1
|
Mainali N, Li X, Wang X, Balasubramaniam M, Ganne A, Kore R, Shmookler Reis RJ, Mehta JL, Ayyadevara S. Myocardial infarction elevates endoplasmic reticulum stress and protein aggregation in heart as well as brain. Mol Cell Biochem 2024; 479:2741-2753. [PMID: 37922111 PMCID: PMC11455681 DOI: 10.1007/s11010-023-04856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/09/2023] [Indexed: 11/05/2023]
Abstract
Cardiovascular diseases, including myocardial infarction (MI), constitute the leading cause of morbidity and mortality worldwide. Protein-aggregate deposition is a hallmark of aging and neurodegeneration. Our previous study reported that aggregation is strikingly elevated in hearts of hypertensive and aged mice; however, no prior study has addressed MI effects on aggregation in heart or brain. Here, we present novel data on heart and brain aggregation in mice following experimental MI, induced by left coronary artery (LCA) ligation. Infarcted and peri-infarcted heart tissue, and whole cerebra, were isolated from mice at sacrifice, 7 days following LCA ligation. Sham-MI mice (identical surgery without ligation) served as controls. We purified detergent-insoluble aggregates from these tissues, and quantified key protein constituents by high-resolution mass spectrometry (LC-MS/MS). Infarct heart tissue had 2.5- to 10-fold more aggregates than non-infarct or sham-MI heart tissue (each P = 0.001). Protein constituents from MI cerebral aggregates overlapped substantially with those from human Alzheimer's disease brain. Prior injection of mice with mesenchymal stem cell (MSC) exosomes, shown to limit infarct size after LCA ligation, reduced cardiac aggregation ~ 60%, and attenuated markers of endoplasmic reticulum (ER) stress in heart and brain (GRP78, ATF6, P-PERK) by 50-75%. MI also elevated aggregate constituents enriched in Alzheimer's disease (AD) aggregates, such as proteasomal subunits, heat-shock proteins, complement C3, clusterin/ApoJ, and other apolipoproteins. These data provide novel evidence that aggregation is elevated in mouse hearts and brains after myocardial ischemia, leading to cognitive impairment resembling AD, but can be attenuated by exosomes or drug (CDN1163) interventions that oppose ER stress.
Collapse
Affiliation(s)
- Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Geriatrics and Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, China
| | | | - Akshatha Ganne
- Department of Geriatrics and Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Rajshekhar Kore
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Department of Geriatrics and Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA.
| | - Jawahar L Mehta
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA.
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
- Department of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Department of Geriatrics and Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
- Central Arkansas Veterans Healthcare Service, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Groten SA, Smit ER, van den Biggelaar M, Hoogendijk AJ. The proteomic landscape of in vitro cultured endothelial cells across vascular beds. Commun Biol 2024; 7:989. [PMID: 39143368 PMCID: PMC11324761 DOI: 10.1038/s42003-024-06649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Blood vessel endothelial cells (EC) display heterogeneity across vascular beds, which is anticipated to drive site-specific vascular pathology. This heterogeneity is assessed using transcriptomics in vivo, and functional assays in vitro, but how proteomes compare across human in vitro cultured ECs remains incompletely characterized. We generated an in-depth human EC proteomic landscape (>8000 proteins) across six organs and two in vitro models in steady-state and upon IFNγ-induced inflammation. EC proteomes displayed a high similarity and organ-specific proteins were limited. Variation between ECs was mainly based on proliferation and differentiation processes in which Blood outgrowth endothelial cells (BOEC) and Human umbilical vein cells (HUVEC) represented the extremes of proteomic phenotypes. The IFNγ response was highly conserved across all samples. Harnessing dynamics in protein abundances we delineated VWF and VE-Cadherin correlation networks. This EC landscape provides an extensive proteomic addition in studying EC biology and heterogeneity from an in vitro perspective.
Collapse
Affiliation(s)
- Stijn A Groten
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Eva R Smit
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Beaumont JEJ, Barbeau LMO, Ju J, Savelkouls KG, Bouwman FG, Zonneveld MI, Bronckaers A, Kampen KR, Keulers TGH, Rouschop KMA. Cancer EV stimulate endothelial glycolysis to fuel protein synthesis via mTOR and AMPKα activation. J Extracell Vesicles 2024; 13:e12449. [PMID: 39001708 PMCID: PMC11245686 DOI: 10.1002/jev2.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/21/2024] [Accepted: 04/24/2024] [Indexed: 07/15/2024] Open
Abstract
Hypoxia is a common feature of solid tumours and activates adaptation mechanisms in cancer cells that induce therapy resistance and has profound effects on cellular metabolism. As such, hypoxia is an important contributor to cancer progression and is associated with a poor prognosis. Metabolic alterations in cells within the tumour microenvironment support tumour growth via, amongst others, the suppression of immune reactions and the induction of angiogenesis. Recently, extracellular vesicles (EV) have emerged as important mediators of intercellular communication in support of cancer progression. Previously, we demonstrated the pro-angiogenic properties of hypoxic cancer cell derived EV. In this study, we investigate how (hypoxic) cancer cell derived EV mediate their effects. We demonstrate that cancer derived EV regulate cellular metabolism and protein synthesis in acceptor cells through increased activation of mTOR and AMPKα. Using metabolic tracer experiments, we demonstrate that EV stimulate glucose uptake in endothelial cells to fuel amino acid synthesis and stimulate amino acid uptake to increase protein synthesis. Despite alterations in cargo, we show that the effect of cancer derived EV on recipient cells is primarily determined by the EV producing cancer cell type rather than its oxygenation status.
Collapse
Affiliation(s)
- Joël E. J. Beaumont
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Lydie M. O. Barbeau
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Jinzhe Ju
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Kim G. Savelkouls
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Freek G. Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in MetabolismMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Marijke I. Zonneveld
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems (COS), Biomedical Research InstituteHasselt UniversityDiepenbeekBelgium
| | - Kim R. Kampen
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
- Laboratory for Disease Mechanisms in CancerDepartment of Oncology, KU LeuvenLeuvenBelgium
- Leuven Cancer Institute (LKI)LeuvenBelgium
| | - Tom G. H. Keulers
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiotherapy, GROW‐School for Oncology and ReproductionMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
4
|
Cong Y, Cai G, Ding C, Zhang H, Chen J, Luo S, Liu J. Disulfidptosis-related signature elucidates the prognostic, immunologic, and therapeutic characteristics in ovarian cancer. Front Genet 2024; 15:1378907. [PMID: 38694875 PMCID: PMC11061395 DOI: 10.3389/fgene.2024.1378907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Ovarian cancer (OC) is the deadliest malignancy in gynecology, but the mechanism of its initiation and progression is poorly elucidated. Disulfidptosis is a novel discovered type of regulatory cell death. This study aimed to develop a novel disulfidptosis-related prognostic signature (DRPS) for OC and explore the effects and potential treatment by disulfidptosis-related risk stratification. Methods The disulfidptosis-related genes were first analyzed in bulk RNA-Seq and a prognostic nomogram was developed and validated by LASSO algorithm and multivariate cox regression. Then we systematically assessed the clinicopathological and mutational characteristics, pathway enrichment analysis, immune cell infiltration, single-cell-level expression, and drug sensitivity according to DRPS. Results The DRPS was established with 6 genes (MYL6, PDLIM1, ACTN4, FLNB, SLC7A11, and CD2AP) and the corresponding prognostic nomogram was constructed based on the DRPS, FIGO stage, grade, and residual disease. Stratified by the risk score derived from DRPS, patients in high-risk group tended to have worse prognosis, lower level of disulfidptosis, activated oncogenic pathways, inhibitory tumor immune microenvironment, and higher sensitivity to specific drugs including epirubicin, stauroporine, navitoclax, and tamoxifen. Single-cell transcriptomic analysis revealed the expression level of genes in the DRPS significantly varied in different cell types between tumor and normal tissues. The protein-level expression of genes in the DRPS was validated by the immunohistochemical staining analysis. Conclusion In this study, the DRPS and corresponding prognostic nomogram for OC were developed, which was important for OC prognostic assessment, tumor microenvironment modification, drug sensitivity prediction, and exploration of potential mechanisms in tumor development.
