1
|
Parkins A, Chen E, Rangel VM, Singh M, Xue L, Lisi GP, Pantouris G. Ligand-induced conformational changes enable intersubunit communications in D-dopachrome tautomerase. Biophys J 2023; 122:1268-1276. [PMID: 36804669 PMCID: PMC10111345 DOI: 10.1016/j.bpj.2023.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
D-Dopachrome tautomerase (D-DT; or MIF-2) is a multifunctional protein with immunomodulatory properties and a documented pathogenic role in inflammation and cancer that is associated with activation of the cell surface receptor CD74. Alongside D-DT, macrophage migration inhibitory factor (MIF) is also known to activate CD74, promoting pathogenesis. While the role of the MIF/CD74 axis has been extensively studied in various disease models, the late discovery of the D-DT/CD74 axis has led to a poor investigation into the D-DT-induced activation mechanism of CD74. A previous study has identified 4-(3-carboxyphenyl)-2,5-pyridinedicarboxylic acid (4-CPPC) as the first selective and reversible inhibitor of D-DT and reported its potency to block the D-DT-induced activation of CD74 in a cell-based model. In this study, we employ molecular dynamics simulations and nuclear magnetic resonance experiments to study 4-CPPC-induced changes to the dynamic profile of D-DT. We found that binding of the inhibitor remarkably promotes the conformational flexibility of C-terminal without impacting the structural stability of the biological assembly. Consequently, long-range intrasubunit (>11 Å) and intersubunit (>30 Å) communications are enabled between distal regions. Communication across the three subunits is accomplished via 4-CPPC, which serves as a communication bridge after Val113 is displaced from its hydrophobic pocket. This previously unrecognized structural property of D-DT is not shared with its human homolog, MIF, which exhibits an impressive C-terminal rigidity even in the presence of an inhibitor. Considering the previously reported role of MIF's C-terminal in the activation of CD74, our results break new ground for understanding the functionality of D-DT in health and disease.
Collapse
Affiliation(s)
- Andrew Parkins
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Emily Chen
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa M Rangel
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Mandeep Singh
- Department of Chemistry, University of the Pacific, Stockton, California
| | - Liang Xue
- Department of Chemistry, University of the Pacific, Stockton, California
| | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, Rhode Island
| | - Georgios Pantouris
- Department of Chemistry, University of the Pacific, Stockton, California.
| |
Collapse
|
2
|
Abstract
Mutations in the polycystins PC1 or PC2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled renal cysts that disrupt renal architecture and function, ultimately leading to kidney failure in the majority of patients. Although the genetic basis of ADPKD is now well established, the physiological function of polycystins remains obscure and a matter of intense debate. The structural determination of both the homomeric PC2 and heteromeric PC1-PC2 complexes, as well as the electrophysiological characterization of PC2 in the primary cilium of renal epithelial cells, provided new valuable insights into the mechanisms of ADPKD pathogenesis. Current findings indicate that PC2 can function independently of PC1 in the primary cilium of renal collecting duct epithelial cells to form a channel that is mainly permeant to monovalent cations and is activated by both membrane depolarization and an increase in intraciliary calcium. In addition, PC2 functions as a calcium-activated calcium release channel at the endoplasmic reticulum membrane. Structural studies indicate that the heteromeric PC1-PC2 complex comprises one PC1 and three PC2 channel subunits. Surprisingly, several positively charged residues from PC1 occlude the ionic pore of the PC1-PC2 complex, suggesting that pathogenic polycystin mutations might cause ADPKD independently of an effect on channel permeation. Emerging reports of novel structural and functional findings on polycystins will continue to elucidate the molecular basis of ADPKD.
