagonized by U0126, an ERK pathway inhibitor, indicating that DJ-1 modulates Nurr1 activity via the Raf/MEK/ERK pathway. Our findings shed light on the novel function of DJ-1 to enhance Nurr1 activity and provide the first insight into the molecular mechanism by which DJ-1 enhances Nurr1 activity.
Collapse
Affiliation(s)
- Lingling Lu
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Shasha Zhao
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Ge Gao
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Xiaohong Sun
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Huanying Zhao
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China
| | - Hui Yang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Department of Neurobiology, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing, 100069, China. .,Center of Parkinson's Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing Center of Neural Regeneration and Repair, Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, 10 You an men Wai, Xitoutiao, Beijing, 100069, China.
| |
Collapse
|
33
|
Takahashi-Niki K, Inafune A, Michitani N, Hatakeyama Y, Suzuki K, Sasaki M, Kitamura Y, Niki T, Iguchi-Ariga SMM, Ariga H. DJ-1-dependent protective activity of DJ-1-binding compound no. 23 against neuronal cell death in MPTP-treated mouse model of Parkinson's disease. J Pharmacol Sci 2015; 127:305-10. [PMID: 25837927 DOI: 10.1016/j.jphs.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/05/2015] [Indexed: 12/25/2022] Open
Abstract
Parkinson's disease (PD) is caused by dopaminergic cell death in the substantia nigra, leading to a reduced level of dopamine in the striatum. Oxidative stress is one of the causes of PD. Since symptomatic PD therapies are used, identification of compounds or proteins that inhibit oxidative stress-induced neuronal cell death is necessary. DJ-1 is a causative gene product of familial PD and plays a role in anti-oxidative stress reaction. We have identified various DJ-1-binding compounds, including compound-23, that restored neuronal cell death and locomotion defects observed in neurotoxin-induced PD models. In this study, wild-type and DJ-1-knockout mice were injected intraperitoneally with 1 mg/kg of compound-23 and then with 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 1 h after injection. Five days after administration, the effects of compound-23 on MPTP-induced locomotion deficits, on dopaminergic cell death and on brain dopamine levels were analyzed by rotor rod tests, by staining cells with an anti-TH antibody and by an HPLC, respectively. The results showed that compound-23 inhibited MPTP-induced reduction of retention time on the rotor rod bar, neuronal cell death in the substantia nigra and striatum and dopamine content in wild-type mice but not in DJ-1-knockout mice, indicating a DJ-1-dependent effect of compound-23.
Collapse
Affiliation(s)
- Kazuko Takahashi-Niki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Inafune
- Central Research Laboratory, New Drug Research Center, Inc., Toiso, Eniwa 061-1405, Japan
| | - Naruyuki Michitani
- Central Research Laboratory, New Drug Research Center, Inc., Toiso, Eniwa 061-1405, Japan
| | - Yoshitaka Hatakeyama
- Central Research Laboratory, New Drug Research Center, Inc., Toiso, Eniwa 061-1405, Japan
| | - Kotaro Suzuki
- Central Research Laboratory, New Drug Research Center, Inc., Toiso, Eniwa 061-1405, Japan
| | - Mai Sasaki
- Central Research Laboratory, New Drug Research Center, Inc., Toiso, Eniwa 061-1405, Japan
| | - Yoshihisa Kitamura
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takeshi Niki
- Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan
| | | | - Hiroyoshi Ariga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
34
|
Abstract
DJ-1, the product of a causative gene of a familial form of Parkinson disease, undergoes preferential oxidation of Cys106 (cysteine residue at position 106) under oxidative stress. Using specific monoclonal antibodies against Cys106 oxidized DJ-1 (oxDJ-1), we examined oxDJ-1 immunoreactivity in brain sections from DJ-1 knockout and wild-type mice and in human brain sections from cases classified into different Lewy body stages of Parkinson disease and Parkinson disease with dementia. Oxidized DJ-1 immunoreactivity was prominently observed in neuromelanin-containing neurons and neuron processes of the substantia nigra; Lewy bodies also showed oxDJ-1 immunoreactivity. Oxidized DJ-1 was also detected in astrocytes in the striatum, in neurons and glia in the red nucleus, and in the inferior olivary nucleus, all of which are related to regulation of movement. These observations suggest the relevance of DJ-1 oxidation to homeostasis in multiple brain regions, including neuromelanin-containing neurons of the substantia nigra, and raise the possibility that oxDJ-1 levels might change during the progression of Lewy body-associated neurodegenerative diseases.