Collapse
Affiliation(s)
- Yunyan Cong
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Guangyao Cai
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Chengcheng Ding
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Han Zhang
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Jieping Chen
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Shiwei Luo
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Jihong Liu
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
5
|
Georgana I, Scutts SR, Gao C, Lu Y, Torres AA, Ren H, Emmott E, Men J, Oei K, Smith GL. Filamin B restricts vaccinia virus spread and is targeted by vaccinia virus protein C4. J Virol 2024; 98:e0148523. [PMID: 38412044 PMCID: PMC10949515 DOI: 10.1128/jvi.01485-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.
Collapse
Affiliation(s)
- Iliana Georgana
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Chen Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yongxu Lu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alice A. Torres
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Hongwei Ren
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Edward Emmott
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jinghao Men
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Keefe Oei
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Castellani G, Buccarelli M, D'Alessandris QG, Ilari R, Cappannini A, Pedini F, Boe A, Lulli V, Parolini I, Giannetti S, Biffoni M, Zappavigna V, Marziali G, Pallini R, Ricci-Vitiani L. Extracellular vesicles produced by irradiated endothelial or Glioblastoma stem cells promote tumor growth and vascularization modulating tumor microenvironment. Cancer Cell Int 2024; 24:72. [PMID: 38347567 PMCID: PMC10863174 DOI: 10.1186/s12935-024-03253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most lethal primary brain tumor in adult, characterized by highly aggressive and infiltrative growth. The current therapeutic management of GBM includes surgical resection followed by ionizing radiations and chemotherapy. Complex and dynamic interplay between tumor cells and tumor microenvironment drives the progression and contributes to therapeutic resistance. Extracellular vesicles (EVs) play a crucial role in the intercellular communication by delivering bioactive molecules in the surrounding milieu modulating tumor microenvironment. METHODS In this study, we isolated by ultracentrifugation EVs from GBM stem-like cell (GSC) lines and human microvascular endothelial cells (HMVECs) exposed or not to ionizing irradiation. After counting and characterization, we evaluated the effects of exposure of GSCs to EVs isolated from endothelial cells and vice versa. The RNA content of EVs isolated from GSC lines and HMVECs exposed or not to ionizing irradiation, was analyzed by RNA-Seq. Periostin (POSTN) and Filamin-B (FLNB) emerged in gene set enrichment analysis as the most interesting transcripts enriched after irradiation in endothelial cell-derived EVs and GSC-derived EVs, respectively. POSTN and FLNB expression was modulated and the effects were analyzed by in vitro assays. RESULTS We confirmed that ionizing radiations increased EV secretion by GSCs and normal endothelial cells, affected the contents of and response to cellular secreted EVs. Particularly, GSC-derived EVs decreased radiation-induced senescence and promoted migration in HMVECs whereas, endothelial cell-derived EVs promoted tumorigenic properties and endothelial differentiation of GSCs. RNA-Seq analysis of EV content, identified FLNB and POSTN as transcripts enriched in EVs isolated after irradiation from GSCs and HMVECs, respectively. Assays performed on POSTN overexpressing GSCs confirmed the ability of POSTN to mimic the effects of endothelial cell-derived EVs on GSC migration and clonogenic abilities and transdifferentiation potential. Functional assays performed on HMVECs after silencing of FLNB supported its role as mediator of the effects of GSC-derived EVs on senescence and migration. CONCLUSION In this study, we identified POSTN and FLNB as potential mediators of the effects of EVs on GSC and HMVEC behavior confirming that EVs play a crucial role in the intercellular communication by delivering bioactive molecules in the surrounding milieu modulating tumor microenvironment.
Collapse
Affiliation(s)
- Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Quintino Giorgio D'Alessandris
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institutes of Neurosurgery, Catholic University School of Medicine, Rome, Italy
| | - Ramona Ilari
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | - Francesca Pedini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Stefano Giannetti
- Institute of Human Anatomy, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Marziali
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Roberto Pallini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
7
|
Wang L, Lu X, Chopp M, Li C, Zhang Y, Szalad A, Liu XS, Zhang ZG. Comparative proteomic analysis of exosomes derived from endothelial cells and Schwann cells. PLoS One 2023; 18:e0290155. [PMID: 37594969 PMCID: PMC10437921 DOI: 10.1371/journal.pone.0290155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023] Open
Abstract
Exosomes derived from endothelial cells and Schwann cells have been employed as novel treatments of neurological diseases, including peripheral neuropathy. Exosomal cargo plays a critical role in mediating recipient cell function. In this study, we thus performed a comprehensive proteomic analysis of exosomes derived from healthy mouse dermal microvascular endothelial cells (EC-Exo) and healthy mouse Schwann cells (SC-Exo). We detected 1,817and 1,579 proteins in EC-Exo and SC-Exo, respectively. Among them, 1506 proteins were present in both EC-Exo and SC-Exo, while 311 and 73 proteins were detected only in EC-Exo and SC-Exo, respectively. Bioinformatic analysis revealed that EC-Exo enriched proteins were involved in neurovascular function, while SC-Exo enriched proteins were related to lipid metabolism. Western blot analysis of 14 enriched proteins revealed that EC-Exo contained proteins involved in mediating endothelial function such as delta-like 4 (DLL4) and endothelial NOS (NOS3), whereas SC-Exo had proteins involved in mediating glial function such as apolipoprotein A-I (APOA1) and phospholipid transfer protein (PLTP). Collectively, the present study identifies differences in the cargo protein profiles of EC-Exo and SC-Exo, thus providing new molecular insights into their biological functions for the treatment of peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - XueRong Lu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Michael Chopp
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Physics, Oakland University, Rochester, Michigan, United States of America
| | - Chao Li
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Yi Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
8
|
Shepley-McTaggart A, Liang J, Ding Y, Djurkovic MA, Kriachun V, Shtanko O, Sunyer O, Harty RN. Contrasting effects of filamin A and B proteins in modulating filovirus entry. PLoS Pathog 2023; 19:e1011595. [PMID: 37585478 PMCID: PMC10461817 DOI: 10.1371/journal.ppat.1011595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 08/28/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
Ebola (EBOV) and Marburg viruses (MARV) cause severe hemorrhagic fever associated with high mortality rates in humans. A better understanding of filovirus-host interactions that regulate the EBOV and MARV lifecycles can provide biological and mechanistic insight critical for therapeutic development. EBOV glycoprotein (eGP) and MARV glycoprotein (mGP) mediate entry into host cells primarily by actin-dependent macropinocytosis. Here, we identified actin-binding cytoskeletal crosslinking proteins filamin A (FLNa) and B (FLNb) as important regulators of both EBOV and MARV entry. We found that entry of pseudotype psVSV-RFP-eGP, infectious recombinant rVSV-eGP-mCherry, and live authentic EBOV and MARV was inhibited in filamin A knockdown (FLNaKD) cells, but was surprisingly enhanced in filamin B knockdown (FLNbKD) cells. Mechanistically, our findings suggest that differential regulation of macropinocytosis by FLNa and FLNb likely contributes to their specific effects on EBOV and MARV entry. This study is the first to identify the filamin family of proteins as regulators of EBOV and MARV entry. These findings may provide insight into the development of new countermeasures to prevent EBOV and MARV infections.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jingjing Liang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marija A. Djurkovic
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Valeriia Kriachun
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Olena Shtanko
- Host-Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald N. Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Zhao X, Kiyozuka K, Konishi A, Kawabata-Iwakawa R, Minamishima YA, Obinata H. Actin-binding protein Filamin B regulates the cell-surface retention of endothelial sphingosine 1-phosphate receptor 1. J Biol Chem 2023:104851. [PMID: 37220855 PMCID: PMC10300261 DOI: 10.1016/j.jbc.2023.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 μM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell-specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses. We identified Filamin B (FLNB), an actin-binding protein involved in F-actin cross-linking, as a candidate regulating protein. We show FLNB knockdown by RNA interference induced massive internalization of S1PR1 into early endosomes, which was partially ligand-dependent and required receptor phosphorylation. Further investigation showed FLNB was also important for the recycling of internalized S1PR1 back to the cell surface. FLNB knockdown did not affect the localization of S1PR3, another S1P receptor subtype expressed in endothelial cells, nor did it affect localization of ectopically expressed β2-adrenergic receptor. Functionally, we show FLNB knockdown in endothelial cells impaired S1P-induced intracellular phosphorylation events and directed cell migration and enhancement of the vascular barrier. Taken together, our results demonstrate that FLNB is a novel regulator critical for S1PR1 cell-surface localization and thereby proper endothelial cell function.
