1
|
Beribisky AV, Huber A, Sarne V, Spittler A, Sukhbaatar N, Seipel T, Laccone F, Steinkellner H. MeCP2 is a naturally supercharged protein with cell membrane transduction capabilities. Protein Sci 2024; 33:e5170. [PMID: 39276009 PMCID: PMC11400631 DOI: 10.1002/pro.5170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
The intrinsically disordered protein MeCP2 is a global transcriptional regulator encoded by the MECP2 gene. Although the structured domains of MeCP2 have been the subject of multiple studies, its unstructured regions have not been that extensively characterized. In this work, we show that MeCP2 possesses properties akin to those of supercharged proteins. By utilizing its unstructured portions, MeCP2 can successfully transduce across cell membranes and localize to heterochromatic foci in the nuclei, displaying uptake levels a third lower than a MeCP2 construct fused to the cell-penetrating peptide TAT. MeCP2 uptake can further be enhanced by the addition of compounds that promote endosomal escape following cellular trafficking by means of macropinocytosis. Using a combination of in silico prediction algorithms and live-cell imaging experiments, we mapped the sequence in MeCP2 responsible for its cellular incorporation, which bears a striking resemblance to TAT itself. Transduced MeCP2 was shown to interact with HDAC3. These findings provide valuable insight into the properties of MeCP2 and may be beneficial for devising future protein-based treatment strategies.
Collapse
Affiliation(s)
- Alexander V. Beribisky
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Anna Huber
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of ViennaViennaAustria
| | - Victoria Sarne
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of ViennaViennaAustria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research LaboratoriesViennaAustria
| | - Nyamdelger Sukhbaatar
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Teresa Seipel
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Franco Laccone
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| | - Hannes Steinkellner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of ViennaViennaAustria
| |
Collapse
|
2
|
Anny CA, Nouaille S, Fauré R, Schulz C, Spriet C, Huvent I, Biot C, Lefebvre T. A Step-by-Step Guide for the Production of Recombinant Fluorescent TAT-HA-Tagged Proteins and their Transduction into Mammalian Cells. Curr Protoc 2024; 4:e1016. [PMID: 38511507 DOI: 10.1002/cpz1.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.
Collapse
Affiliation(s)
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| | - Corentin Spriet
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000, Lille, France
| | | | | | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576 - UGSF, Lille, France
| |
Collapse
|
3
|
Cafaro A, Schietroma I, Sernicola L, Belli R, Campagna M, Mancini F, Farcomeni S, Pavone-Cossut MR, Borsetti A, Monini P, Ensoli B. Role of HIV-1 Tat Protein Interactions with Host Receptors in HIV Infection and Pathogenesis. Int J Mol Sci 2024; 25:1704. [PMID: 38338977 PMCID: PMC10855115 DOI: 10.3390/ijms25031704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Each time the virus starts a new round of expression/replication, even under effective antiretroviral therapy (ART), the transactivator of viral transcription Tat is one of the first HIV-1 protein to be produced, as it is strictly required for HIV replication and spreading. At this stage, most of the Tat protein exits infected cells, accumulates in the extracellular matrix and exerts profound effects on both the virus and neighbor cells, mostly of the innate and adaptive immune systems. Through these effects, extracellular Tat contributes to the acquisition of infection, spreading and progression to AIDS in untreated patients, or to non-AIDS co-morbidities in ART-treated individuals, who experience inflammation and immune activation despite virus suppression. Here, we review the role of extracellular Tat in both the virus life cycle and on cells of the innate and adaptive immune system, and we provide epidemiological and experimental evidence of the importance of targeting Tat to block residual HIV expression and replication. Finally, we briefly review vaccine studies showing that a therapeutic Tat vaccine intensifies ART, while its inclusion in a preventative vaccine may blunt escape from neutralizing antibodies and block early events in HIV acquisition.
Collapse
Affiliation(s)
- Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| | | | | | | | | | | | | | | | | | | | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.S.); (L.S.); (R.B.); (M.C.); (F.M.); (S.F.); (M.R.P.-C.); (A.B.); (P.M.)
| |
Collapse
|
4
|
McClary WD, Catala A, Zhang W, Gamboni F, Dzieciatkowska M, Sidhu SS, D'Alessandro A, Catalano CE. A Designer Nanoparticle Platform for Controlled Intracellular Delivery of Bioactive Macromolecules: Inhibition of Ubiquitin-Specific Protease 7 in Breast Cancer Cells. ACS Chem Biol 2022; 17:1853-1865. [PMID: 35796308 DOI: 10.1021/acschembio.2c00256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological therapeutics represent an increasing and critical component of newly approved drugs; however, the inability to deliver biologics intracellularly in a controlled manner remains a major limitation. We have developed a semi-synthetic, tunable phage-like particle (PLP) platform derived from bacteriophage λ. The shell surface can be decorated with small-molecule, biological and synthetic moieties, alone or in combination and in defined ratios. Here, we demonstrate that the platform can be used to deliver biological macromolecules intracellularly and in a controlled manner. Ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that has been widely recognized as an ideal target for the treatment of a variety of cancers. Recently, UbV.7.2, a novel biologic derived from the ubiquitin scaffold, was developed for inhibition of USP7, but issues remain in achieving efficient and controlled intracellular delivery of the biologic. We have shown that decoration of PLPs with trastuzumab (Trz), a HER2-targeted therapeutic used in the treatment of various cancers, results in specific targeting and uptake of Trz-PLPs into HER2-overexpressing breast cancer cells. By simultaneously decorating PLPs with Trz and UbV.7.2, we now show that these particles are also internalized by HER2-positive cells, thus providing a means for intracellular delivery of the biologic in a controlled fashion. Internalized particles retain USP7 inhibition activity of UbV.7.2 and alter the metabolic and proteomic landscapes of these cells. This study demonstrates that the λ "designer nanoparticles" represent a powerful system for the intracellular delivery of biologics in a defined dose.
Collapse
Affiliation(s)
- Wynton D McClary
- The Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Alexis Catala
- The Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G2W1, Canada.,Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Sachdev S Sidhu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G2W1, Canada.,Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S3E1, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States.,Department of Medicine - Division of Hematology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Carlos E Catalano
- The Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
5
|
Rapaka H, Manturthi S, Arjunan P, Venkatesan V, Thangavel S, Marepally S, Patri SV. Influence of Hydrophobicity in the Hydrophilic Region of Cationic Lipids on Enhancing Nucleic Acid Delivery and Gene Editing. ACS APPLIED BIO MATERIALS 2022; 5:1489-1500. [PMID: 35297601 DOI: 10.1021/acsabm.1c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intracellular delivery of biomolecules using non-viral vectors critically depends on the vectors' ability to allow the escape and release of the contents from the endosomes. Prior findings demonstrated that aromatic/hydrophobic group-containing amino acids such as phenylalanine (F) and tryptophan (W) destabilize cellular membranes by forming pores in the lipid bilayer. Taking cues from these findings, we have developed four α-tocopherol-based cationic amphiphiles by varying the aromatic/hydrophobic amino acids such as glycine (G), proline (P), phenylalanine (F), and tryptophan (W) as head groups and triazole in the linker region to study their impact on endosomal escape for the enhanced transfection efficacy. The lipids tocopherol-triazole-phenylalanine (TTF) and tocopherol-triazole-tryptophan (TTW) exhibited similar potential to commercial transfecting reagents, Lipofectamine (LF) 3000 and Lipofectamine Messenger Max (LFMM), respectively, in transfecting plasmid DNA and messenger RNA in multiple cultured cell lines. The TTW liposome was also found to be effective in delivering Cas9 mRNA and demonstrated equal efficiency of gene editing AAVS1 locus compared to LFMM in CHO, Neuro-2a, and EA.HY926 cell lines. In this current investigation, it is shown that the synthesized cationic lipids with aromatic hydrophobic R group-containing amino acids are safe, economic, and actually more efficient in nucleic acid delivery and genome-editing applications. These findings can be further explored in the genome-editing approach for treating genetic disorders.
