1
|
Prior VG, Maksour S, Miellet S, Hulme AJ, Chen Y, Mirzaei M, Wu Y, Dottori M, O'Neill GM. Parsing the effect of co-culture with brain organoids on Diffuse Intrinsic Pontine Glioma (DIPG) using quantitative proteomics. Int J Biochem Cell Biol 2024; 174:106617. [PMID: 39009182 DOI: 10.1016/j.biocel.2024.106617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/22/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly brain cancers in children for which there is no effective treatment. This can partly be attributed to preclinical models that lack essential elements of the in vivo tissue environment, resulting in treatments that appear promising preclinically, but fail to result in effective cures. Recently developed co-culture models combining stem cell-derived brain organoids with brain cancer cells provide tissue dimensionality and a human-relevant tissue-like microenvironment. As these models are technically challenging, we aimed to establish whether interaction with the organoid influences DIPG biology and thus warrants their use. To address this question DIPG24 cells were cultured with pluripotent stem cell-derived cortical organoids. We created "mosaic" co-cultures enriched for tumour cell-neuronal cell interactions versus "assembloid" co-cultures enriched for tumour cell-tumour cell interactions. Sequential window acquisition of all theoretical mass spectra (SWATH-MS) was used to analyse the proteomes of DIPG fractions isolated by flow-assisted cell sorting. Control proteomes from DIPG spheroids were compared with DIPG cells isolated from mosaic and assembloid co-cultures. This suggested changes in cell interaction with the external environment reflected by decreased gene ontology terms associated with adhesion and extracellular matrix, and increased DNA synthesis and replication, in DIPG24 cells under either co-culture condition. By contrast, the mosaic co-culture was associated with neuron-specific brahma-associated factor (nBAF) complex signalling, a process associated with neuronal maturation. We propose that co-culture with brain organoids is a valuable tool to parse the contribution of the brain microenvironment to DIPG tumour biology.
Collapse
Affiliation(s)
- Victoria G Prior
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, Australia; The University of Sydney, Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, Australia
| | - Simon Maksour
- Illawarra Health & Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| | - Sara Miellet
- Illawarra Health & Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| | - Amy J Hulme
- Illawarra Health & Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| | - Yuyan Chen
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, Australia; The University of Sydney, Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Mirella Dottori
- Illawarra Health & Medical Research Institute, School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, Australia; The University of Sydney, Discipline of Child and Adolescent Health, The Children's Hospital at Westmead, Westmead, Australia.
| |
Collapse
|
2
|
Muhs S, Paraschiakos T, Schäfer P, Joosse SA, Windhorst S. Centrosomal Protein 55 Regulates Chromosomal Instability in Cancer Cells by Controlling Microtubule Dynamics. Cells 2024; 13:1382. [PMID: 39195269 DOI: 10.3390/cells13161382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024] Open
Abstract
Centrosomal Protein 55 (CEP55) exhibits various oncogenic activities; it regulates the PI3K-Akt-pathway, midbody abscission, and chromosomal instability (CIN) in cancer cells. Here, we analyzed the mechanism of how CEP55 controls CIN in ovarian and breast cancer (OvCa) cells. Down-regulation of CEP55 reduced CIN in all cell lines analyzed, and CEP55 depletion decreased spindle microtubule (MT)-stability in OvCa cells. Moreover, recombinant CEP55 accelerated MT-polymerization and attenuated cold-induced MT-depolymerization. To analyze a potential relationship between CEP55-controlled CIN and its impact on MT-stability, we identified the CEP55 MT-binding peptides inside the CEP55 protein. Thereafter, a mutant with deficient MT-binding activity was re-expressed in CEP55-depleted OvCa cells and we could show that this mutant did not restore reduced CIN in CEP55-depleted cells. This finding strongly indicates that CEP55 regulates CIN by controlling MT dynamics.
Collapse
Affiliation(s)
- Stefanie Muhs
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Themistoklis Paraschiakos
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Paula Schäfer
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
3
|
Xiong T, Zhang Z, Fan T, Ye F, Ye Z. Origin, evolution, and diversification of inositol 1,4,5-trisphosphate 3-kinases in plants and animals. BMC Genomics 2024; 25:350. [PMID: 38589807 PMCID: PMC11000326 DOI: 10.1186/s12864-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND In Eukaryotes, inositol polyphosphates (InsPs) represent a large family of secondary messengers and play crucial roes in various cellular processes. InsPs are synthesized through a series of pohophorylation reactions catalyzed by various InsP kinases in a sequential manner. Inositol 1,4,5-trisphosphate 3-kinase (IP3 3-kinase/IP3K), one member of InsP kinase, plays important regulation roles in InsPs metabolism by specifically phosphorylating inositol 1,4,5-trisphosphate (IP3) to inositol 1,3,4,5-tetrakisphosphate (IP4) in animal cells. IP3Ks were widespread in fungi, plants and animals. However, its evolutionary history and patterns have not been examined systematically. RESULTS A total of 104 and 31 IP3K orthologues were identified across 57 plant genomes and 13 animal genomes, respectively. Phylogenetic analyses indicate that IP3K originated in the common ancestor before the divergence of fungi, plants and animals. In most plants and animals, IP3K maintained low-copy numbers suggesting functional conservation during plant and animal evolution. In Brassicaceae and vertebrate, IP3K underwent one and two duplication events, respectively, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for IP3K duplications, and the IP3K duplicates have experienced functional divergence. Finally, a hypothetical evolutionary model for the IP3K proteins is proposed based on phylogenetic theory. CONCLUSION Our study reveals the evolutionary history of IP3K proteins and guides the future functions of animal, plant, and fungal IP3K proteins.
Collapse
Affiliation(s)
- Tao Xiong
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China.
| | - Tianyu Fan
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Fan Ye
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Ziyi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
4
|
Márquez-Moñino MÁ, Ortega-García R, Whitfield H, Riley AM, Infantes L, Garrett SW, Shipton ML, Brearley CA, Potter BVL, González B. Substrate promiscuity of inositol 1,4,5-trisphosphate kinase driven by structurally-modified ligands and active site plasticity. Nat Commun 2024; 15:1502. [PMID: 38374076 PMCID: PMC10876669 DOI: 10.1038/s41467-024-45917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
D-myo-inositol 1,4,5-trisphosphate (InsP3) is a fundamental second messenger in cellular Ca2+ mobilization. InsP3 3-kinase, a highly specific enzyme binding InsP3 in just one mode, phosphorylates InsP3 specifically at its secondary 3-hydroxyl group to generate a tetrakisphosphate. Using a chemical biology approach with both synthetised and established ligands, combining synthesis, crystallography, computational docking, HPLC and fluorescence polarization binding assays using fluorescently-tagged InsP3, we have surveyed the limits of InsP3 3-kinase ligand specificity and uncovered surprisingly unforeseen biosynthetic capacity. Structurally-modified ligands exploit active site plasticity generating a helix-tilt. These facilitated uncovering of unexpected substrates phosphorylated at a surrogate extended primary hydroxyl at the inositol pseudo 3-position, applicable even to carbohydrate-based substrates. Crystallization experiments designed to allow reactions to proceed in situ facilitated unequivocal characterization of the atypical tetrakisphosphate products. In summary, we define features of InsP3 3-kinase plasticity and substrate tolerance that may be more widely exploitable.
Collapse
Affiliation(s)
- María Ángeles Márquez-Moñino
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Raquel Ortega-García
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Andrew M Riley
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Lourdes Infantes
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain
| | - Shane W Garrett
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Megan L Shipton
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Barry V L Potter
- Drug Discovery and Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
- Wolfson Laboratory of Medicinal Chemistry, Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Beatriz González
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
5
|
Zhang X, He J, Ren D. Commentary on: The actin bundling activity of ITPKA mainly accounts for its migration-promoting effect in lung cancer cells. Biosci Rep 2023; 43:BSR20230057. [PMID: 37664985 PMCID: PMC10500224 DOI: 10.1042/bsr20230057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023] Open
Abstract
1,4,5-triphosphate 3-kinase A (ITPKA) was first described and characterized by Irvine et al. in 1986 and cloned by Takazawa et al. in 1990. It is one of the components of the Ca2+ and calmodulin signaling pathway and a substrate for cAMP-dependent kinase (PKA) and protein kinase C (PKC), and is mainly involved in the regulation of intracellular inositol polyphosphate signaling molecules. Through a series of studies, Sabine's team has found that ITPKA expression was up-regulated in a variety of cancer cells, and silencing ITPKA inhibited while overexpressing ITPKA promoted cancer cell migration in vitro and metastasis in vivo. The latest research from Sabine's team has demonstrated that in H1299 lung cancer cells, the mechanism by which ITPKA promoted migration and invasion was predominantly depending on the ability of binding to F-actin, which will induce cancer cells to form a tight flexible actin networks. Small molecule compounds targeting the IP3 kinase activity of ITPKA protein may only inhibit the migration and invasion of cancer cells caused by the enhanced ITPKA kinase activity under ATP stimulation, but not the cytoskeletal remodeling caused by the binding of ITPKA protein to F-actin and the driven migration and invasion of cancer cells. Therefore, targeted therapeutic strategy focusing on blocking the binding of ITPKA to F-actin is indispensable when designing the inhibitors targeting ITPKA protein.