Collapse
Affiliation(s)
- Xian Zhao
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Keisuke Kiyozuka
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Akimitsu Konishi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Gunma, Japan
| | | | - Hideru Obinata
- Education and Research Support Center, Gunma University Graduate School of Medicine, Gunma, Japan.
| |
Collapse
|
10
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Adam F, Kauskot A, Lamrani L, Solarz J, Soukaseum C, Repérant C, Denis CV, Raslova H, Rosa J, Bryckaert M. A gain-of-function filamin A mutation in mouse platelets induces thrombus instability. J Thromb Haemost 2022; 20:2666-2678. [PMID: 36006037 PMCID: PMC9826440 DOI: 10.1111/jth.15864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Filaminopathies A are rare disorders affecting the brain, intestine, or skeleton, characterized by dominant X-linked filamin A (FLNA) gene mutations. Macrothrombocytopenia with functionally defective platelets is frequent. We have described a filaminopathy A male patient, exhibiting a C-terminal frame-shift FLNa mutation (Berrou et al., Arterioscler Thromb Vasc Biol. 2017;37:1087-1097). Contrasting with female patients, this male patient exhibited gain of platelet functions, including increased platelet aggregation, integrin αIIbβ3 activation, and secretion at low agonist concentration, raising the issue of thrombosis risk. OBJECTIVES Our goal is to assess the thrombotic potential of the patient FLNa mutation in an in vivo model. METHODS We have established a mutant FlnA knock-in mouse model. RESULTS The mutant FlnA mouse platelets phenocopied patient platelets, showing normal platelet count, lower expression level of mutant FlnA, and gain of platelet functions: increased platelet aggregation, secretion, and αIIbβ3 activation, as well as increased spreading and clot retraction. Surprisingly, mutant FlnA mice exhibited a normal bleeding time, but with increased re-bleeding (77%) compared to wild type (WT) FlnA mice (27%), reflecting hemostatic plug instability. Again, in an in vivo thrombosis model, the occlusion time was not altered by the FlnA mutation, but arteriolar embolies were increased (7-fold more frequent in mutant FlnA mice versus WT mice), confirming thrombus instability. CONCLUSIONS This study shows that the FlnA mutation found in the male patient induced gain of platelet functions in vitro, but thrombus instability in vivo. Implications for the role of FLNa in physiology of thrombus formation are discussed.
Collapse
Affiliation(s)
- Frédéric Adam
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Alexandre Kauskot
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Lamia Lamrani
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Jean Solarz
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | | | | | - Cécile V. Denis
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| | - Hana Raslova
- INSERM UMR 1287, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclay, Gustave Roussy Cancer CampusEquipe Labellisée Ligue Nationale Contre le CancerVillejuifFrance
| | | | - Marijke Bryckaert
- INSERM UMR_S 1176, HIThUniversité Paris‐SaclayLe Kremlin BicêtreFrance
| |
Collapse
|
12
|
Quan M, Lv H, Liu Z, Li K, Zhang C, Shi L, Yang X, Lei P, Zhu Y, Ai D. MST1 Suppresses Disturbed Flow Induced Atherosclerosis. Circ Res 2022; 131:748-764. [PMID: 36164986 DOI: 10.1161/circresaha.122.321322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Atherosclerosis occurs mainly at arterial branching points exposed to disturbed blood flow. How MST1 (mammalian sterile 20-like kinase 1), the primary kinase in the mechanosensitive Hippo pathway modulates disturbed flow induced endothelial cells (ECs) activation and atherosclerosis remains unclear. METHODS To assess the role of MST1 in vivo, mice with EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-) were used in an atherosclerosis model generated by carotid artery ligation. Mass spectrometry, immunoprecipitation, proximity ligation assay, and dye uptake assay were used to identify the functional substrate of MST1. Human umbilical vein endothelial cells and human aortic endothelial cells were subjected to oscillatory shear stress that mimic disturbed flow in experiments conducted in vitro. RESULTS We found that the phosphorylation of endothelial MST1 was significantly inhibited in oscillatory shear stress-exposed regions of human and mouse arteries and ECs. Ectopic lenti-mediated overexpression of wild-type MST1, but not a kinase-deficient mutant of MST1, reversed disturbed flow-caused EC activation and atherosclerosis in EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-). Inhibition of MST1 by oscillatory shear stress led to reduced phosphorylation of Cx43 (connexin 43) at Ser255, the Cx43 hemichannel open, EC activation, and atherosclerosis, which were blocked by TAT-GAP19, a Cx43 hemichannel inhibitory peptide. Mass spectrometry studies identified that Filamin B fueled the translocation of Cx43 to lipid rafts for further hemichannel open. Finally, lenti-mediated overexpression of the Cx43S255 mutant into glutamate to mimic phosphorylation blunted disturbed flow-induced EC activation, thereby inhibiting the atherogenesis in both ApoE-/- and Mst1 iECKOApoE-/- mice. CONCLUSIONS Our study reveals that inhibition of the MST1-Cx43 axis is an essential driver of oscillatory shear stress-induced endothelial dysfunction and atherosclerosis, which provides a new therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Meixi Quan
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Huizhen Lv
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Zening Liu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Kan Li
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Chenghu Zhang
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences (L.S.), Tianjin Medical University, China
| | - XinYu Yang
- Department of Neurosurgery (X.Y.), Tianjin Medical University General Hospital, China
| | - Ping Lei
- Department of Geriatrics (P.L.), Tianjin Medical University General Hospital, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| | - Ding Ai
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University (M.Q., H.L., D.A.), Tianjin Medical University, China.,Department of Physiology and Pathophysiology (M.Q., H.L., Z.L., K.L., C.Z., Y.Z., D.A.), Tianjin Medical University, China
| |
Collapse
|
13
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of overexpression of jumping translocation breakpoint (JTB) protein in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:1784-1823. [PMID: 35530281 PMCID: PMC9077082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Jumping translocation breakpoint (JTB) gene acts as a tumor suppressor or an oncogene in different malignancies, including breast cancer (BC), where it was reported as overexpressed. However, the molecular functions, biological processes and underlying mechanisms through which JTB protein causes increased cell growth, proliferation and invasion is still not fully deciphered. Our goal is to identify the functions of JTB protein by cellular proteomics approaches. MCF7 breast cancer cells were transfected with sense orientation of hJTB cDNA in HA, His and FLAG tagged CMV expression vector to overexpress hJTB and the expression levels were confirmed by Western blotting (WB). Proteins extracted from transfected cells were separated by SDS-PAGE and the in-gel digested peptides were analyzed by nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). By comparing the proteome of cells with upregulated conditions of JTB vs control and identifying the protein dysregulation patterns, we aim to understand the function of this protein and its contribution to tumorigenesis. Gene Set Enrichment Analysis (GSEA) algorithm was performed to investigate the biological processes and pathways that are associated with the JTB protein upregulation. The results demonstrated four significantly enriched gene sets from the following significantly upregulated pathways: mitotic spindle assembly, estrogen response late, epithelial-to-mesenchymal transition (EMT) and estrogen response early. JTB protein itself is involved in mitotic spindle pathway by its role in cell division/cytokinesis, and within estrogen response early and late pathways, contributing to discrimination between luminal and mesenchymal breast cancer. Thus, the overexpressed JTB condition was significantly associated with an increased expression of ACTNs, FLNA, FLNB, EZR, MYOF, COL3A1, COL11A1, HSPA1A, HSP90A, WDR, EPPK1, FASN and FOXA1 proteins related to deregulation of cytoskeletal organization and biogenesis, mitotic spindle organization, ECM remodeling, cellular response to estrogen, proliferation, migration, metastasis, increased lipid biogenesis, endocrine therapy resistance, antiapoptosis and discrimination between different breast cancer subtypes. Other upregulated proteins for overexpressed JTB condition are involved in multiple cellular functions and pathways that become dysregulated, such as tumor microenvironment (TME) acidification, the transmembrane transport pathways, glycolytic flux, iron metabolism and oxidative stress, metabolic reprogramming, nucleocytosolic mRNA transport, transcriptional activation, chromatin remodeling, modulation of cell death pathways, stress responsive pathways, and cancer drug resistance. The downregulated proteins for overexpressed JTB condition are involved in adaptive communication between external and internal environment of cells and maintenance between pro-apoptotic and anti-apoptotic signaling pathways, vesicle trafficking and secretion, DNA lesions repair and suppression of genes involved in tumor progression, proteostasis, redox state regulation, biosynthesis of macromolecules, lipolytic pathway, carbohydrate metabolism, dysregulation of ubiquitin-mediated degradation system, cancer cell immune escape, cell-to-cell and cell-to-ECM interactions, and cytoskeletal behaviour. There were no significantly enriched downregulated pathways.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I Bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
14
|
Banliat C, Mahé C, Lavigne R, Com E, Pineau C, Labas V, Guyonnet B, Mermillod P, Saint-Dizier M. Dynamic Changes in the Proteome of Early Bovine Embryos Developed In Vivo. Front Cell Dev Biol 2022; 10:863700. [PMID: 35386205 PMCID: PMC8979002 DOI: 10.3389/fcell.2022.863700] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Early embryo development is a dynamic process involving important molecular and structural changes leading to the embryonic genome activation (EGA) and early cell lineage differentiation. Our aim was to elucidate proteomic changes in bovine embryos developed in vivo. Eleven females were used as embryo donors and pools of embryos at the 4–6 cell, 8–12 cell, morula, compact morula and blastocyst stages were analyzed by nanoliquid chromatography coupled with label free quantitative mass spectrometry. A total of 2,757 proteins were identified, of which 1,950 were quantitatively analyzed. Principal component analysis of data showed a clear separation of embryo pools according to their developmental stage. The hierarchical clustering of differentially abundant proteins evidenced a first cluster of 626 proteins that increased in abundance during development and a second cluster of 400 proteins that decreased in abundance during development, with most significant changes at the time of EGA and blastocyst formation. The main pathways and processes overrepresented among upregulated proteins were RNA metabolism, protein translation and ribosome biogenesis, whereas Golgi vesicle transport and protein processing in endoplasmic reticulum were overrepresented among downregulated proteins. The pairwise comparison between stages allowed us to identify specific protein interaction networks and metabolic pathways at the time of EGA, morula compaction and blastocyst formation. This is the first comprehensive study of proteome dynamics in non-rodent mammalian embryos developed in vivo. These data provide a number of protein candidates that will be useful for further mechanistic and functional studies.
