1
|
van der Pijl RJ, Domenighetti AA, Sheikh F, Ehler E, Ottenheijm CAC, Lange S. The titin N2B and N2A regions: biomechanical and metabolic signaling hubs in cross-striated muscles. Biophys Rev 2021; 13:653-677. [PMID: 34745373 PMCID: PMC8553726 DOI: 10.1007/s12551-021-00836-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Muscle specific signaling has been shown to originate from myofilaments and their associated cellular structures, including the sarcomeres, costameres or the cardiac intercalated disc. Two signaling hubs that play important biomechanical roles for cardiac and/or skeletal muscle physiology are the N2B and N2A regions in the giant protein titin. Prominent proteins associated with these regions in titin are chaperones Hsp90 and αB-crystallin, members of the four-and-a-half LIM (FHL) and muscle ankyrin repeat protein (Ankrd) families, as well as thin filament-associated proteins, such as myopalladin. This review highlights biological roles and properties of the titin N2B and N2A regions in health and disease. Special emphasis is placed on functions of Ankrd and FHL proteins as mechanosensors that modulate muscle-specific signaling and muscle growth. This region of the sarcomere also emerged as a hotspot for the modulation of passive muscle mechanics through altered titin phosphorylation and splicing, as well as tethering mechanisms that link titin to the thin filament system.
Collapse
Affiliation(s)
| | - Andrea A. Domenighetti
- Shirley Ryan AbilityLab, Chicago, IL USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL USA
| | - Farah Sheikh
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, School of Cardiovascular Medicine and Sciences, King’s College London, London, UK
| | - Coen A. C. Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ USA
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Stephan Lange
- Division of Cardiology, School of Medicine, UC San Diego, La Jolla, CA USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Kong FB, Deng QM, Deng HQ, Dong CC, Li L, He CG, Wang XT, Xu S, Mai W. Siva‑1 regulates multidrug resistance of gastric cancer by targeting MDR1 and MRP1 via the NF‑κB pathway. Mol Med Rep 2020; 22:1558-1566. [PMID: 32626967 PMCID: PMC7339453 DOI: 10.3892/mmr.2020.11211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Siva-1 is a well-known anti-apoptosis protein that serves a role in multiple types of cancer cells. However, whether Siva-1 affects multidrug resistance via the NF-κB pathway in gastric cancer is currently unknown. The present study aimed to determine the possible involvement of Siva-1 in gastric cancer anticancer drug resistance in vitro. A vincristine (VCR)-resistant KATO III/VCR gastric cancer cell line with stable Siva-1 overexpression was established. The protein expression levels of Siva-1, NF-κB, multidrug resistance 1 (MDR1) and multidrug resistance protein 1 (MRP1) were detected via western blotting. The effect of Siva-1 overexpression on anticancer drug resistance was assessed by measuring the 50% inhibitory concentration of KATO III/VCR cells to VCR, 5-fluorouracil and doxorubicin. The rate of doxorubicin efflux and apoptosis were detected by flow cytometry. Additionally, colony formation, wound healing and Transwell assays were used to detect the proliferation, migration and invasion of cells, respectively. The results of the current study revealed that the Siva-1-overexpressed KATO III/VCR gastric cancer cells exhibited a significantly decreased sensitivity to VCR, 5-fluorouracil and doxorubicin. The results of flow cytometry revealed that the percentage of apoptotic cells decreased following overexpression of Siva-1. The colony formation assay demonstrated that cell growth and proliferation were significantly promoted by Siva-1 overexpression. Additionally, Siva-1 overexpression increased the migration and invasion of KATO III/VCR cells in vitro. Western blot analysis determined that Siva-1 overexpression increased NF-κB, MDR1 and MRP1 levels. The current study demonstrated that overexpression of Siva-1, which functions as a regulator of MDR1 and MRP1 gene expression in gastric cancer cells via promotion of NF-κB expression, inhibited the sensitivity of gastric cancer cells to certain chemotherapies. These data provided novel insight into the molecular mechanisms of gastric cancer, and may be of significance for the clinical diagnosis and therapy of patients with gastric cancer.