Collapse
Affiliation(s)
- Hithavani Rapaka
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Shireesha Manturthi
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Porkizhi Arjunan
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | | | | | - Srujan Marepally
- Christian Medical College, Centre for Stem Cell Research, Vellore, Tamilnadu 632001, India
| | - Srilakshmi V Patri
- National Institute of Technology Warangal, Warangal, Telangana 506004, India
| |
Collapse
|
6
|
Mailhiot SE, Thompson MA, Eguchi AE, Dinkel SE, Lotz MK, Dowdy SF, June RK. The TAT Protein Transduction Domain as an Intra-Articular Drug Delivery Technology. Cartilage 2021; 13:1637S-1645S. [PMID: 32954793 PMCID: PMC8804766 DOI: 10.1177/1947603520959392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Intra-articular drug delivery holds great promise for the treatment of joint diseases such as osteoarthritis. The objective of this study was to evaluate the TAT peptide transduction domain (TAT-PTD) as a potential intra-articular drug delivery technology for synovial joints. DESIGN Experiments examined the ability of TAT conjugates to associate with primary chondrocytes and alter cellular function both in vitro and in vivo. Further experiments examined the ability of the TAT-PTD to bind to human osteoarthritic cartilage. RESULTS The results show that the TAT-PTD associates with chondrocytes, is capable of delivering siRNA for chondrocyte gene knockdown, and that the recombinant enzyme TAT-Cre is capable of inducing in vivo genetic recombination within the knee joint in a reporter mouse model. Last, binding studies show that osteoarthritic cartilage preferentially uptakes the TAT-PTD from solution. CONCLUSIONS The results suggest that the TAT-PTD is a promising delivery strategy for intra-articular therapeutics.
Collapse
Affiliation(s)
| | | | - Akiko E. Eguchi
- Mie University Graduate School of
Medicine Faculty of Medicine, Tsu, Mie, Japan
| | | | | | | | - Ronald K. June
- Montana State University System,
Bozeman, MT, USA,Ronald K. June, Montana State
University System, 220 Roberts Hall, Bozeman, MT 59717, USA.
| |
Collapse
|
7
|
Hango CR, Backlund CM, Davis HC, Posey ND, Minter LM, Tew GN. Non-Covalent Carrier Hydrophobicity as a Universal Predictor of Intracellular Protein Activity. Biomacromolecules 2021; 22:2850-2863. [PMID: 34156837 DOI: 10.1021/acs.biomac.1c00242] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine-block-arginine), poly(phenylalanine-block-arginine), and poly(tryptophan-block-arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations. Due to the added hydrophobicity imparted by the polymer backbone as compared to the polypeptide backbone, side-chain functionality was not a universal predictor of carrier performance. Rather, overall carrier hydrophobicity predicted the top performers for both internalization and activity of protein cargoes, regardless of backbone identity. Furthermore, comparison of protein uptake and function revealed carriers which facilitated high gene recombination despite remarkably low Cre internalization, leading us to formalize the concept of intracellular availability (IA) of the delivered cargo. IA, a measure of cargo activity per quantity of cargo internalized, provides valuable insight into the physical relationship between cellular internalization and bioavailability, which can be affected by bottlenecks such as endosomal escape and cargo release. Importantly, carriers with maximal IA existed within a narrow hydrophobicity window, more hydrophilic than those exhibiting maximal cargo uptake. Hydrophobicity may be used as a scaffold-independent predictor of protein uptake, function, and IA, enabling identification of new, effective carriers which would be overlooked by uptake-based screening methods.
Collapse
Affiliation(s)
- Christopher R Hango
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Coralie M Backlund
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, Untied States
| |
Collapse
|
8
|
Yin Y, Li B, Zhou L, Luo J, Liu X, Wang S, Lu Q, Tan W, Chen Z. Protein transduction domain-mediated influenza NP subunit vaccine generates a potent immune response and protection against influenza virus in mice. Emerg Microbes Infect 2021; 9:1933-1942. [PMID: 32811334 PMCID: PMC8284974 DOI: 10.1080/22221751.2020.1812436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleoprotein (NP) is a highly conserved internal protein of the influenza virus, a major target for universal influenza vaccine. Our previous studies have proven NP-based subunit vaccine can provide partial protection in mice. It is reported that the protein transduction domain (PTD) TAT protein from human immunodeficiency virus-1 (HIV-1) is able to penetrate cells when added exogenous protein and could effectively enhance the immune response induced by the exogenous protein. In present study, the recombinant protein TAT-NP, a fusion of TAT and NP was effectively expressed in Escherichia coli and purified as a candidate component for an influenza vaccine. We evaluated the immunogenicity and protective efficacy of recombinant influenza TAT-NP vaccine by intranasal immunization. In vitro experiments showed that TAT-NP could efficiently penetrate into cells. Animal results showed that mice vaccinated with TAT-NP could not only induce higher levels of IgG and mucosal IgA, but also elicit a robust cellular immune response. Moreover, the TAT-NP fusion protein could significantly increase the protection of mice against lethal doses of homologous influenza virus PR8 and could also provide mice protection against a lethal dose challenge against heterosubtypic H9N2 and H3N2 influenza virus. In conclusion, the recombinant TAT-NP might be a universal vaccine candidate against influenza virus.
Collapse
Affiliation(s)
- Yuan Yin
- Department of Clinical Laboratory, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.,Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - BeiBei Li
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Linting Zhou
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Jian Luo
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Xueying Liu
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Shilei Wang
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China
| | - Qun Lu
- Department of Clinical Laboratory, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai, People's Republic of China.,College of Life Science, Hunan Normal University, Changsha, People's Republic of China
| |
Collapse
|
9
|
Abstract
Cancer is the second leading cause of death worldwide, and the search for specialised therapy options has been a challenge for decades. The emergence of active targeted therapies provides the opportunity to treat cancerous tissues without harming healthy ones due to peculiar physiological changes. Herein, peptides and peptide analogs have been gaining a lot of attention over the last decade, especially for the on-site delivery of therapeutics to target tissues in order to achieve efficient and reliable cancer treatment. Combining peptides with highly efficient drug delivery platforms could potentially eliminate off-target adverse effects encountered during active targeting of conventional chemotherapeutics. Small size, ease of production and characterisation, low immunogenicity and satisfactory binding affinity of peptides offer some advantages over other complex targeting moiety, no wonder the market of peptide-based drugs continues to expand expeditiously. It is estimated that the global peptide drug market will be worth around USD 48.04 billion by 2025, with a compound annual growth rate of 9.4%. In this review, the current state of art of peptide-based therapeutics with special interest on tumour targeting peptides has been discussed. Moreover, various active targeting strategies such as the use functionalised peptides or peptide analogs are also elaborated.
Collapse
Affiliation(s)
- Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
10
|
Cytotoxicity of NiO and Ni(OH) 2 Nanoparticles Is Mediated by Oxidative Stress-Induced Cell Death and Suppression of Cell Proliferation. Int J Mol Sci 2020; 21:ijms21072355. [PMID: 32231169 PMCID: PMC7178005 DOI: 10.3390/ijms21072355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
The use of nanomaterial-based products continues to grow with advancing technology. Understanding the potential toxicity of nanoparticles (NPs) is important to ensure that products containing them do not impose harmful effects to human or environmental health. In this study, we evaluated the comparative cytotoxicity between nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) in human bronchoalveolar carcinoma (A549) and human hepatocellular carcinoma (HepG2) cell lines. Cellular viability studies revealed cell line-specific cytotoxicity in which nickel NPs were toxic to A549 cells but relatively nontoxic to HepG2 cells. Time-, concentration-, and particle-specific cytotoxicity was observed in A549 cells. NP-induced oxidative stress triggered dissipation of mitochondrial membrane potential and induction of caspase-3 enzyme activity. The subsequent apoptotic events led to reduction in cell number. In addition to cell death, suppression of cell proliferation played an essential role in regulating cell number. Collectively, the observed cell viability is a function of cell death and suppression of proliferation. Physical and chemical properties of NPs such as total surface area and metal dissolution are in agreement with the observed differential cytotoxicity. Understanding the properties of NPs is essential in informing the design of safer materials.