Collapse
Affiliation(s)
- Xin Zhang
- Postdoctoral Innovation Practice Base, Postdoctoral Research Center of Jiangmen Central Hospital, Southern Medical University, Jiangmen 529030, China
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Jiadi He
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen 529030, China
| | - Dong Ren
- Department of Pathology, University of California Irvine Medical Center, Orange, CA 92868, U.S.A
| |
Collapse
|
6
|
The actin bundling activity of ITPKA mainly accounts for its migration-promoting effect in lung cancer cells. Biosci Rep 2023; 43:232487. [PMID: 36688944 PMCID: PMC9912108 DOI: 10.1042/bsr20222150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Expression of Ins(1,4,5)P3-kinase-A (ITPKA), the neuronal isoform of Ins(1,4,5)P3-kinases, is up-regulated in many tumor types. In particular, in lung cancer cells this up-regulation is associated with bad prognosis and it has been shown that a high level of ITPKA increases migration and invasion of lung cancer cell lines. However, since ITPKA exhibits actin bundling and Ins(1,4,5)P3-kinase activity, it was not clear which of these activities account for ITPKA-promoted migration and invasion of cancer cells. To address this issue, we inhibited endogenous actin bundling activity of ITPKA in lung cancer H1299 cells by overexpressing the dominant negative mutant ITPKAL34P. Analysis of actin dynamics in filopodia as well as wound-healing migration revealed that ITPKAL34P inhibited both processes. Moreover, the formation of invasive protrusions into collagen I was strongly blocked in cells overexpressing ITPKAL34P. Furthermore, we found that ATP stimulation slightly but significantly (by 13%) increased migration of cells overexpressing ITPKA while under basal conditions up-regulation of ITPKA had no effect. In accordance with these results, overexpression of a catalytic inactive ITPKA mutant did not affect migration, and the Ins(1,4,5)P3-kinase-inhibitor GNF362 reversed the stimulating effect of ITPKA overexpression on migration. In summary, we demonstrate that under basal conditions the actin bundling activity controls ITPKA-facilitated migration and invasion and in presence of ATP the Ins(1,4,5)P3-kinase activity slightly enhances this effect.
Collapse
|
7
|
Du Q, Zhou R, Wang H, Li Q, Yan Q, Dang W, Guo J. A metabolism-related gene signature for predicting the prognosis in thyroid carcinoma. Front Genet 2023; 13:972950. [PMID: 36685893 PMCID: PMC9846547 DOI: 10.3389/fgene.2022.972950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Metabolic reprogramming is one of the cancer hallmarks, important for the survival of malignant cells. We investigated the prognostic value of genes associated with metabolism in thyroid carcinoma (THCA). A prognostic risk model of metabolism-related genes (MRGs) was built and tested based on datasets in The Cancer Genome Atlas (TCGA), with univariate Cox regression analysis, LASSO, and multivariate Cox regression analysis. We used Kaplan-Meier (KM) curves, time-dependent receiver operating characteristic curves (ROC), a nomogram, concordance index (C-index) and restricted mean survival (RMS) to assess the performance of the risk model, indicating the splendid predictive performance. We established a three-gene risk model related to metabolism, consisting of PAPSS2, ITPKA, and CYP1A1. The correlation analysis in patients with different risk statuses involved immune infiltration, mutation and therapeutic reaction. We also performed pan-cancer analyses of model genes to predict the mutational value in various cancers. Our metabolism-related risk model had a powerful predictive capability in the prognosis of THCA. This research will provide the fundamental data for further development of prognostic markers and individualized therapy in THCA.
Collapse
Affiliation(s)
- Qiujing Du
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ruhao Zhou
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Heng Wang
- Department of Vascular Surgery, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qian Li
- Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Qi Yan
- Department of Endocrinology, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Wenjiao Dang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jianjin Guo
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Jianjin Guo,
| |
Collapse
|
8
|
Flat W, Borowski S, Paraschiakos T, Blechner C, Windhorst S. DIAPH1 facilitates paclitaxel-mediated cytotoxicity of ovarian cancer cells. Biochem Pharmacol 2021; 197:114898. [PMID: 34968485 DOI: 10.1016/j.bcp.2021.114898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
The chemotherapeutic agent paclitaxel (PTX) selectively binds to and stabilizes microtubule (MTs). Also, the activated formin Diaphanous Related Formin 1 (DIAPH1) binds to MTs and increases its stability. In a recent study, we found that high DIAPH1 levels correlated with increased survival of ovarian cancer (Ovca) patients. A possible explanation for this finding is that Ovca cells with high DIAPH1 levels are more sensitive to PTX. To examine this assumption, in this study the effect of DIAPH1 depletion on PTX-mediated cytotoxicity of OVCAR8 and OAW42 cells was analyzed. Our data showed that down-regulation of DIAPH1 expression decreased PTX sensitivity in both cell lines by reducing apoptosis or necrosis. Analysis of MT stability by Western blotting revealed a decreased concentration of stable, detyrosinated MTs in PTX-treated DIAPH1 knock-down compared to control cells. Also, in fixed metaphase cells the level of stable, detyrosinated spindle MTs decreased in cells with reduced DIAPH1 expression. In vitro analysis with recombinant DIAPH1 protein showed that PTX and DIAPH1 exhibited additive effects on MT-polymerization, showing that also in a cell-free system DIAPH1 increased the effect of PTX on MT-stability. Together, our data strongly indicate that DIAPH1 increases the response of Ovca cells to PTX by enhancing PTX-mediated MT-stability.
Collapse
Affiliation(s)
- Wilhelm Flat
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Sarah Borowski
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Themistoklis Paraschiakos
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
9
|
Lin H, Ho A, Huang H, Yang B, Shih B, Lin H, Yeh C, Hsu C, Cheng C. STAT3‐mediated gene expression in colorectal cancer cells‐derived cancer stem‐like tumorspheres. ADVANCES IN DIGESTIVE MEDICINE 2021. [DOI: 10.1002/aid2.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hua‐Ching Lin
- Division of Colorectal Surgery Chen Hsin General Hospital Taipei Taiwan
- Department of Healthcare Information and Management Ming Chuan University Taoyuan Taiwan
| | - Ai‐Sheng Ho
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Hung Huang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bi‐Ling Yang
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Bin‐Bin Shih
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Hsin‐Chi Lin
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun Yeh
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chung‐Te Hsu
- Division of Gastroenterology Cheng Hsin General Hospital Taipei Taiwan
| | - Chun‐Chia Cheng
- Radiation Biology Research Center Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital at Linkou Taoyuan Taiwan
| |
Collapse
|
10
|
Mechanism of BIP-4 mediated inhibition of InsP3Kinase-A. Biosci Rep 2021; 41:229216. [PMID: 34232294 PMCID: PMC8292763 DOI: 10.1042/bsr20211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/17/2022] Open
Abstract
Overexpression of the neuronal InsP3kinase-A increases malignancy of different tumor types. Since InsP3kinase-A highly selectively binds Ins(1,4,5)P3, small molecules competing with Ins(1,4,5)P3 provide a promising approach for the therapeutic targeting of InsP3kinase-A. Based on this consideration, we analyzed the binding mechanism of BIP-4 (2-[3,5-dimethyl-1-(4-nitrophenyl)-1H-pyrazol-4-yl]-5, 8-dinitro-1H-benzo[de]isoquinoline-1,3(2H)-dione), a known competitive small-molecule inhibitor of Ins(1,4,5)P3. We tested a total of 80 BIP-4 related compounds in biochemical assays. The results of these experiments revealed that neither the nitrophenyl nor the benzisochinoline group inhibited InsP3kinase-A activity. Moreover, none of the BIP-4 related compounds competed for Ins(1,4,5)P3, demonstrating the high selectivity of BIP-4. To analyze the inhibition mechanism of BIP-4, mutagenesis experiments were performed. The results of these experiments suggest that the nitro groups attached to the benzisochinoline ring compete for binding of Ins(1,4,5)P3 while the nitrophenyl group is associated with amino acids of the ATP-binding pocket. Our results now offer the possibility to optimize BIP-4 to design specific InsP3Kinase-A inhibitors suitable for therapeutic targeting of the enzyme.