Collapse
Affiliation(s)
- Fan-Biao Kong
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiao-Ming Deng
- Department of Surgery, Guangxi Traditional Chinese Medical University Affiliated First Hospital, Nanning, Guangxi Zhuang Autonomous Region 530023, P.R. China
| | - Hong-Qiang Deng
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chen-Cheng Dong
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lei Li
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chun-Gang He
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Tong Wang
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Sheng Xu
- Department of Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wei Mai
- Department of Gastrointestinal and Peripheral Vascular Surgery, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
3
|
Anoveros-Barrera A, Bhullar AS, Stretch C, Dunichand-Hoedl AR, Martins KJB, Rieger A, Bigam D, McMullen T, Bathe OF, Putman CT, Field CJ, Baracos VE, Mazurak VC. Immunohistochemical phenotyping of T cells, granulocytes, and phagocytes in the muscle of cancer patients: association with radiologically defined muscle mass and gene expression. Skelet Muscle 2019; 9:24. [PMID: 31521204 PMCID: PMC6744687 DOI: 10.1186/s13395-019-0209-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammation is a recognized contributor to muscle wasting. Research in injury and myopathy suggests that interactions between the skeletal muscle and immune cells confer a pro-inflammatory environment that influences muscle loss through several mechanisms; however, this has not been explored in the cancer setting. This study investigated the local immune environment of the muscle by identifying the phenotype of immune cell populations in the muscle and their relationship to muscle mass in cancer patients. METHODS Intraoperative muscle biopsies were collected from cancer patients (n = 30, 91% gastrointestinal malignancies). Muscle mass was assessed histologically (muscle fiber cross-sectional area, CSA; μm2) and radiologically (lumbar skeletal muscle index, SMI; cm2/m2 by computed tomography, CT). T cells (CD4 and CD8) and granulocytes/phagocytes (CD11b, CD14, and CD15) were assessed by immunohistochemistry. Microarray analysis was conducted in the muscle of a second cancer patient cohort. RESULTS T cells (CD3+), granulocytes/phagocytes (CD11b+), and CD3-CD4+ cells were identified. Muscle fiber CSA (μm2) was positively correlated (Spearman's r = > 0.45; p = < 0.05) with the total number of T cells, CD4, and CD8 T cells and granulocytes/phagocytes. In addition, patients with the smallest SMI exhibited fewer CD8 T cells within their muscle. Consistent with this, further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively associated (Pearson's r = ≥ 0.5; p = <0.0001) with key genes within muscle catabolic pathways for signaling (ACVR2B), ubiquitin proteasome (FOXO4, TRIM63, FBXO32, MUL1, UBC, UBB, UBE2L3), and apoptosis/autophagy (CASP8, BECN1, ATG13, SIVA1). CONCLUSION The skeletal muscle immune environment of cancer patients is comprised of immune cell populations from the adaptive and innate immunity. Correlations of T cells, granulocyte/phagocytes, and CD3-CD4+ cells with muscle mass measurements indicate a positive relationship between immune cell numbers and muscle mass status in cancer patients. Further exploration with gene correlation analyses suggests that the presence of CD8 T cells is negatively correlated with components of muscle catabolism.
Collapse
Affiliation(s)
- Ana Anoveros-Barrera
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Amritpal S Bhullar
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Cynthia Stretch
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Abha R Dunichand-Hoedl
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Karen J B Martins
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Aja Rieger
- Flow Cytometry Facility, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - David Bigam
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Todd McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Oliver F Bathe
- Department of Oncology and Department of Surgery, University of Calgary, Calgary, Alberta, Canada
| | - Charles T Putman
- Faculty of Kinesiology, Sport, and Recreation, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada
| | - Vickie E Baracos
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Vera C Mazurak
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, 4-002 Li Ka Shing Centre, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
4
|
Brull A, Morales Rodriguez B, Bonne G, Muchir A, Bertrand AT. The Pathogenesis and Therapies of Striated Muscle Laminopathies. Front Physiol 2018; 9:1533. [PMID: 30425656 PMCID: PMC6218675 DOI: 10.3389/fphys.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a genetic condition characterized by early contractures, skeletal muscle weakness, and cardiomyopathy. During the last 20 years, various genetic approaches led to the identification of causal genes of EDMD and related disorders, all encoding nuclear envelope proteins. By their respective localization either at the inner nuclear membrane or the outer nuclear membrane, these proteins interact with each other and establish a connection between the nucleus and the cytoskeleton. Beside this physical link, these proteins are also involved in mechanotransduction, responding to environmental cues, such as increased tension of the cytoskeleton, by the activation or repression of specific sets of genes. This ability of cells to adapt to environmental conditions is altered in EDMD. Increased knowledge on the pathophysiology of EDMD has led to the development of drug or gene therapies that have been tested on mouse models. This review proposed an overview of the functions played by the different proteins involved in EDMD and related disorders and the current therapeutic approaches tested so far.
