1
|
Sciaccotta R, Gangemi S, Penna G, Giordano L, Pioggia G, Allegra A. Potential New Therapies "ROS-Based" in CLL: An Innovative Paradigm in the Induction of Tumor Cell Apoptosis. Antioxidants (Basel) 2024; 13:475. [PMID: 38671922 PMCID: PMC11047475 DOI: 10.3390/antiox13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic lymphocytic leukemia, in spite of recent advancements, is still an incurable disease; the majority of patients eventually acquire resistance to treatment through relapses. In all subtypes of chronic lymphocytic leukemia, the disruption of normal B-cell homeostasis is thought to be mostly caused by the absence of apoptosis. Consequently, apoptosis induction is crucial to the management of this illness. Damaged biological components can accumulate as a result of the oxidation of intracellular lipids, proteins, and DNA by reactive oxygen species. It is possible that cancer cells are more susceptible to apoptosis because of their increased production of reactive oxygen species. An excess of reactive oxygen species can lead to oxidative stress, which can harm biological elements like DNA and trigger apoptotic pathways that cause planned cell death. In order to upset the balance of oxidative stress in cells, recent therapeutic treatments in chronic lymphocytic leukemia have focused on either producing reactive oxygen species or inhibiting it. Examples include targets created in the field of nanomedicine, natural extracts and nutraceuticals, tailored therapy using biomarkers, and metabolic targets. Current developments in the complex connection between apoptosis, particularly ferroptosis and its involvement in epigenomics and alterations, have created a new paradigm.
Collapse
Affiliation(s)
- Raffaele Sciaccotta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Giuseppa Penna
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Laura Giordano
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| |
Collapse
|
2
|
Alva R, Gardner GL, Liang P, Stuart JA. Supraphysiological Oxygen Levels in Mammalian Cell Culture: Current State and Future Perspectives. Cells 2022; 11:3123. [PMID: 36231085 PMCID: PMC9563760 DOI: 10.3390/cells11193123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Most conventional incubators used in cell culture do not regulate O2 levels, making the headspace O2 concentration ~18%. In contrast, most human tissues are exposed to 2-6% O2 (physioxia) in vivo. Accumulating evidence has shown that such hyperoxic conditions in standard cell culture practices affect a variety of biological processes. In this review, we discuss how supraphysiological O2 levels affect reactive oxygen species (ROS) metabolism and redox homeostasis, gene expression, replicative lifespan, cellular respiration, and mitochondrial dynamics. Furthermore, we present evidence demonstrating how hyperoxic cell culture conditions fail to recapitulate the physiological and pathological behavior of tissues in vivo, including cases of how O2 alters the cellular response to drugs, hormones, and toxicants. We conclude that maintaining physioxia in cell culture is imperative in order to better replicate in vivo-like tissue physiology and pathology, and to avoid artifacts in research involving cell culture.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | | | | |
Collapse
|
3
|
Tan X, Liao D, Rao C, Zhou L, Tan Z, Pan Y, Singh A, Kumar A, Liu J, Li B. Recent advances in nano-architectonics of metal-organic frameworks for chemodynamic therapy. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123352] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
A new platform for ultra-high dose rate radiobiological research using the BELLA PW laser proton beamline. Sci Rep 2022; 12:1484. [PMID: 35087083 PMCID: PMC8795353 DOI: 10.1038/s41598-022-05181-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is the current standard of care for more than 50% of all cancer patients. Improvements in radiotherapy (RT) technology have increased tumor targeting and normal tissue sparing. Radiations at ultra-high dose rates required for FLASH-RT effects have sparked interest in potentially providing additional differential therapeutic benefits. We present a new experimental platform that is the first one to deliver petawatt laser-driven proton pulses of 2 MeV energy at 0.2 Hz repetition rate by means of a compact, tunable active plasma lens beamline to biological samples. Cell monolayers grown over a 10 mm diameter field were exposed to clinically relevant proton doses ranging from 7 to 35 Gy at ultra-high instantaneous dose rates of 107 Gy/s. Dose-dependent cell survival measurements of human normal and tumor cells exposed to LD protons showed significantly higher cell survival of normal-cells compared to tumor-cells for total doses of 7 Gy and higher, which was not observed to the same extent for X-ray reference irradiations at clinical dose rates. These findings provide preliminary evidence that compact LD proton sources enable a new and promising platform for investigating the physical, chemical and biological mechanisms underlying the FLASH effect.