Collapse
|
3
|
Abstract
Transient receptor potential (TRP) ion channels are molecular sensors of a large variety of stimuli including temperature, mechanical stress, voltage, small molecules including capsaicin and menthol, and lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). Since the same TRP channels may respond to different physical and chemical stimuli, they can serve as signal integrators. Many TRP channels are calcium permeable and contribute to Ca2+ homeostasis and signaling. Although the TRP channel family was discovered decades ago, only recently have the structures of many of these channels been solved, largely by cryo-electron microscopy (cryo-EM). Complimentary to cryo-EM, X-ray crystallography provides unique tools to unambiguously identify specific atoms and can be used to study ion binding in channel pores. In this review we describe crystallographic studies of the TRP channel TRPV6. The methodology used in these studies may serve as a template for future structural analyses of different types of TRP and other ion channels.
Collapse
Affiliation(s)
- Appu K Singh
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Luke L McGoldrick
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY.,b Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University , New York , NY
| | - Kei Saotome
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| | - Alexander I Sobolevsky
- a Department of Biochemistry and Molecular Biophysics , Columbia University , New York , NY
| |
Collapse
|
4
|
Wen H, Zheng W. Decrypting the Heat Activation Mechanism of TRPV1 Channel by Molecular Dynamics Simulation. Biophys J 2019; 114:40-52. [PMID: 29320695 DOI: 10.1016/j.bpj.2017.10.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
As a prototype cellular sensor, the TRPV1 cation channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including noxious heat. Despite recent progress, the molecular mechanism of heat activation of TRPV1 gating remains enigmatic. Toward decrypting the structural basis of TRPV1 heat activation, we performed extensive molecular dynamics simulations (with cumulative simulation time of ∼11 μs) for the wild-type channel and a constitutively active double mutant at different temperatures (30, 60, and 72°C), starting from a high-resolution closed-channel structure of TRPV1 solved by cryo-electron microscopy. In the wild-type simulations, we observed heat-activated conformational changes (e.g., expansion or contraction) in various key domains of TRPV1 (e.g., the S2-S3 and S4-S5 linkers) to prime the channel for gating. These conformational changes involve a number of dynamic hydrogen-bond interactions that were validated with previous mutational studies. Next, our mutant simulations observed channel opening after a series of conformational changes that propagate from the channel periphery to the channel pore via key intermediate domains (including the S2-S3 and S4-S5 linkers). The gating transition is accompanied by a large increase in the protein-water electrostatic interaction energy, which supports the contribution of desolvation of polar/charged residues to the temperature-sensitive TRPV1 gating. Taken together, our molecular dynamics simulations and analyses offered, to our knowledge, new structural, dynamic, and energetic information to guide future mutagenesis and functional studies of the TRPV1 channels and development of TRPV1-targeting drugs.
Collapse
Affiliation(s)
- Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, New York
| | - Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, New York.
| |
Collapse
|
5
|
Zheng W, Wen H. Heat activation mechanism of TRPV1: New insights from molecular dynamics simulation. Temperature (Austin) 2019; 6:120-131. [PMID: 31286023 DOI: 10.1080/23328940.2019.1578634] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/30/2018] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
As a member of the transient receptor potential (TRP) channels superfamily, the TRPV1 channel undergoes a closed-to-open gating transition in response to various physical and chemical stimuli including heat. Thanks to recent progress in cryo-electron microscopy, high-resolution structures are becoming available for various TRP channels including TRPV1. This has enabled us to study the molecular mechanism of TRPV1 channel gating by using molecular simulation. Here we review recent progress in molecular simulations of TRPV1 channel by us and others, with focus on our molecular dynamics (MD) simulations of TRPV1 at different temperatures. While no consensus has been reached on the heat activation mechanism of TRPV1, the simulations have offered specific predictions and models for future experimental studies to test.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Han Wen
- Department of Physics, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
6
|
Singh AK, McGoldrick LL, Sobolevsky AI. Expression, Purification, and Crystallization of the Transient Receptor Potential Channel TRPV6. Methods Mol Biol 2019; 1987:23-37. [PMID: 31028671 DOI: 10.1007/978-1-4939-9446-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transient receptor potential (TRP) channels are polymodal sensory transducers that respond to chemicals, temperature, mechanical stress, and membrane voltage and are involved in vision, taste, olfaction, hearing, touch, thermal perception, and nociception. TRP channels are implicated in numerous devastating diseases, including various forms of cancer, and represent important drug targets. The large sizes, low expression levels, and conformational dynamics of TRP channels make them challenging targets for structural biology. Here, we present the methodology used in structural studies of TRPV6, a TRP channel that is highly selective for calcium and mediates Ca2+ uptake in epithelial tissues. We provide a protocol for the expression, purification, and crystallization of TRPV6. Similar approaches can be used to determine crystal structures of other membrane proteins, including different members of the TRP channel family.