Collapse
|
11
|
Taylor RE, Zahid M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020; 12:E225. [PMID: 32138146 PMCID: PMC7150854 DOI: 10.3390/pharmaceutics12030225] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/31/2022] Open
Abstract
Cell penetrating peptides (CPPs), also known as protein transduction domains (PTDs), first identified ~25 years ago, are small, 6-30 amino acid long, synthetic, or naturally occurring peptides, able to carry variety of cargoes across the cellular membranes in an intact, functional form. Since their initial description and characterization, the field of cell penetrating peptides as vectors has exploded. The cargoes they can deliver range from other small peptides, full-length proteins, nucleic acids including RNA and DNA, liposomes, nanoparticles, and viral particles as well as radioisotopes and other fluorescent probes for imaging purposes. In this review, we will focus briefly on their history, classification system, and mechanism of transduction followed by a summary of the existing literature on use of CPPs as gene delivery vectors either in the form of modified viruses, plasmid DNA, small interfering RNA, oligonucleotides, full-length genes, DNA origami or peptide nucleic acids.
Collapse
Affiliation(s)
- Rebecca E. Taylor
- Mechanical Engineering, Biomedical Engineering and Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| |
Collapse
|
12
|
Kamei N, Yamamoto S, Hashimoto H, Nishii M, Miyaura M, Tomada K, Nakase I, Takeda-Morishita M. Optimization of the method for analyzing endocytosis of fluorescently tagged molecules: Impact of incubation in the cell culture medium and cell surface wash with glycine-hydrochloric acid buffer. J Control Release 2019; 310:127-140. [PMID: 31442466 DOI: 10.1016/j.jconrel.2019.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
To obtain the therapeutic effect of biological medicines, such as proteins and nucleic acids, these medicines must achieve their intracellular target, such as the cytoplasm, and pass through biological membrane barriers. Endocytosis is an attractive route for the intracellular delivery of such drugs, and various endocytosis inhibitors have been used as tools to study the involvement of endocytosis in the cell internalization of delivery carriers. However, the specificity of these inhibitors has been insufficiently studied, and our preliminary tests could not detect the expected effect of the well-known endocytosis inhibitors. Therefore, the present study aimed to optimize the experimental conditions to precisely analyze cellular internalization via endocytosis. We first found that incubation of model molecules, such as transferrin (Tf) and cholera toxin subunit B (CTB), in cell culture medium (DMEM) could efficiently induce their internalization to HeLa cells compared to that in transport buffer (HBSS). Moreover, we clarified that cell surface wash with glycine-hydrochloric acid buffer before confocal microscopy and flow cytometry strengthened the intracellular fluorescence of Tf, CTB, and dextran tagged with fluorescent probes possibly via the neutralization of endosomal pH. Even under the optimized condition, however, the specificity of endocytosis inhibitors was disputable. The present study suggested the importance of the optimization of the study design with endocytosis inhibitors in analyzing cellular internalization.
Collapse
Affiliation(s)
- Noriyasu Kamei
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan.
| | - Satoshi Yamamoto
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Hiro Hashimoto
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Megumi Nishii
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Moe Miyaura
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Kiho Tomada
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Ikuhiko Nakase
- Laboratory for Cellular Regulation Chemistry, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai-Shi, Osaka 599-8570, Japan
| | - Mariko Takeda-Morishita
- Laboratory of Drug Delivery Systems, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| |
Collapse
|
13
|
Ohgita T, Takechi-Haraya Y, Nadai R, Kotani M, Tamura Y, Nishikiori K, Nishitsuji K, Uchimura K, Hasegawa K, Sakai-Kato K, Akaji K, Saito H. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:541-549. [DOI: 10.1016/j.bbamem.2018.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/17/2018] [Accepted: 12/13/2018] [Indexed: 11/15/2022]
|
14
|
A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation. Sci Rep 2019; 9:3308. [PMID: 30824746 PMCID: PMC6397180 DOI: 10.1038/s41598-019-39531-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023] Open
Abstract
HIV-1 Tat protein contributes to HIV-neuropathogenesis in several ways including its ability to be taken up by uninfected bystander CNS cells and to activate inflammatory host genes causing synaptic injury. Here, we report that in the globally dominant HIV-1 clade C, Tat displays a naturally occurring polymorphism, R57S, in its basic domain, which mediates cellular uptake. We examined the effect of this polymorphism on Tat uptake and its consequences for cellular gene transactivation. In decapeptides corresponding to the basic domain, a R57S substitution caused up to a 70% reduction in uptake. We also used a transcellular Tat transactivation assay, where we expressed Tat proteins of HIV-1 clade B (Tat-B) or C (Tat-C) or their position 57 variants in HeLa cells. We quantified the secreted Tat proteins and measured their uptake by TZM-bl cells, which provide readout via an HIV-1 Tat-responsive luciferase gene. Transactivation by Tat-B was significantly reduced by R57S substitution, while that of Tat-C was enhanced by the reciprocal S57R substitution. Finally, we exposed microglia to Tat variants and found that R57 is required for maximal neuroinflammation. The R57S substitution dampened this response. Thus, genetic variations can modulate the ability of HIV-1 Tat to systemically disseminate neuroinflammation.
Collapse
|
15
|
Lorents A, Säälik P, Langel Ü, Pooga M. Arginine-Rich Cell-Penetrating Peptides Require Nucleolin and Cholesterol-Poor Subdomains for Translocation across Membranes. Bioconjug Chem 2018; 29:1168-1177. [PMID: 29510042 DOI: 10.1021/acs.bioconjchem.7b00805] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proficient transport vectors called cell-penetrating peptides (CPPs) internalize into eukaryotic cells mostly via endocytic pathways and facilitate the uptake of various cargo molecules attached to them. However, some CPPs are able to induce disturbances in the plasma membrane and translocate through it seemingly in an energy-independent manner. For understanding this phenomenon, giant plasma membrane vesicles (GPMVs) derived from the cells are a beneficial model system, since GPMVs have a complex membrane composition comparable to the cells yet lack cellular energy-dependent mechanisms. We investigated the translocation of arginine-rich CPPs into GPMVs with different membrane compositions. Our results demonstrate that lower cholesterol content favors accumulation of nona-arginine and, additionally, sequestration of cholesterol increases the uptake of the CPPs in vesicles with higher cholesterol packing density. Furthermore, the proteins on the surface of vesicles are essential for the uptake of arginine-rich CPPs: downregulation of nucleolin decreases the accumulation and digestion of proteins on the membrane suppresses translocation even more efficiently.
Collapse
Affiliation(s)
- Annely Lorents
- Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
- Institute of Technology , University of Tartu , Nooruse 1 , 50411 Tartu , Estonia
| | - Pille Säälik
- Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
- Institute of Biomedicine and Translational Medicine , University of Tartu , Ravila 14B , 50411 Tartu , Estonia
| | - Ülo Langel
- Institute of Technology , University of Tartu , Nooruse 1 , 50411 Tartu , Estonia
- Department of Neurochemistry , Stockholm University , Svante Arrhenius väg 16B , 10691 Stockholm , Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , 51010 Tartu , Estonia
- Institute of Technology , University of Tartu , Nooruse 1 , 50411 Tartu , Estonia
| |
Collapse
|
16
|
Identification of a conformational heparin-recognition motif on the peptide hormone secretin: key role for cell surface binding. Biochem J 2017; 474:2249-2260. [PMID: 28536157 DOI: 10.1042/bcj20170035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/30/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022]
Abstract
Secretin is a peptide hormone that exerts pleiotropic physiological functions by specifically binding to its cognate membrane-bound receptor. The membrane catalysis model of peptide-receptor interactions states that soluble peptidic ligands initially interact with the plasma membrane. This interaction increases the local concentration and structures the peptide, enhancing the rate of receptor binding. However, this model does not consider the dense network of glycosaminoglycans (GAGs) at the surface of eukaryotic cells. These sulfated polysaccharide chains are known to sequester numerous proteic signaling molecules. In the present study, we evaluated the interaction between the peptide hormone secretin and sulfated GAGs and its contribution to cell surface binding. Using GAG-deficient cells and competition experiments with soluble GAGs, we observed by confocal microscopy and flow cytometry that GAGs mediate the sequestration of secretin at the cell surface. Isothermal titration calorimetry and surface plasmon resonance revealed that secretin binds to heparin with dissociation constants ranging between 0.9 and 4 μM. By designing secretin derivatives with a restricted conformational ensemble, we observed that this interaction is mediated by the presence of a specific conformational GAG-recognition motif that decorates the surface of the peptide upon helical folding. The present study identifies secretin as a novel GAG-binding polypeptide and opens new research direction on the functional role of GAGs in the biology of secretin.