Collapse
Affiliation(s)
- Astrid Brull
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France.,Sanofi R&D, Chilly Mazarin, France
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Antoine Muchir
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| | - Anne T Bertrand
- Sorbonne Université, INSERM, Institut de Myologie, Center of Research in Myology, UMRS 974, Paris, France
| |
Collapse
|
5
|
Ziat E, Mamchaoui K, Beuvin M, Nelson I, Azibani F, Spuler S, Bonne G, Bertrand AT. FHL1B Interacts with Lamin A/C and Emerin at the Nuclear Lamina and is Misregulated in Emery-Dreifuss Muscular Dystrophy. J Neuromuscul Dis 2018; 3:497-510. [PMID: 27911330 DOI: 10.3233/jnd-160169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C. So far, none have been described at the nuclear envelope. OBJECTIVE To gain insight into the pathophysiology of EDMD, we focused our attention on the poorly characterized FHL1B isoform. METHODS The amount and the localisation of FHL1B were evaluated in control and diseased human primary myoblasts using immunofluorescence and western blotting. RESULTS We found that in addition to a cytoplasmic localization, this isoform strongly accumulated at the nuclear envelope of primary human myoblasts, like but independently of lamin A/C and emerin. During myoblast differentiation, we observed a major reduction of FHL1B protein expression, especially in the nucleus. Interestingly, we found elevated FHL1B expression level in myoblasts from an FHL1-related EDMD patient where the FHL1 mutation only affects FHL1A, as well as in myoblasts from an LMNA-related EDMD patient. CONCLUSIONS Altogether, the specific localization of FHL1B and its modulation in disease-patient's myoblasts confirmed FHL1-related EDMD as a nuclear envelope disease.
Collapse
Affiliation(s)
- Esma Ziat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France.,Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation between Max-Delbrück-Center for Molecular Medicine and Charite Medical Faculty, Berlin, Germany
| | - Kamel Mamchaoui
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Maud Beuvin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Isabelle Nelson
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Feriel Azibani
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, A Joint Cooperation between Max-Delbrück-Center for Molecular Medicine and Charite Medical Faculty, Berlin, Germany
| | - Gisèle Bonne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| | - Anne T Bertrand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
6
|
D'Arcy C, Kanellakis V, Forbes R, Wilding B, McGrath M, Howell K, Ryan M, McLean C. X-linked Recessive Distal Myopathy With Hypertrophic Cardiomyopathy Caused by a Novel Mutation in the FHL1 Gene. J Child Neurol 2015; 30:1211-7. [PMID: 25246303 DOI: 10.1177/0883073814549807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/11/2014] [Indexed: 11/16/2022]
Abstract
FHL1 gene mutations are associated with reducing body myopathy, X-linked myopathy with postural muscle atrophy, scapuloperoneal myopathy, Emery-Dreifuss muscular dystrophy, and isolated hypertrophic cardiomyopathy. We describe a boy with a family history consistent with X-linked distal myopathy/cardiomyopathy. The boy first presented at age 14 years and was found to have distal wasting and weakness. Echocardiogram revealed hypertrophic cardiomyopathy. Muscle biopsy showed a vacuolar pathology with no reducing bodies. Sequencing of FHL1 revealed a novel hemizygous c.764G>C missense mutation in exon 8. This is the first report of a predominantly distal myopathy with hypertrophic cardiomyopathy occurring secondary to an FHL1 mutation.