Collapse
Affiliation(s)
- Appu K Singh
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke L McGoldrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant. Proc Natl Acad Sci U S A 2016; 113:E2363-72. [PMID: 27071085 DOI: 10.1073/pnas.1517066113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in polycystin-1 and transient receptor potential polycystin 2 (TRPP2) account for almost all clinically identified cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common human genetic diseases. TRPP2 functions as a cation channel in its homomeric complex and in the TRPP2/polycystin-1 receptor/ion channel complex. The activation mechanism of TRPP2 is unknown, which significantly limits the study of its function and regulation. Here, we generated a constitutively active gain-of-function (GOF) mutant of TRPP2 by applying a mutagenesis scan on the S4-S5 linker and the S5 transmembrane domain, and studied functional properties of the GOF TRPP2 channel. We found that extracellular divalent ions, including Ca(2+), inhibit the permeation of monovalent ions by directly blocking the TRPP2 channel pore. We also found that D643, a negatively charged amino acid in the pore, is crucial for channel permeability. By introducing single-point ADPKD pathogenic mutations into the GOF TRPP2, we showed that different mutations could have completely different effects on channel activity. The in vivo function of the GOF TRPP2 was investigated in zebrafish embryos. The results indicate that, compared with wild type (WT), GOF TRPP2 more efficiently rescued morphological abnormalities, including curly tail and cyst formation in the pronephric kidney, caused by down-regulation of endogenous TRPP2 expression. Thus, we established a GOF TRPP2 channel that can serve as a powerful tool for studying the function and regulation of TRPP2. The GOF channel may also have potential application for developing new therapeutic strategies for ADPKD.
Collapse
|
8
|
Conformational dynamics of Ca2+-dependent responses in the polycystin-2 C-terminal tail. Biochem J 2016; 473:285-96. [DOI: 10.1042/bj20151031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
Abstract
The C-terminal tail of polycystin-2 is crucial for channel regulation and contains a Ca2+-binding EF-hand domain and a coiled-coil domain. The C-terminal tail and isolated EF-hand share similar Ca2+-binding affinities; however, their dynamic responses to Ca2+ are different.
Collapse
|
9
|
Abstract
It is 20 years since the identification of PKD1, the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), followed closely by the cloning of PKD2. These major breakthroughs have led in turn to a period of intense investigation into the function of the two proteins encoded, polycystin-1 and polycystin-2, and how defects in either protein lead to cyst formation and nonrenal phenotypes. In this review, we summarize the major findings in this area and present a current model of how the polycystin proteins function in health and disease.
Collapse
|
10
|
Allen MD, Qamar S, Vadivelu MK, Sandford RN, Bycroft M. A high-resolution structure of the EF-hand domain of human polycystin-2. Protein Sci 2014; 23:1301-8. [PMID: 24990821 PMCID: PMC4244000 DOI: 10.1002/pro.2513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 01/11/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) affects over 1:1000 of the worldwide population and is caused by mutations in two genes, PKD1 and PKD2. PKD2 encodes a 968-amino acid membrane spanning protein, Polycystin-2 (PC-2), which is a member of the TRP ion channel family. The C-terminal cytoplasmic tail contains an EF-hand motif followed by a short coiled-coil domain. We have determined the structure of the EF-hand region of PC-2 using NMR spectroscopy. The use of different boundaries, compared with those used in previous studies, have enabled us to determine a high resolution structure and show that the EF hand motif forms a standard calcium-binding pocket. The affinity of this pocket for calcium has been measured and mutants that both decrease and increase its affinity for the metal ion have been created.