Collapse
Affiliation(s)
- Charles Banliat
- CNRS, INRAE, Université de Tours, IFCE, UMR PRC, Nouzilly, France.,Union Evolution, Noyal-sur-Vilaine, France
| | - Coline Mahé
- CNRS, INRAE, Université de Tours, IFCE, UMR PRC, Nouzilly, France
| | - Régis Lavigne
- Irset-UMRS 1085, Inserm, University of Rennes, Rennes, France.,Protim, Univ Rennes, Biosit-UMS 3480, US-S 018, Rennes, France
| | - Emmanuelle Com
- Irset-UMRS 1085, Inserm, University of Rennes, Rennes, France.,Protim, Univ Rennes, Biosit-UMS 3480, US-S 018, Rennes, France
| | - Charles Pineau
- Irset-UMRS 1085, Inserm, University of Rennes, Rennes, France.,Protim, Univ Rennes, Biosit-UMS 3480, US-S 018, Rennes, France
| | - Valérie Labas
- CNRS, INRAE, Université de Tours, IFCE, UMR PRC, Nouzilly, France.,Pixanim, INRAE, Université de Tours, CHU de Tours, Nouzilly, France
| | | | - Pascal Mermillod
- CNRS, INRAE, Université de Tours, IFCE, UMR PRC, Nouzilly, France
| | | |
Collapse
|
15
|
Belyaeva V, Wachner S, Gyoergy A, Emtenani S, Gridchyn I, Akhmanova M, Linder M, Roblek M, Sibilia M, Siekhaus D. Fos regulates macrophage infiltration against surrounding tissue resistance by a cortical actin-based mechanism in Drosophila. PLoS Biol 2022; 20:e3001494. [PMID: 34990456 PMCID: PMC8735623 DOI: 10.1371/journal.pbio.3001494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2021] [Indexed: 12/20/2022] Open
Abstract
The infiltration of immune cells into tissues underlies the establishment of tissue-resident macrophages and responses to infections and tumors. Yet the mechanisms immune cells utilize to negotiate tissue barriers in living organisms are not well understood, and a role for cortical actin has not been examined. Here, we find that the tissue invasion of Drosophila macrophages, also known as plasmatocytes or hemocytes, utilizes enhanced cortical F-actin levels stimulated by the Drosophila member of the fos proto oncogene transcription factor family (Dfos, Kayak). RNA sequencing analysis and live imaging show that Dfos enhances F-actin levels around the entire macrophage surface by increasing mRNA levels of the membrane spanning molecular scaffold tetraspanin TM4SF, and the actin cross-linking filamin Cheerio, which are themselves required for invasion. Both the filamin and the tetraspanin enhance the cortical activity of Rho1 and the formin Diaphanous and thus the assembly of cortical actin, which is a critical function since expressing a dominant active form of Diaphanous can rescue the Dfos macrophage invasion defect. In vivo imaging shows that Dfos enhances the efficiency of the initial phases of macrophage tissue entry. Genetic evidence argues that this Dfos-induced program in macrophages counteracts the constraint produced by the tension of surrounding tissues and buffers the properties of the macrophage nucleus from affecting tissue entry. We thus identify strengthening the cortical actin cytoskeleton through Dfos as a key process allowing efficient forward movement of an immune cell into surrounding tissues. The infiltration of immune cells into tissue underlies the establishment of tissue-resident macrophages, and responses to infections and tumors, but how do they overcome tissue barriers? This study shows that macrophages upregulate the proto-oncogene Fos, increasing the density and crosslinking of cortical actin, thereby counteracting the tension of surrounding tissues and protecting the macrophage nucleus.
Collapse
Affiliation(s)
- Vera Belyaeva
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Stephanie Wachner
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Attila Gyoergy
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shamsi Emtenani
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Igor Gridchyn
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Akhmanova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Markus Linder
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Marko Roblek
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine 1, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Daria Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- * E-mail:
| |
Collapse
|
16
|
Chung S, Le TP, Vishwakarma V, Cheng YL, Andrew DJ. Isoform-specific roles of the Drosophila filamin-type protein Jitterbug (Jbug) during development. Genetics 2021; 219:iyab100. [PMID: 34173831 PMCID: PMC8860385 DOI: 10.1093/genetics/iyab100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 11/14/2022] Open
Abstract
Filamins are highly conserved actin-crosslinking proteins that regulate organization of the actin cytoskeleton. As key components of versatile signaling scaffolds, filamins are implicated in developmental anomalies and cancer. Multiple isoforms of filamins exist, raising the possibility of distinct functions for each isoform during development and in disease. Here, we provide an initial characterization of jitterbug (jbug), which encodes one of the two filamin-type proteins in Drosophila. We generate Jbug antiserum that recognizes all of the spliced forms and reveals differential expression of different Jbug isoforms during development, and a significant maternal contribution of Jbug protein. To reveal the function of Jbug isoforms, we create new genetic tools, including a null allele that deletes all isoforms, hypomorphic alleles that affect only a subset, and UAS lines for Gal4-driven expression of the major isoforms. Using these tools, we demonstrate that Jbug is required for viability and that specific isoforms are required in the formation of actin-rich protrusions including thoracic bristles in adults and ventral denticles in the embryo. We also show that specific isoforms of Jbug show differential localization within epithelia and that maternal and zygotic loss of jbug disrupts Crumbs (Crb) localization in several epithelial cell types.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Thao Phuong Le
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Vishakha Vishwakarma
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yim Ling Cheng
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
18
|
Pal J, Becker AC, Dhamija S, Seiler J, Abdelkarim M, Sharma Y, Behr J, Meng C, Ludwig C, Kuster B, Diederichs S. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non-small cell lung cancer. Mol Oncol 2021; 15:1797-1817. [PMID: 33934493 PMCID: PMC8253088 DOI: 10.1002/1878-0261.12973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/07/2022] Open
Abstract
Cell migration is an essential process in health and in disease, including cancer metastasis. A comprehensive inventory of migration factors is nonetheless lacking-in part due to the difficulty in assessing migration using high-throughput technologies. Hence, there are currently very few screens that systematically reveal factors controlling cell migration. Here, we introduce MigExpress as a platform for the 'identification of Migration control genes by differential Expression'. MigExpress exploits the combination of in-depth molecular profiling and the robust quantitative analysis of migration capacity in a broad panel of samples and identifies migration-associated genes by their differential expression in slow- versus fast-migrating cells. We applied MigExpress to investigate non-small cell lung cancer (NSCLC), which is the most frequent cause of cancer mortality mainly due to metastasis. In 54 NSCLC cell lines, we comprehensively determined mRNA and protein expression. Correlating the transcriptome and proteome profiles with the quantified migration properties led to the discovery and validation of FLNC, DSE, CPA4, TUBB6, and BICC1 as migration control factors in NSCLC cells, which were also negatively correlated with patient survival. Notably, FLNC was the least expressed filamin in NSCLC, but the only one controlling cell migration and correlating with patient survival and metastatic disease stage. In our study, we present MigExpress as a new method for the systematic analysis of migration factors and provide a comprehensive resource of transcriptomic and proteomic data of NSCLC cell lines related to cell migration.
