1
|
Caro LN, Moreau CJ, Estrada-Mondragón A, Ernst OP, Vivaudou M. Engineering of an artificial light-modulated potassium channel. PLoS One 2012; 7:e43766. [PMID: 22928030 PMCID: PMC3425490 DOI: 10.1371/journal.pone.0043766] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022] Open
Abstract
Ion Channel-Coupled Receptors (ICCRs) are artificial receptor-channel fusion proteins designed to couple ligand binding to channel gating. We previously validated the ICCR concept with various G protein-coupled receptors (GPCRs) fused with the inward rectifying potassium channel Kir6.2. Here we characterize a novel ICCR, consisting of the light activated GPCR, opsin/rhodopsin, fused with Kir6.2. To validate our two-electrode voltage clamp (TEVC) assay for activation of the GPCR, we first co-expressed the apoprotein opsin and the G protein-activated potassium channel Kir3.1F137S (Kir3.1*) in Xenopus oocytes. Opsin can be converted to rhodopsin by incubation with 11-cis retinal and activated by light-induced retinal cis→trans isomerization. Alternatively opsin can be activated by incubation of oocytes with all-trans-retinal. We found that illumination of 11-cis-retinal-incubated oocytes co-expressing opsin and Kir3.1* caused an immediate and long-lasting channel opening. In the absence of 11-cis retinal, all-trans-retinal also opened the channel persistently, although with slower kinetics. We then used the oocyte/TEVC system to test fusion proteins between opsin/rhodopsin and Kir6.2. We demonstrate that a construct with a C-terminally truncated rhodopsin responds to light stimulus independent of G protein. By extending the concept of ICCRs to the light-activatable GPCR rhodopsin we broaden the potential applications of this set of tools.
Collapse
Affiliation(s)
- Lydia N. Caro
- CNRS, Institut de Biologie Structurale, Grenoble, France
- CEA, Institut de Biologie Structurale, LabEx ICST, Grenoble, France
- Université Grenoble I, Institut de Biologie Structurale, Grenoble, France
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Christophe J. Moreau
- CNRS, Institut de Biologie Structurale, Grenoble, France
- CEA, Institut de Biologie Structurale, LabEx ICST, Grenoble, France
- Université Grenoble I, Institut de Biologie Structurale, Grenoble, France
| | - Argel Estrada-Mondragón
- CNRS, Institut de Biologie Structurale, Grenoble, France
- CEA, Institut de Biologie Structurale, LabEx ICST, Grenoble, France
- Université Grenoble I, Institut de Biologie Structurale, Grenoble, France
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michel Vivaudou
- CNRS, Institut de Biologie Structurale, Grenoble, France
- CEA, Institut de Biologie Structurale, LabEx ICST, Grenoble, France
- Université Grenoble I, Institut de Biologie Structurale, Grenoble, France
- * E-mail:
| |
Collapse
|
2
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
3
|
β2-Adrenergic ion-channel coupled receptors as conformational motion detectors. PLoS One 2011; 6:e18226. [PMID: 21464970 PMCID: PMC3064670 DOI: 10.1371/journal.pone.0018226] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/25/2011] [Indexed: 12/14/2022] Open
Abstract
Ion Channel-Coupled Receptors (ICCRs) are artificial proteins comprised of a G protein-coupled receptor and a fused ion channel, engineered to couple channel gating to ligand binding. These novel biological objects have potential use in drug screening and functional characterization, in addition to providing new tools in the synthetic biology repertoire as synthetic K+-selective ligand-gated channels. The ICCR concept was previously validated with fusion proteins between the K+ channel Kir6.2 and muscarinic M2 or dopaminergic D2 receptors. Here, we extend the concept to the distinct, longer β2-adrenergic receptor which, unlike M2 and D2 receptors, displayed barely detectable surface expression in our Xenopus oocyte expression system and did not couple to Kir6.2 when unmodified. Here, we show that a Kir6.2-binding protein, the N-terminal transmembrane domain of the sulfonylurea receptor, can greatly increase plasma membrane expression of β2 constructs. We then demonstrate how engineering of both receptor and channel can produce β2-Kir6.2 ICCRs. Specifically, removal of 62–72 residues from the cytoplasmic C-terminus of the receptor was required to enable coupling, suggesting that ligand-dependent conformational changes do not efficiently propagate to the distal C-terminus. Characterization of the β2 ICCRs demonstrated that full and partial agonists had the same coupling efficacy, that an inverse agonist had no effect and that the stabilizing mutation E122 W reduced agonist-induced coupling efficacy without affecting affinity. Because the ICCRs are expected to report motions of the receptor C-terminus, these results provide novel insights into the conformational dynamics of the β2 receptor.
Collapse
|
4
|
Deniaud A, Liguori L, Blesneac I, Lenormand JL, Pebay-Peyroula E. Crystallization of the membrane protein hVDAC1 produced in cell-free system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1540-6. [PMID: 20435015 DOI: 10.1016/j.bbamem.2010.04.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/18/2010] [Accepted: 04/22/2010] [Indexed: 11/25/2022]
Abstract
Structural studies of membrane proteins are in constant evolution with the development of new improvements for their expression, purification, stabilization and crystallization. However, none of these methods still provides a universal approach to solve the structure of membrane proteins. Here we describe the crystallization of the human voltage-dependent anion channel-1 produced by a bacterial cell-free expression system. While VDAC structures have been recently solved, we propose an alternative strategy for producing the recombinant protein, which can be applied to other membrane proteins reluctant to expression, purification and crystallization by classical approaches. Despite a lot of efforts to crystallize a cell-free expressed membrane protein, this study is to our knowledge one of the first reports of a successful crystallization. Focusing on expression in a soluble and functional state, in a detergent environment, is the key to get crystals. Although the diffraction of VDAC crystals is limited, the simplicity and the rapidity to set-up and optimize this technology are drastic advantages in comparison to other methods.
Collapse
Affiliation(s)
- A Deniaud
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz 38027 Grenoble, France
| | | | | | | | | |
Collapse
|