Collapse
Affiliation(s)
- Mark D Allen
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| | - Seema Qamar
- Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of CambridgeCambridge, CB2 0XY, United Kingdom
| | - Murali K Vadivelu
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| | - Richard N Sandford
- Academic Department of Medical Genetics, School of Clinical Medicine, University of CambridgeCambridge, CB2 0QQ, United Kingdom
| | - Mark Bycroft
- MRC Laboratory of Molecular BiologyHills Road, Cambridge, CB2 0QH, United Kingdom
| |
Collapse
|
11
|
Keeler C, Poon G, Kuo IY, Ehrlich BE, Hodsdon ME. An explicit formulation approach for the analysis of calcium binding to EF-hand proteins using isothermal titration calorimetry. Biophys J 2014; 105:2843-53. [PMID: 24359756 DOI: 10.1016/j.bpj.2013.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022] Open
Abstract
We present an improved and extended version of a recently proposed mathematical approach for modeling isotherms of ligand-to-macromolecule binding from isothermal titration calorimetry. Our approach uses ordinary differential equations, solved implicitly and numerically as initial value problems, to provide a quantitative description of the fraction bound of each competing member of a complex mixture of macromolecules from the basis of general binding polynomials. This approach greatly simplifies the formulation of complex binding models. In addition to our generalized, model-free approach, we have introduced a mathematical treatment for the case where ligand is present before the onset of the titration, essential for data analysis when complete removal of the binding partner may disrupt the structural and functional characteristics of the macromolecule. Demonstration programs playable on a freely available software platform are provided. Our method is experimentally validated with classic calcium (Ca(2+)) ion-selective potentiometry and isotherms of Ca(2+) binding to a mixture of chelators with and without residual ligand present in the reaction vessel. Finally, we simulate and compare experimental data fits for the binding isotherms of Ca(2+) binding to its canonical binding site (EF-hand domain) of polycystin 2, a Ca(2+)-dependent channel with relevance to polycystic kidney disease.
Collapse
Affiliation(s)
- Camille Keeler
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory Poon
- Department of Pharmaceutical Sciences, Washington State University, Pullman, Washington
| | - Ivana Y Kuo
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael E Hodsdon
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
12
|
Abstract
Membrane proteins remain challenging targets for structural biologists, despite recent technical developments regarding sample preparation and structure determination. We review recent progress towards a structural understanding of TRP channels and the techniques used to that end. We discuss available low-resolution structures from electron microscopy (EM), X-ray crystallography, and nuclear magnetic resonance (NMR) and review the resulting insights into TRP channel function for various subfamily members. The recent high-resolution structure of TRPV1 is discussed in more detail in Chapter 11. We also consider the opportunities and challenges of using the accumulating structural information on TRPs and homologous proteins for deducing full-length structures of different TRP channel subfamilies, such as building homology models. Finally, we close by summarizing the outlook of the "holy grail" of understanding in atomic detail the diverse functions of TRP channels.