Collapse
|
5
|
Kort-Mascort J, Bao G, Elkashty O, Flores-Torres S, Munguia-Lopez JG, Jiang T, Ehrlicher AJ, Mongeau L, Tran SD, Kinsella JM. Decellularized Extracellular Matrix Composite Hydrogel Bioinks for the Development of 3D Bioprinted Head and Neck in Vitro Tumor Models. ACS Biomater Sci Eng 2021; 7:5288-5300. [PMID: 34661396 DOI: 10.1021/acsbiomaterials.1c00812] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reinforced extracellular matrix (ECM)-based hydrogels recapitulate several mechanical and biochemical features found in the tumor microenvironment (TME) in vivo. While these gels retain several critical structural and bioactive molecules that promote cell-matrix interactivity, their mechanical properties tend toward the viscous regime limiting their ability to retain ordered structural characteristics when considered as architectured scaffolds. To overcome this limitation characteristic of pure ECM hydrogels, we present a composite material containing alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, as rheological modifiers which impart mechanical integrity to the biologically active decellularized ECM (dECM). After an optimization process, the reinforced gel proposed is mechanically stable and bioprintable and has a stiffness within the expected physiological values. Our hydrogel's elastic modulus has no significant difference when compared to tumors induced in preclinical xenograft head and neck squamous cell carcinoma (HNSCC) mouse models. The bioprinted cell-laden model is highly reproducible and allows proliferation and reorganization of HNSCC cells while maintaining cell viability above 90% for periods of nearly 3 weeks. Cells encapsulated in our bioink produce spheroids of at least 3000 μm2 of cross-sectional area by day 15 of culture and are positive for cytokeratin in immunofluorescence quantification, a common marker of HNSCC model validation in 2D and 3D models. We use this in vitro model system to evaluate the standard-of-care small molecule therapeutics used to treat HNSCC clinically and report a 4-fold increase in the IC50 of cisplatin and an 80-fold increase for 5-fluorouracil compared to monolayer cultures. Our work suggests that fabricating in vitro models using reinforced dECM provides a physiologically relevant system to evaluate malignant neoplastic phenomena in vitro due to the physical and biological features replicated from the source tissue microenvironment.
Collapse
Affiliation(s)
- Jacqueline Kort-Mascort
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Osama Elkashty
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada.,Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura 29R6+Q3F, Egypt
| | - Salvador Flores-Torres
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| | - Jose G Munguia-Lopez
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada.,Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument, College of Intelligence Science and Technology, National University of Defense Technology Changsha, No. 109 Deya Road, Kaifu District, Changsha, Hunan 410073, China
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada.,Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Macdonald Engineering Building, Room 270, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Simon D Tran
- Faculty of Dentistry, McGill University, 3640 rue University, Montreal, Quebec H3A 0C7, Canada
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, McConnell Engineering Building, 3480 University, Room 350, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
6
|
Zhou C, Zou QY, Jiang YZ, Zheng J. Role of oxygen in fetoplacental endothelial responses: hypoxia, physiological normoxia, or hyperoxia? Am J Physiol Cell Physiol 2020; 318:C943-C953. [PMID: 32267717 DOI: 10.1152/ajpcell.00528.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During pregnancy, placental vascular growth, which is essential for supporting the rapidly growing fetus, is associated with marked elevations in blood flow. These vascular changes take place under chronic physiological low O2 (less than 2-8% O2 in human; chronic physiological normoxia, CPN) throughout pregnancy. O2 level below CPN pertinent to the placenta results in placental hypoxia. Such hypoxia can cause severe endothelial dysfunction, which is associated with adverse pregnancy outcomes (e.g., preeclampsia) and high risk of adult-onset cardiovascular diseases in children born to these pregnancy complications. However, our current knowledge about the mechanisms underlying fetoplacental endothelial function is derived primarily from cell models established under atmospheric O2 (~21% O2 at sea level, hyperoxia). Recent evidence has shown that fetoplacental endothelial cells cultured under CPN have distinct gene expression profiles and cellular responses compared with cells cultured under chronic hyperoxia. These data indicate the critical roles of CPN in programming fetal endothelial function and prompt us to re-examine the mechanisms governing fetoplacental endothelial function under CPN. Better understanding these mechanisms will facilitate us to develop preventive and therapeutic strategies for endothelial dysfunction-associated diseases (e.g., preeclampsia). This review will provide a brief summary on the impacts of CPN on endothelial function and its underlying mechanisms with a focus on fetoplacental endothelial cells.