Collapse
|
35
|
Zhao Q, Su Y, Wang Z, Chen C, Wu T, Huang Y. Identification of glutathione (GSH)-independent glyoxalase III from Schizosaccharomyces pombe. BMC Evol Biol 2014; 14:86. [PMID: 24758716 PMCID: PMC4021431 DOI: 10.1186/1471-2148-14-86] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reactive carbonyl species (RCS), such as methylglyoxal (MG) and glyoxal (GO), are synthesized as toxic metabolites in living systems. Mechanisms of RCS detoxification include the glutathione (GSH)-dependent system consisting of glyoxalase I (GLO1) and glyoxalase II (GLO2), and GSH-independent system involving glyoxalase III (GLO3). Hsp31 and DJ-1 proteins are weakly homologous to each other and belong to two different subfamilies of the DJ-1/Hsp31/PfpI superfamily. Recently, the Escherichia coli Hsp31 protein and the DJ-1 proteins from Arabidopsis thaliana and metazoans have been demonstrated to have GLO3 activity. RESULTS We performed a systematic survey of homologs of DJ-1 and Hsp31 in fungi. We found that DJ-1 proteins have a very limited distribution in fungi, whereas Hsp31 proteins are widely distributed among different fungal groups. Phylogenetic analysis revealed that fungal and metazoan DJ-1 proteins and bacterial YajL proteins are most closely related and together form a sister clade to bacterial and fungal Hsp31 proteins. We showed that two Schizosaccharomyces pombe Hsp31 proteins (Hsp3101 and Hsp3102) and one Saccharomyces cerevisiae Hsp31 protein (ScHsp31) displayed significantly higher in vitro GLO3 activity than S. pombe DJ-1 (SpDJ-1). Overexpression of hsp3101, hsp3102 and ScHSP31 could confer MG and GO resistance on either wild-type S. pombe cells or GLO1 deletion of S. pombe. S. pombe DJ-1 and Hsp31 proteins exhibit different patterns of subcellular localization. CONCLUSIONS Our results suggest that fungal Hsp31 proteins are the major GLO3 that may have some role in protecting cells from RCS toxicity in fungi. Our results also support the view that the GLO3 activity of Hsp31 proteins may have evolved independently from that of DJ-1 proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
36
|
Izumi Y, Ezumi M, Takada-Takatori Y, Akaike A, Kume T. Endogenous Dopamine Is Involved in the Herbicide Paraquat-Induced Dopaminergic Cell Death. Toxicol Sci 2014; 139:466-78. [DOI: 10.1093/toxsci/kfu054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Saito Y. Oxidized DJ-1 as a possible biomarker of Parkinson's disease. J Clin Biochem Nutr 2014; 54:138-44. [PMID: 24894116 PMCID: PMC4042152 DOI: 10.3164/jcbn.13-108] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 01/30/2014] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1 is a causative gene of a familial form of Parkinson's disease, namely PARK7, and plays a significant role in antioxidative defense to protect the cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106, Cys-106, under oxidative stress. The critical role of Cys-106 in the biological function of DJ-1 has been demonstrated, and recent studies indicate that DJ-1 acts as a sensor of oxidative stress by regulating the gene expression of antioxidative defense. Specific antibodies against Cys-106-oxidized DJ-1 have been developed, and the generation of oxidized DJ-1 in cellular and animal models of Parkinson's disease has been investigated. This review focuses on the role of DJ-1 in antioxidative defense and the importance of oxidizable Cys-106 in its function. The significance of the identification of early-phase Parkinson's disease biomarkers and the nature of oxidized DJ-1 as a biomarker for Parkinson's disease are discussed here.