Collapse
|
11
|
Zhang J, Zhang S, Li X, Pi H. Relationship of ITPKA expression with the prognosis of breast cancer. Mol Genet Genomic Med 2021; 9:e1598. [PMID: 33624455 PMCID: PMC8123748 DOI: 10.1002/mgg3.1598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Breast cancer (BC) represents a most common cancer among women worldwide. The outcomes of this disease remain dismal due to frequent recurrence and metastasis. Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) plays an important role in regulating calcium signaling and actin dynamics. The dysregulation of ITPKA has been observed in several human cancers. The present study aimed to assess ITPKA expression and its prognostic value in BC. METHODS ITPKA expression was examined via quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) methods. In addition, Kaplan-Meier survival analysis and Cox regression analysis were performed to evaluate prognostic value of ITPKA in BC. RESULTS Upregulated ITPKA expression was found in BC samples, according to both qRT-PCR and IHC analyses (all p < .05). ITPKA expression was positively correlated with lymph node metastasis (p = .021) and TNM stage (p = .009). Moreover, BC patients with high expression of ITPKA had poor overall survival compared with those with low expression (log-rank p < .05). Cox analysis verified that ITPKA expression was an independent prognostic factor for BC patients (HR = 4.239, 95%CI = 2.221-8.093 and p = .000). CONCLUSION BC cases show increased expression of ITPKA. ITPKA may act as an independent prognostic biomarker in BC.
Collapse
Affiliation(s)
- Jie Zhang
- Nursing Department, Sixth Medical Center of Chinese PLA Hospital, Medical School of Chinese PLA, Beijing, China
| | - Sujie Zhang
- Department of Oncology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Xiaoyan Li
- Department of Oncology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Hongying Pi
- Nursing Department, Sixth Medical Center of Chinese PLA Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
12
|
Blechner C, Becker L, Fuchs H, Rathkolb B, Prehn C, Adler T, Calzada-Wack J, Garrett L, Gailus-Durner V, Morellini F, Conrad S, Hölter SM, Wolf E, Klopstock T, Adamski J, Busch D, de Angelis MH, Schmeisser MJ, Windhorst S. Physiological relevance of the neuronal isoform of inositol-1,4,5-trisphosphate 3-kinases in mice. Neurosci Lett 2020; 735:135206. [PMID: 32593773 DOI: 10.1016/j.neulet.2020.135206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 10/24/2022]
Abstract
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is the neuronal isoform of ITPKs and exhibits both actin bundling and InsP3kinase activity. In addition to neurons, ITPKA is ectopically expressed in tumor cells, where its oncogenic activity increases tumor cell malignancy. In order to analyze the physiological relevance of ITPKA, here we performed a broad phenotypic screening of itpka deficient mice. Our data show that among the neurobehavioral tests analyzed, itpka deficient mice reacted faster to a hotplate, prepulse inhibition was impaired and the accelerating rotarod test showed decreased latency of itpka deficient mice to fall. These data indicate that ITPKA is involved in the regulation of nociceptive pathways, sensorimotor gating and motor learning. Analysis of extracerebral functions in control and itpka deficient mice revealed significantly reduced glucose, lactate, and triglyceride plasma concentrations in itpka deficient mice. Based on this finding, expression of ITPKA was analyzed in extracerebral tissues and the highest level was found in the small intestine. However, functional studies on CaCo-2 control and ITPKA depleted cells showed that glucose, as well as triglyceride uptake, were not significantly different between the cell lines. Altogether, these data show that ITPKA exhibits distinct functions in the central nervous system and reveal an involvement of ITPKA in energy metabolism.
Collapse
Affiliation(s)
- Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Geman Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Cornelia Prehn
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Fabio Morellini
- Behavioral Biology, Center for Molecular Neurobiology Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | - Susanne Conrad
- Forschungstierhaltung University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-University München, Feodor-Lynen Str. 25, 81377, Munich, Germany
| | - Thomas Klopstock
- Dept. of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Ziemssenstr. 1a, 80336, Munich, Germany; Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, 80336, München, Germany; Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336, Munich, Germany
| | - Jerzy Adamski
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Dirk Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstrasse 30, 81675, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany; Geman Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany
| | - Michael J Schmeisser
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany; Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118, Magdeburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|
13
|
Pan C, Jin L, Wang X, Li Y, Chun J, Boese AC, Li D, Kang HB, Zhang G, Zhou L, Chen GZ, Saba NF, Shin DM, Magliocca KR, Owonikoko TK, Mao H, Lonial S, Kang S. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest 2019; 129:2431-2445. [PMID: 31081803 DOI: 10.1172/jci124550] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/26/2019] [Indexed: 12/18/2022] Open
Abstract
How altered metabolism contributes to chemotherapy resistance in cancer cells remains unclear. Through a metabolism-related kinome RNAi screen, we identified inositol-trisphosphate 3-kinase B (ITPKB) as a critical enzyme that contributes to cisplatin-resistant tumor growth. We demonstrated that inositol 1,3,4,5-tetrakisphosphate (IP4), the product of ITPKB, plays a critical role in redox homeostasis upon cisplatin exposure by reducing cisplatin-induced ROS through inhibition of a ROS-generating enzyme, NADPH oxidase 4 (NOX4), which promotes cisplatin-resistant tumor growth. Mechanistically, we identified that IP4 competes with the NOX4 cofactor NADPH for binding and consequently inhibits NOX4. Targeting ITPKB with shRNA or its small-molecule inhibitor resulted in attenuation of NOX4 activity, imbalanced redox status, and sensitized cancer cells to cisplatin treatment in patient-derived xenografts. Our findings provide insight into the crosstalk between kinase-mediated metabolic regulation and platinum-based chemotherapy resistance in human cancers. Our study also suggests a distinctive signaling function of IP4 that regulates NOX4. Furthermore, pharmaceutical inhibition of ITPKB displayed synergistic attenuation of tumor growth with cisplatin, suggesting ITPKB as a promising synthetic lethal target for cancer therapeutic intervention to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Chaoyun Pan
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Lingtao Jin
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Xu Wang
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jaemoo Chun
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Austin C Boese
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Dan Li
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Hee-Bum Kang
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Guojing Zhang
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Lu Zhou
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| | - Georgia Z Chen
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Nabil F Saba
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Dong M Shin
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Kelly R Magliocca
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Taofeek K Owonikoko
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sagar Lonial
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| | - Sumin Kang
- Winship Cancer Institute, Department of Hematology and Medical Oncology, and
| |
Collapse
|
14
|
Grueb SS, Muhs S, Popp Y, Schmitt S, Geyer M, Lin YN, Windhorst S. The formin Drosophila homologue of Diaphanous2 (Diaph2) controls microtubule dynamics in colorectal cancer cells independent of its FH2-domain. Sci Rep 2019; 9:5352. [PMID: 30926831 PMCID: PMC6441084 DOI: 10.1038/s41598-019-41731-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we analyzed the functional role of the formin Drosophila Homologue of Diaphanous2 (Diaph2) in colorectal cancer cells. We show that stable down-regulation of Diaph2 expression in HT29 cells decreased chromosome alignment and the velocity of chromosome movement during M-phase, thus reducing the proliferation rate and colony formation. In interphase cells, Diaph2 was diffusely distributed in the cytosol, while in metaphase cells the protein was located to spindle microtubules (MTs). Diaph2-depletion increased the concentration of stable spindle MTs, showing that the formin is required to control spindle MT-dynamics. Our cellular data indicate that Diaph2-controls spindle MT-dynamics independent of Cdc42 activity and our in vitro results reveal that bacterially produced full-length (FL) Diaph2 strongly altered MT-dynamics in absence of Cdc42, where its actin-nucleating activity is auto-inhibited. FL-Diaph2 mediates a 10-fold increase in MT-polymerization compared to the Diaph2-FH2-domain. Interestingly, a Diaph2-mutant lacking the FH2-domain (ΔFH2) increased MT-polymerization to a similar extent as the FH2-domain, indicating the existence of a second MT-binding domain. However, in contrast to FL-Diaph2 and the FH2-domain, ΔFH2 did not alter the density of taxol-stabilized MTs. Thus, the FH2-domain and the second Diaph2-binding domain appear to control MT-dynamics by different mechanisms. In summary, our data indicate that Diaph2 controls M-phase progression under basal conditions by regulating spindle MT-dynamics. In addition, a region outside of the canonical MT-regulating FH2-domain is involved in Diaph2-mediated control of MT-dynamics.