Collapse
Affiliation(s)
- Chi Zhou
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Qing-Yun Zou
- Department of Vascular Surgery, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi-Zhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Zheng
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Sánchez-Ajofrín I, Iniesta-Cuerda M, Sánchez-Calabuig MJ, Peris-Frau P, Martín-Maestro A, Ortiz JA, Del Rocío Fernández-Santos M, Garde JJ, Gutiérrez-Adán A, Soler AJ. Oxygen tension during in vitro oocyte maturation and fertilization affects embryo quality in sheep and deer. Anim Reprod Sci 2020; 213:106279. [PMID: 31987329 DOI: 10.1016/j.anireprosci.2020.106279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 01/13/2023]
Abstract
Incubation gas atmosphere affects the development of in vitro produced embryos. In this study, there was examination of effects of two different oxygen (O2) tensions (5 % and 21 %) during in vitro maturation (M5 and M21) and/or fertilization (F5 and F21) on embryo production and quality in deer and sheep. There was assessment of the percentage of embryos with cell cleavage occurring, percentage that developed to the blastocyst stage, and analysis of the relative abundance of mRNA transcript for genes important for development to the blastocyst stage. The O2 tension treatment did not affect (P > 0.05) percentage cleavage or blastocyst development in either species. In sheep, there was a greater abundance of SHC1, GPX1, TP53, BAX and NRF1 mRNA transcript (P < 0.05) in M21 F5-derived embryos. In deer, there was a greater abundance of SOD2 mRNA transcript (P < 0.05) when oocytes had been matured under relatively lesser O2, regardless of the tension used during fertilization. There was a lesser abundance of SOX2 mRNA transcript (P < 0.05) in the M5F21 compared to the other three treatment groups. The AKR1B1 mRNA transcript was in greater abundance (P < 0.05) in M21 F21 as compared to M21 F5 and M5F21 group, and there was a greater abundance PLAC8 mRNA transcript (P < 0.05) in M21 F21, as compared to all other treatment groups. In conclusion, while O2 tension had no effect on developmental rates it did affect the relative abundance of mRNA transcript of multiple genes related to important cell functions during development.
Collapse
|
8
|
Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol 2018; 9:6. [PMID: 29410625 PMCID: PMC5787088 DOI: 10.3389/fphar.2018.00006] [Citation(s) in RCA: 906] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Drug development is a lengthy and costly process that proceeds through several stages from target identification to lead discovery and optimization, preclinical validation and clinical trials culminating in approval for clinical use. An important step in this process is high-throughput screening (HTS) of small compound libraries for lead identification. Currently, the majority of cell-based HTS is being carried out on cultured cells propagated in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time, compelling evidence suggests that cells cultured in these non-physiological conditions are not representative of cells residing in the complex microenvironment of a tissue. This discrepancy is thought to be a significant contributor to the high failure rate in drug discovery, where only a low percentage of drugs investigated ever make it through the gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture technologies that more closely resemble in vivo cell environments are now being pursued with intensity as they are expected to accommodate better precision in drug discovery. Here we will review common approaches to 3D culture, discuss the significance of 3D cultures in drug resistance and drug repositioning and address some of the challenges of applying 3D cell cultures to high-throughput drug discovery.