Collapse
Affiliation(s)
- Yoshiro Saito
- Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Medical and Life Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
38
|
Monroy-Jaramillo N, Guerrero-Camacho JL, Rodríguez-Violante M, Boll-Woehrlen MC, Yescas-Gómez P, Alonso-Vilatela ME, López-López M. Genetic mutations in early-onset Parkinson's disease Mexican patients: molecular testing implications. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:235-44. [PMID: 24677602 DOI: 10.1002/ajmg.b.32228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 01/29/2014] [Indexed: 01/13/2023]
Abstract
Mutations in PARK2, PINK1, and DJ-1 have been associated with autosomal recessive early-onset Parkinson's disease. Here, we report the prevalence of sequence and structural mutations in these three main recessive genes in Mexican Mestizo patients. The complete sequences of these three genes were analyzed by homo/heteroduplex DNA formation and direct sequencing; exon dosage was determined by multiplex ligation-dependent probe amplification and real-time PCR in 127 patients belonging to 122 families and 120 healthy Mexican Mestizo controls. All individuals had been previously screened for the three most common LRRK2 mutations. The presence of two mutations in compound heterozygous or homozygous genotypes was found in 16 unrelated patients, 10 had mutations in PARK2, six in PINK1, and none in DJ-1. Two PARK2-PINK1 and one PARK2-LRRK2 digenic cases were observed. Novel mutations were identified in PARK2 and PINK1 genes, including PINK1 duplication for the first time. Exon dosage deletions were the most frequent mutations in PARK2 (mainly in exons 9 and 12), followed by those in PINK1. The high prevalence of heterozygous mutations in PARK2 (12.3%) and the novel heterozygous and homozygous point mutations in PINK1 observed in familial and sporadic cases from various states of Mexico support the concept that single heterozygous mutations in recessive Parkinson's disease genes play a pathogenic role. These data have important implications for genetic counseling of Mexican Mestizo patients with early-onset Parkinson's disease. The presence of digenic inheritance underscores the importance of studying several genes in this disease. A step-ordered strategy for molecular diagnosis is proposed.
Collapse
Affiliation(s)
- Nancy Monroy-Jaramillo
- Neurogenetics Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico; PhD Candidate in Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
39
|
Robinson PA. Understanding the molecular basis of Parkinson’s disease, identification of biomarkers and routes to therapy. Expert Rev Proteomics 2014; 7:565-78. [DOI: 10.1586/epr.10.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Chiu S, Terpstra KJ, Bureau Y, Hou J, Raheb H, Cernvosky Z, Badmeav V, Copen J, Husni M, Woodbury-Farina M. Liposomal-formulated curcumin [Lipocurc™] targeting HDAC (histone deacetylase) prevents apoptosis and improves motor deficits in Park 7 (DJ-1)-knockout rat model of Parkinson's disease: implications for epigenetics-based nanotechnology-driven drug platform. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2013; 10:/j/jcim.2013.10.issue-1/jcim-2013-0020/jcim-2013-0020.xml. [PMID: 24200537 DOI: 10.1515/jcim-2013-0020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/10/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND Converging evidence suggests dysregulation of epigenetics in terms of histone-mediated acetylation/deacetylation imbalance in Parkinson's disease (PD). Targeting histone deacetylase (HDAC) in neuronal survival and neuroprotection may be beneficial in the treatment and prevention of neurodegenerative disorders. Few pharmacological studies use the transgenic model of PD to characterize the neuroprotection actions of a lead compound known to target HDAC in the brain. METHODS In our study, we investigated neuroprotective effects of liposomal-formulated curcumin: Lipocurc™ targeting HDAC inhibitor in the DJ-1(Park 7)-gene knockout rat model of PD. Group I (DJ-1-KO-Lipocurc™) received Lipocurc™ 20 mg/kg iv 3× weekly for 8 weeks; Group II: DJ-1 KO controls (DJ-1 KO-PBS) received i.v. phosphate-buffered saline (PBS). Group III: DJ-1-Wild Type (DJ-1 WT-PBS) received PBS. We monitored various components of motor behavior, rotarod, dyskinesia, and open-field behaviors, both