Collapse
Affiliation(s)
- Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Andrea C Becker
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahmoud Abdelkarim
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Yogita Sharma
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Jürgen Behr
- Leibniz Institute for Food Systems, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany.,Chair of Proteomics and Bioanalytics, DKTK Partner Site Munich, Freising, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
19
|
Schoppmeyer R, van Buul JD. The diapedesis synapse: dynamic leukocyte-endothelium interactions. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
21
|
Involvement of Actin and Actin-Binding Proteins in Carcinogenesis. Cells 2020; 9:cells9102245. [PMID: 33036298 PMCID: PMC7600575 DOI: 10.3390/cells9102245] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton plays a crucial role in many cellular processes while its reorganization is important in maintaining cell homeostasis. However, in the case of cancer cells, actin and ABPs (actin-binding proteins) are involved in all stages of carcinogenesis. Literature has reported that ABPs such as SATB1 (special AT-rich binding protein 1), WASP (Wiskott-Aldrich syndrome protein), nesprin, and villin take part in the initial step of carcinogenesis by regulating oncogene expression. Additionally, changes in actin localization promote cell proliferation by inhibiting apoptosis (SATB1). In turn, migration and invasion of cancer cells are based on the formation of actin-rich protrusions (Arp2/3 complex, filamin A, fascin, α-actinin, and cofilin). Importantly, more and more scientists suggest that microfilaments together with the associated proteins mediate tumor vascularization. Hence, the presented article aims to summarize literature reports in the context of the potential role of actin and ABPs in all steps of carcinogenesis.
Collapse
|
22
|
Vähätupa M, Järvinen TAH, Uusitalo-Järvinen H. Exploration of Oxygen-Induced Retinopathy Model to Discover New Therapeutic Drug Targets in Retinopathies. Front Pharmacol 2020; 11:873. [PMID: 32595503 PMCID: PMC7300227 DOI: 10.3389/fphar.2020.00873] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen-induced retinopathy (OIR) is a pure hypoxia-driven angiogenesis model and the most widely used model for ischemic retinopathies, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). OIR model has been used to test new potential anti-angiogenic factors for human diseases. We have recently performed the most comprehensive characterization of OIR by a relatively novel mass spectrometry (MS) technique, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) proteomics and used genetically modified mice strains to identify novel molecular drug targets in angiogenic retinal diseases. We have confirmed the relevance of the identified molecular targets to human diseases by determining their expression pattern in neovascular membranes obtained from PDR and RVO patients. Based on our results, crystallins were the most prominent proteins induced by early hypoxic environment during the OIR, while actomyosin complex and Filamin A-R-Ras axis, that regulates vascular permeability of the angiogenic blood vessels, stood out at the peak of angiogenesis. Our results have revealed potential new therapeutic targets to address hypoxia-induced pathological angiogenesis and the associated vascular permeability in number of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
23
|
Filamin A: key actor in platelet biology. Blood 2020; 134:1279-1288. [PMID: 31471375 DOI: 10.1182/blood.2019000014] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Filamins (FLNs) are large dimeric actin-binding proteins that regulate actin cytoskeleton remodeling. In addition, FLNs serve as scaffolds for signaling proteins, such as tyrosine kinases, GTPases, or phosphatases, as well as for adhesive receptors, such as integrins. Thus, they connect adhesive receptors to signaling pathways and to cytoskeleton. There are 3 isoforms of FLN (filamin a [FLNa], FLNb, FLNc) that originate from 3 homologous genes. FLNa has been the recent focus of attention because its mutations are responsible for a wide spectrum of defects called filaminopathies A, affecting brain (peri-ventricular nodular heterotopia), heart (valve defect), skeleton, gastrointestinal tract, and, more recently, the megakaryocytic lineage. This review will focus on the physiological and pathological roles of FLNa in platelets. Indeed, FLNa mutations alter platelet production from their bone marrow precursors, the megakaryocytes, yielding giant platelets in reduced numbers (macrothrombocytopenia). In platelets per se, FLNa mutations may lead to impaired αIIbβ3 integrin activation or in contrast, increased αIIbβ3 activation, potentially enhancing the risk of thrombosis. Experimental work delineating the interaction of FLNa with its platelet partners, including αIIbβ3, the von Willebrand factor receptor GPIb-IX-V, the tyrosine kinase Syk, and the signaling pathway of the collagen receptor GPVI, will also be reviewed.
Collapse
|
24
|
Jahejo AR, Niu S, Zhang D, Ning GB, Khan A, Mangi RA, Qadir MF, Khan A, Li JH, Tian WX. Transcriptome analysis of MAPK signaling pathway and associated genes to angiogenesis in chicken erythrocytes on response to thiram-induced tibial lesions. Res Vet Sci 2019; 127:65-75. [PMID: 31678455 DOI: 10.1016/j.rvsc.2019.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/28/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
This study was planned to investigate TD (Tibial dyschondroplasia) on the potential MAPK signaling pathway and angiogenesis related genes. Forty-eight broilers were allotted into control (C) and treatment (T) groups of 2, 6 and 15 days as C1, C2, C3, T1, T2 and T3. The histopathology results revealed that tibiotarsus bone of chickens had more lesions on day 6 (T2 group). The chondrocytes were disordered, and the size, shape and proliferation were affected. Transcriptome results revealed that differentially expressed genes (DEGs) identified were 63, 1026, 623, 130, 141 and 146 in C1 (2 days control vs 6 days control); C2 (2 days control vs 15 days control); C3 (6 days control vs 15 days control); T1 (2 days treatment vs 6 days treatment); T2 (2 days treatment vs 15 days treatment) and T3 (6 days treatment vs 15 days treatment) groups respectively. Whereas, 10 angiogenesis related-genes RHOC, MEIS2, BAIAP2, TGFBI, KLF2, CYR61, PTPN11, PLXNC1, HSPH1 and NRP2 were downregulated on day 6 in the treatment group. The pathway which was found enriched in the control and treatment groups was MAPK signaling pathway. Therefore selected 10 MAPK signaling pathway-related genes RAC2, MAP3K1, PRKCB, FLNB, IL1R1, PTPN7, RPS6KA, MAP3K6, GNA12 and HSPA8 which were found significantly downregulated in the treatment group on day 6. It is concluded that angiogenesis and MAPK signaling pathway related genes has an essential role in TD, as those top screened genes found downregulated in the thiram fed chickens when TD observed severed on day 6.
