1
|
Chaib M, Sipe LM, Yarbro JR, Bohm MS, Counts BR, Tanveer U, Pingili AK, Daria D, Marion TN, Carson JA, Thomas PG, Makowski L. PKC agonism restricts innate immune suppression, promotes antigen cross-presentation and synergizes with agonistic CD40 antibody therapy to activate CD8 + T cells in breast cancer. Cancer Lett 2022; 531:98-108. [PMID: 35074498 PMCID: PMC9867936 DOI: 10.1016/j.canlet.2022.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2022] [Accepted: 01/13/2022] [Indexed: 01/26/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature innate cell population that expands in pathological conditions such as cancer and suppresses T cells via production of immunosuppressive factors. Conversely, efficient cytotoxic T cell priming is dependent on the ability of antigen-presenting cells (APCs) to cross-present tumor antigens to CD8+ T cells, a process that requires a specific subtype of dendritic cells (DCs) called conventional DC1 (cDC1) which are often dysfunctional in cancer. One way to activate cDC1 is ligation of CD40 which is abundantly expressed by myeloid cells and its agonism leads to myeloid cell activation. Thus, targeting MDSCs while simultaneously expanding cross-presenting DCs represents a promising strategy that, when combined with agonistic CD40, may result in long-lasting protective immunity. In this study, we investigated the effect of PKC agonists PEP005 and prostratin on MDSC expansion, differentiation, and recruitment to the tumor microenvironment. Our findings demonstrate that PKC agonists decreased MDSC expansion from hematopoietic progenitors and induced M-MDSC differentiation to an APC-like phenotype that expresses cDC1-related markers via activation of the p38 mitogen-activated protein kinase (MAPK) pathway. Simultaneously, PKC agonists favored cDC1 expansion at the expense of cDC2 and plasmacytoid DCs (pDC). Functionally, PKC agonists blunted MDSC suppressive activity and enhanced MDSC cross-priming capacity both in vitro and in vivo. Finally, combination of PKC agonism with agonistic CD40 mAb resulted in a marked reduction in tumor growth with a significant increase in intratumoral activated CD8+ T cells and tissue-resident memory CD8+ T cells in a syngeneic breast cancer mouse model. In sum, this work proposes a novel promising strategy to simultaneously target MDSCs and promote APC function that may have highly impactful clinical relevance in cancer patients.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Laura M. Sipe
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Johnathan R. Yarbro
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Margaret S. Bohm
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Brittany R. Counts
- Division of Regenerative and Rehabilitation Sciences, College of Health Professions, UTHSC Memphis, USA
| | - Ubaid Tanveer
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ajeeth K. Pingili
- Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Deidre Daria
- Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tony N. Marion
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - James A. Carson
- Division of Regenerative and Rehabilitation Sciences, College of Health Professions, UTHSC Memphis, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Paul G. Thomas
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Medicine, Division of Hematology and Oncology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA,Corresponding author. Cancer Research Building Room 322, UTHSC Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Memphis, TN, 38163, USA. (L. Makowski)
| |
Collapse
|
2
|
Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, Kumar N, Singh JP, Acharya A. Putative role of natural products as Protein Kinase C modulator in different disease conditions. ACTA ACUST UNITED AC 2021; 29:397-414. [PMID: 34216003 DOI: 10.1007/s40199-021-00401-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Protein kinase C (PKC) is a promising drug target for various therapeutic areas. Natural products derived from plants, animals, microorganisms, and marine organisms have been used by humans as medicine from prehistoric times. Recently, several compounds derived from plants have been found to modulate PKC activities through competitive binding with ATP binding site, and other allosteric regions of PKC. As a result fresh race has been started in academia and pharmaceutical companies to develop an effective naturally derived small-molecule inhibitor to target PKC activities. Herein, in this