at baseline and at regular intervals. Toward the end of the 8 weeks, we measured neuronal apoptosis and dopamine (DA) neuron-specific tyrosine hydroxylase levels by immunohistochemistry methods at post-mortem. RESULTS We found that DJ-KO Group I and Group II, as compared with DJ-1 WT group, exhibited moderate degree of motor impairment on the rotarod test. Lipocurc™ treatment improved the motor behavior motor impairment to a greater extent than the PBS treatment. There was marked apoptosis in the DJ-1 WT group. Lipocurc™ significantly blocked neuronal apoptosis: the apoptotic index of DJ-1-KO-Lipocurc™ group was markedly reduced compared with the DJ-KO-PBS group (3.3 vs 25.0, p<0.001). We found preliminary evidence Lipocurc™ stimulated DA neurons in the substantia nigra. The ratio of immature to mature DA neurons in substantia nigra was statistically higher in the DJ-1-KO-Lipocurc™ group (p<0.025). CONCLUSIONS We demonstrated for the first time Lipocurc™'s anti-apoptotic and neurotrophic effects in theDJ-1-KO rat model of PD. Our promising findings warrant randomized controlled trial of Lipocurc™ in translating the novel nanotechnology-based epigenetics-driven drug discovery platform toward efficacious therapeutics in PD.
Collapse
|
41
|
Yamane T, Suzui S, Kitaura H, Takahashi-Niki K, Iguchi-Ariga SMM, Ariga H. Transcriptional activation of the cholecystokinin gene by DJ-1 through interaction of DJ-1 with RREB1 and the effect of DJ-1 on the cholecystokinin level in mice. PLoS One 2013; 8:e78374. [PMID: 24348900 PMCID: PMC3865339 DOI: 10.1371/journal.pone.0078374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/19/2013] [Indexed: 01/11/2023] Open
Abstract
DJ-1 is an oncogene and also causative gene for familial Parkinson’s disease. DJ-1 has multiple functions, including transcriptional regulation. DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found that the cholecystokinin (CCK) gene is a transcriptional target gene for DJ-1. CCK is a peptide hormone and plays roles in contraction of the gallbladder and in promotion of secretion of pancreatic fluid. CCK is co-localized with dopamine in the substantia nigra to regulate release of dopamine. Reduced expression of CCK mRNA was observed in DJ-1-knockdown cells. The Ras-responsive element (RRE) and Sp1 site were essential for promoter activity, and DJ-1 stimulated promoter activity by binding to RRE-binding protein 1 (RREBP1). The complex of DJ-1 with RREB1 but not with Sp1 bound to the RRE. Furthermore, the reduced CCK level in the serum from DJ-1-knockout mice compared to that from wild-type mice was observed. This is the first report showing that DJ-1 participates in peptide hormone synthesis.
Collapse
Affiliation(s)
- Takuya Yamane
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Sayaka Suzui
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hirotake Kitaura
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | - Hiroyoshi Ariga
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
42
|
Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal 2013; 11:34. [PMID: 23683503 PMCID: PMC3693914 DOI: 10.1186/1478-811x-11-34] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/10/2013] [Indexed: 01/15/2023] Open
Abstract
: Parkinson's disease (PD) coincides with a dramatic loss of dopaminergic neurons within the substantia nigra. A key player in the loss of dopaminergic neurons is oxidative stress. Dopamine (DA) metabolism itself is strongly linked to oxidative stress as its degradation generates reactive oxygen species (ROS) and DA oxidation can lead to endogenous neurotoxins whereas some DA derivatives show antioxidative effects. Therefore, DA metabolism is of special importance for neuronal redox-homeostasis and viability.In this review we highlight different aspects of dopamine metabolism in the context of PD and neurodegeneration. Since most reviews focus only on single aspects of the DA system, we will give a broader overview by looking at DA biosynthesis, sequestration, degradation and oxidation chemistry at the metabolic level, as well as at the transcriptional, translational and posttranslational regulation of all enzymes involved. This is followed by a short overview of cellular models currently used in PD research. Finally, we will address the topic from a medical point of view which directly aims to encounter PD.