Collapse
Affiliation(s)
- Saskia S Grueb
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf Martinistrasse 52, D-20246, Hamburg, Germany
| | - Stefanie Muhs
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf Martinistrasse 52, D-20246, Hamburg, Germany
| | - Yannes Popp
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf Martinistrasse 52, D-20246, Hamburg, Germany
| | - Sebastian Schmitt
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Yuan-Na Lin
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf Martinistrasse 52, D-20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf Martinistrasse 52, 52 D-20246, Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf Martinistrasse 52, D-20246, Hamburg, Germany.
| |
Collapse
|
15
|
Effect of the actin- and calcium-regulating activities of ITPKB on the metastatic potential of lung cancer cells. Biochem J 2018; 475:2057-2071. [DOI: 10.1042/bcj20180238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/10/2023]
Abstract
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) exhibits oncogenic activity in lung cancer cells by regulating Ins(1,4,5)P3-mediated calcium release and cytoskeletal dynamics. Since, in normal cells, ITPKA is mainly expressed in the brain, it is an excellent target for selected therapy of lung cancer. However, ITPKB is strongly expressed in normal lung tissues, but is down-regulated in lung cancer cells by miR-375, assuming that ITPKB might have tumor suppressor activity. In addition, ITPKB binds to F-actin making it likely that, similar to ITPKA, it controls actin dynamics. Thus, the treatment of ITPKA-expressing lung cancer with ITPKA inhibitors simultaneously inhibiting ITPKB may counteract the therapy. Based on these considerations, we analyzed if ITPKB controls actin dynamics and if the protein reduces aggressive progression of lung cancer cells. We found that ITPKB bundled F-actin in cell-free systems. However, the stable expression of ITPKB in H1299 lung cancer cells, exhibiting very low endogenous ITPKB expression, had no significant effect on the actin structure. In addition, our data show that ITPKB negatively controls transmigration of H1299 cells in vitro by blocking Ins(1,4,5)P3-mediated calcium release. On the other hand, colony formation was stimulated by ITPKB, independent of Ins(1,4,5)P3-mediated calcium signals. However, dissemination of H1299 cells from the skin to the lung in NOD scid gamma mice was not significantly affected by ITPKB expression. In summary, ITPKB does not affect the cellular actin structure and does not suppress dissemination of human lung cancer cells in mice. Thus, our initial hypotheses that ITPKB exhibits tumor suppressor activity could not be supported.
Collapse
|
16
|
Elich M, Sauer K. Regulation of Hematopoietic Cell Development and Function Through Phosphoinositides. Front Immunol 2018; 9:931. [PMID: 29780388 PMCID: PMC5945867 DOI: 10.3389/fimmu.2018.00931] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023] Open
Abstract
One of the most paramount receptor-induced signal transduction mechanisms in hematopoietic cells is production of the lipid second messenger phosphatidylinositol(3,4,5)trisphosphate (PIP3) by class I phosphoinositide 3 kinases (PI3K). Defective PIP3 signaling impairs almost every aspect of hematopoiesis, including T cell development and function. Limiting PIP3 signaling is particularly important, because excessive PIP3 function in lymphocytes can transform them and cause blood cancers. Here, we review the key functions of PIP3 and related phosphoinositides in hematopoietic cells, with a special focus on those mechanisms dampening PIP3 production, turnover, or function. Recent studies have shown that beyond “canonical” turnover by the PIP3 phosphatases and tumor suppressors phosphatase and tensin homolog (PTEN) and SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1/2), PIP3 function in hematopoietic cells can also be dampened through antagonism with the soluble PIP3 analogs inositol(1,3,4,5)tetrakisphosphate (IP4) and inositol-heptakisphosphate (IP7). Other evidence suggests that IP4 can promote PIP3 function in thymocytes. Moreover, IP4 or the kinases producing it limit store-operated Ca2+ entry through Orai channels in B cells, T cells, and neutrophils to control cell survival and function. We discuss current models for how soluble inositol phosphates can have such diverse functions and can govern as distinct processes as hematopoietic stem cell homeostasis, neutrophil macrophage and NK cell function, and development and function of B cells and T cells. Finally, we will review the pathological consequences of dysregulated IP4 activity in immune cells and highlight contributions of impaired inositol phosphate functions in disorders such as Kawasaki disease, common variable immunodeficiency, or blood cancer.
Collapse
Affiliation(s)
- Mila Elich
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Karsten Sauer
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,Oncology R&D, Pfizer Worldwide R&D, San Diego, CA, United States
| |
Collapse
|
17
|
Ma K, Cheng Z, Sun L, Li H. Identification of potential therapeutic targets for gliomas by bioinformatics analysis. Oncol Lett 2017; 14:5203-5210. [PMID: 29113156 PMCID: PMC5652254 DOI: 10.3892/ol.2017.6850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/09/2017] [Indexed: 01/16/2023] Open
Abstract
Gliomas are primary tumors that originate in the brain or spinal cord and develop from supportive glial cells. The present study aimed to identify potential candidate molecular markers for the treatment of gliomas, and to explore the underlying mechanisms of this disease. The gene expression profile data GSE50021, which consisted of 10 specimens of normal brain tissues and 35 specimens of glioma tissues, was downloaded from Gene Expression Omnibus (GEO). The methylation microarray data GSE50022, consisting of 28 glioma specimens, was also downloaded from GEO. Differentially expressed genes (DEGs) between patients with glioma and normal individuals were identified, and key methylation sites were screened. Transcriptional regulatory networks were constructed, and target genes were selected. Survival analysis of key methylation sites and risk analysis of sub-pathways were performed, from which key genes and pathways were selected. A total of 79 DEGs and 179 key methylation sites were identified, of which 20 target genes and 36 transcription factors were included in the transcriptional regulatory network. Glutamate metabotropic receptor 2 (GRM2) was regulated by 8 transcription factors. Inositol-trisphosphate 3-kinase A (ITPKA) was a significantly enriched DEG, associated with the inositol phosphate metabolism pathway, Survival analysis revealed that the survival time of patients with lower methylation levels in cg00157228 was longer than patients with higher methylation levels. ITPKA was the closest located gene to cg00157228. In conclusion, GRM2 and enriched ITPKA, associated with the inositol phosphate metabolism pathway, may be key mechanisms in the development and progression of gliomas. Furthermore, the present study provided evidence for an additional mechanism of methylation-induced gliomas, in which methylation results in the dysregulation of specific transcripts. The results of the present study may provide a research direction for studying the mechanisms underlying the development and progression of gliomas.
Collapse
Affiliation(s)
- Ke Ma
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhihua Cheng
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liqun Sun
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haibo Li
- Department of Paediatric Emergency, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
18
|
Inositol-1,4,5-trisphosphate 3-kinase-A (ITPKA) is frequently over-expressed and functions as an oncogene in several tumor types. Biochem Pharmacol 2017; 137:1-9. [PMID: 28377279 DOI: 10.1016/j.bcp.2017.03.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/29/2017] [Indexed: 01/22/2023]
Abstract
At present targeted tumor therapy is based on inhibition of proteins or protein mutants that are up-regulated in tumor but not in corresponding normal cells. The actin bundling Inositol-trisphosphate 3-kinase A (ITPKA) belongs to such molecular targets. ITPKA is expressed in a broad range of tumor types but shows limited expression in normal cells. In lung and breast cancer expression of ITPKA is stimulated by gene body methylation which increases with increasing malignancy of these tumors but is not detectable in the corresponding normal tissues. Since ITPKA gene body methylation occurs early in tumor development, it could serve as biomarker for early detection of lung cancer. Detailed mechanistic studies revealed that down-regulation of ITPKA in lung adenocarcinoma cancers reduced both, tumor growth and metastasis. It is assumed that tumor growth is stimulated by the InsP3Kinase activity of ITPKA and metastasis by its actin bundling activity. A selective inhibitor against the InsP3Kinase activity of ITPKA has been identified but compounds inhibiting the actin bundling activity are not available yet. Since no curative therapy option for metastatic lung or breast tumors exist, therapies that block activities of ITPKA may offer new options for patients with these tumors. Thus, efforts should be made to develop clinical drugs that selectively target InsP3Kinase activity as well as actin bundling activity of ITPKA.