review, we have discussed several natural products and their derivatives, which are reported to have an impact on PKC signaling cascade. METHODS All information presented in this review article regarding the regulation of PKC by natural products has been acquired by a systematic search of various electronic databases, including ScienceDirect, Scopus, Google Scholar, Web of science, ResearchGate, and PubMed. The keywords PKC, natural products, curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, protocatechuic acid, tannic acid, PKC modulators from marine organism, bryostatin, staurosporine, midostaurin, sangivamycin, and other relevant key words were explored. RESULTS The natural products and their derivatives including curcumin, rottlerin, quercetin, ellagic acid, epigallocatechin-3 gallate, ingenol 3 angelate, resveratrol, bryostatin, staurosporine, and midostaurin play a major role in the management of PKC activity during various disease progression. CONCLUSION Based on the comprehensive literature survey, it could be concluded that various natural products can regulate PKC activity during disease progression. However, extensive research is needed to circumvent the challenge of isoform specific regulation of PKC by natural products.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | | | - Munendra Singh Tomar
- Department of Pharmaceutical Science, School of Pharmacy, University of Colorado, Denver, USA
| | | | - Amit Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Sandeep Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Naveen Kumar
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India
| | - Jai Prakash Singh
- Department of Panchkarma, Institute of Medical Science, BHU, Varanasi, India, 221005
| | - Arbind Acharya
- Department of Zoology, Institute of Science, BHU, Varanasi, 221005, India.
| |
Collapse
|
3
|
Shen J, Sun C, Wang Z, Chu Z, Liu C, Xu X, Xia M, Zhao M, Wang C. Sequential receptor-mediated mixed-charge nanomedicine to target pancreatic cancer, inducing immunogenic cell death and reshaping the tumor microenvironment. Int J Pharm 2021; 601:120553. [PMID: 33794325 DOI: 10.1016/j.ijpharm.2021.120553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is an aggressive form of cancer with dense stroma and immune-suppressive microenvironment, which are the major barriers for treatment. To address such barriers, this study aimed to develop a sequential receptor-mediated mixed-charge targeted delivery system for PC based on 2-(3-((S)-5-amino-1-carboxypentyl)-ureido) pentanedioate (ACUPA-) and triphenylphosphonium (TPP+) modified nanomicelles containing ingenol-3-mebutate (I3A), which was named ACUPA-/TPP+-I3A or ACUPA/TPP-I3A. ACUPA/TPP-I3A induced immunogenic cell death (ICD), which significantly increased the number of tumor-infiltrating T lymphocytes, activated adaptive immunity, and achieved superior survival time. I3A, a novel anticancer drug, could induce PC cell necrosis to release damage-associated molecular patterns, thereby activating adaptive immunity. With certain ratios of negatively (ACUPA-) and positively (TPP+) charged ligands, ACUPA/TPP-I3A acquired a negative charge in plasma (pH 7.4, to inhibit aggregation and uptake in the circulation) and was neutral in the acidic tumor microenvironment (pH 5.0-6.0, to overcome electrostatic hindrances and facilitate transcytosis). Furthermore, neovascular endothelium-specific ACUPA enabled rapid transcytosis of ACUPA/TPP-I3A across tumor vessel walls, entering into endosome/lysosomes (pH 4.5-5.0, its charge became positive and exhibited lysosome escape). Then, ACUPA/TPP-I3A selectively targeted mitochondria, which correlated with TPP-mediated effect. Finally, I3A was released to induce ICD that activated adaptive immunity and achieved superior survival time. Therefore, reshaping of the tumor microenvironment and potentiating antitumor immunity using ACUPA-/TPP+-I3A constituted a novel strategy to prolong the survival time.
Collapse
Affiliation(s)
- Jingmin Shen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chao Sun
- Central Research Laboratory, Institute of Medical Science, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong Province, China
| | - Zhicheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhijie Chu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Chengcheng Liu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province, China
| | - Xuelian Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwuweiqi Road, 250021 Jinan, Shandong Province, China.