Collapse
Affiliation(s)
- Johannes Meiser
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Daniel Weindl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, avenue des Hauts-Fourneaux, L-4362 Esch-Belval, Luxembourg
| |
Collapse
|
43
|
Neuroprotective function of DJ-1 in Parkinson's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:683920. [PMID: 23766857 PMCID: PMC3671546 DOI: 10.1155/2013/683920] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is caused by dopaminergic neuronal death in the substantia nigra, resulting in a reduced level of dopamine in the striatum. Oxidative stress and mitochondrial dysfunction are thought to be major causes of neurodegeneration in PD. Although genetic and environmental factors are thought to affect the onset of PD, precise mechanisms at the molecular level have not been elucidated. The DJ-1 gene is a causative gene for familial PD (park7) and also an oncogene. DJ-1 has various functions, including transcriptional regulation, antioxidative stress reaction, and chaperone, protease, and mitochondrial regulation, and its activity is regulated by its oxidative status, especially that of cysteine 106 (C106) of DJ-1. Excess oxidation of DJ-1, which renders DJ-1 inactive, has been observed in patients with sporadic PD and Alzheimer's disease, suggesting that DJ-1 also participates in the onset and pathogenesis of sporadic PD as well as familial PD. DJ-1 is also a stress sensor and its expression is increased upon various stresses, including oxidative stress. In this review, we describe functions of DJ-1 against oxidative stress and possible roles of DJ-1 in the pathogenesis of PD.
Collapse
|
44
|
Evidence of oxidative stress in young and aged DJ-1-deficient mice. FEBS Lett 2013; 587:1562-70. [PMID: 23587484 DOI: 10.1016/j.febslet.2013.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 02/02/2023]
Abstract
Loss of DJ-1 function contributes to pathogenesis in Parkinson's disease. Here, we investigate the impact of aging and DJ-1 deficiency in transgenic mice. Ventral midbrain from young DJ-1-deficient mice revealed no change in 4-hydroxy-2-nonenal (4-HNE), but HSP60, HSP40 and striatal dopamine turnover were significantly elevated compared to wildtype. In aged mice, the chaperone response observed in wildtype animals was absent from DJ-1-deficient transgenics, and nigral 4-HNE immunoreactivity was enhanced. These changes were concomitant with increased striatal dopamine levels and uptake. Thus, increased oxidants and diminished protein quality control may contribute to nigral oxidative damage with aging in the model.
Collapse
|
45
|
Maita C, Maita H, Iguchi-Ariga SMM, Ariga H. Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants. PLoS One 2013; 8:e54087. [PMID: 23326576 PMCID: PMC3542337 DOI: 10.1371/journal.pone.0054087] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 12/07/2012] [Indexed: 12/24/2022] Open
Abstract
DJ-1 is a novel oncogene and also a causative gene for familial Parkinson’s disease (park7). DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. Mitochondrial dysfunction is observed in DJ-1-knockout mice and fry, and mitochondrial DJ-1 is more protective against oxidative stress-induced cell death. Although translocation of DJ-1 into mitochondria is enhanced by oxidative stress that leads to oxidation of cysteine 106 (C106) of DJ-1, the characteristics of mitochondrial DJ-1 and the mechanism by which DJ-1 is translocated into mitochondria are poorly understood. In this study, immunostaining, co-immunoprecipitation, cell fractionation and pull-down experiments showed that mutants of glutamine 18 (E18) DJ-1 are localized in mitochondria and do not make homodimers. Likewise, DJ-1 with mutations of two cysteines located in the dimer interface, C46S and C53A, and pathogenic mutants, M26I and L166P DJ-1, were found to be localized in mitochondria and not to make homodimers. Mutant DJ-1 harboring both E18A and C106S, in which C106 is not oxidized, was also localized in mitochondria, indicating that oxidation of C106 is important but not essential for mitochondrial localization of DJ-1. It should be noted that E18A DJ-1 was translocated from mitochondria to the cytoplasm when mitochondrial membrane potential was reduced by treatment of cells with CCCP, an uncoupler of the oxidative phosphorylation system in mitochondria. Furthermore, deletion or substitution of the N-terminal 12 amino acids in DJ-1 resulted in re-localization of E18A, M26I and L166P DJ-1 from mitochondria into the cytoplasm. These findings suggest that a monomer and the N-terminal 12 amino acids are necessary for mitochondrial localization of DJ-1 mutants and that conformation change induced by C106 oxidation or by E18 mutation leads to translocation of DJ-1 into mitochondria.