Collapse
|
17
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
18
|
Ogihara Y, Yukawa H, Kameyama T, Nishi H, Onoshima D, Ishikawa T, Torimoto T, Baba Y. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS 2 nanoparticles. Sci Rep 2017; 7:40047. [PMID: 28059135 PMCID: PMC5216330 DOI: 10.1038/srep40047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/30/2016] [Indexed: 01/19/2023] Open
Abstract
The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver.
Collapse
Affiliation(s)
- Yusuke Ogihara
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroshi Yukawa
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tatsuya Kameyama
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hiroyasu Nishi
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Onoshima
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tetsuya Ishikawa
- Department of Medical Technology, Nagoya University, Graduate School of Medicine, Daikominami, Higashi-ku, Nagoya 461-8673, Japan
| | - Tsukasa Torimoto
- Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14, Hayashi-cho, Takamatsu 761-0395, Japan
| |
Collapse
|
19
|
Progress in Research and Application of HIV-1 TAT-Derived Cell-Penetrating Peptide. J Membr Biol 2016; 250:115-122. [DOI: 10.1007/s00232-016-9940-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023]
|
20
|
Presumed LRP1-targeting transport peptide delivers β-secretase inhibitor to neurons in vitro with limited efficiency. Sci Rep 2016; 6:34297. [PMID: 27682851 PMCID: PMC5041153 DOI: 10.1038/srep34297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/09/2016] [Indexed: 12/26/2022] Open
Abstract
Interfering with the activity of β-secretase to reduce the production of Aβ peptides is a conceivable therapeutic strategy for Alzheimer’s disease. However, the development of efficient yet safe inhibitors is hampered by secondary effects, usually linked to the indiscriminate inhibition of other substrates’ processing by the targeted enzyme. Based on the spatial compartmentalization of the cleavage of the amyloid precursor protein by β-secretase, we hypothesized that by exploiting the endocytosis receptor low-density lipoprotein receptor-related protein it would be possible to direct an otherwise cell-impermeable inhibitor to the endosomes of neurons, boosting the drug’s efficacy and importantly, sparing the off-target effects. We used the transport peptide Angiopep to build an endocytosis-competent conjugate and found that although the peptide facilitated the inhibitor’s internalization into neurons and delivered it to the endosomes, the delivery was not efficient enough to potently reduce β-secretase activity at the cellular level. This is likely connected to the finding that in the cell lines we used, Angiopep’s internalization was not mediated by its presumed receptor to a significant extent. Additionally, Angiopep exploited different internalization mechanisms when applied alone or when conjugated to the inhibitor, highlighting the impact that drug conjugation can have on transport peptides.
Collapse
|
21
|
Lönn P, Kacsinta AD, Cui XS, Hamil AS, Kaulich M, Gogoi K, Dowdy SF. Enhancing Endosomal Escape for Intracellular Delivery of Macromolecular Biologic Therapeutics. Sci Rep 2016; 6:32301. [PMID: 27604151 PMCID: PMC5015074 DOI: 10.1038/srep32301] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022] Open
Abstract
Bioactive macromolecular peptides and oligonucleotides have significant therapeutic potential. However, due to their size, they have no ability to enter the cytoplasm of cells. Peptide/Protein transduction domains (PTDs), also called cell-penetrating peptides (CPPs), can promote uptake of macromolecules via endocytosis. However, overcoming the rate-limiting step of endosomal escape into the cytoplasm remains a major challenge. Hydrophobic amino acid R groups are known to play a vital role in viral escape from endosomes. Here we utilize a real-time, quantitative live cell split-GFP fluorescence complementation phenotypic assay to systematically analyze and optimize a series of synthetic endosomal escape domains (EEDs). By conjugating EEDs to a TAT-PTD/CPP spilt-GFP peptide complementation assay, we were able to quantitatively measure endosomal escape into the cytoplasm of live cells via restoration of GFP fluorescence by intracellular molecular complementation. We found that EEDs containing two aromatic indole rings or one indole ring and two aromatic phenyl groups at a fixed distance of six polyethylene glycol (PEG) units from the TAT-PTD-cargo significantly enhanced cytoplasmic delivery in the absence of cytotoxicity. EEDs address the critical rate-limiting step of endosomal escape in delivery of macromolecular biologic peptide, protein and siRNA therapeutics into cells.
Collapse
Affiliation(s)
- Peter Lönn
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Apollo D Kacsinta
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Xian-Shu Cui
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Alexander S Hamil
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Manuel Kaulich
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Khirud Gogoi
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| | - Steven F Dowdy
- Dept of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, CA, 92093 USA
| |
Collapse
|
22
|
Cathepsin-L and transglutaminase dependent processing of ps20: A novel mechanism for ps20 regulation via ECM cross-linking. Biochem Biophys Rep 2016; 7:328-337. [PMID: 28955923 PMCID: PMC5613349 DOI: 10.1016/j.bbrep.2016.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 05/16/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Whey-acidic-protein (WAP) four-disulphide core (WFDC) proteins have important roles in the regulation of innate immunity, anti-microbial function, and the inhibition of inflammatory proteases at mucosal surfaces. It was recently demonstrated that the WFDC protein, prostate stromal 20 (ps20), encoded by the WFDC1 gene, is a potent growth inhibitory factor, and shares with other WFDC proteins the ability to modulate wound healing processes and immune responses to viral infections. However, ps20 remains relatively uncharacterised at the protein level. Using a panel of ps20 antibodies for western-blotting (WB), ELISA and immunoaffinity purification, we isolated, biochemically characterised and tested ps20 preparations for three biological properties: (i) interactions with glycosaminoglycans (GAG) (ii) inhibition of cell proliferation, and (iii) transglutaminase2 (TG2) mediated crosslinking of ps20 to fibronectin, a process implicated in wound healing. We show herein that ps20 preparations contain multiple molecular forms including full-length ps20 (resolving at ≈27 kDa), an exon 3 truncated form (≈22 kDa) that lacks aa113-140, and variable amounts of a putatively cleaved lower MW (≈15-17 kDa) species. Untagged purified ps20 preparations containing a mixture of these forms are biologically active in significantly suppressing prostate cell proliferation. We show that one mechanism by which lower LMW forms of ps20 arise is through cathepsin L (CL) cleavage, and confirm that CL cleaves ps20 at the C-terminus, but this does not inhibit its growth inhibitory function. However, CL cleavage abrogated the interaction between ps20 and solid-phase fibronectin. Therefore, we demonstrate for the first time that LMW forms of ps20 that lack a C-terminal immunogenic epitope can arise through CL cleavage and this cleavage impairs multimerisation and potential capacity to cross-link to ECM, but not the capacity of ps20 to inhibit cell proliferation. We propose that ps20 like other WFDC proteins can become associated with GAGs and the ECM. Furthermore, we suggest post-translational processing and cleavage of ps20 is required to generate functional protein species, and TG2 mediated crosslinking and CL cleavage form components of a ps20 regulatory apparatus.