Collapse
Affiliation(s)
- Colleen D'Arcy
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia Department of Anatomical Pathology, The Alfred Hospital, Victoria, Australia
| | - Voula Kanellakis
- Applied Genetics Diagnostics, University of Melbourne, Melbourne, Australia
| | - Robin Forbes
- Victorian Clinical Genetics Service, Royal Children's Hospital, Victoria, Australia
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Meagan McGrath
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Katherine Howell
- Children's Neurosciences Centre, Royal Children's Hospital, Victoria, Australia
| | - Monique Ryan
- Children's Neurosciences Centre, Royal Children's Hospital, Victoria, Australia
| | - Catriona McLean
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia Department of Anatomical Pathology, The Alfred Hospital, Victoria, Australia
| |
Collapse
|
7
|
Chen JY, Yang LX, Huang ZF. The N-terminal 33 amino acid domain of Siva-1 is sufficient for nuclear localization. Braz J Med Biol Res 2013; 46:1021-1027. [PMID: 24345910 PMCID: PMC3935273 DOI: 10.1590/1414-431x20132833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 07/29/2013] [Indexed: 01/21/2023] Open
Abstract
Siva-1 induces apoptosis in multiple pathological processes and plays an important role in the suppression of tumor metastasis, protein degradation, and other functions. Although many studies have demonstrated that Siva-1 functions in the cytoplasm, a few have found that Siva-1 can relocate to the nucleus. In this study, we found that the first 33 amino acid residues of Siva-1 are required for its nuclear localization. Further study demonstrated that the green fluorescent protein can be imported into the nucleus after fusion with these 33 amino acid residues. Other Siva-1 regions and domains showed less effect on Siva-1 nuclear localization. By site-mutagenesis of all of these 33 amino acid residues, we found that mutants of the first 1-18 amino acids affected Siva-1 nuclear compartmentalization but could not complete this localization independently. In summary, we demonstrated that the N-terminal 33 amino acid residues were sufficient for Siva-1 nuclear localization, but the mechanism of this translocation needs additional investigation.
Collapse
Affiliation(s)
- J Y Chen
- Sun Yat-sen University, Zhongshan School of Medicine, Institute of Human Virology, Guangzhou, China
| | - L X Yang
- Sun Yat-sen University, Zhongshan School of Medicine, Institute of Human Virology, Guangzhou, China
| | - Z F Huang
- Sun Yat-sen University, Zhongshan School of Medicine, Institute of Human Virology, Guangzhou, China
| |
Collapse
|
8
|
Dysregulation of FHL1 spliceforms due to an indel mutation produces an Emery-Dreifuss muscular dystrophy plus phenotype. Neurogenetics 2013; 14:113-21. [PMID: 23456229 DOI: 10.1007/s10048-013-0359-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/19/2013] [Indexed: 10/27/2022]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is characterised by early-onset joint contractures, progressive muscular weakness and wasting and late-onset cardiac disease. The more common X-linked recessive form of EDMD is caused by mutations in either EMD (encoding emerin) or FHL1 (encoding four and a half LIM domains 1), while mutations in LMNA (encoding lamin A/C), SYNE1 (encoding nesprin-1) and SYNE2 (encoding nesprin-2) lead to autosomal dominant forms of the condition. Here, we identify a three-generation family with an extended EDMD phenotype due to a novel indel mutation in FHL1 that differentially affects the relative expression of the three known transcript isoforms produced from this locus. The additional phenotypic manifestations in this family-proportionate short stature, facial dysmorphism, pulmonary valvular stenosis, thoracic scoliosis, brachydactyly, pectus deformities and genital abnormalities-are reminiscent of phenotypes seen with dysregulated Ras-mitogen-activated protein kinase (RAS-MAPK) signalling [Noonan syndrome (NS) and related disorders]. The misexpression of FHL1 transcripts precipitated by this mutation, together with the role of FHL1 in the regulation of RAS-MAPK signalling, suggests that this mutation confers a complex phenotype through both gain- and loss-of-function mechanisms. This indel mutation in FHL1 broadens the spectrum of FHL1-related disorders and implicates it in the pathogenesis of NS spectrum disorders.
Collapse
|
9
|
Regulation of IL-2 gene expression by Siva and FOXP3 in human T cells. BMC Immunol 2011; 12:54. [PMID: 21955384 PMCID: PMC3208582 DOI: 10.1186/1471-2172-12-54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Severe autoinflammatory diseases are associated with mutations in the Foxp3 locus in both mice and humans. Foxp3 is required for the development, function, and maintenance of regulatory T cells (Tregs), a subset of CD4 cells that suppress T cell activation and inflammatory processes. Siva is a pro-apoptotic gene that is expressed across a range of tissues, including CD4 T cells. Siva interacts with three tumor necrosis factor receptor (TNFR) family members that are constitutively expressed on Treg cells: CD27, GITR, and OX40. RESULTS Here we report a biophysical interaction between FOXP3 and Siva. We mapped the interaction domains to Siva's C-terminus and to a central region of FOXP3. We showed that Siva repressed IL-2 induction by suppressing IL-2 promoter activity during T cell activation. Siva-1's repressive effect on IL-2 gene expression appears to be mediated by inhibition of NFkappaB, whereas FOXP3 repressed both NFkappaB and NFAT activity. CONCLUSIONS In summary, our data suggest that both FOXP3 and Siva function as negative regulators of IL-2 gene expression in Treg cells, via suppression of NFAT by FOXP3 and of NFkappaB by both FOXP3 and Siva. Our work contributes evidence for Siva's role as a T cell signalling mediator in addition to its known pro-apoptotic function. Though further investigations are needed, evidence for the biophysical interaction between FOXP3 and Siva invites the possibility that Siva may be important for proper Treg cell function.