Collapse
|
13
|
Morick D, Schatz M, Hubrich R, Hoffmeister H, Krefft A, Witzgall R, Steinem C. Phosphorylation of C-terminal polycystin-2 influences the interaction with PIGEA14: A QCM study based on solid supported membranes. Biochem Biophys Res Commun 2013; 437:532-7. [DOI: 10.1016/j.bbrc.2013.06.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 06/27/2013] [Indexed: 01/15/2023]
|
14
|
Affiliation(s)
- Ivana Y Kuo
- Departments of †Pharmacology and ‡Cellular and Molecular Physiology School of Medicine, Yale University , 333 Cedar Street, New Haven, Connecticut 06520
| | | |
Collapse
|
15
|
Ćelić AS, Petri ET, Benbow J, Hodsdon ME, Ehrlich BE, Boggon TJ. Calcium-induced conformational changes in C-terminal tail of polycystin-2 are necessary for channel gating. J Biol Chem 2012; 287:17232-17240. [PMID: 22474326 DOI: 10.1074/jbc.m112.354613] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycystin-2 (PC2) is a Ca(2+)-permeable transient receptor potential channel activated and regulated by changes in cytoplasmic Ca(2+). PC2 mutations are responsible for ∼15% of autosomal dominant polycystic kidney disease. Although the C-terminal cytoplasmic tail of PC2 has been shown to contain a Ca(2+)-binding EF-hand domain, the molecular basis of PC2 channel gating by Ca(2+) remains unknown. We propose that the PC2 EF-hand is a Ca(2+) sensor required for channel gating. Consistent with this, Ca(2+) binding causes a dramatic decrease in the radius of gyration (R(g)) of the PC2 EF-hand by small angle x-ray scattering and significant conformational changes by NMR. Furthermore, increasing Ca(2+) concentrations cause the C-terminal cytoplasmic tail to transition from a mixture of extended oligomers to a single compact dimer by analytical ultracentrifugation, coupled with a >30 Å decrease in maximum interatomic distance (D(max)) by small angle x-ray scattering. Mutant PC2 channels unable to bind Ca(2+) via the EF-hand are inactive in single-channel planar lipid bilayers and inhibit Ca(2+) release from ER stores upon overexpression in cells, suggesting dominant negative properties. Our results support a model where PC2 channels are gated by discrete conformational changes in the C-terminal cytoplasmic tail in response to changes in cytoplasmic Ca(2+) levels. These properties of PC2 are lost in autosomal dominant polycystic kidney disease, emphasizing the importance of PC2 to kidney cell function. We speculate that PC2 and the Ca(2+)-dependent transient receptor potential channels in general are regulated by similar conformational changes in their cytoplasmic domains that are propagated to the channel pore.
Collapse
Affiliation(s)
- Andjelka S Ćelić
- Departments of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Edward T Petri
- Departments of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Jennifer Benbow
- Departments of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Michael E Hodsdon
- Departments of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Barbara E Ehrlich
- Departments of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; Departments of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Titus J Boggon
- Departments of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
16
|
Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 2011; 286:38168-38176. [PMID: 21908607 DOI: 10.1074/jbc.m111.288993] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective ion channel, which is expressed in nociceptor sensory neurons and transduces chemical, inflammatory, and neuropathic pain signals. Numerous non-reactive compounds and electrophilic compounds, such as endogenous inflammatory mediators and exogenous pungent chemicals, can activate TRPA1. Here we report a 16-Å resolution structure of purified, functional, amphipol-stabilized TRPA1 analyzed by single-particle EM. Molecular models of the N and C termini of the channel were generated using the I-TASSER protein structure prediction server and docked into the EM density to provide insight into the TRPA1 subunit organization. This structural analysis suggests a location for critical N-terminal cysteine residues involved in electrophilic activation at the interface between neighboring subunits. Our results indicate that covalent modifications within this pocket may alter interactions between subunits and promote conformational changes that lead to channel activation.