Collapse
Affiliation(s)
- Sigrid A. Langhans
- Nemours Center for Childhood Cancer Research and Nemours Center for Neuroscience Research, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
9
|
Wohlkoenig C, Leithner K, Olschewski A, Olschewski H, Hrzenjak A. TR3 is involved in hypoxia-induced apoptosis resistance in lung cancer cells downstream of HIF-1α. Lung Cancer 2017; 111:15-22. [PMID: 28838387 DOI: 10.1016/j.lungcan.2017.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer death worldwide. Like in all solid tumors, hypoxia is common in lung cancer and contributes to apoptosis, and thus chemotherapy resistance. However, the underlying mechanisms are not entirely clear. TR3 (NR4A1, Nur77) is an orphan nuclear receptor that induces apoptosis and may mediate chemotherapy-induced apoptosis in cancer cells. MATERIALS AND METHODS We used A549, H23 and H1299 cell lines to investigate how TR3-mediated apoptosis is affected by hypoxia in non-small cell lung cancer (NSCLC) cells. Cell culture, western blot analysis, apoptosis assay, and siRNA-mediated gene silencing were performed in this study. RESULTS AND CONCLUSION The TR3 activator cytosporone B was used to investigate TR3-mediated apoptosis in NSCLC cells under normoxic and hypoxic conditions. Cytosporone B induced apoptosis in a concentration-dependent manner. Chronic moderate hypoxia induced a significant down-regulation of TR3. Accordingly, the cytosporone B effect was reduced under these conditions. Hypoxia-induced down-regulation of TR3 was mediated by hypoxia-inducible factor 1α. Our immunoblotting analysis and expression data from a public dataset suggest that TR3 is downregulated in NSCLC. In conclusion, our findings suggest that hypoxia-induced down-regulation of TR3 might play an important role for hypoxia-induced apoptosis resistance in NSCLC.
Collapse
Affiliation(s)
- Christoph Wohlkoenig
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Andrea Olschewski
- Institute of Physiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Institute of Physiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
10
|
Samuel J, Jayne S, Chen Y, Majid A, Wignall A, Wormull T, Najeeb H, Luo JL, Jones GDD, Macip S, Dyer MJS. Posttranscriptional Upregulation of p53 by Reactive Oxygen Species in Chronic Lymphocytic Leukemia. Cancer Res 2016; 76:6311-6319. [PMID: 27634759 DOI: 10.1158/0008-5472.can-16-0843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells multiply and become more resistant to immunochemotherapy in "proliferation centers" within tissues, whereas apoptosis occurs in the periphery. Various models recapitulate these microenvironments in vitro, such as stimulation with CD154 and IL4. Using this system, we observed a 30- to 40-fold induction of wild-type p53 protein in 50 distinct human CLL specimens tested, without the induction of either cell-cycle arrest or apoptosis. In contrast, the mRNA levels for p53 did not increase, indicating that its elevation occurred posttranscriptionally. Mechanistic investigations revealed that under the conditions studied, p53 was phosphorylated on residues associated with p53 activation and increased half-life. However, p53 protein induced in this manner could transcriptionally activate only a subset of target genes. The addition of a DNA-damaging agent further upregulated p53 protein levels, which led to apoptosis. p53 induction relied on the increase in intracellular reactive oxygen species observed after CD154 and IL4 stimulation. We propose that chronic oxidative stress is a characteristic of the microenvironment in B-cell "proliferation centers" in CLL that are capable of elevating the basal expression of p53, but to levels below the threshold needed to induce arrest or apoptosis. Our findings suggest that reactivation of the full transcriptional activities of p53 in proliferating CLL cells may offer a possible therapeutic strategy. Cancer Res; 76(21); 6311-9. ©2016 AACR.
Collapse
Affiliation(s)
- Jesvin Samuel
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| | - Yixiang Chen
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | | | - Alice Wignall
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Timothy Wormull
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Hishyar Najeeb
- CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom.,Department of Clinical Biochemistry, College of Medicine, University of Duhok, Kurdistan Regional Government, Iraq
| | - Jin-Li Luo
- CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - George D D Jones
- CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| | - Salvador Macip
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom. .,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Martin J S Dyer
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
11
|
Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: Choosing the right tool for the job. J Biotechnol 2016; 236:10-25. [PMID: 27498314 DOI: 10.1016/j.jbiotec.2016.07.028] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
The recently-defined four molecular subgroups of medulloblastoma have required updating of our understanding of in vitro models to include molecular classification and risk stratification features from clinical practice. This review seeks to build a more comprehensive picture of the in vitro systems available for modelling medulloblastoma. The subtype classification and molecular characterisation for over 40 medulloblastoma cell-lines has been compiled, making it possible to identify the strengths and weaknesses in current model systems. Less than half (18/44) of established medulloblastoma cell-lines have been subgrouped. The majority of the subgrouped cell-lines (11/18) are Group 3 with MYC-amplification. SHH cell-lines are the next most common (4/18), half of which exhibit TP53 mutation. WNT and Group 4 subgroups, accounting for 50% of patients, remain underrepresented with 1 and 2 cell-lines respectively. In vitro modelling relies not only on incorporating appropriate tumour cells, but also on using systems with the relevant tissue architecture and phenotype as well as normal tissues. Novel ways of improving the clinical relevance of in vitro models are reviewed, focusing on 3D cell culture, extracellular matrix, co-cultures with normal cells and organotypic slices. This paper champions the establishment of a collaborative online-database and linked cell-bank to catalyse preclinical medulloblastoma research.