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
4
|
Marro BS, Zak J, Zavareh RB, Teijaro JR, Lairson LL, Oldstone MBA. Discovery of Small Molecules for the Reversal of T Cell Exhaustion. Cell Rep 2020; 29:3293-3302.e3. [PMID: 31801090 DOI: 10.1016/j.celrep.2019.10.119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/20/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022] Open
Abstract
Inhibitory receptors (IRs) function as critical regulators of immune responses by tempering T cell activity. In humans, several persisting viruses as well as cancers exploit IR signaling by upregulating IR ligands, resulting in suppression of T cell function (i.e., exhaustion). This allows escape from immune surveillance and continuation of disease. Here, we report the design, implementation, and results of a phenotypic high-throughput screen for molecules that modulate CD8+ T cell activity. We identify 19 compounds from the ReFRAME drug-repurposing collection that restore cytokine production and enhance the proliferation of exhausted T cells. Analysis of our top hit, ingenol mebutate, a protein kinase C (PKC) inducing diterpene ester, reveals a role for this molecule in overriding the suppressive signaling cascade mediated by IR signaling on T cells. Collectively, these results demonstrate a disease-relevant methodology for identifying modulators of T cell function and reveal new targets for immunotherapy.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jaroslav Zak
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Reza Beheshti Zavareh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael B A Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Yu M, Zhao M, Yu R, Chu S, Xu J, Xia M, Wang C. Nanotechnology-mediated immunochemotherapy with Ingenol-3-Mebutate for Systematic Anti-tumor Effects. J Control Release 2019; 304:242-258. [PMID: 31071376 DOI: 10.1016/j.jconrel.2019.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 02/06/2023]
Abstract
Cancer-Immunotherapy was the most exciting topic. However, either insensitivity due to singleness of therapeutic target or immune evasion leads to the failure of the treatment. Ingenol-3-mebutate (I3A) can inhibit cancer through synergy between immunotherapy and chemotherapy, however, the speculation and accurate mechanism haven't been confirmed in vivo limited by its hydrophobicity and pH-instability, which also hindered its clinical translation. Herein we developed a polymeric micelle with 'acidic core' provided by single alcoholic hydroxyl (-CH(CH3)-OH) encapsulating I3A (I3A-PM), which successfully overcome the aforementioned problems and reduce the toxicity in vivo. To test the synergy, S180 tumor-bearing mice were subjected to I3A-PM through intravenous and intratumoral administration, we found I3A-PM presented significant antitumor effect, and promoted Th1 polarization by upregulating the level of Th1 cytokines (IL-12, IL-2, IFN-γ and TNF-α), and accelerated the expansion of CD4+ and CD8+ T cells, meanwhile, I3A-PM depleted regulatory T cells, Th2 cytokine IL-6 through inhibiting TGF-β signaling pathway. Furthermore, we appealed to virtual screening of tumor target, and found a new pathway of I3A as a TGF-β receptor type I inhibitor to improve immunostimulatory effects. These results demonstrated I3A-PM as a promising nanoagent for cancer immunotherapy strategy. The synergistic therapeutic effects are encouraged to further evaluate in different cancer model compared with commercial products to facilitate research finding (I3A-PM) entering the clinic.
Collapse
Affiliation(s)
- Mian Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Miaoqing Zhao
- Department of Pathology, Provincial Hospital Affiliated to Shandong University, Key Laboratory for Kidney Regeneration of Shandong Province, Jinan 250021, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Shaochen Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jiahao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong University, Key Laboratory for Kidney Regeneration of Shandong Province, Jinan 250021, China.
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res 2018; 158:63-77. [PMID: 30063970 DOI: 10.1016/j.antiviral.2018.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) has successfully converted HIV to a chronic but manageable infection in many parts of the world, HIV continues to persist within latent cellular reservoirs, which can become reactivated at any time to produce infectious virus. New therapies are therefore needed not only for HIV suppression but also for containing or eliminating HIV reservoirs. Compounds derived from plant, marine, and other natural products have been found to combat HIV infection and/or target HIV reservoirs, and these discoveries have substantially guided current HIV therapy-based studies. Here we summarize the role of natural product-derived compounds in current HIV suppression, remission, and cure strategies.