Collapse
Affiliation(s)
- Teresa L Cvetkov
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kevin W Huynh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Matthew R Cohen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
17
|
Santoso NG, Cebotaru L, Guggino WB. Polycystin-1, 2, and STIM1 interact with IP(3)R to modulate ER Ca release through the PI3K/Akt pathway. Cell Physiol Biochem 2011; 27:715-26. [PMID: 21691089 PMCID: PMC3221273 DOI: 10.1159/000330080] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2011] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of Ca(2+) signaling and homeostasis has been linked to the development of ADPKD through aberrant functioning of the polycystins. In this study, we investigated the role of the polycystins in modulating Ca(2+) signaling. Expression of full-length PC1 in MDCK cells inhibited intracellular Ca(2+) release in response to ATP when compared to control cells. This phenotype correlated with reduced interaction of endogenous PC2 and IP(3)R in PC1-containing cells. We also found that endogenous STIM1 also interacted with the IP(3)R, and this interaction was enhanced by PC1 expression. Increased interaction between STIM1 and IP(3)R inhibited Ca(2+) release. PC1 regulates intracellular Ca(2+) release and the interaction of PC2-IP(3)R-STIM1 through the PI3K/Akt signaling pathway. Inhibition of the PI3K/Akt pathway in PC1 containing cells restored intracellular Ca(2+) release, increased the interaction between PC2 and IP(3)R and disrupted the STIM1-IP(3)R complex. Conversely, activation of the PI3K/Akt signaling pathway by HGF in control MDCK cells gave the reverse effects. It reduced the release of Ca(2+) to levels comparable to the PC1 cells, inhibited the association PC2 and IP(3)R, and increased the interaction between STIM and IP(3)R. Overall, our studies provide a potential mechanism for the modulation of intracellular Ca(2+) signaling by the polycystins.
Collapse
Affiliation(s)
| | | | - William B. Guggino
- Department of Physiology, Johns Hopkins University, School of Medicine, Baltimore
| |
Collapse
|
18
|
Jin M, Wu Z, Chen L, Jaimes J, Collins D, Walters ET, O'Neil RG. Determinants of TRPV4 activity following selective activation by small molecule agonist GSK1016790A. PLoS One 2011; 6:e16713. [PMID: 21339821 PMCID: PMC3038856 DOI: 10.1371/journal.pone.0016713] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/11/2011] [Indexed: 11/19/2022] Open
Abstract
TRPV4 (Transient Receptor Potential Vanilloid 4) channels are activated by a wide range of stimuli, including hypotonic stress, non-noxious heat and mechanical stress and some small molecule agonists (e.g. phorbol ester 4α-PDD). GSK1016790A (GSK101) is a recently discovered specific small molecule agonist of TRPV4. Its effects on physical determinants of TRPV4 activity were evaluated in HeLa cells transiently transfected with TRPV4 (HeLa-TRPV4). GSK101 (10 nM) causes a TRPV4 specific Ca(2+) influx in HeLa-TRPV4 cells, but not in control transfected cells, which can be inhibited by ruthenium red and Ca(2+)-free medium more significantly at the early stage of the activation rather than the late stage, reflecting apparent partial desensitization. Western blot analysis showed that GSK101 activation did not induce an increase in TRPV4 expression at the plasma membrane, but caused an immediate and sustained downregulation of TRPV4 on the plasma membrane in HeLa-TRPV4 cells. Patch clamp analysis also revealed an early partial desensitization of the channel which was Ca(2+)-independent. FRET analysis of TRPV4 subunit assembly demonstrated that the GSK101-induced TRPV4 channel activation/desensitization was not due to alterations in homotetrameric channel formation on the plasma membrane. It is concluded that GSK101 specifically activates TRPV4 channels, leading to a rapid partial desensitization and downregulation of the channel expression on the plasma membrane. TRPV4 subunit assembly appears to occur during trafficking from the ER/Golgi to the plasma membrane and is not altered by agonist stimulation.
Collapse
Affiliation(s)
- Min Jin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Zizhen Wu
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Ling Chen
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Jose Jaimes
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Diana Collins
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Roger G. O'Neil
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
The human polycystin-2 protein represents an integral membrane protein with six membrane-spanning domains and intracellular N- and C-termini. Biochem J 2011; 433:285-94. [PMID: 21044049 DOI: 10.1042/bj20101141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PKD2 is one of the two genes mutated in ADPKD (autosomal-dominant polycystic kidney disease). The protein product of PKD2, polycystin-2, functions as a non-selective cation channel in the endoplasmic reticulum and possibly at the plasma membrane. Hydrophobicity plots and its assignment to the TRP (transient receptor potential) family of cation channels suggest that polycystin-2 contains six transmembrane domains and that both the N- and C-termini extend into the cytoplasm. However, no experimental evidence for this model has so far been provided. To determine the orientation of the different loops of polycystin-2, we truncated polycystin-2 within the predicted loops 1-5 and tagged the constructs at the C-terminus with an HA (haemagglutinin) epitope. After transient expression and selective membrane permeabilization, immunofluorescence staining for the HA epitope revealed that loops 1, 3 and 5 extend into the lumen of the endoplasmic reticulum or the extracellular space, whereas loops 2 and 4 extend into the cytoplasm. This approach also confirmed the cytoplasmic orientation of the N- and C-termini of polycystin-2. In accordance with the immunofluorescence data, protease protection assays from microsomal preparations yielded protected fragments when polycystin-2 was truncated in loops 1, 3 and 5, whereas no protected fragments could be detected when polycystin-2 was truncated in loops 2 and 4. The results of the present study therefore provide the first experimental evidence for the topological orientation of polycystin-2.