Collapse
Affiliation(s)
- Delyan P Ivanov
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| | - Beth Coyle
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - David A Walker
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, Cancer Biology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
12
|
Althubiti M, Rada M, Samuel J, Escorsa JM, Najeeb H, Lee KG, Lam KP, Jones GDD, Barlev NA, Macip S. BTK Modulates p53 Activity to Enhance Apoptotic and Senescent Responses. Cancer Res 2016; 76:5405-14. [PMID: 27630139 DOI: 10.1158/0008-5472.can-16-0690] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
p53 is a tumor suppressor that prevents the emergence of transformed cells by inducing apoptosis or senescence, among other responses. Its functions are regulated tightly by posttranslational modifications. Here we show that Bruton's tyrosine kinase (BTK) is a novel modulator of p53. We found that BTK is induced in response to DNA damage and p53 activation. BTK induction leads to p53 phosphorylation, which constitutes a positive feedback loop that increases p53 protein levels and enhances the transactivation of its target genes in response to stress. Inhibiting BTK reduced both p53-dependent senescence and apoptosis. Further, BTK expression also upregulated DNA damage signals and apoptosis. We conclude that despite being involved in oncogenic signals in blood malignancies, BTK has antineoplastic properties in other contexts, such as the enhancement of p53's tumor suppressor responses. Along with evidence that BTK expression correlates with good prognosis in some epithelial tumors, our findings may encourage a reevaluation of the clinical uses of BTK inhibitors in cancer therapy. Cancer Res; 76(18); 5405-14. ©2016 AACR.
Collapse
Affiliation(s)
- Mohammad Althubiti
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom. Cancer Research UK Leicester Centre, Leicester, United Kingdom. Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Miran Rada
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom. Cancer Research UK Leicester Centre, Leicester, United Kingdom. Department of Biology, School of Science, Faculty of Science and Education Sciences, University of Sulaimani, Sulaimaniyah, Kurdistan Region, Iraq
| | - Jesvin Samuel
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom. Cancer Research UK Leicester Centre, Leicester, United Kingdom
| | - Josep M Escorsa
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom. Cancer Research UK Leicester Centre, Leicester, United Kingdom
| | - Hishyar Najeeb
- Cancer Research UK Leicester Centre, Leicester, United Kingdom. Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| | - Koon-Guan Lee
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, A*STAR, Singapore
| | - George D D Jones
- Cancer Research UK Leicester Centre, Leicester, United Kingdom. Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| | | | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom. Cancer Research UK Leicester Centre, Leicester, United Kingdom.
| |
Collapse
|
13
|
Jagannathan L, Cuddapah S, Costa M. Oxidative stress under ambient and physiological oxygen tension in tissue culture. ACTA ACUST UNITED AC 2016; 2:64-72. [PMID: 27034917 DOI: 10.1007/s40495-016-0050-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxygen (O2) levels range from 2-9% in vivo. However, cell culture experiments are performed at atmospheric O2 levels (21%). Oxidative stress due to generation of reactive oxygen species (ROS) in cells cultured at higher than physiological levels is implicated in multitude of deleterious effects including DNA damage, genomic instability and senescence. In addition, oxidative stress activates redox sensitive transcription factors related to inflammatory signaling and apoptotic signaling. Furthermore, several chromatin-modifying enzymes are affected by ROS, potentially impacting epigenetic regulation of gene expression. While primary cells are cultured at lower O2 levels due to their inability to grow at higher O2, the immortalized cells, which display no such apparent growth difficulties, are typically cultured at 21% O2. This review will provide an overview of issues associated with increased oxygen levels in in vitro cell culture and point out the benefits of using lower levels of oxygen tension even for immortalized cells.