Collapse
|
7
|
Abstract
Despite a more recent isolation and chemical characterization when compared to phorbol, along with its chemical instability, limited distribution in Nature, and scarce availability, ingenol is the only Euphorbia diterpenoid that has undergone successful pharmaceutical development, with ingenol 3-angelate (ingenol mebutate, Picato(®)) entering the pharmaceutical market in 2012 for the treatment of actinic keratosis. The phytochemical, chemical, and biological literature on members of the ingenane class of diterpenoids is reviewed from their first isolation in 1968 through 2015, highlighting unresolved issues both common to phorboids (biogenesis, relationship between molecular targets, and in vivo activity) and specific to ingenol derivatives (two-dimensional representation, in-out stereoisomerism, versatility of binding mode to PKC, and inconsistencies in the structural elucidation of some classes of derivatives). The biogenesis of ingenol is discussed in the light of the Jakupovic proposal of a dissection between the formation of the macrocyclic Euphorbia diterpenoids and the phorboids, and the clinical development of ingenol mebutate is chronicled in the light of its "reverse-pharmacology" focus.
Collapse
Affiliation(s)
- Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Largo Donegani 2, 28100, Novara, Italy.
| |
Collapse
|
8
|
Stockdale TP, Williams CM. Pharmaceuticals that contain polycyclic hydrocarbon scaffolds. Chem Soc Rev 2015; 44:7737-63. [DOI: 10.1039/c4cs00477a] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review comprehensively explores approved pharmaceutical compounds that contain polycyclic scaffolds and the properties that these skeletons convey.
Collapse
Affiliation(s)
- Tegan P. Stockdale
- School of Chemistry and Molecular Biosciences
- University of Queensland
- St Lucia
- Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences
- University of Queensland
- St Lucia
- Australia
| |
Collapse
|
9
|
Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 2014; 462-463:328-39. [PMID: 25014309 DOI: 10.1016/j.virol.2014.05.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 04/28/2014] [Accepted: 05/29/2014] [Indexed: 11/21/2022]
Abstract
The ability of HIV to establish long-lived latent infection is mainly due to transcriptional silencing of viral genome in resting memory T lymphocytes. Here, we show that new semi-synthetic ingenol esters reactivate latent HIV reservoirs. Amongst the tested compounds, 3-caproyl-ingenol (ING B) was more potent in reactivating latent HIV than known activators such as SAHA, ingenol 3,20-dibenzoate, TNF-α, PMA and HMBA. ING B activated PKC isoforms followed by NF-κB nuclear translocation. As virus reactivation is dependent on intact NF-κB binding sites in the LTR promoter region ING B, we have shown that. ING B was able to reactivate virus transcription in primary HIV-infected resting cells up to 12 fold and up to 25 fold in combination with SAHA. Additionally, ING B promoted up-regulation of P-TEFb subunits CDK9/Cyclin T1. The role of ING B on promoting both transcription initiation and elongation makes this compound a strong candidate for an anti-HIV latency drug combined with suppressive HAART.
Collapse
|
10
|
Collier NJ, Ali FR, Lear JT. Ingenol mebutate: a novel treatment for actinic keratosis. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/cpr.14.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kazi JU, Kabir NN, Rönnstrand L. Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Med Oncol 2013; 30:757. [PMID: 24174318 DOI: 10.1007/s12032-013-0757-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/24/2013] [Indexed: 02/07/2023]
Abstract
Protein kinase C (PKC) belongs to a family of ten serine/threonine protein kinases encoded by nine genes. This family of proteins plays critical roles in signal transduction which results in cell proliferation, survival, differentiation and apoptosis. Due to differential subcellular localization and tissue distribution, each member displays distinct signaling characteristics. In this review, we have summarized the roles of PKC family members in chronic lymphocytic leukemia (CLL). CLL is a heterogeneous hematological disorder with survival ranging from months to decades. PKC isoforms are differentially expressed in CLL and play critical roles in CLL pathogenesis. Thus, isoform-specific PKC inhibitors may be an attractive option for CLL treatment.