Collapse
|
20
|
Abstract
Structural studies on TRP channels, while limited, are poised for a quickened pace and rapid expansion. As of yet, no high-resolution structure of a full length TRP channel exists, but low-resolution electron cryomicroscopy structures have been obtained for 4 TRP channels, and high-resolution NMR and X-ray crystal structures have been obtained for the cytoplasmic domains, including an atypical protein kinase domain, ankyrin repeats, coiled coil domains and a Ca(2+)-binding domain, of 6 TRP channels. These structures enhance our understanding of TRP channel assembly and regulation. Continued technical advances in structural approaches promise a bright outlook for TRP channel structural biology.
Collapse
|
21
|
Quantifying the interaction of the C-terminal regions of polycystin-2 and polycystin-1 attached to a lipid bilayer by means of QCM. Biophys Chem 2010; 150:47-53. [DOI: 10.1016/j.bpc.2010.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/04/2010] [Indexed: 01/16/2023]
|
22
|
Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2. Biochem J 2010; 429:171-83. [PMID: 20408813 DOI: 10.1042/bj20091843] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polycystin 2-type cation channels PKD2 and PKD2L1 interact with polycystin 1-type proteins PKD1 and PKD1L3 respectively, to form receptor-cation-channel complexes. The PKD2L1-PKD1L3 complex perceives sour taste, whereas disruption of the PKD2-PKD1 complex, responsible for mechanosensation, leads to development of ADPKD (autosomal-dominant polycystic kidney disease). Besides modulating channel activity and related signalling events, the CRDs (C-terminal regulatory domains) of PKD2 and PKD2L1 play a central role in channel oligomerization. The present study investigates the aggregation state of purified full-length PKD2L1-CRD as well as truncations of CRDs from PKD2 channels. Far- and near-UV CD spectroscopy show that the full-length PKD2L1 CRD (PKD2L1-198) and the truncated PKD2 CRD (PKD2-244) are alpha-helical with no beta-sheet, the alpha-helix content agrees with sequence-based predictions, and some of its aromatic residues are in an asymmetric environment created at least by partially structured regions. Additionally, the CRD truncations exhibit an expected biochemical function by binding Ca2+ in a physiologically relevant range with Kd values of 2.8 muM for PKD2-244 and 0.51 muM for PKD2L1-198. Complimentary biophysical and biochemical techniques establish that truncations of the PKD2 and PKD2L1 CRDs are elongated molecules that assemble as trimers, and the trimeric aggregation state is independent of Ca2+ binding. Finally, we show that a common coiled-coil motif is sufficient and necessary to drive oligomerization of the PKD2 and PKD2L1 CRD truncations under study. Despite the moderate sequence identity (39%) between CRDs of PKD2 and PKD2L1, they both form trimers, implying that trimeric organization of CRDs may be true of all polycystin channels.