Collapse
|
19
|
Transcriptomic Profiling of Tumor Aggressiveness in Sporadic Nonfunctioning Pancreatic Neuroendocrine Neoplasms. Pancreas 2016; 45:1196-203. [PMID: 26918873 DOI: 10.1097/mpa.0000000000000610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The aim of the study was to compare RNA sequencing data of sporadic nonfunctioning pancreatic neuroendocrine neoplasms (PNENs) to identify gene expression patterns that may be important for molecular differentiation of tumor aggressiveness. METHODS RNA sequencing was performed on samples of sporadic nonfunctioning PNENs, grouped as tumors with mild behavior (nonmetastatic and Ki67 < 5%) or aggressive behavior (metastatic and Ki67 ≥ 5%), on an Illumina Genome Analyzer II platform. Bioinformatic analyses were performed on the resulting data. RESULTS Of 22,810 identified transcripts from protein-coding genes, a set of 309 genes were significantly differentially expressed between the 2 groups, of which 166 were upregulated and 143 downregulated in the aggressive disease group. Among the top protein-coding upregulated genes, we found genes encoding proteins involved in DNA packaging, ability to taste, chromosome structuring, cytoskeleton structuring, and cell-cell signaling. Among the top protein-coding downregulated genes, we found genes encoding proteins involved in neuronal differentiation, cytoskeleton structuring, cell-cell signaling, and immunological processes. CONCLUSIONS A higher degree of tumor aggressiveness in sporadic nonfunctioning PNENs seems to be associated with upregulation of genes involved in regulation of the cell cycle and cell division. Small sample size and lack of a replication set are limitations of this study.
Collapse
|
20
|
Lin YN, Bhuwania R, Gromova K, Failla AV, Lange T, Riecken K, Linder S, Kneussel M, Izbicki JR, Windhorst S. Drosophila homologue of Diaphanous 1 (DIAPH1) controls the metastatic potential of colon cancer cells by regulating microtubule-dependent adhesion. Oncotarget 2016; 6:18577-89. [PMID: 26124177 PMCID: PMC4621911 DOI: 10.18632/oncotarget.4094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/11/2015] [Indexed: 11/25/2022] Open
Abstract
Drosophila homologue of Diaphanous 1 (DIAPH1) regulates actin polymerization and microtubule (MT) stabilization upon stimulation with lysophosphatidic acid (LPA). Recently, we showed strongly reduced lung metastasis of DIAPH1-depleted colon cancer cells but we found accumulations of DIAPH1-depleted cells in bone marrow. Here, we analyzed possible organ- or tissue-specific metastasis of DIAPH1-depleted HCT-116 cells. Our data confirmed that depletion of DIAPH1 strongly inhibited lung metastasis and revealed that, in contrast to control cells, DIAPH1-depleted cells did not form metastases in further organs. Detailed mechanistic analysis on cells that were not stimulated with LPA to activate the cytoskeleton-modulating activity of DIAPH1, revealed that even under basal conditions DIAPH1 was essential for cellular adhesion to collagen. In non-stimulated cells DIAPH1 did not control actin dynamics but, interestingly, was essential for stabilization of microtubules (MTs). Additionally, DIAPH1 controlled directed vesicle trafficking and with this, local clustering of the adhesion protein integrin-β1 at the plasma membrane. Therefore, we conclude that under non-stimulating conditions DIAPH1 controls cellular adhesion by stabilizing MTs required for local clustering of integrin-β1 at the plasma membrane. Thus, blockade of DIAPH1-tubulin interaction may be a promising approach to inhibit one of the earliest steps in the metastatic cascade of colon cancer.
Collapse
Affiliation(s)
- Yuan-Na Lin
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ridhirama Bhuwania
- Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kira Gromova
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tobias Lange
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Linder
- Institute for Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Erneux C, Ghosh S, Koenig S. Inositol(1,4,5)P3 3-kinase isoenzymes: Catalytic properties and importance of targeting to F-actin to understand function. Adv Biol Regul 2016; 60:135-143. [PMID: 26446452 DOI: 10.1016/j.jbior.2015.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 06/05/2023]
Abstract
Inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) 3-kinases (Itpks) catalyze the phosphorylation of inositol(1,4,5)trisphosphate into inositol(1,3,4,5)tetrakisphosphate (Ins(1,3,4,5)P4). Three isoenzymes Itpka/b and c have been identified in human, rat and mouse. They share a catalytic domain relatively well conserved at the C-terminal end and a quite isoenzyme specific regulatory domain at the N-terminal end of the protein. Activity determined in cell homogenates with Ins(1,4,5)P3 and ATP as substrate is generally very low compared to Ins(1,4,5)P3 5-phosphatase, except in a few tissues such as brain, testis, thymus or intestine. Activity is very much Ca(2+) sensitive and increased in the presence of Ca(2+)/calmodulin (CaM) as compared to EGTA alone. When challenged after receptor activation, activity could be further activated several fold, e.g. in rat brain cortical slices stimulated by carbachol or in human astrocytoma cells stimulated by purinergic agonists. Two of the three isoenzymes show an unexpected cytoskeletal localization for Itpka/b or at the leading edge for Itpkb. This is explained by the presence of an F-actin binding site at the N-terminal part of the two isoenzymes. This interaction confers to Itpka the properties of an F-actin bundling protein with two major consequences: i) it can reorganize the cytoskeletal network, particularly in dendritic spines, and ii) can provide an opportunity for Ins(1,3,4,5)P4 to act very locally as second messenger.
Collapse
Affiliation(s)
- Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| | - Somadri Ghosh
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Sandra Koenig
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
22
|
Köster JD, Leggewie B, Blechner C, Brandt N, Fester L, Rune G, Schweizer M, Kindler S, Windhorst S. Inositol-1,4,5-trisphosphate-3-kinase-A controls morphology of hippocampal dendritic spines. Cell Signal 2015; 28:83-90. [PMID: 26519023 DOI: 10.1016/j.cellsig.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 01/10/2023]
Abstract
Long-lasting synaptic plasticity is often accompanied by morphological changes as well as formation and/or loss of dendritic spines. Since the spine cytoskeleton mainly consists of actin filaments, morphological changes are primarily controlled by actin binding proteins (ABPs). Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) is a neuron-specific, actin bundling protein concentrated at dendritic spines. Here, we demonstrate that ITPKA depletion in mice increases the number of hippocampal spine-synapses while reducing average spine length. By employing actin to ABP ratios similar to those occurring at post synaptic densities, in addition to cross-linking actin filaments, ITPKA strongly inhibits Arp2/3-complex induced actin filament branching by displacing the complex from F-actin. In summary, our data show that in vivo ITPKA negatively regulates formation and/or maintenance of synaptic contacts in the mammalian brain. On the molecular level this effect appears to result from the ITPKA-mediated inhibition of Arp2/3-complex F-actin branching activity.
Collapse
Affiliation(s)
- Jan-Dietrich Köster
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Birthe Leggewie
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Nicola Brandt
- Department of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Lars Fester
- Department of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Gabriele Rune
- Department of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | - Stefan Kindler
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
23
|
ITPKA expression is a novel prognostic factor in hepatocellular carcinoma. Diagn Pathol 2015; 10:136. [PMID: 26249031 PMCID: PMC4528344 DOI: 10.1186/s13000-015-0374-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/29/2015] [Indexed: 12/15/2022] Open
Abstract
Background Inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA) has recently been found to be implicated in the tumor progression of various cancers. However, the expression and the prognostic value of ITPKA in hepatocellular carcinoma (HCC) remains unexplored. The aim of this study is to investigate the clinical significance of ITPKA expression in HCC. Methods We determined the expression level of ITPKA in 135 cases of HCC tissues and the matched adjacent nontumorous tissues by quantitative real-time RT-PCR. The correlation between ITPKA expression and prognosis of HCC patients was further evaluated by univariate and multivariate analysis. Multivariate analysis of the prognostic factors was performed with Cox proportional hazards model. Results Up-regulation of ITPKA occurred in 48.9 % of primary HCCs compared with their nontumor counterparts (P < 0.001). In addition, high expression of ITPKA was significantly associated with vascular invasion (P = 0.001) and TNM stage (P = 0.005). Kaplan–Meier analysis showed that the 5-year overall survival (OS) and relapse-free survival (RFS) rate in the group with high expression of ITPKA is poorer than that in low expression group (32.2 and 26.8 % versus 59.2 and 57.7 %). Univariate and multivariate analyses revealed that ITPKA was an independent prognostic factor for OS and RFS. Moreover, Stratified analysis revealed that its prognostic significance still existed within the subgroup of patients with early clinical stage (TNM stage I) or normal serum AFP level (≤25 μg/L). Conclusion Our data indicated that ITPKA expression was significantly up-regulated in HCC and could serve as a potential novel prognostic biomarker for HCC patients after surgery.