Collapse
|
10
|
Cowling BS, Cottle DL, Wilding BR, D'Arcy CE, Mitchell CA, McGrath MJ. Four and a half LIM protein 1 gene mutations cause four distinct human myopathies: a comprehensive review of the clinical, histological and pathological features. Neuromuscul Disord 2011; 21:237-51. [PMID: 21310615 DOI: 10.1016/j.nmd.2011.01.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/20/2010] [Accepted: 01/01/2011] [Indexed: 10/18/2022]
Abstract
Mutations in the four and a half LIM protein 1 (FHL1) gene were recently identified as the cause of four distinct skeletal muscle diseases. Since the initial report outlining the first fhl1 mutation in 2008, over 25 different mutations have been identified in patients with reducing body myopathy, X-linked myopathy characterized by postural muscle atrophy, scapuloperoneal myopathy and Emery-Dreifuss muscular dystrophy. Reducing body myopathy was first described four decades ago, its underlying genetic cause was unknown until the discovery of fhl1 mutations. X-linked myopathy characterized by postural muscle atrophy is a novel disease where fhl1 mutations are the only cause. This review will profile each of the FHL1, with a comprehensive analysis of mutations, a comparison of the clinical and histopathological features and will present several hypotheses for the possible disease mechanism(s).
Collapse
Affiliation(s)
- Belinda S Cowling
- Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | |
Collapse
|
11
|
Singaravelu K, Padanilam BJ. p53 target Siva regulates apoptosis in ischemic kidneys. Am J Physiol Renal Physiol 2011; 300:F1130-41. [PMID: 21307125 PMCID: PMC3094050 DOI: 10.1152/ajprenal.00591.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/04/2011] [Indexed: 01/07/2023] Open
Abstract
The role of p53 in inducing apoptosis following acute kidney injury is well-established; however, the molecular mechanisms remain largely unknown. We report here that the p53 proapoptotic target Siva and its receptor CD27, a member of the tumor necrosis factor receptor family, are upregulated following renal ischemia-reperfusion injury (IRI). Inhibition of Siva using antisense oligonucleotides conferred functional and morphological protection, and it prevented apoptosis postrenal IRI in mice. Renal IRI in CD27-deficient mice displayed functional protection and partial inhibition of apoptosis, suggesting an incomplete role for CD27 in Siva-mediated apoptosis. To further elucidate mechanisms by which Siva elicits apoptosis, in vitro studies were performed. In Siva-transfected LLC-PK(1)cells, Siva is persistently expressed in the nucleus at 3 h onwards and its translocation to mitochondria and the plasma membrane occurred at 6 h. Moreover, Siva overexpression induced mitochondrial permeability, cytochrome c release, caspase-8 and -9 activation, translocation of apoptosis-inducing factor (AIF) to the nucleus, and apoptosis. Inhibition of Siva in ischemic kidneys prevented mitochondrial release of cytochrome c and AIF. These data indicate that Siva function is pivotal in regulating apoptosis in the pathology of renal IRI. Targeting Siva may offer a potential therapeutic strategy for renal IRI.
Collapse
Affiliation(s)
- Kurinji Singaravelu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, 68198-5850, USA
| | | |
Collapse
|
12
|
Maraldi NM, Capanni C, Cenni V, Fini M, Lattanzi G. Laminopathies and lamin-associated signaling pathways. J Cell Biochem 2011; 112:979-92. [PMID: 21400569 DOI: 10.1002/jcb.22992] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Laminopathies are genetic diseases due to mutations or altered post-translational processing of nuclear envelope/lamina proteins. The majority of laminopathies are caused by mutations in the LMNA gene, encoding lamin A/C, but manifest as diverse pathologies including muscular dystrophy, lipodystrophy, neuropathy, and progeroid syndromes. Lamin-binding proteins implicated in laminopathies include lamin B2, nuclear envelope proteins such as emerin, MAN1, LBR, and nesprins, the nuclear matrix protein matrin 3, the lamina-associated polypeptide, LAP2alpha and the transcriptional regulator FHL1. Thus, the altered functionality of a nuclear proteins network appears to be involved in the onset of laminopathic diseases. The functional interplay among different proteins involved in this network implies signaling partners. The signaling effectors may either modify nuclear envelope proteins and their binding properties, or use nuclear envelope/lamina proteins as platforms to regulate signal transduction. In this review, both aspects of lamin-linked signaling are presented and the major pathways so far implicated in laminopathies are summarized.