Collapse
Affiliation(s)
- Ali Raza Jahejo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Sheng Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ding Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Guan-Bao Ning
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Afrasyab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Raza Ali Mangi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Muhammad Farhan Qadir
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Jian-Hui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China
| | - Wen-Xia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
25
|
Cimmino I, Margheri F, Prisco F, Perruolo G, D'Esposito V, Laurenzana A, Fibbi G, Paciello O, Doti N, Ruvo M, Miele C, Beguinot F, Formisano P, Oriente F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism. FASEB J 2019; 33:13893-13904. [PMID: 31618597 DOI: 10.1096/fj.201901230rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Angiogenesis depends on a delicate balance between the different transcription factors, and their control should be considered necessary for preventing or treating diseases. Pre-B-cell leukemia transcription factor regulating protein 1 (Prep1) is a homeodomain transcription factor that plays a primary role in organogenesis and metabolism. Observations performed in a Prep1 hypomorphic mouse model, expressing 3-5% of the protein, show an increase of embryonic lethality due, in part, to defects in angiogenesis. In this study, we provide evidence that overexpression of Prep1 in mouse aortic endothelial cells (MAECs) stimulates migration, proliferation, and tube formation. These effects are paralleled by an increase of several proangiogenic factors and by a decrease of the antiangiogenic gene neurogenic locus notch homolog protein 1 (Notch1). Prep1-mediated angiogenesis involves the activation of the p160 Myb-binding protein (p160)/peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) pathway. Indeed, Prep1 overexpression increases its binding with p160 and induces a 4-fold increase of p160 and 70% reduction of PGC-1α compared with control cells. Incubation of MAECs with a synthetic Prep1(54-72) peptide, mimicking the Prep1 region involved in the interaction with p160, reverts the proangiogenic effects mediated by Prep1. In addition, Prep1 levels increase by 3.2-fold during the fibroblast growth factor β (bFGF)-mediated endothelial colony-forming cells' activation, whereas Prep1(54-72) peptide reduces the capability of these cells to generate tubular-like structures in response to bFGF, suggesting a possible role of Prep1 both in angiogenesis from preexisting vessels and in postnatal vasculogenesis. Finally, Prep1 hypomorphic heterozygous mice, expressing low levels of Prep1, show attenuated placental angiogenesis and vessel formation within Matrigel plugs. All of these observations indicate that Prep1, complexing with p160, decreases PGC-1α and stimulates angiogenesis.-Cimmino, I., Margheri, F., Prisco, F., Perruolo, G., D'Esposito, V., Laurenzana, A., Fibbi, G., Paciello, O., Doti, N., Ruvo, M., Miele, C., Beguinot, F., Formisano, P., Oriente, F. Prep1 regulates angiogenesis through a PGC-1α-mediated mechanism.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Vittoria D'Esposito
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council-Interuniversity Research Centre on Bioactive Peptides, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, Research Unit (URT) Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia. J Transl Med 2019; 99:1363-1375. [PMID: 31028279 PMCID: PMC7422700 DOI: 10.1038/s41374-019-0256-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Proper lung development depends on the precise temporal and spatial expression of several morphogenic factors, including Fgf10, Fgf9, Shh, Bmp4, and Tgf-β. Over- or under-expression of these molecules often leads to aberrant embryonic or postnatal lung development. Herein, we deleted the Tgf-β1 gene specifically within the lung embryonic mesenchymal compartment at specific gestational stages to determine the contribution of this cytokine to lung development. Mutant embryos developed severe lung hypoplasia and died at birth due to the inability to breathe. Despite the markedly reduced lung size, proliferation and differentiation of the lung epithelium was not affected by the lack of mesenchymal expression of the Tgf-β1 gene, while apoptosis was significantly increased in the mutant lung parenchyma. Lack of mesenchymal expression of the Tgf-β1 gene was also associated with reduced lung branching morphogenesis, with accompanying inhibition of the local FGF10 signaling pathway as well as abnormal development of the vascular system. To shed light on the mechanism of lung hypoplasia, we quantified the phosphorylation of 226 proteins in the mutant E12.5 lung compared with control. We identified five proteins, Hrs, Vav2, c-Kit, the regulatory subunit of Pi3k (P85), and Fgfr1, that were over- or under-phosphorylated in the mutant lung, suggesting that they could be indispensable effectors of the TGF-β signaling program during embryonic lung development. In conclusion, we have uncovered novel roles of the mesenchyme-specific Tgf-β1 ligand in embryonic mouse lung development and generated a mouse model that may prove helpful to identify some of the key pathogenic mechanisms underlying lung hypoplasia in humans.
Collapse
|
27
|
Haspula D, Vallejos AK, Moore TM, Tomar N, Dash RK, Hoffmann BR. Influence of a Hyperglycemic Microenvironment on a Diabetic Versus Healthy Rat Vascular Endothelium Reveals Distinguishable Mechanistic and Phenotypic Responses. Front Physiol 2019; 10:558. [PMID: 31133884 PMCID: PMC6524400 DOI: 10.3389/fphys.2019.00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Hyperglycemia is a critical factor in the development of endothelial dysfunction in type 2 diabetes mellitus (T2DM). Whether hyperglycemic states result in a disruption of similar molecular mechanisms in endothelial cells under both diabetic and non-diabetic states, remains largely unknown. This study aimed to address this gap in knowledge through molecular and functional characterization of primary rat cardiac microvascular endothelial cells (RCMVECs) derived from the T2DM Goto-Kakizaki (GK) rat model in comparison to control Wistar-Kyoto (WKY) in response to a normal (NG) and hyperglycemic (HG) microenvironment. GK and WKY RCMVECs were cultured under NG (4.5 mM) and HG (25 mM) conditions for 3 weeks, followed by tandem mass spectrometry (MS/MS), qPCR, tube formation assay, microplate based fluorimetry, and mitochondrial respiration analyses. Following database matching and filtering (false discovery rate ≤ 5%, scan count ≥ 10), we identified a greater percentage of significantly altered proteins in GK (7.1%, HG versus NG), when compared to WKY (3.5%, HG versus NG) RCMVECs. Further stringent filters (log2ratio of > 2 or < -2, p < 0.05) followed by enrichment and pathway analyses of the MS/MS and quantitative PCR datasets (84 total genes screened), resulted in the identification of several molecular targets involved in angiogenic, redox and metabolic functions that were distinctively altered in GK as compared to WKY RCMVECs following HG exposure. While the expression of thirteen inflammatory and apoptotic genes were significantly increased in GK RCMVECs under HG conditions (p < 0.05), only 2 were significantly elevated in WKY RCMVECs under HG conditions. Several glycolytic enzymes were markedly reduced and pyruvate kinase activity was elevated in GK HG RCMVECs, while in mitochondrial respiratory chain activity was altered. Supporting this, TNFα and phorbol ester (PMA)-induced Reactive Oxygen Species (ROS) production were significantly enhanced in GK HG RCMVECs when compared to baseline levels (p < 0.05). Additionally, PMA mediated increase was the greatest in GK HG RCMVECs (p < 0.05). While HG caused reduction in tube formation assay parameters for WKY RCMVECs, GK RCMVECs exhibited impaired phenotypes under baseline conditions regardless of the glycemic microenvironment. We conclude that hyperglycemic microenvironment caused distinctive changes in the bioenergetics and REDOX pathways in the diabetic endothelium as compared to those observed in a healthy endothelium.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States
| | - Andrew K Vallejos
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy M Moore
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian R Hoffmann
- Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States.,Max McGee National Research Center, Children's Research Institute, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center for Advancing Population Science, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Jézéquel P, Guette C, Lasla H, Gouraud W, Boissard A, Guérin‐Charbonnel C, Campone M. iTRAQ‐Based Quantitative Proteomic Analysis Strengthens Transcriptomic Subtyping of Triple‐Negative Breast Cancer Tumors. Proteomics 2019; 19:e1800484. [DOI: 10.1002/pmic.201800484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Pascal Jézéquel
- Unité de Bioinfomique Institut de Cancérologie de l'Ouest Bd Jacques Monod 44805 Saint Herblain Cedex France
- Unité Mixte de Génomique du Cancer Institut de Cancérologie de l'Ouest ‐ René Gauducheau Bd Jacques Monod 44805 Saint Herblain Cedex France
- INSERM U1232 44007 Nantes Cedex France
- SIRIC ILIAD Institut de Cancérologie de l'Ouest‐René Gauducheau 44805 Saint Herblain Cedex France
| | - Catherine Guette
- SIRIC ILIAD Institut de Cancérologie de l'Ouest‐René Gauducheau 44805 Saint Herblain Cedex France
- Institut de Cancérologie de l'Ouest—Paul Papin 49055 Angers Cedex France
| | - Hamza Lasla
- Unité de Bioinfomique Institut de Cancérologie de l'Ouest Bd Jacques Monod 44805 Saint Herblain Cedex France
- SIRIC ILIAD Institut de Cancérologie de l'Ouest‐René Gauducheau 44805 Saint Herblain Cedex France
| | - Wilfried Gouraud
- Unité de Bioinfomique Institut de Cancérologie de l'Ouest Bd Jacques Monod 44805 Saint Herblain Cedex France
- Unité Mixte de Génomique du Cancer Institut de Cancérologie de l'Ouest ‐ René Gauducheau Bd Jacques Monod 44805 Saint Herblain Cedex France
- SIRIC ILIAD Institut de Cancérologie de l'Ouest‐René Gauducheau 44805 Saint Herblain Cedex France
| | - Alice Boissard
- SIRIC ILIAD Institut de Cancérologie de l'Ouest‐René Gauducheau 44805 Saint Herblain Cedex France
- Institut de Cancérologie de l'Ouest—Paul Papin 49055 Angers Cedex France
| | - Catherine Guérin‐Charbonnel
- Unité de Bioinfomique Institut de Cancérologie de l'Ouest Bd Jacques Monod 44805 Saint Herblain Cedex France
- Unité Mixte de Génomique du Cancer Institut de Cancérologie de l'Ouest ‐ René Gauducheau Bd Jacques Monod 44805 Saint Herblain Cedex France
- SIRIC ILIAD Institut de Cancérologie de l'Ouest‐René Gauducheau 44805 Saint Herblain Cedex France
| | - Mario Campone
- INSERM U1232 44007 Nantes Cedex France
- SIRIC ILIAD Institut de Cancérologie de l'Ouest‐René Gauducheau 44805 Saint Herblain Cedex France
- Oncologie Médicale Institut de Cancérologie de l'Ouest—René Gauducheau 44805 Saint Herblain Cedex France
| |
Collapse
|
29
|
Modulation of ADAR mRNA expression in patients with congenital heart defects. PLoS One 2019; 14:e0200968. [PMID: 31039163 PMCID: PMC6490900 DOI: 10.1371/journal.pone.0200968] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
Adenosine (A) to inosine (I) RNA editing is a hydrolytic deamination reaction catalyzed by the adenosine deaminase (ADAR) enzyme acting on double-stranded RNA. This posttranscriptional process diversifies a plethora of transcripts, including coding and noncoding RNAs. Interestingly, few studies have been carried out to determine the role of RNA editing in vascular disease. The aim of this study was to determine the potential role of ADARs in congenital heart disease. Strong downregulation of ADAR2 and increase in ADAR1 expression was observed in blood samples from congenital heart disease (CHD) patients. The decrease in expression of ADAR2 was in line with its downregulation in ventricular tissues of dilated cardiomyopathy patients. To further decipher the plausible regulatory pathway of ADAR2 with respect to heart physiology, miRNA profiling of ADAR2 was performed on tissues from ADAR2-/- mouse hearts. Downregulation of miRNAs (miR-29b, miR-405, and miR-19) associated with cardiomyopathy and cardiac fibrosis was observed. Moreover, the upregulation of miR-29b targets COL1A2 and IGF1, indicated that ADAR2 might be involved in cardiac myopathy. The ADAR2 target vascular development associated protein-coding gene filamin B (FLNB) was selected. The editing levels of FLNB were dramatically reduced in ADAR2-/- mice; however, no observable changes in FLNB expression were noted in ADAR2-/- mice compared to wild-type mice. This study proposes that sufficient ADAR2 enzyme activity might play a vital role in preventing cardiovascular defects.