Collapse
|
24
|
The new InsP3Kinase inhibitor BIP-4 is competitive to InsP3 and blocks proliferation and adhesion of lung cancer cells. Biochem Pharmacol 2015; 96:143-50. [PMID: 25986882 DOI: 10.1016/j.bcp.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/08/2015] [Indexed: 12/30/2022]
Abstract
As ectopic expression of the neuronal inositol-1,4,5-trisphosphate-3-kinase A (InsP3Kinase) in tumor cells increases the metastatic potential, InsP3Kinase is an interesting target for tumor therapy. Recently, we have identified a membrane-permeable InsP3Kinase inhibitor (BAMB-4) exhibiting an IC50-value of 20 μM. Here we characterized a new InsP3Kinase inhibitor which shows a 130-fold lower IC50 value (157 ± 57 nM) as compared to BAMB-4. We demonstrate that this nitrophenolic compound, BIP-4, is non-competitive to ATP but competitive to InsP3, thus exhibits a high selectivity for inhibition of InsP3Kinase activity. Docking analysis suggested a putative binding mode of this molecule into the InsP3Kinase active site. Determination of cellular uptake in lung cancer cells (H1299) revealed that 6% of extracellular BIP-4 is internalized by non-endosomal uptake, showing that BIP-4 is not trapped inside endo/lysosomes but is available to inhibit cellular InsP3Kinase activity. Interestingly, we found that BIP-4 mediated inhibition of InsP3Kinase activity in the two lung cancer cell lines H1299 and LN4323 inhibited proliferation and adhesion at IC50 values of 3 μM or 2 μM, respectively. InsP3Kinase inhibition did not alter ATP-induced calcium signals but significantly reduced the level of Ins(1,3,4,5,6)P5. From these data we conclude that the inhibitory effect of BIP-4 on proliferation and adhesion of lung cancer cells does not result from alterations of calcium but from alterations of inositol phosphate signals. In summary, we reveal that inhibition of cellular InsP3Kinase by BIP-4 impairs proliferation and adhesion and therefore BIP-4 might be a promising compound to reduce the metastatic potential of lung carcinoma cells.
Collapse
|
25
|
Lin YN, Thata RN, Failla AV, Geissen M, Daum G, Windhorst S. Ex vivo aorta patch model for analysis of cellular adhesion. Tissue Cell 2015; 47:266-72. [PMID: 25890870 DOI: 10.1016/j.tice.2015.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/25/2022]
Abstract
The vascular endothelium as well as subendothelium are objects of many researches as it is directly involved in a multiplicity of physiological and pathological settings. Detailed study of endothelial function became feasible with the development of techniques to culture endothelial cells (EC) in vitro. Limitations of this approach have become apparent with the realization that cell culture dedifferentiate with time and do not exhibit properties of intact tissue. Here we describe the development of a novel ex vivo tissue model to study cell-vascular wall interactions by using isolated mouse aorta patches. Validation of this model was performed by demonstrating cell attachment and changes in cell shape typical for cell spreading during adhesion. A major advantage of this model is that cell-endothelium interaction and its molecular backgrounds can now be studied more feasibly on an intact and native tissue.
Collapse
Affiliation(s)
- Yuan-Na Lin
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Raymond Nqobizitha Thata
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Antonio Virgilio Failla
- Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Markus Geissen
- Department of Vascular Medicine, University Heart Center, Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Guenter Daum
- Department of Vascular Medicine, University Heart Center, Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| |
Collapse
|
26
|
Ashour DJ, Pelka B, Jaaks P, Wundenberg T, Blechner C, Zobiak B, Failla AV, Windhorst S. The catalytic domain of inositol-1,4,5-trisphosphate 3-kinase-a contributes to ITPKA-induced modulation of F-actin. Cytoskeleton (Hoboken) 2015; 72:93-100. [DOI: 10.1002/cm.21208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Dina Julia Ashour
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Benjamin Pelka
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Patricia Jaaks
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Torsten Wundenberg
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Christine Blechner
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| | - Bernd Zobiak
- Microscopy Imaging Facility; University Medical Center Hamburg-Eppendorf; Martinistrasse Hamburg Germany
| | - Antonio Virgilio Failla
- Microscopy Imaging Facility; University Medical Center Hamburg-Eppendorf; Martinistrasse Hamburg Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction; University Medical Center Hamburg-Eppendorf; Martinistrasse 52 Hamburg Germany
| |
Collapse
|
27
|
Sekar MC, Shahiwala K, Leloup L, Wells A. Modulation of Epidermal Growth Factor Stimulated ERK Phosphorylation and Cell Motility by Inositol Trisphosphate Kinase. ACTA ACUST UNITED AC 2014. [PMID: 26213696 DOI: 10.1166/jpsp.2014.1010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Epidermal growth factor [EGF] mediated stimulation of its receptor in endothelial cell [EC] is accompanied by phosphorylation of the EGF-receptor [EGFR] and activation of phospholipase C-γ, resulting in the breakdown of phosphatidylinositol(4,5)-bisphosphate and generating inositol (1,4,5)-trisphosphate [IP3] and diacylglycerol. IP3 thus formed can be further converted to inositol (1,3,4,5)-tetrakisphosphate [IP4] by an enzyme called IP3-kinase [IP3K]. In this study we have investigated the effect of modulation of intracellular IP3K activity by the use of an inhibitor, 2-trifluoromethyl [6-(4-nitrobenzyl)-purine] [IP3KI] and siRNA against IP3KB on EGF-induced ERK-phosphorylation and cell motility. EGF stimulated ERK-phosphorylation that has been implicated in EGF-stimulated cell migration was inhibited by both IP3KI and siRNA against IP3KB. Inhibition of ERK-phosphorylation was accompanied by decreased cell migration in the presence of IP3KI.
Collapse
Affiliation(s)
- M C Sekar
- College of Pharmacy, University of Findlay, Findlay, 45840, OH, USA
| | - K Shahiwala
- College of Pharmacy, University of Findlay, Findlay, 45840, OH, USA
| | - L Leloup
- Department of Pathology, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| | - A Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| |
Collapse
|
28
|
Zerbini LF, Bhasin MK, de Vasconcellos JF, Paccez JD, Gu X, Kung AL, Libermann TA. Computational repositioning and preclinical validation of pentamidine for renal cell cancer. Mol Cancer Ther 2014; 13:1929-1941. [PMID: 24785412 DOI: 10.1158/1535-7163.mct-13-0750] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although early stages of clear cell renal cell carcinoma (ccRCC) are curable, survival outcome for metastatic ccRCC remains poor. We previously established a highly accurate signature of differentially expressed genes that distinguish ccRCC from normal kidney. The purpose of this study was to apply a new individualized bioinformatics analysis (IBA) strategy to these transcriptome data in conjunction with Gene Set Enrichment Analysis of the Connectivity Map (C-MAP) database to identify and reposition FDA-approved drugs for anticancer therapy. Here, we demonstrate that one of the drugs predicted to revert the RCC gene signature toward normal kidney, pentamidine, is effective against RCC cells in culture and in a RCC xenograft model. ccRCC-specific gene expression signatures of individual patients were used to query the C-MAP software. Eight drugs with negative correlation and P-value <0.05 were analyzed for efficacy against RCC in vitro and in vivo. Our data demonstrate consistency across most patients with ccRCC for the set of high-scoring drugs. Most of the selected high-scoring drugs potently induce apoptosis in RCC cells. Several drugs also demonstrate selectivity for Von Hippel-Lindau negative RCC cells. Most importantly, at least one of these drugs, pentamidine, slows tumor growth in the 786-O human ccRCC xenograft mouse model. Our findings suggest that pentamidine might be a new therapeutic agent to be combined with current standard-of-care regimens for patients with metastatic ccRCC and support our notion that IBA combined with C-MAP analysis enables repurposing of FDA-approved drugs for potential anti-RCC therapy.