Collapse
Key Words
- CL, cathepsin L
- CM, conditioned media
- CV, column volume
- Cathepsin
- ECM, extracellular matrix
- FL, full length
- GAG, glycosaminoglycan
- Glycosaminoglycan
- HMW, high molecular weight
- LMW, low molecular weight
- MW, molecular weight
- Prostate cancer
- Ps20
- TR, truncated
- Transglutaminase
- WB, western blot
- WFDC1, whey acidic protein four disulphide core 1
- Whey-four-disulphide core
- ps20, prostate stromal 20
- rps20, recombinant ps20
Collapse
|
23
|
Krautwald S, Dewitz C, Fändrich F, Kunzendorf U. Inhibition of regulated cell death by cell-penetrating peptides. Cell Mol Life Sci 2016; 73:2269-84. [PMID: 27048815 PMCID: PMC4887531 DOI: 10.1007/s00018-016-2200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death.
Collapse
Affiliation(s)
- Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cellular Medicine, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| |
Collapse
|
24
|
Takechi-Haraya Y, Nadai R, Kimura H, Nishitsuji K, Uchimura K, Sakai-Kato K, Kawakami K, Shigenaga A, Kawakami T, Otaka A, Hojo H, Sakashita N, Saito H. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1339-49. [DOI: 10.1016/j.bbamem.2016.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/12/2016] [Accepted: 03/17/2016] [Indexed: 12/16/2022]
|
25
|
Lim S, Lee JA, Koo JH, Kang TG, Ha SJ, Choi JM. Cell Type Preference of a Novel Human Derived Cell-Permeable Peptide dNP2 and TAT in Murine Splenic Immune Cells. PLoS One 2016; 11:e0155689. [PMID: 27186978 PMCID: PMC4871486 DOI: 10.1371/journal.pone.0155689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022] Open
Abstract
Cell-permeable peptides (CPPs) have been widely studied as an attractive drug delivery system to deliver therapeutic macromolecules such as DNA, RNA, and protein into cells. However, its clinical application is still limited and controversial due to the lack of a complete understanding of delivery efficiency in target cells. Previously we identified and characterized the novel and superior CPP, named dNP2, and here we comparatively analyzed intracellular delivery efficiency of dNP2 and TAT in various immune cells of mouse spleen to demonstrate their cell type preference. dNP2- or TAT-conjugated fluorescent proteins were most efficiently taken up by phagocytic cells such as dendritic cells and macrophages while little protein uptake was seen by lymphocytes including T cells, B cells, and NK cells. Interestingly CD8+ lymphoid dendritic cells and CD62LloCD44hi memory like T cell subsets showed significantly better uptake efficiency in vitro and in vivo relative to other dendritic cells or T cells, respectively. In addition, activated macrophages, T cells, and B cells took up the proteins more efficiently relative to when in the resting state. Importantly, only dNP2, not TAT, shows significant intracellular protein delivery efficiency in vivo. Collectively, this study provides important information regarding heterogeneous intracellular delivery efficiency of CPPs such as dNP2 and TAT with cell type preference in the spleen needed for its application in phagocytic cells or activated immune cells.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Jung-ah Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
| | - Tae Gun Kang
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120–749, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, 133–791, Korea
- * E-mail:
| |
Collapse
|
26
|
Abstract
During the three decades of cell-penetrating peptides era the superfamily of CPPs has rapidly expanded, and the quest for new sequences continues. CPPs have been well recognized by scientific community and they have been used for transduction of a wide variety of molecules and particles into cultured cells and in vivo. In parallel with application of CPPs for delivering of active payloads, the mechanisms that such peptides take advantage of for gaining access to cells' insides have been in the focus of intense studies. Although the common denominator "cell penetration" unites all CPPs, the interaction partners on the cell surface, evoked cellular responses and even the uptake mechanisms might greatly vary between different peptide types. Here we present some possibilities for classification of CPPs based on their type of origin, physical-chemical properties, and the extent of modifications and design efforts. We also briefly analyze the internalization mechanisms with regard to their classification into groups based on physical-chemical characteristics.
Collapse
|
27
|
Pae J, Liivamägi L, Lubenets D, Arukuusk P, Langel Ü, Pooga M. Glycosaminoglycans are required for translocation of amphipathic cell-penetrating peptides across membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1860-7. [PMID: 27117133 DOI: 10.1016/j.bbamem.2016.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
Cell-penetrating peptides (CPPs) are considered as one of the most promising tools to mediate the cellular delivery of various biologically active compounds that are otherwise cell impermeable. CPPs can internalize into cells via two different pathways - endocytosis and direct translocation across the plasma membrane. In both cases, the initial step of internalization requires interactions between CPPs and different plasma membrane components. Despite the extensive research, it is not yet fully understood, which of these cell surface molecules mediate the direct translocation of CPPs across the plasma- and endosomal membrane. In the present study we used giant plasma membrane vesicles (GPMVs) as a model membrane system to elucidate the specific molecular mechanisms behind the internalization and the role of cell surface glycosaminoglycans (GAGs) in the translocation of four well-known CPPs, classified as cationic (nona-arginine, Tat peptide) and amphipathic (transportan and TP10). We demonstrate here that GAGs facilitate the translocation of amphipathic CPPs, but not the internalization of cationic CPPs; and that the uptake is not mediated by a specific GAG class, but rather the overall amount of these polysaccharides is crucial for the internalization of amphipathic peptides.
Collapse
Affiliation(s)
- Janely Pae
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Laura Liivamägi
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Dmitri Lubenets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Institute of Technology, University of Tartu, Tartu, Estonia; Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
28
|
Emerging landscape of cell penetrating peptide in reprogramming and gene editing. J Control Release 2016; 226:124-37. [DOI: 10.1016/j.jconrel.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
|
29
|
Lim S, Koo JH, Choi JM. Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination. Immune Netw 2016; 16:33-43. [PMID: 26937230 PMCID: PMC4770098 DOI: 10.4110/in.2016.16.1.33] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022] Open
Abstract
Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4(+) and CD8(+) T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
30
|
Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proc Natl Acad Sci U S A 2016; 113:E291-9. [PMID: 26733682 DOI: 10.1073/pnas.1518634113] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein transduction domains (PTDs) are powerful nongenetic tools that allow intracellular delivery of conjugated cargoes to modify cell behavior. Their use in biomedicine has been hampered by inefficient delivery to nuclear and cytoplasmic targets. Here we overcame this deficiency by developing a series of novel fusion proteins that couple a membrane-docking peptide to heparan sulfate glycosaminoglycans (GAGs) with a PTD. We showed that this GET (GAG-binding enhanced transduction) system could deliver enzymes (Cre, neomycin phosphotransferase), transcription factors (NANOG, MYOD), antibodies, native proteins (cytochrome C), magnetic nanoparticles (MNPs), and nucleic acids [plasmid (p)DNA, modified (mod)RNA, and small inhibitory RNA] at efficiencies of up to two orders of magnitude higher than previously reported in cell types considered hard to transduce, such as mouse embryonic stem cells (mESCs), human ESCs (hESCs), and induced pluripotent stem cells (hiPSCs). This technology represents an efficient strategy for controlling cell labeling and directing cell fate or behavior that has broad applicability for basic research, disease modeling, and clinical application.
Collapse
|
31
|
Kaitsuka T, Tomizawa K. Cell-Penetrating Peptide as a Means of Directing the Differentiation of Induced-Pluripotent Stem Cells. Int J Mol Sci 2015; 16:26667-76. [PMID: 26561805 PMCID: PMC4661845 DOI: 10.3390/ijms161125986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023] Open
Abstract
Protein transduction using cell-penetrating peptides (CPPs) is useful for the delivery of large protein molecules, including some transcription factors. This method is safer than gene transfection methods with a viral vector because there is no risk of genomic integration of the exogenous DNA. Recently, this method was reported as a means for the induction of induced pluripotent stem (iPS) cells, directing the differentiation into specific cell types and supporting gene editing/correction. Furthermore, we developed a direct differentiation method to obtain a pancreatic lineage from mouse and human pluripotent stem cells via the protein transduction of three transcription factors, Pdx1, NeuroD, and MafA. Here, we discuss the possibility of using CPPs as a means of directing the differentiation of iPS cells and other stem cell technologies.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto 860-8556, Japan.