Collapse
|
30
|
High filamin-C expression predicts enhanced invasiveness and poor outcome in glioblastoma multiforme. Br J Cancer 2019; 120:819-826. [PMID: 30867563 PMCID: PMC6474268 DOI: 10.1038/s41416-019-0413-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 01/11/2023] Open
Abstract
Background Glioblastoma multiforme (GBM), the most common brain malignancy in adults, is generally aggressive and incurable, even with multiple treatment modalities and agents. Filamins (FLNs) are a group of actin-binding proteins that regulate the actin cytoskeleton in cells. However, the role of FLNs in malignancies—particularly in GBM—is unclear. Methods The relation between FLNC expression and overall survival in GBM was evaluated by the Kaplan−Meier analysis using GBM patients from the Kagoshima University Hospital (n = 90) and data from the Cancer Genome Atlas (TCGA) (n = 153). To assess FLNC function in GBM, cell migration and invasion were examined with Transwell and Matrigel invasion assays using FLNC-overexpressing U251MG and LN299 GBM cells, and ShRNA-mediated FLNC knocked-down KNS81 and U87MG cells. The gelatin zymography assay was used to estimate matrix metalloproteinase (MMP) 2 activity. Results In silico analysis of GBM patient data from TCGA and immunohistochemical analyses of clinical GBM specimens revealed that increased FLNC expression was associated with poor patient prognosis. FLNC overexpression in GBM cell lines was positively correlated with enhanced invasiveness, but not migration, and was accompanied by upregulation of MMP2. Conclusions FLNC is a potential therapeutic target and biomarker for GBM progression.
Collapse
|
31
|
Munkley J, Li L, Krishnan SRG, Hysenaj G, Scott E, Dalgliesh C, Oo HZ, Maia TM, Cheung K, Ehrmann I, Livermore KE, Zielinska H, Thompson O, Knight B, McCullagh P, McGrath J, Crundwell M, Harries LW, Daugaard M, Cockell S, Barbosa-Morais NL, Oltean S, Elliott DJ. Androgen-regulated transcription of ESRP2 drives alternative splicing patterns in prostate cancer. eLife 2019; 8:47678. [PMID: 31478829 PMCID: PMC6788855 DOI: 10.7554/elife.47678] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Prostate is the most frequent cancer in men. Prostate cancer progression is driven by androgen steroid hormones, and delayed by androgen deprivation therapy (ADT). Androgens control transcription by stimulating androgen receptor (AR) activity, yet also control pre-mRNA splicing through less clear mechanisms. Here we find androgens regulate splicing through AR-mediated transcriptional control of the epithelial-specific splicing regulator ESRP2. Both ESRP2 and its close paralog ESRP1 are highly expressed in primary prostate cancer. Androgen stimulation induces splicing switches in many endogenous ESRP2-controlled mRNA isoforms, including splicing switches correlating with disease progression. ESRP2 expression in clinical prostate cancer is repressed by ADT, which may thus inadvertently dampen epithelial splice programmes. Supporting this, treatment with the AR antagonist bicalutamide (Casodex) induced mesenchymal splicing patterns of genes including FLNB and CTNND1. Our data reveals a new mechanism of splicing control in prostate cancer with important implications for disease progression.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Ling Li
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - S R Gokul Krishnan
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Gerald Hysenaj
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Emma Scott
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Caroline Dalgliesh
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Htoo Zarni Oo
- Department of Urologic SciencesUniversity of British ColumbiaVancouverCanada,Vancouver Prostate CentreVancouverCanada
| | - Teresa Mendes Maia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal,VIB Center for Medical BiotechnologyVIBGhentBelgium,VIB Proteomics CoreVIBGhentBelgium,Department for Biomolecular MedicineGhent UniversityGhentBelgium
| | - Kathleen Cheung
- Bioinformatics Support Unit, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Ingrid Ehrmann
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Karen E Livermore
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| | - Hanna Zielinska
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - Oliver Thompson
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - Bridget Knight
- NIHR Exeter Clinical Research FacilityRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - Paul McCullagh
- Department of PathologyRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - John McGrath
- Exeter Surgical Health Services Research UnitRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - Malcolm Crundwell
- Department of UrologyRoyal Devon and Exeter NHS Foundation TrustExeterUnited Kingdom
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - Mads Daugaard
- Department of Urologic SciencesUniversity of British ColumbiaVancouverCanada,Vancouver Prostate CentreVancouverCanada
| | - Simon Cockell
- Bioinformatics Support Unit, Faculty of Medical SciencesNewcastle UniversityNewcastleUnited Kingdom
| | - Nuno L Barbosa-Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisboaPortugal
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and HealthUniversity of ExeterExeterUnited Kingdom
| | - David J Elliott
- Institute of Genetic MedicineUniversity of NewcastleNewcastleUnited Kingdom
| |
Collapse
|
32
|
Li Y, Sun Y, Sun F, Hua R, Li C, Chen L, Guo D, Mu J. Mechanisms and Effects on HBV Replication of the Interaction between HBV Core Protein and Cellular Filamin B. Virol Sin 2018; 33:162-172. [PMID: 29594956 DOI: 10.1007/s12250-018-0023-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.
Collapse
Affiliation(s)
- Yilin Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yishuang Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuyun Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rong Hua
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chenlin Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China. .,School of Basic Medicine (Shenzhen), Sun Yat-sen University, Guangzhou, 510081, China.
| | - Jingfang Mu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
33
|
Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3-GENES GENOMES GENETICS 2018; 8:859-873. [PMID: 29378821 PMCID: PMC5844307 DOI: 10.1534/g3.117.300508] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Domesticated species exhibit a suite of behavioral, endocrinological, and morphological changes referred to as "domestication syndrome." These changes may include a reduction in reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and specifically reduced adrenocorticotropic hormone release from the anterior pituitary. To investigate the biological mechanisms targeted during domestication, we investigated gene expression in the pituitaries of experimentally domesticated foxes (Vulpes vulpes). RNA was sequenced from the anterior pituitary of six foxes selectively bred for tameness ("tame foxes") and six foxes selectively bred for aggression ("aggressive foxes"). Expression, splicing, and network differences identified between the two lines indicated the importance of genes related to regulation of exocytosis, specifically mediated by cAMP, organization of pseudopodia, and cell motility. These findings provide new insights into biological mechanisms that may have been targeted when these lines of foxes were selected for behavior and suggest new directions for research into HPA axis regulation and the biological underpinnings of domestication.