Collapse
Affiliation(s)
- Julhash U Kazi
- Translational Cancer Research, Lund University, Medicon Village, Building 404:C3, 223 63, Lund, Sweden,
| | | | | |
Collapse
|
12
|
Gupta AK, Paquet M. Ingenol Mebutate: A Promising Treatment for Actinic Keratoses and Nonmelanoma Skin Cancers. J Cutan Med Surg 2013; 17:173-9. [DOI: 10.2310/7750.2012.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: A new treatment for actinic keratoses, ingenol mebutate, was recently approved by the US Food and Drug Administration. Objective: To review the mechanisms of action, efficacy and safety data, and practical recommendations for ingenol mebutate. Methods: The PubMed and clinicaltrials.gov databases were searched in March/April 2012 using the terms PEP005, ingenol mebutate, and ingenol 3-angelate. The abstracts from the Annual Scientific Meeting of the Australian College of Dermatologists (2009–2011) and the Annual Meeting of the American Academy of Dermatology (2009–2012) were also searched. Results: Due to its multiple mechanisms of action, ingenol mebutate treatment resulted in short- and long-term efficacy similar to other topical treatments for actinic keratoses in a shorter period of 2 or 3 days. This short therapy would reduce the duration of adverse events. Premarketing trials for treatment of nonmelanoma skin cancers also showed promising results for ingenol mebutate. Conclusion: Ingenol mebutate is a convenient, safe, and effective intervention for precancerous and cancerous skin conditions.
Collapse
Affiliation(s)
- Aditya K. Gupta
- From the Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Toronto, ON, and Mediprobe Research Inc., London, ON
| | - Maryse Paquet
- From the Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Toronto, ON, and Mediprobe Research Inc., London, ON
| |
Collapse
|
13
|
Berman B. New developments in the treatment of actinic keratosis: focus on ingenol mebutate gel. Clin Cosmet Investig Dermatol 2012; 5:111-22. [PMID: 22956883 PMCID: PMC3430094 DOI: 10.2147/ccid.s28905] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Indexed: 01/05/2023]
Abstract
Actinic keratosis is a common disease in older, fair-skinned people, and is a consequence of cumulative ultraviolet exposure. It is part of a disease continuum in photodamaged skin that may lead to invasive squamous cell carcinoma. Treatment options frequently used include cryosurgery and topical pharmacologic agents, which are examples of lesion-directed and field-directed strategies. Ingenol mebutate gel was recently approved by the US Food and Drug Administration for topical treatment of actinic keratosis. While the mechanism of action of ingenol mebutate is not fully understood, in vitro and in vivo studies using tumor models indicate it has multiple mechanisms. Ingenol mebutate directly induces cell death by mitochondrial swelling and loss of cell membrane integrity preferentially in transformed keratinocytes. It promotes an inflammatory response characterized by infiltration of neutrophils and other immunocompetent cells that kills remaining tumor cells. The ability of ingenol mebutate to eliminate mutant p53 patches in ultraviolet-irradiated mouse skin suggests that it may have the potential to treat chronically ultraviolet-damaged skin. In human studies, ingenol mebutate achieved high clearance of actinic keratosis on the head and body after 2–3 consecutive daily treatments when measured by complete or partial clearance of lesions. Localized inflammatory skin responses were generally mild to moderate and resolved in less than a month.
Collapse
Affiliation(s)
- Brian Berman
- University of Miami Miller School of Medicine, Miami, and Center for Clinical and Cosmetic Research, Aventura, FL, USA
| |
Collapse
|
14
|
Vasas A, Rédei D, Csupor D, Molnár J, Hohmann J. Diterpenes from European Euphorbia Species Serving as Prototypes for Natural-Product-Based Drug Discovery. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200733] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|