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Kumamoto 860-8556, Japan.
| |
Collapse
|
32
|
Yang J, Tsutsumi H, Furuta T, Sakurai M, Mihara H. Interaction of amphiphilic α-helical cell-penetrating peptides with heparan sulfate. Org Biomol Chem 2015; 12:4673-81. [PMID: 24867193 DOI: 10.1039/c4ob00673a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-penetrating peptides (CPPs) are able to be taken up by cells and can deliver macromolecular cargos. However, the mechanism of this internalization is not yet fully understood. Recent theories suggest that the binding of cationic CPPs to negatively charged extracellular glycosaminoglycans, such as heparan sulfate (HS), is a possible mechanism of cellular uptake (CU). Our group has screened the CU activities of 54 systematically designed amphiphilic α-helical peptides in HeLa cells. Notably, a mutation in even a single residue significantly alters the CU ability of a peptide. To determine the structure-CU activity relationship of CPPs, four peptides, which contain a difference in one or two amino acids (i.e., Arg/Glu and Ala/Phe), were chosen from our CPP library to examine their interactions with HS. Fluorescence spectroscopy, isothermal titration calorimetry (ITC) and dynamic light scattering analysis indicated that the HS-binding affinities and HS-clustering abilities of the four CPPs correlated well with their CU activities in HeLa and A549 cells. The heat capacities of the CPPs, determined using ITC and binding free energy decomposition analyses in molecular dynamics simulations, revealed that electrostatic interactions were more dominant in the HS-binding processes of Arg-containing peptides in comparison to Glu-containing peptides, whereas hydrophobic contributions were the primary mode of interaction of Phe-containing peptides in comparison to Ala-containing peptides. Furthermore, it was implied that hydrophobic interactions may be more favourable than electrostatic interactions during the CU process.
Collapse
Affiliation(s)
- Ji Yang
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | |
Collapse
|
33
|
Swiecicki JM, Di Pisa M, Burlina F, Lécorché P, Mansuy C, Chassaing G, Lavielle S. Accumulation of cell-penetrating peptides in large unilamellar vesicles: A straightforward screening assay for investigating the internalization mechanism. Biopolymers 2015; 104:533-43. [DOI: 10.1002/bip.22652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Jean-Marie Swiecicki
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Margherita Di Pisa
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Fabienne Burlina
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Pascaline Lécorché
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Christelle Mansuy
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Gérard Chassaing
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Solange Lavielle
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| |
Collapse
|
34
|
Lim S, Kim WJ, Kim YH, Lee S, Koo JH, Lee JA, Yoon H, Kim DH, Park HJ, Kim HM, Lee HG, Yun Kim J, Lee JU, Hun Shin J, Kyun Kim L, Doh J, Kim H, Lee SK, Bothwell ALM, Suh M, Choi JM. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat Commun 2015; 6:8244. [PMID: 26372309 PMCID: PMC4579786 DOI: 10.1038/ncomms9244] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/31/2015] [Indexed: 01/06/2023] Open
Abstract
Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood-brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood-brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yeon-Ho Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Sohee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea.,Samsung Advanced Institute for Health Sciences &Technology (SAIHST), Seoul 135-710, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jung-Ah Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Heeseok Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Do-Hyun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hong-Jai Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hye-Mi Kim
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ji Yun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jae Hun Shin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Junsang Doh
- Department of Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hongtae Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea.,Samsung Advanced Institute for Health Sciences &Technology (SAIHST), Seoul 135-710, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea
| |
Collapse
|
35
|
Lin BY, Kao MC. Therapeutic applications of the TAT-mediated protein transduction system for complex I deficiency and other mitochondrial diseases. Ann N Y Acad Sci 2015; 1350:17-28. [PMID: 26273800 DOI: 10.1111/nyas.12858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Among the five enzyme complexes in the oxidative phosphorylation system, NADH-coenzyme Q oxidoreductase (also called complex I) is the largest, most intricate, and least understood. This enzyme complex spans the inner mitochondrial membrane and catalyzes the first step of electron transfer by the oxidation of NADH, and thereby provides two electrons for the reduction of quinone to quinol. Complex I deficiency is associated with many severe mitochondrial diseases, including Leber hereditary optic neuropathy and Leigh syndrome. However, to date, conventional treatments for the majority of genetic mitochondrial diseases are only palliative. Developing a reliable and convenient therapeutic approach is therefore considered to be an urgent need. Targeted proteins fused with the protein transduction domain of human immunodeficiency virus 1 transactivator of transcription (TAT) have been shown to enter cells by crossing plasma membranes while retaining their biological activities. Recent developments show that, in fusion with mitochondrial targeting sequences (MTSs), TAT-MTS-bound cargo can be correctly transported into mitochondria and restore the missing function of the cargo protein in patients' cells. The available evidence suggests that the TAT-mediated protein transduction system holds great promise as a potential therapeutic approach to treat complex I deficiency, as well as other mitochondrial diseases.
Collapse
Affiliation(s)
- Bo-Yu Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
36
|
Abstract
Cell penetrating peptides (CPP), also known as protein transduction domains (PTD), are small peptides able to carry peptides, proteins, nucleic acid, and nanoparticles, including viral particles, across the cellular membranes into cells, resulting in internalization of the intact cargo. In general, CPPs can be broadly classified into tissue-specific and non-tissue specific peptides, with the latter further sub-divided into three types: (1) cationic peptides of 6-12 amino acids in length comprised predominantly of arginine, lysine and/or ornithine residues; (2) hydrophobic peptides such as leader sequences of secreted growth factors or cytokines; and (3) amphipathic peptides obtained by linking hydrophobic peptides to nuclear localizing signals. Tissue-specific peptides are usually identified by screening of large peptide phage display libraries. These transduction peptides have the potential for a myriad of diagnostic as well as therapeutic applications, ranging from delivery of fluorescent or radioactive compounds for imaging, to delivery of peptides and proteins of therapeutic potential, and improving uptake of DNA, RNA, siRNA and even viral particles. Here we review the potential applications as well as hurdles to the tremendous potential of these CPPs, in particular the cell-type specific peptides.
Collapse
|
37
|
Lönn P, Dowdy SF. Cationic PTD/CPP-mediated macromolecular delivery: charging into the cell. Expert Opin Drug Deliv 2015; 12:1627-36. [PMID: 25994800 DOI: 10.1517/17425247.2015.1046431] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Macromolecular therapeutics, including enzymes, transcription factors, siRNAs, peptides and large synthetic molecules, can potentially be used to treat human diseases by targeting intracellular molecular pathways and modulating biological responses. However, large macromolecules have no ability to enter cells and require delivery vehicles. Protein transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), are a diverse class of peptides that can deliver macromolecules into cells. AREAS COVERED In this review, we cover the uptake and usage of arginine-rich PTDs/CPPs (TAT-PTD, Penetratin/Antp and 8R). We review the endocytosis-mediated uptake of these peptides and highlight three important steps: i) cell association; ii) internalization and iii) endosomal escape. We also discuss the array of different cargos that have been delivered by cationic PTDs/CPPs as well as cellular processes and biological responses that have been modulated. EXPERT OPINION PTDs/CPPs have shown great potential to deliver otherwise undeliverable macromolecular therapeutics into cells for experimentation in cell culture and in animal disease models in vivo. Moreover, over 25 clinical trials have been performed predominantly using the TAT-PTD. However, more work is still needed. Endosomal escape and target-cell specificity remain two of the major future challenges.