Collapse
Affiliation(s)
- Luiz Fernando Zerbini
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group and Division of Medical Biochemistry, University of Cape Town, Cape Town, South Africa.,BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Manoj K Bhasin
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Jaira F de Vasconcellos
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Juliano D Paccez
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group and Division of Medical Biochemistry, University of Cape Town, Cape Town, South Africa
| | - Xuesong Gu
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Andrew L Kung
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Towia A Libermann
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
29
|
Liu Q, Zhao S, Su PF, Yu S. Gene and isoform expression signatures associated with tumor stage in kidney renal clear cell carcinoma. BMC SYSTEMS BIOLOGY 2013; 7 Suppl 5:S7. [PMID: 24564989 PMCID: PMC4028983 DOI: 10.1186/1752-0509-7-s5-s7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Identification of expression alternations between early and late stage cancers is helpful for understanding cancer development and progression. Much research has been done focusing on stage-dependent gene expression profiles. In contrast, relatively fewer studies on isoform expression profiles have been performed due to the difficulty of quantification and noisy splicing. Here we conducted both gene- and isoform-level analysis on RNA-seq data of 234 stage I and 81 stage IV kidney renal clear cell carcinoma patients, aiming to uncover the stage-dependent expression signatures and investigate the advantage of isoform expression profiling for identifying advanced stage cancers and predicting clinical outcome. Results Both gene and isoform expression signatures are useful for distinguishing cancer stages. They provide common and unique information associated with cancer progression and metastasis. Combining gene and isoform signatures even improves the classification performance and reveals additional important biological processes, such as angiogenesis and TGF−beta signaling pathway. Moreover, expression abundance of a number of genes and isoforms is predictive of the risk of cancer death in an independent dataset, such as gene and isoform expression of ITPKA, the expression of a functional important isoform of UPS19. Conclusion Isoform expression profiling provides unique and important information which cannot be detected by gene expression profiles. Combining gene and isoform expression signatures helps to identify advanced stage cancers, predict clinical outcome, and present a comprehensive view of cancer development and progression.
Collapse
|
30
|
Lin YN, Izbicki JR, König A, Habermann JK, Blechner C, Lange T, Schumacher U, Windhorst S. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells. Int J Cancer 2013; 134:1571-82. [PMID: 24105619 DOI: 10.1002/ijc.28486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy.
Collapse
Affiliation(s)
- Yuan-Na Lin
- Department of General Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stimulation of MMP-1 and CCL2 by NAMPT in PDL cells. Mediators Inflamm 2013; 2013:437123. [PMID: 24058270 PMCID: PMC3766615 DOI: 10.1155/2013/437123] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023] Open
Abstract
Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis.
Collapse
|
32
|
Pincini A, Tornillo G, Orso F, Sciortino M, Bisaro B, Leal MDPC, Lembo A, Brizzi MF, Turco E, De Pittà C, Provero P, Medico E, Defilippi P, Taverna D, Cabodi S. Identification of p130Cas/ErbB2-dependent invasive signatures in transformed mammary epithelial cells. Cell Cycle 2013; 12:2409-22. [PMID: 23839042 DOI: 10.4161/cc.25415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Understanding transcriptional changes during cancer progression is of crucial importance to develop new and more efficacious diagnostic and therapeutic approaches. It is well known that ErbB2 is overexpressed in about 25% of human invasive breast cancers. We have previously demonstrated that p130Cas overexpression synergizes with ErbB2 in mammary cell transformation and promotes ErbB2-dependent invasion in three-dimensional (3D) cultures of human mammary epithelial cells. Here, by comparing coding and non-coding gene expression profiles, we define the invasive signatures associated with concomitant p130Cas overexpression and ErbB2 activation in 3D cultures of mammary epithelial cells. Specifically, we have found that genes involved in amino acids synthesis (CBS, PHGDH), cell motility, migration (ITPKA, PRDM1), and angiogenesis (HEY1) are upregulated, while genes involved in inflammatory response (SAA1, S100A7) are downregulated. In parallel, we have shown that the expression of specific miRNAs is altered. Among these, miR-200b, miR-222, miR-221, miR-R210, and miR-424 are upregulated, while miR-27a, miR-27b, and miR-23b are downregulated. Overall, this study presents, for the first time, the gene expression changes underlying the invasive behavior following p130Cas overexpression in an ErbB2 transformed mammary cell model.
Collapse
Affiliation(s)
- Alessandra Pincini
- Molecular Biotechnology Center (MBC); Department of Molecular Biotechnology and Health Sciences; University of Torino; Torino, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tumour cells can employ extracellular Ins(1,2,3,4,5,6)P6 and multiple inositol-polyphosphate phosphatase 1 (MINPP1) dephosphorylation to improve their proliferation. Biochem J 2013. [DOI: 10.1042/bj20121524] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
InsP6 [Ins(1,2,3,4,5,6)P6; phytate] is the most abundant inositol phosphate in mammalian cells with cytosolic/nuclear concentrations of up to 50 μM. We noticed that InsP6 in culture medium at a concentration of ≤50 μM significantly stimulates H1299 tumour cell growth, whereas larger concentrations of InsP6 inhibit growth. A detailed study of the fate of 30 μM InsP6 added to H199 cells revealed a major fraction of InsP6 initially precipitates as cell-surface metal complexes, but becomes slowly re-solubilized by extracellular dephosphorylation first to InsP3 isomers and subsequently to free myo-inositol. The precipitated metal–InsP6 complex is endocytosed in a receptor-independent but intact-glycocalyx-dependent manner and appears in lysosomes, where it is immediately dephosphorylated to Ins(1,2,4,5,6)P5 and very slowly to free inositol. By RNA knockdown, we identified secreted and lysosome targeted MINPP1 (multiple inositol-polyphosphate phosphatase 1), the mammalian 3-phytase, to be essentially involved both in extracellular and in lysosomal InsP6 dephosphorylation. The results of the present study indicate that tumour cells employ this enzyme to utilize the micronutrients myo-inositol and metal-phosphate when encountering extracellular InsP6 and thus to enhance their growth potential.
Collapse
|
34
|
Pouillon V, Maréchal Y, Frippiat C, Erneux C, Schurmans S. Inositol 1,4,5-trisphosphate 3-kinase B (Itpkb) controls survival, proliferation and cytokine production in mouse peripheral T cells. Adv Biol Regul 2013; 53:39-50. [PMID: 22981169 DOI: 10.1016/j.jbior.2012.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 06/01/2023]
Abstract
Mice genetically-deficient for the B isoform of the inositol 1,4,5-trisphosphate 3-kinase (or Itpkb) have a severe defect in thymocytes differentiation and thus lack peripheral T cells. In order to study the functional role of Itpkb in peripheral T cells, we constructed a new mouse where a transgene encoding mouse Itpkb is specifically and transiently expressed in thymocytes of Itpkb(-)(/)(-) mice. This allows a partial rescue of mature thymocyte/T cell differentiation and thus the functional characterization of peripheral T cells lacking Itpkb. We show here that Itpkb(-)(/)(-) CD4(+) and CD8(+) peripheral T cells present important functional alterations. Indeed, an increased activated/memory phenotype as well as a decreased proliferative capacity and survival were detected in these T cells. These Itpkb-deficient peripheral T cells have also an increased capacity to secrete cytokines upon stimulation. Together, our present results define the important role of Itpkb in peripheral mature T cell fate and function in mouse, suggesting a potential role for Itpkb in autoimmunity.
Collapse
Affiliation(s)
- Valérie Pouillon
- Institut de Recherches Interdisciplinaires en Biologie Humaine et Moléculaire (IRIBHM), Belgium
| | | | | | | | | |
Collapse
|
35
|
Jin Q, Pulipati NR, Zhou W, Staub CM, Liotta LA, Mulder KM. Role of km23-1 in RhoA/actin-based cell migration. Biochem Biophys Res Commun 2012; 428:333-8. [PMID: 23079622 DOI: 10.1016/j.bbrc.2012.10.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
km23-1 was originally identified as a TGFß receptor-interacting protein that plays an important role in TGFß signaling. Moreover, km23-1 is actually part of an ancient superfamily of NTPase-regulatory proteins, widely represented in archaea and bacteria. To further elucidate the function of km23-1, we identified novel protein interacting partners for km23-1 by using tandem affinity purification (TAP) and tandem mass spectrometry (MS). Here we show that km23-1 interacted with a class of proteins involved in actin-based cell motility and modulation of the actin cytoskeleton. We further showed that km23-1 modulates the formation of a highly organized stress fiber network. More significantly, we demonstrated that knockdown (KD) of km23-1 decreased RhoA activation in Mv1Lu epithelial cells. Finally, our results demonstrated for the first time that depletion of km23-1 inhibited cell migration of human colon carcinoma cells (HCCCs) in wound-healing assays. Overall, our findings demonstrate that km23-1 regulates RhoA and motility-associated actin modulating proteins, suggesting that km23-1 may represent a novel target for anti-metastatic therapy.