Collapse
Affiliation(s)
- Lakshmanan Jagannathan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Suresh Cuddapah
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| |
Collapse
|
14
|
Ren H, Li X, Cheng G, Li N, Hou Z, Suo J, Wang J, Za X. The effects of ROS in prostatic stromal cells under hypoxic environment. Aging Male 2015; 18:84-8. [PMID: 25746207 DOI: 10.3109/13685538.2015.1018159] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The objective of this study is to explore the effects of reactive oxygen species (ROS) under hypoxic environment in prostatic stromal cells (PSC). METHODS AND MATERIALS To detect the expression of ROS in PSC and the tissues of benign prostatic hyperplasia (BPH) by flow cytometry; under hypoxic conditions, to observe the changes of cells growth and ROS in PSC; quantitative PCR was used to detect hypoxia inducible factor-1α (HIF-1α), androgen receptors (AR), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) in PSC; After edaravone intervening, to examine the changes of cells growth, ROS, HIF-1α, AR, VEGF, and IL-8 under hypoxic conditions. RESULTS The expression of ROS in tissues and cells which under hypoxic condition was significantly increased. 3% O2 promoted the proliferation. The HIF-1α, AR, VEGF, and IL-8 were upregulated under 3% O2. After edaravone intervening, ROS significantly decreased, HIF-1α and VEGF were downregulated, and cell proliferation declined. CONCLUSIONS Hypoxia stimulates the generation of ROS, and the ROS may play a key role in BPH.
Collapse
Affiliation(s)
- Hailin Ren
- Department of Urology, Affiliated Hospital of Qinghai University , Xining , PR China and
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ivanov DP, Parker TL, Walker DA, Alexander C, Ashford MB, Gellert PR, Garnett MC. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J Biotechnol 2015; 205:3-13. [PMID: 25592050 DOI: 10.1016/j.jbiotec.2015.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Physiologically relevant in vitro models can serve as biological analytical platforms for testing novel treatments and drug delivery systems. We describe the first steps in the development of a 3D human brain tumour co-culture model that includes the interplay between normal and tumour tissue along with nutrient gradients, cell-cell and cell-matrix interactions. The human medulloblastoma cell line UW228-3 and human foetal brain tissue were marked with two supravital fluorescent dyes (CDCFDASE, Celltrace Violet) and cultured together in ultra-low attachment 96-well plates to form reproducible single co-culture spheroids (d = 600 μm, CV% = 10%). Spheroids were treated with model cytotoxic drug etoposide (0.3-100 μM) and the viability of normal and tumour tissue quantified separately using flow cytometry and multiphoton microscopy. Etoposide levels of 10 μM were found to maximise toxicity to tumours (6.5% viability) while stem cells maintained a surviving fraction of 40%. The flexible cell marking procedure and high-throughput compatible protocol make this platform highly transferable to other cell types, primary tissues and personalised screening programs. The model's key anticipated use is for screening and assessment of drug delivery strategies to target brain tumours, and is ready for further developments, e.g. differentiation of stem cells to a range of cell types and more extensive biological validation.
Collapse
Affiliation(s)
- Delyan P Ivanov
- School of Pharmacy, University of Nottingham, Nottingham, UK.