Collapse
Affiliation(s)
- Peter Lönn
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA .,b 2 Uppsala University, Science for Life Laboratory, Department of Immunology, Genetics and Pathology , SE-751 08 Uppsala, Sweden
| | - Steven F Dowdy
- a 1 UCSD School of Medicine, Department of Cellular and Molecular Medicine , 9500 Gilman Dr., La Jolla, CA 92093-0686, USA
| |
Collapse
|
38
|
Peptide-mediated delivery: an overview of pathways for efficient internalization. Ther Deliv 2015; 5:1203-22. [PMID: 25491671 DOI: 10.4155/tde.14.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. This review focuses on the mechanisms by which cell-penetrating peptides gain access to the cell interior and deliver cargos. Recent advances in augmenting delivery efficacy and facilitation of endosomal escape of cargo are presented, and the cell-penetrating peptide-mediated delivery of two of the most popular classes of cargo molecules, oligonucleotides and proteins, is analyzed. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface receptors for targeted delivery.
Collapse
|
39
|
Brugnano J, Ward BC, Panitch A. Cell penetrating peptides can exert biological activity: a review. Biomol Concepts 2015; 1:109-16. [PMID: 25961990 DOI: 10.1515/bmc.2010.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cell penetrating peptides (CPPs) have been successful in delivering cargo into many different cell types and are an important alternative to other methods of permeation that might damage the integrity of the cell membrane. The traditional view of CPPs is that they are inert molecules that can be successfully used to deliver many cargos intracellularly. The goal of this review is to challenge this traditional understanding of CPPs. Recent literature has demonstrated that CPPs themselves can convey biological activity, including the alteration of gene expression and inhibition of protein kinases and proteolytic activity. Further characterization of CPPs is required to determine the extent of this activity. Research into the use of CPPs for intracellular delivery should continue with investigators being aware of these recent results.
Collapse
|
40
|
Delivery of nucleic acids and nanomaterials by cell-penetrating peptides: opportunities and challenges. BIOMED RESEARCH INTERNATIONAL 2015; 2015:834079. [PMID: 25883975 PMCID: PMC4391616 DOI: 10.1155/2015/834079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/18/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022]
Abstract
Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature of versatile CPPs and their interactions with various types of cargoes. We then discuss in vivo and in vitro delivery of nucleic acids and nanomaterials by CPPs. Studies on the mechanisms of cellular entry and limitations in the methods used are detailed.
Collapse
|
41
|
Lindberg S, Regberg J, Eriksson J, Helmfors H, Muñoz-Alarcón A, Srimanee A, Figueroa RA, Hallberg E, Ezzat K, Langel Ü. A convergent uptake route for peptide- and polymer-based nucleotide delivery systems. J Control Release 2015; 206:58-66. [PMID: 25769688 DOI: 10.1016/j.jconrel.2015.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/16/2015] [Accepted: 03/09/2015] [Indexed: 11/19/2022]
Abstract
Cell-penetrating peptides (CPPs) have been used as vehicles to deliver various cargos into cells and are promising as tools to deliver therapeutic biomolecules such as oligonucleotides both in vitro and in vivo. CPPs are positively charged and it is believed that CPPs deliver their cargo in a receptor-independent manner by interacting with the negatively charged plasma membrane and thereby inducing endocytosis. In this study we examine the mechanism of uptake of several different, well known, CPPs that form complexes with oligonucleotides. We show that these CPP:oligonucleotide complexes are negatively charged in transfection-media and their uptake is mediated by class A scavenger receptors (SCARA). These receptors are known to promiscuously bind to, and mediate uptake of poly-anionic macromolecules. Uptake of CPP:oligonucleotide complexes was abolished using pharmacological SCARA inhibitors as well as siRNA-mediated knockdown of SCARA. Additionally, uptake of CPP:oligonucleotide was significantly increased by transiently overexpressing SCARA. Furthermore, SCARA inhibitors also blocked internalization of cationic polymer:oligonucleotide complexes. Our results demonstrate that the previous held belief that CPPs act receptor independently does not hold true for CPP:oligonucleotide complexes, as scavenger receptor class A (SCARA) mediates the uptake of all the examined CPP:oligonucleotide complexes in this study.
Collapse
Affiliation(s)
- Staffan Lindberg
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden.
| | - Jakob Regberg
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Jonas Eriksson
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Henrik Helmfors
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Andrés Muñoz-Alarcón
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Artita Srimanee
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Ricardo A Figueroa
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Einar Hallberg
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Kariem Ezzat
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 16B, 10691 Stockholm, Sweden; Tartu University, Institute of Technology, 504 11 Tartu, Estonia.
| |
Collapse
|
42
|
Bechara C, Pallerla M, Burlina F, Illien F, Cribier S, Sagan S. Massive glycosaminoglycan-dependent entry of Trp-containing cell-penetrating peptides induced by exogenous sphingomyelinase or cholesterol depletion. Cell Mol Life Sci 2015; 72:809-20. [PMID: 25112713 PMCID: PMC11114043 DOI: 10.1007/s00018-014-1696-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/11/2014] [Accepted: 07/28/2014] [Indexed: 01/01/2023]
Abstract
Among non-invasive cell delivery strategies, cell-penetrating peptide (CPP) vectors represent interesting new tools. To get fundamental knowledge about the still debated internalisation mechanisms of these peptides, we modified the membrane content of cells, typically by hydrolysis of sphingomyelin or depletion of cholesterol from the membrane outer leaflet. We quantified and visualised the effect of these viable cell surface treatments on the internalisation efficiency of different CPPs, among which the most studied Tat, R9, penetratin and analogues, that all carry the N-terminal biotin-Gly4 tag cargo. Under these cell membrane treatments, only penetratin and R6W3 underwent a massive glycosaminoglycan (GAG)-dependent entry in cells. Internalisation of the other peptides was only slightly increased, similarly in the absence or the presence of GAGs for R9, and only in the presence of GAGs for Tat and R6L3. Ceramide formation (or cholesterol depletion) is known to lead to the reorganisation of membrane lipid domains into larger platforms, which can serve as a trap and cluster receptors. These results show that GAG clustering, enhanced by formation of ceramide, is efficiently exploited by penetratin and R6W3, which contains Trp residues in their sequence but not Tat, R9 and R6L3. Hence, these data shed new lights on the differences in the internalisation mechanism and pathway of these peptides that are widely used in delivery of cargo molecules.
Collapse
Affiliation(s)
- Chérine Bechara
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 Place Jussieu, 75005, Paris, France,
| | | | | | | | | | | |
Collapse
|
43
|
Naik RJ, Sharma R, Nisakar D, Purohit G, Ganguli M. Exogenous chondroitin sulfate glycosaminoglycan associate with arginine-rich peptide-DNA complexes to alter their intracellular processing and gene delivery efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1053-64. [PMID: 25637297 DOI: 10.1016/j.bbamem.2015.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Arginine-rich peptides have been used extensively as efficient cellular transporters. However, gene delivery with such peptides requires development of strategies to improve their efficiency. We had earlier demonstrated that addition of small amounts of exogenous glycosaminoglycans (GAGs) like heparan sulfate or chondroitin sulfate to different arginine-rich peptide-DNA complexes (polyplexes) led to an increase in their gene delivery efficiency. This was possibly due to the formation of a 'GAG coat' on the polyplex surface through electrostatic interactions which improved their extracellular stability and subsequent cellular entry. In this report, we have attempted to elucidate the differences in intracellular processing of the chondroitin sulfate (CS)-coated polyplexes in comparison to the native polyplexes by using a combination of endocytic inhibitors and co-localization with endosomal markers in various cell lines. We observed that both the native and CS-coated polyplexes are internalized by multiple endocytic pathways although in some cell lines, the coated polyplexes are taken up primarily by caveolae mediated endocytosis. In addition, the CS-coat improves the endosomal escape of the polyplexes as compared to the native polyplexes. Interestingly, during these intracellular events, exogenous CS is retained with the polyplexes until their accumulation near the nucleus. Thus we show for the first time that exogenous GAGs in small amounts improve intracellular routing and nuclear accumulation of arginine-based polyplexes. Therefore, addition of exogenous GAGs is a promising strategy to enhance the transfection efficiency of cationic arginine-rich peptides in multiple cell types.