Collapse
Affiliation(s)
- Qunyan Jin
- Department of Biochemistry and Molecular Biology, Penn State Hershey College of Medicine, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hoofd C, Devreker F, Deneubourg L, Deleu S, Nguyen TMU, Sermon K, Englert Y, Erneux C. A specific increase in inositol 1,4,5-trisphosphate 3-kinase B expression upon differentiation of human embryonic stem cells. Cell Signal 2012; 24:1461-70. [DOI: 10.1016/j.cellsig.2012.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 12/12/2022]
|
37
|
Windhorst S, Minge D, Bähring R, Hüser S, Schob C, Blechner C, Lin HY, Mayr GW, Kindler S. Inositol-1,4,5-trisphosphate 3-kinase A regulates dendritic morphology and shapes synaptic Ca2+ transients. Cell Signal 2012; 24:750-7. [DOI: 10.1016/j.cellsig.2011.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/25/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
|
38
|
Chang L, Schwarzenbach H, Meyer-Staeckling S, Brandt B, Mayr GW, Weitzel JM, Windhorst S. Expression Regulation of the Metastasis-Promoting Protein InsP3-Kinase-A in Tumor Cells. Mol Cancer Res 2011; 9:497-506. [PMID: 21460179 DOI: 10.1158/1541-7786.mcr-10-0556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Under physiologic conditions, the inositol-1,4,5-trisphosphate (InsP(3))-metabolizing, F-actin-bundling InsP(3)-kinase-A (ITPKA) is expressed only in neurons. Tumor cells that have gained the ability to express ITPKA show an increased metastatic potential due to the migration-promoting properties of ITPKA. Here we investigated the mechanism how tumor cells have gained the ability to reexpress ITPKA by using a breast cancer cell line (T47D) with no expression and a lung carcinoma cell line (H1299) with ectopic ITPKA expression. Cloning of a 1,250-bp ITPKA promoter fragment revealed that methylation of CpG islands was reduced in H1299 as compared with T47D cells, but DNA demethylation did not alter the expression of ITPKA. Instead, we showed that the repressor-element-1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF), which suppresses expression of neuronal genes in nonneuronal tissues, regulates expression of ITPKA. Knockdown of REST/NRSF induced expression of ITPKA in T47D cells, whereas its overexpression in H1299 cells strongly reduced the level of ITPKA. In T47D cells, REST/NRSF was bound to the RE-1 site of the ITPKA promoter and strongly reduced its activity. In H1299 cells, in contrast, expressing comparable REST/NRSF levels as T47D cells, REST/NRSF only slightly reduced ITPKA promoter activity. This reduced suppressor activity most likely results from expression of a dominant-negative isoform of REST/NRSF, REST4, which impairs binding of REST/NRSF to the RE-1 site. Thus, ITPKA may belong to the neuronal metastasis-promoting proteins whose ectopic reexpression in tumor cells is associated with impaired REST/NRSF activity. Mol Cancer Res; 9(4); 1-10. ©2011 AACR.
Collapse
Affiliation(s)
- Lydia Chang
- Universitätsklinikum Hamburg-Eppendorf, Hamburg; and 3Leibniz-Institut für Nutztierbiologie, Dummerstorf, Dummerstorf, Mecklenburg-Vorpommern, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Nalaskowski MM, Fliegert R, Ernst O, Brehm MA, Fanick W, Windhorst S, Lin H, Giehler S, Hein J, Lin YN, Mayr GW. Human inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) is a nucleocytoplasmic shuttling protein specifically enriched at cortical actin filaments and at invaginations of the nuclear envelope. J Biol Chem 2011; 286:4500-10. [PMID: 21148483 PMCID: PMC3039344 DOI: 10.1074/jbc.m110.173062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 12/02/2010] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) possesses important roles in the development of immune cells. IP3KB can be targeted to multiple cellular compartments, among them nuclear localization and binding in close proximity to the plasma membrane. The B isoform is the only IP3K that is almost ubiquitously expressed in mammalian cells. Detailed mechanisms of its targeting regulation will be important in understanding the role of Ins(1,4,5)P(3) phosphorylation on subcellular calcium signaling and compartment-specific initiation of pathways leading to regulatory active higher phosphorylated inositol phosphates. Here, we identified an exportin 1-dependent nuclear export signal ((134)LQRELQNVQV) and characterized the amino acids responsible for nuclear localization of IP3KB ((129)RKLR). These two targeting domains regulate the amount of nuclear IP3KB in cells. We also demonstrated that the localization of IP3KB at the plasma membrane is due to its binding to cortical actin structures. Intriguingly, all three of these targeting activities reside in one small polypeptide segment (amino acids 104-165), which acts as a multitargeting domain (MTD). Finally, a hitherto unknown subnuclear localization of IP3KB could be demonstrated in rapidly growing H1299 cells. IP3KB is specifically enriched at nuclear invaginations extending perpendicular between the apical and basal surface of the nucleus of these flat cells. Such nuclear invaginations are known to be involved in Ins(1,4,5)P(3)-mediated Ca(2+) signaling of the nucleus. Our findings indicate that IP3KB not only regulates cytoplasmic Ca(2+) signals by phosphorylation of subplasmalemmal and cytoplasmic Ins(1,4,5)P(3) but may also be involved in modulating nuclear Ca(2+) signals generated from these nuclear envelope invaginations.
Collapse
Affiliation(s)
- Marcus M Nalaskowski
- Institute of Biochemistry and Molecular Biology I-Cellular Signal Transduction, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Windhorst S, Kalinina T, Schmid K, Blechner C, Kriebitzsch N, Hinsch R, Chang L, Herich L, Schumacher U, Mayr GW. Functional role of inositol-1,4,5-trisphosphate-3-kinase-A for motility of malignant transformed cells. Int J Cancer 2011; 129:1300-9. [DOI: 10.1002/ijc.25782] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 11/02/2010] [Indexed: 11/09/2022]
|
41
|
Regulation of B cell survival, development and function by inositol 1,4,5-trisphosphate 3-kinase B (Itpkb). ACTA ACUST UNITED AC 2010; 51:66-73. [PMID: 21035494 DOI: 10.1016/j.advenzreg.2010.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 10/18/2022]
Abstract
In mammals, Ins(1,4,5)P3, the well known calcium mobilization messenger, is phosphorylated in the cytosol at the 3-position of the inositol ring to yield Ins(1,3,4,5)P4 by Ins(1,4,5)P3 3-kinases A, B and C isoforms as well as by inositol polyphosphate multikinase (Ipmk). Studies in gene-deficient mice have revealed that these enzymes and Ins(1,3,4,5)P4, their reaction product, play essential role in multiple physiological processes, ranging from synaptic plasticity, hematopoietic cell survival, development and function, to mRNA export, transcriptional regulation and chromatin remodelling. Rather than to provide an unique and “universal” mechanism of Ins(1,3,4,5)P4 action, these studies in genetically-modified mice point for a role of this inositide in the control of calcium mobilization, of the subcellular localisation of PH domain-containing target proteins, and of higher inositol phosphate production. Mice deficient for the B isoform of inositol 1,4,5-trisphosphate 3-kinase (Itpkb) develop profound alterations in T and B cells as well as in neutrophils and mast cells. Our recent studies indicate that the 3-kinase Itpkb and Ins(1,3,4,5)P4 are important for the survival of naïve mature B cells and the control of proapoptotic Bim protein expression, rather than for the control of B cell transition from one developmental stage to another. They also suggest that Itpkb is an important component in the control of B cell anergy.
Collapse
|
42
|
Sauer K, Cooke MP. Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat Rev Immunol 2010; 10:257-71. [PMID: 20336153 PMCID: PMC2922113 DOI: 10.1038/nri2745] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The membrane lipid phosphatidylinositol-3,4,5-trisphosphate (PtdInsP(3)) regulates membrane receptor signalling in many cells, including immunoreceptor signalling. Here, we review recent data that have indicated essential roles for the soluble PtdInsP(3) analogue inositol-1,3,4,5-tetrakisphosphate (InsP(4)) in T cell, B cell and neutrophil development and function. Decreased InsP(4) production in leukocytes causes immunodeficiency in mice and might contribute to inflammatory vasculitis in Kawasaki disease in humans. InsP(4)-producing kinases could therefore provide attractive drug targets for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|