Collapse
Affiliation(s)
- Chinatsu Maita
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maita
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Hiroyoshi Ariga
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
46
|
Oxidized DJ-1 inhibits p53 by sequestering p53 from promoters in a DNA-binding affinity-dependent manner. Mol Cell Biol 2012; 33:340-59. [PMID: 23149933 DOI: 10.1128/mcb.01350-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DJ-1 is an oncogene and the causative gene for familial Parkinson's disease. Although the oxidative status of DJ-1 at cysteine 106 (C106) is thought to affect all of the activities of DJ-1 and excess oxidation leads to the onset of various diseases, the precise molecular mechanisms underlying the effects of oxidation of DJ-1 on protein-protein interactions of DJ-1 remain unclear. In this study, we found that DJ-1 bound to the DNA-binding region of p53 in a manner dependent on the oxidation of C106. Of the p53 target genes, the expression level and promoter activity of the DUSP1 gene, but not those of the p21 gene, were increased in H(2)O(2)-treated DJ-1(-/-) cells and were decreased in wild-type DJ-1- but not C106S DJ-1-transfected H1299 cells through sequestration of p53 from the DUSP1 promoter by DJ-1. DUSP1 downregulated by oxidized DJ-1 activated extracellular signal-regulated kinase (ERK) and decreased apoptosis. The DUSP1 and p21 promoters harbor nonconsensus and consensus p53 recognition sequences, respectively, which have low affinity and high affinity for p53. However, DJ-1 inhibited p21 promoter activity exhibited by p53 mutants harboring low DNA-binding affinity but not by wild-type p53. These results indicate that DJ-1 inhibits the expression of p53 target genes and depend on p53 DNA-binding affinity and oxidation of DJ-1 C106.
Collapse
|
47
|
Cookson MR. Parkinsonism due to mutations in PINK1, parkin, and DJ-1 and oxidative stress and mitochondrial pathways. Cold Spring Harb Perspect Med 2012; 2:a009415. [PMID: 22951446 DOI: 10.1101/cshperspect.a009415] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three genes have been identified that cause, in humans, autosomally inherited parkinsonism. These are PARK2, encoding the E3 ubiquitin ligase parkin; PINK1, a mitochondrial kinase; and PARK7, which codes for the protein DJ-1. In several experimental systems, it has been shown that all three proteins impact mitochondrial function and/or oxidative stress responses. These are probably related because mitochondria produce oxidative stress in neurons. Moreover, it is clear that there are relationships between these genes, with a single pathway linking PINK1 and parkin and a parallel relationship with DJ-1. Work in progress in the field is aimed at understanding these relationships in more depth.