Collapse
Affiliation(s)
- Nadir M Maraldi
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Bologna, Italy.
| | | | | | | | | |
Collapse
|
13
|
Shathasivam T, Kislinger T, Gramolini AO. Genes, proteins and complexes: the multifaceted nature of FHL family proteins in diverse tissues. J Cell Mol Med 2011; 14:2702-20. [PMID: 20874719 PMCID: PMC3822721 DOI: 10.1111/j.1582-4934.2010.01176.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Four and a half LIM domain protein 1 (FHL1) is the founding member of the FHL family of proteins characterized by the presence of four and a half highly conserved LIM domains. The LIM domain is a protein-interaction motif and is involved in linking proteins with both the actin cytoskeleton and transcriptional machinery. To date, more than 25 different protein interactions have been identified for full length FHL1 and its spliced variants, and these interactions can be mapped to a variety of functional classes. Because FHL1 is expressed predominantly in skeletal muscle, all of these proteins interactions translate into a multifunctional and integral role for FHL1 in muscle development, structural maintenance, and signalling. Importantly, 27 FHL1 genetic mutations have been identified that result in at least six different X-linked myopathies, with patients often presenting with cardiovascular disease. FHL1 expression is also significantly up-regulated in a variety of cardiac disorders, even at the earliest stages of disease onset. Alternatively, FHL1 expression is suppressed in a variety of cancers, and ectopic FHL1 expression offers potential for some phenotype rescue. This review focuses on recent studies of FHL1 in muscular dystrophies and cardiovascular disease, and provides a comprehensive review of FHL1s multifunctional roles in skeletal muscle.
Collapse
|
14
|
LIM domain protein FHL1B interacts with PP2A catalytic β subunit - A novel cell cycle regulatory pathway. FEBS Lett 2010; 584:4511-6. [DOI: 10.1016/j.febslet.2010.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/27/2010] [Accepted: 10/09/2010] [Indexed: 12/30/2022]
|
15
|
Yang SY, Hoy M, Fuller B, Sales KM, Seifalian AM, Winslet MC. Pretreatment with insulin-like growth factor I protects skeletal muscle cells against oxidative damage via PI3K/Akt and ERK1/2 MAPK pathways. J Transl Med 2010; 90:391-401. [PMID: 20084055 DOI: 10.1038/labinvest.2009.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress has an important role in the pathogenesis of many muscle diseases. The major contributors to oxidative stress in muscle tissue are reactive oxygen species such as oxygen ions, free radicals, and peroxides. Insulin-like growth factor I (IGF-I) has been shown to increase muscle mass and promote muscle cell proliferation, differentiation, and survival. We, therefore, hypothesized that IGF-I might also be cytoprotective for muscle cells during oxidative stress. Exogenous hydrogen peroxide (H(2)O(2)) was used to induce oxidative stress/damage in two types of skeletal muscle cells. Apoptotic pathways were assessed after the oxidative damage and the effects of IGF-I on oxidative stress in muscle cells were examined. Different IGF-I sub-pathways were analyzed with measurement of the expression of pro-and anti-apoptotic proteins. It was found that H(2)O(2) diminishes muscle cell viability and induces a caspase-independent apoptotic cell death. Pretreatment with IGF-I protects muscle cells from H(2)O(2)-induced cell death and enhances muscle cells survival. This effect appears to result from the promotion of the anti-apoptotic protein, Bcl2. Further investigation shows that protection is via an IGF-I sub-pathway: PI3K/Akt and ERK1/2 MAPK pathways. Protecting muscle cells from oxidative damage presents a potential application in the treatment of the muscle wasting, which appears in many muscle pathologies including Duchenne muscle dystrophy and sarcopenia.
Collapse
Affiliation(s)
- Shi Yu Yang
- Division of Surgery and Interventional Science, UCL Medical School, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|