| | - Terry L Parker
- Medical School, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - David A Walker
- Children's Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | | | | | | | | |
Collapse
|
16
|
Carrera S, Senra J, Acosta MI, Althubiti M, Hammond EM, de Verdier PJ, Macip S. The role of the HIF-1α transcription factor in increased cell division at physiological oxygen tensions. PLoS One 2014; 9:e97938. [PMID: 24835245 PMCID: PMC4024011 DOI: 10.1371/journal.pone.0097938] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/26/2014] [Indexed: 11/27/2022] Open
Abstract
HIF-1 is a transcription factor that mediates the cellular responses to low oxygen environments, mainly as a result of having an oxygen-labile subunit, HIF-1α. HIF-1α has been carefully studied in the context of severe hypoxic stresses (<1% O2), but it is also known to be present at oxygen tensions commonly found in normal tissues in vivo (∼1-13% O2), albeit at much lower levels. Its role under these physiological conditions is not fully understood. Here, we show that a transcriptionally active HIF-1α was up-regulated at 5% O2, both in normal and cancer cells, but only some of its target genes were elevated as a result. HIF-1α induction was in part dependent on the activation of the ERK1/2 MAPK signalling pathway, which we have previously shown is active at 5% O2. We also found that HIF-1α does not contribute to the protection against DNA damage that can be observed in low oxygen environments, and that there are certain DNA damaging agents, such as doxorubicin and actinomycin D, that prevent HIF-1α induction independently of p53. Moreover, absence of HIF-1α significantly reduced the growth advantage of cells cultured at 5% O2. In view of these data, we conclude that HIF-1α can be induced and activated at physiological oxygen tensions in a MAPK-dependent manner and that, although this does not lead to pro-survival responses to stress, it determines the increased cell proliferation rates that are common under these conditions.
Collapse
Affiliation(s)
- Samantha Carrera
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Joana Senra
- Cancer Research U.K./MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Maria Isabel Acosta
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Mohammad Althubiti
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| | - Ester M. Hammond
- Cancer Research U.K./MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Petra J. de Verdier
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Urology Laboratory, and Department of Urology, Karolinska University Hospital, Stockholm, Sweden
| | - Salvador Macip
- Department of Biochemistry, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
17
|
Stra6, a retinoic acid-responsive gene, participates in p53-induced apoptosis after DNA damage. Cell Death Differ 2013; 20:910-9. [PMID: 23449393 DOI: 10.1038/cdd.2013.14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stra6 is the retinoic acid (RA)-inducible gene encoding the cellular receptor for holo-retinol binding protein. This transmembrane protein mediates the internalization of retinol, which then upregulates RA-responsive genes in target cells. Here, we show that Stra6 can be upregulated by DNA damage in a p53-dependent manner, and it has an important role in cell death responses. Stra6 expression induced significant amounts of apoptosis in normal and cancer cells, and it was also able to influence p53-mediated cell fate decisions by turning an initial arrest response into cell death. Moreover, inhibition of Stra6 severely compromised p53-induced apoptosis. We also found that Stra6 induced mitochondria depolarization and accumulation of reactive oxygen species, and that it was present not only at the cellular membrane but also in the cytosol. Finally, we show that these novel functions of Stra6 did not require downstream activation of RA signalling. Our results present a previously unknown link between the RA and p53 pathways and provide a rationale to use retinoids to upregulate Stra6, and thus enhance the tumour suppressor functions of p53. This may have implications for the role of vitamin A metabolites in cancer prevention and treatment.
Collapse
|
18
|
Mallikarjun V, Clarke DJ, Campbell CJ. Cellular redox potential and the biomolecular electrochemical series: a systems hypothesis. Free Radic Biol Med 2012; 53:280-8. [PMID: 22609360 DOI: 10.1016/j.freeradbiomed.2012.04.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 01/21/2023]
Abstract
The role of cellular redox potential in the regulation of protein activity is becoming increasingly appreciated and characterized. In this paper we put forward a new hypothesis relating to redox regulation of cellular physiology. We have exemplified our hypothesis using apoptosis since its redox phenomenology is well established, but believe that it is equally applicable to several other pathways. Our hypothesis is that since multiple proteins in the apoptosis pathway are thought to be regulated via oxidation/reduction reactions and since cellular redox potentials have been shown to become progressively more oxidative during apoptosis, that the proteins could be arranged in an electrochemical series where the protein's standard potential correlates with its position in the pathway. Since the most stable oxidation state of the protein is determined by its standard potential and the redox potential of its environment (in a way predictable by the Nernst equation), a quantitative model of the redox regulation of the pathway could be developed. We have outlined our hypothesis, illustrating it using a pathway map which assembles a selection of the literature on apoptosis into a readable graphical format. We have also outlined experimental approaches suitable for testing our hypothesis.