Collapse
|
23
|
Structure of the EF-hand domain of polycystin-2 suggests a mechanism for Ca2+-dependent regulation of polycystin-2 channel activity. Proc Natl Acad Sci U S A 2010; 107:9176-81. [PMID: 20439752 DOI: 10.1073/pnas.0912295107] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C-terminal cytoplasmic tail of polycystin-2 (PC2/TRPP2), a Ca(2+)-permeable channel, is frequently mutated or truncated in autosomal dominant polycystic kidney disease. We have previously shown that this tail consists of three functional regions: an EF-hand domain (PC2-EF, 720-797), a flexible linker (798-827), and an oligomeric coiled coil domain (828-895). We found that PC2-EF binds Ca(2+) at a single site and undergoes Ca(2+)-dependent conformational changes, suggesting it is an essential element of Ca(2+)-sensitive regulation of PC2 activity. Here we describe the NMR structure and dynamics of Ca(2+)-bound PC2-EF. Human PC2-EF contains a divergent non-Ca(2+)-binding helix-loop-helix (HLH) motif packed against a canonical Ca(2+)-binding EF-hand motif. This HLH motif may have evolved from a canonical EF-hand found in invertebrate PC2 homologs. Temperature-dependent steady-state NOE experiments and NMR R(1) and R(2) relaxation rates correlate with increased molecular motion in the EF-hand, possibly due to exchange between apo and Ca(2+)-bound states, consistent with a role for PC2-EF as a Ca(2+)-sensitive regulator. Structure-based sequence conservation analysis reveals a conserved hydrophobic surface in the same region, which may mediate Ca(2+)-dependent protein interactions. We propose that Ca(2+)-sensing by PC2-EF is responsible for the cooperative nature of PC2 channel activation and inhibition. Based on our results, we present a mechanism of regulation of the Ca(2+) dependence of PC2 channel activity by PC2-EF.
Collapse
|
24
|
Sammels E, Devogelaere B, Mekahli D, Bultynck G, Missiaen L, Parys JB, Cai Y, Somlo S, De Smedt H. Polycystin-2 activation by inositol 1,4,5-trisphosphate-induced Ca2+ release requires its direct association with the inositol 1,4,5-trisphosphate receptor in a signaling microdomain. J Biol Chem 2010; 285:18794-805. [PMID: 20375013 DOI: 10.1074/jbc.m109.090662] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant polycystic kidney disease is characterized by the loss-of-function of a signaling complex involving polycystin-1 and polycystin-2 (TRPP2, an ion channel of the TRP superfamily), resulting in a disturbance in intracellular Ca(2+) signaling. Here, we identified the molecular determinants of the interaction between TRPP2 and the inositol 1,4,5-trisphosphate receptor (IP(3)R), an intracellular Ca(2+) channel in the endoplasmic reticulum. Glutathione S-transferase pulldown experiments combined with mutational analysis led to the identification of an acidic cluster in the C-terminal cytoplasmic tail of TRPP2 and a cluster of positively charged residues in the N-terminal ligand-binding domain of the IP(3)R as directly responsible for the interaction. To investigate the functional relevance of TRPP2 in the endoplasmic reticulum, we re-introduced the protein in TRPP2(-/-) mouse renal epithelial cells using an adenoviral expression system. The presence of TRPP2 resulted in an increased agonist-induced intracellular Ca(2+) release in intact cells and IP(3)-induced Ca(2+) release in permeabilized cells. Using pathological mutants of TRPP2, R740X and D509V, and competing peptides, we demonstrated that TRPP2 amplified the Ca(2+) signal by a local Ca(2+)-induced Ca(2+)-release mechanism, which only occurred in the presence of the TRPP2-IP(3)R interaction, and not via altered IP(3)R channel activity. Moreover, our results indicate that this interaction was instrumental in the formation of Ca(2+) microdomains necessary for initiating Ca(2+)-induced Ca(2+) release. The data strongly suggest that defects in this mechanism may account for the altered Ca(2+) signaling associated with pathological TRPP2 mutations and therefore contribute to the development of autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Eva Sammels
- Department of Molecular Cell Biology, Laboratory of Molecular and Cellular Signaling, KU Leuven, Campus Gasthuisberg O&N1, Herestraat 49 bus 802, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|