Collapse
Affiliation(s)
- Rangeetha J Naik
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Rajpal Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Daniel Nisakar
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Gunjan Purohit
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110020, India.
| |
Collapse
|
44
|
Jobin ML, Alves ID. On the importance of electrostatic interactions between cell penetrating peptides and membranes: A pathway toward tumor cell selectivity? Biochimie 2014; 107 Pt A:154-9. [DOI: 10.1016/j.biochi.2014.07.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/26/2014] [Indexed: 02/04/2023]
|
45
|
Tchoumi Neree A, Nguyen PT, Chatenet D, Fournier A, Bourgault S. Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP. FEBS Lett 2014; 588:4590-6. [PMID: 25447531 DOI: 10.1016/j.febslet.2014.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/13/2023]
Abstract
Glycosaminoglycans (GAGs) contribute to the cellular uptake of cationic cell-penetrating peptides (CPPs). However, molecular details about the contributions of GAGs in CPP internalization remain unclear. In this study, we examined the cellular uptake mechanism of the arginine-rich CPP pituitary adenylate-cyclase-activating polypeptide (PACAP). We observed that the uptake efficacy of PACAP is dependent on the expression of cell surface GAGs. As the binding of PACAP to sulfated GAGs induced a random coil-to-α-helix conformational conversion, we investigated the role of the helical formation in PACAP internalization. Whereas this secondary structure was not crucial for efficient internalization in GAGs-deficient cells, PACAP α-helix was essential for GAGs-dependent uptake.
Collapse
Affiliation(s)
- Armelle Tchoumi Neree
- Department of Chemistry, Pharmaqam, University of Québec in Montreal, Montreal, QC H3C 3P8, Canada; Quebec Network for Research on Protein Function, Structure, and Engineering, PROTEO, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Québec in Montreal, Montreal, QC H3C 3P8, Canada; Quebec Network for Research on Protein Function, Structure, and Engineering, PROTEO, Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Alain Fournier
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Québec in Montreal, Montreal, QC H3C 3P8, Canada; Quebec Network for Research on Protein Function, Structure, and Engineering, PROTEO, Canada.
| |
Collapse
|
46
|
Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. J Control Release 2014; 192:103-13. [PMID: 25016968 DOI: 10.1016/j.jconrel.2014.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023]
Abstract
Despite the extensive research in the field of CPPs' cell entry the exact mechanisms underlying their cellular uptake and the role of involved cell surface molecules in the internalization process have remained controversial. The present study focused on the interactions between CPPs and plasma membrane compounds using giant plasma membrane vesicles (GPMVs). GPMVs have shown to be a suitable model to study the translocation of CPPs across the plasma membrane in conditions lacking endocytosis. Our results show that higher cholesterol content and tighter packing of membrane predominantly reduce the accumulation of transportan, TP10 and model amphipathic peptide (MAP) in vesicles, indicating that the internalization of CPPs takes place preferentially via the more dynamic membrane regions. The partial digestion of membrane proteins from GPMVs' surface, on the other hand, drastically reduced the accumulation of nona-arginine and Tat peptide into vesicles, suggesting that proteins play a crucial role in the uptake of arginine-rich CPPs.
Collapse
|
47
|
Gooding M, Adigbli D, Edith Chan AW, Melander RJ, MacRobert AJ, Selwood DL. A bifurcated proteoglycan binding small molecule carrier for siRNA delivery. Chem Biol Drug Des 2014; 84:24-35. [PMID: 24472581 PMCID: PMC4286013 DOI: 10.1111/cbdd.12295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/08/2014] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
A wider application of siRNA- and miRNA- based therapeutics is restricted by the currently available delivery systems. We have designed a new type of small molecule carrier (SMoC) system for siRNA modeled to interact with cell surface proteoglycans. This bifurcated SMoC has similar affinity for the model proteoglycan heparin to an equivalent polyarginine peptide and exhibits significant mRNA knockdown of protein levels comparable to lipofectamine and the previously reported linear SMoC.
Collapse
Affiliation(s)
- Matt Gooding
- The Wolfson Institute for Biomedical Research, UCL, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
48
|
Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS NANO 2014; 8:1972-94. [PMID: 24559246 DOI: 10.1021/nn4057269] [Citation(s) in RCA: 680] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intrinsic property of cell-penetrating peptides (CPPs) to deliver therapeutic molecules (nucleic acids, drugs, imaging agents) to cells and tissues in a nontoxic manner has indicated that they may be potential components of future drugs and disease diagnostic agents. These versatile peptides are simple to synthesize, functionalize, and characterize yet are able to deliver covalently or noncovalently conjugated bioactive cargos (from small chemical drugs to large plasmid DNA) inside cells, primarily via endocytosis, in order to obtain high levels of gene expression, gene silencing, or tumor targeting. Typically, CPPs are often passive and nonselective yet must be functionalized or chemically modified to create effective delivery vectors that succeed in targeting specific cells or tissues. Furthermore, the design of clinically effective systemic delivery systems requires the same amount of attention to detail in both design of the delivered cargo and the cell-penetrating peptide used to deliver it.
Collapse
Affiliation(s)
- Dana Maria Copolovici
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University , 504 11 Tartu, Estonia
| | | | | | | |
Collapse
|
49
|
Sonsteng KM, Prigge JR, Talago EA, June RK, Schmidt EE. Hydrodynamic delivery of Cre protein to lineage-mark or time-stamp mouse hepatocytes in situ. PLoS One 2014; 9:e91219. [PMID: 24626158 PMCID: PMC3953374 DOI: 10.1371/journal.pone.0091219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 12/01/2022] Open
Abstract
Cre-responsive fluorescent marker alleles are powerful tools for cell lineage tracing in mice; however their utility is limited by regulation of Cre activity. When targeting hepatocytes, hydrodynamic delivery of a Cre-expression plasmid can convert Cre-responsive alleles without inducing the intracellular or systemic antiviral responses often associated with viral-derived Cre-expression vectors. In this method, rapid high-volume intravenous inoculation induces hepatocyte-targeted uptake of extracellular molecules. Here we tested whether hydrodynamic delivery of Cre protein or Cre fused to the HIV-TAT cell-penetrating peptide could convert Cre-responsive reporters in hepatocytes of mice. Hydrodynamic delivery of 2 nmol of either Cre or TAT-Cre protein converted the reporter allele in 5 to 20% of hepatocytes. Neither protein gave detectable Cre activity in endothelia, non-liver organs, or non-hepatocyte cells in liver. Using mice homozygous for a Cre-responsive marker that directs red- (Cre-naïve) or green- (Cre-converted) fluorescent proteins to the nucleus, we assessed sub-saturation Cre-activity. One month after hydrodynamic inoculation with Cre protein, 58% of hepatocyte nuclei that were green were also red, indicating that less than half of the hepatocytes that had obtained enough Cre to convert one marker allele to green were able to convert all alleles. For comparison, one month after hydrodynamic delivery of a Cre-expression plasmid with a weak promoter, only 26% of the green nuclei were also red. Our results show that hydrodynamic delivery of Cre protein allows rapid allelic conversion in hepatocytes, but Cre-activity is sub-saturating so many cells will not convert multiple Cre-responsive alleles.
Collapse
Affiliation(s)
- Katherine M. Sonsteng
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Justin R. Prigge
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Emily A. Talago
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Ronald K. June
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Edward E. Schmidt
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
50
|
Swiecicki JM, Bartsch A, Tailhades J, Di Pisa M, Heller B, Chassaing G, Mansuy C, Burlina F, Lavielle S. The Efficacies of Cell-Penetrating Peptides in Accumulating in Large Unilamellar Vesicles Depend on their Ability To Form Inverted Micelles. Chembiochem 2014; 15:884-91. [DOI: 10.1002/cbic.201300742] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 11/08/2022]
|