Collapse
|
19
|
Armstrong CA, Jones GD, Anderson R, Iyer P, Narayanan D, Sandhu J, Singh R, Talbot CJ, Tufarelli C. DNMTs are required for delayed genome instability caused by radiation. Epigenetics 2012; 7:892-902. [PMID: 22722331 PMCID: PMC3427285 DOI: 10.4161/epi.21094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.
Collapse
|
20
|
Hammoud M, Vlaski M, Duchez P, Chevaleyre J, Lafarge X, Boiron JM, Praloran V, Brunet De La Grange P, Ivanovic Z. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells. J Cell Physiol 2012; 227:2750-8. [PMID: 21913190 DOI: 10.1002/jcp.23019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool.
Collapse
Affiliation(s)
- Mohammad Hammoud
- Aquitaine-Limousin Branch of French Blood Institute (Etablissement Français du Sang, Aquitaine-Limousin, EFS-AL), Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Masgras I, Carrera S, de Verdier PJ, Brennan P, Majid A, Makhtar W, Tulchinsky E, Jones GDD, Roninson IB, Macip S. Reactive oxygen species and mitochondrial sensitivity to oxidative stress determine induction of cancer cell death by p21. J Biol Chem 2012; 287:9845-9854. [PMID: 22311974 DOI: 10.1074/jbc.m111.250357] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status.
Collapse
Affiliation(s)
- Ionica Masgras
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Samantha Carrera
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Petra J de Verdier
- Department of Molecular Medicine and Surgery, Urology Laboratory, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Paul Brennan
- Department of Infection, Immunity, and Biochemistry, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom, and
| | - Aneela Majid
- Medical Research Council (MRC) Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Wan Makhtar
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Eugene Tulchinsky
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - George D D Jones
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Igor B Roninson
- Translational Cancer Therapeutics Program Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208
| | - Salvador Macip
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
22
|
Wohlkoenig C, Leithner K, Deutsch A, Hrzenjak A, Olschewski A, Olschewski H. Hypoxia-induced cisplatin resistance is reversible and growth rate independent in lung cancer cells. Cancer Lett 2011; 308:134-43. [DOI: 10.1016/j.canlet.2011.03.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/19/2010] [Accepted: 03/17/2011] [Indexed: 01/04/2023]
|
23
|
Ravi D, Chen Y, Karia B, Brown A, Gu TT, Li J, Carey MS, Hennessy BT, Bishop AJR. 14-3-3 σ expression effects G2/M response to oxygen and correlates with ovarian cancer metastasis. PLoS One 2011; 6:e15864. [PMID: 21249227 PMCID: PMC3018427 DOI: 10.1371/journal.pone.0015864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/25/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In vitro cell culture experiments with primary cells have reported that cell proliferation is retarded in the presence of ambient compared to physiological O₂ levels. Cancer is primarily a disease of aberrant cell proliferation, therefore, studying cancer cells grown under ambient O₂ may be undesirable. To understand better the impact of O₂ on the propagation of cancer cells in vitro, we compared the growth potential of a panel of ovarian cancer cell lines under ambient (21%) or physiological (3%) O₂. PRINCIPAL FINDINGS Our observations demonstrate that similar to primary cells, many cancer cells maintain an inherent sensitivity to O₂, but some display insensitivity to changes in O₂ concentration. Further analysis revealed an association between defective G2/M cell cycle transition regulation and O₂ insensitivity resultant from overexpression of 14-3-3 σ. Targeting 14-3-3 σ overexpression with RNAi restored O₂ sensitivity in these cell lines. Additionally, we found that metastatic ovarian tumors frequently overexpress 14-3-3 σ, which in conjunction with phosphorylated RB, results in poor prognosis. CONCLUSIONS Cancer cells show differential proliferative sensitivity to changes in O₂ concentration. Although a direct link between O₂ insensitivity and metastasis was not determined, this investigation showed that an O₂ insensitive phenotype in cancer cells to correlate with metastatic tumor progression.
Collapse
Affiliation(s)
- Dashnamoorthy Ravi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Bijal Karia
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Adam Brown
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Ting Ting Gu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - Jie Li
- Department of Gynecologic Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Mark S. Carey
- Department of Gynecologic Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Bryan T. Hennessy
- Department of Gynecologic Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Medical Oncology, Beaumont Hospital, Dublin, Ireland
| | - Alexander J. R. Bishop
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|