Collapse
Affiliation(s)
- Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Yamaguchi S, Yamane T, Takahashi-Niki K, Kato I, Niki T, Goldberg MS, Shen J, Ishimoto K, Doi T, Iguchi-Ariga SMM, Ariga H. Transcriptional activation of low-density lipoprotein receptor gene by DJ-1 and effect of DJ-1 on cholesterol homeostasis. PLoS One 2012; 7:e38144. [PMID: 22666465 PMCID: PMC3364227 DOI: 10.1371/journal.pone.0038144] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/01/2012] [Indexed: 11/25/2022] Open
Abstract
DJ-1 is a novel oncogene and also causative gene for familial Parkinson’s disease park7. DJ-1 has multiple functions that include transcriptional regulation, anti-oxidative reaction and chaperone and mitochondrial regulation. For transcriptional regulation, DJ-1 acts as a coactivator that binds to various transcription factors, resulting in stimulation or repression of the expression of their target genes. In this study, we found the low-density lipoprotein receptor (LDLR) gene is a transcriptional target gene for DJ-1. Reduced expression of LDLR mRNA and protein was observed in DJ-1-knockdown cells and DJ-1-knockout mice and this occurred at the transcription level. Reporter gene assays using various deletion and point mutations of the LDLR promoter showed that DJ-1 stimulated promoter activity by binding to the sterol regulatory element (SRE) with sterol regulatory element binding protein (SREBP) and that stimulating activity of DJ-1 toward LDLR promoter activity was enhanced by oxidation of DJ-1. Chromatin immunoprecipitation, gel-mobility shift and co-immunoprecipitation assays showed that DJ-1 made a complex with SREBP on the SRE. Furthermore, it was found that serum LDL cholesterol level was increased in DJ-1-knockout male, but not female, mice and that the increased serum LDL cholesterol level in DJ-1-knockout male mice was cancelled by administration with estrogen, suggesting that estrogen compensates the increased level of serum LDL cholesterol in DJ-1-knockout female mice. This is the first report that DJ-1 participates in metabolism of fatty acid synthesis through transcriptional regulation of the LDLR gene.
Collapse
Affiliation(s)
- Shiori Yamaguchi
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Yamane
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Izumi Kato
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takeshi Niki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Matthew S. Goldberg
- Center for Neurologic Diseases, Brigham & Women’s Hospital, Program in Neuroscience, Harvard Medical School, Boston, United States of America
| | - Jie Shen
- Center for Neurologic Diseases, Brigham & Women’s Hospital, Program in Neuroscience, Harvard Medical School, Boston, United States of America
| | - Kenji Ishimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | - Hiroyoshi Ariga
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
49
|
Ishikawa S, Tanaka Y, Takahashi-Niki K, Niki T, Ariga H, Iguchi-Ariga SMM. Stimulation of vesicular monoamine transporter 2 activity by DJ-1 in SH-SY5Y cells. Biochem Biophys Res Commun 2012; 421:813-8. [PMID: 22554508 DOI: 10.1016/j.bbrc.2012.04.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 01/20/2023]
Abstract
Loss-of-functional mutation in the DJ-1 gene causes a subset of familial Parkinson's disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. Dopamine is synthesized by two enzymes and then packed into synaptic vesicles by vesicular monoamine transporter 2 (VMAT2). In this study, we found that knockdown of DJ-1 expression reduced the levels of mRNA and protein of VMAT2, resulting in reduced VMAT2 activity. Co-immunoprecipitation and pull-down experiments revealed that DJ-1 directly bound to VMAT2, and DJ-1 was co-localized with VMAT2 in cells. Furthermore, ectopic expression of wild-type DJ-1, but not that of L166P, M26I and C106S mutants of DJ-1, increased mRNA and protein levels of VMAT2 and VMAT2 activity. Since VMAT2 and a portion of DJ-1 are localized in the synaptic membrane, these results suggest that DJ-1, but not pathogenically mutated DJ-1, stimulates VMAT2 activity in the synapse by transactivation of the VMAT gene and by direct binding to VMAT2 and that cysteine 106 is necessary for the stimulating activity of DJ-1 toward VMAT2.
Collapse
Affiliation(s)
- Shizuma Ishikawa
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Ruiz-Pérez MV, Pino-Ángeles A, Medina MA, Sánchez-Jiménez F, Moya-García AA. Structural Perspective on the Direct Inhibition Mechanism of EGCG on Mammalian Histidine Decarboxylase and DOPA Decarboxylase. J Chem Inf Model 2011; 52:113-9. [DOI: 10.1021/ci200221z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Victoria Ruiz-Pérez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Almudena Pino-Ángeles
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Miguel A. Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Aurelio A. Moya-García
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain and CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| |
Collapse
|