Collapse
|
34
|
Vairamani K, Wang HS, Medvedovic M, Lorenz JN, Shull GE. RNA SEQ Analysis Indicates that the AE3 Cl -/HCO 3- Exchanger Contributes to Active Transport-Mediated CO 2 Disposal in Heart. Sci Rep 2017; 7:7264. [PMID: 28779178 PMCID: PMC5544674 DOI: 10.1038/s41598-017-07585-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Loss of the AE3 Cl−/HCO3− exchanger (Slc4a3) in mice causes an impaired cardiac force-frequency response and heart failure under some conditions but the mechanisms are not known. To better understand the functions of AE3, we performed RNA Seq analysis of AE3-null and wild-type mouse hearts and evaluated the data with respect to three hypotheses (CO2 disposal, facilitation of Na+-loading, and recovery from an alkaline load) that have been proposed for its physiological functions. Gene Ontology and PubMatrix analyses of differentially expressed genes revealed a hypoxia response and changes in vasodilation and angiogenesis genes that strongly support the CO2 disposal hypothesis. Differential expression of energy metabolism genes, which indicated increased glucose utilization and decreased fatty acid utilization, were consistent with adaptive responses to perturbations of O2/CO2 balance in AE3-null myocytes. Given that the myocardium is an obligate aerobic tissue and consumes large amounts of O2, the data suggest that loss of AE3, which has the potential to extrude CO2 in the form of HCO3−, impairs O2/CO2 balance in cardiac myocytes. These results support a model in which the AE3 Cl−/HCO3− exchanger, coupled with parallel Cl− and H+-extrusion mechanisms and extracellular carbonic anhydrase, is responsible for active transport-mediated disposal of CO2.
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - John N Lorenz
- Department of Cellular and Molecular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.
| |
Collapse
|
35
|
Xu Q, Wu N, Cui L, Wu Z, Qiu G. Filamin B: The next hotspot in skeletal research? J Genet Genomics 2017; 44:335-342. [PMID: 28739045 DOI: 10.1016/j.jgg.2017.04.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Filamin B (FLNB) is a large dimeric actin-binding protein which crosslinks actin cytoskeleton filaments into a dynamic structure. Up to present, pathogenic mutations in FLNB are solely found to cause skeletal deformities, indicating the important role of FLNB in skeletal development. FLNB-related disorders are classified as spondylocarpotarsal synostosis (SCT), Larsen syndrome (LS), atelosteogenesis (AO), boomerang dysplasia (BD), and isolated congenital talipes equinovarus, presenting with scoliosis, short-limbed dwarfism, clubfoot, joint dislocation and other unique skeletal abnormalities. Several mechanisms of FLNB mutations causing skeletal malformations have been proposed, including delay of ossification in long bone growth plate, reduction of bone mineral density (BMD), dysregulation of muscle differentiation, ossification of intervertebral disc (IVD), disturbance of proliferation, differentiation and apoptosis in chondrocytes, impairment of angiogenesis, and hypomotility of osteoblast, chondrocyte and fibroblast. Interventions on FLNB-related diseases require prenatal surveillance by sonography, gene testing in high-risk carriers, and proper orthosis or orthopedic surgeries to correct malformations including scoliosis, cervical spine instability, large joint dislocation, and clubfoot. Gene and cell therapies for FLNB-related diseases are also promising but require further studies.
Collapse
Affiliation(s)
- Qiming Xu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lijia Cui
- Peking Union Medical College Hospital, Beijing 100730, China; School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China; Medical Research Center of Orthopaedics, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
36
|
Tan B, Li Y, Wang C, Tan M, Fan L, Zhao Q, Wang D, Jia N. The clinical value of Vav3 in peripheral blood for predicting lymphatic metastasis of gastric cancer. Br J Biomed Sci 2017; 74:133-137. [PMID: 28513273 DOI: 10.1080/09674845.2017.1278889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B. Tan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y. Li
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - C. Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - M. Tan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - L. Fan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Q. Zhao
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - D. Wang
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - N. Jia
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Hu J, Lu J, Goyal A, Wong T, Lian G, Zhang J, Hecht JL, Feng Y, Sheen VL. Opposing FlnA and FlnB interactions regulate RhoA activation in guiding dynamic actin stress fiber formation and cell spreading. Hum Mol Genet 2017; 26:1294-1304. [PMID: 28175289 DOI: 10.1093/hmg/ddx047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/02/2017] [Indexed: 12/26/2022] Open
Abstract
Filamins are a family of actin-binding proteins responsible for diverse biological functions in the context of regulating actin dynamics and vesicle trafficking. Disruption of these proteins has been implicated in multiple human developmental disorders. To investigate the roles of different filamin isoforms, we focused on FlnA and FlnB interactions in the cartilage growth plate, since mutations in both molecules cause chondrodysplasias. Current studies show that FlnA and FlnB share a common function in stabilizing the actin cytoskeleton, they physically interact in the cytoplasm of chondrocytes, and loss of FlnA enhances FlnB expression of chondrocytes in the growth plate (and vice versa), suggesting compensation. Prolonged FlnB loss, however, promotes actin-stress fiber formation following plating onto an integrin activating substrate whereas FlnA inhibition leads to decreased actin formation. FlnA more strongly binds RhoA, although both filamins overlap with RhoA expression in the cell cytoplasm. FlnA promotes RhoA activation whereas FlnB indirectly inhibits this pathway. Moreover, FlnA loss leads to diminished expression of β1-integrin, whereas FlnB loss promotes integrin expression. Finally, fibronectin mediated integrin activation has been shown to activate RhoA and activated RhoA leads to stress fiber formation and cell spreading. Fibronectin stimulation in null FlnA cells impairs enhanced spreading whereas FlnB inhibited cells show enhanced spreading. While filamins serve a primary static function in stabilization of the actin cytoskeleton, these studies are the first to demonstrate a dynamic and antagonistic relationship between different filamin isoforms in the dynamic regulation of integrin expression, RhoGTPase activity and actin stress fiber remodeling.
Collapse
Affiliation(s)
- Jianjun Hu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Akshay Goyal
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Timothy Wong
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Gewei Lian
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jingping Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Volney L Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
38
|
Expression of Vav3 protein and its prognostic value in patients with gastric cancer. Pathol Res Pract 2017; 213:435-440. [PMID: 28285969 DOI: 10.1016/j.prp.2017.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 01/08/2023]
Abstract
Vav3 is associated with tumor growth, apoptosis, invasion, metastasis and angiogenesis. In this study, we detected the expression of Vav3 in gastric cancer tissues, and explored its role in invasion, metastasis and prognosis of gastric cancer. Vav3, MMP-2, MMP-9, TIMP-1 and TIMP-2 in primary lesion and pericarcinous tissues were tested with Immunohistochemistry and Western blot. Results showed a higher expression of Vav3 in primary lesion than in pericarcinous tissue, and the expression of Vav3 was significantly correlated with MMP-2, MMP-9 and TIMP-1 in gastric cancer tissues. Overexpression of Vav3 was associated with poorer differentiation, advanced clinical stage, more significant infiltration depth, lymphatic metastasis, and perineural invasion. Results of Kaplan-Meier verified that overexpression of Vav3 was related to poorer prognosis and shorter survival time. Moreover, Cox proportional hazard model revealed that overexpression of Vav3 was an independent risk factor of prognosis for patients with gastric cancer. In all, we conclude that overexpression of Vav3 is an independent risk factor for prognosis of gastric cancer, and can be used as a prognostic indicator. This may be because that Vav3 could regulate genes which associated with the invasion and metastasis.
Collapse
|
39
|
Dong Z, Ba H, Zhang W, Coates D, Li C. iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells. Int J Mol Sci 2016; 17:ijms17111778. [PMID: 27792145 PMCID: PMC5133779 DOI: 10.3390/ijms17111778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/08/2016] [Accepted: 10/16/2016] [Indexed: 01/13/2023] Open
Abstract
As the only known organ that can completely regenerate in mammals, deer antler is of real significance in the field of regenerative medicine. Recent studies have shown that the regenerative capacity of the antlers comes from the pedicle periosteum and the cells resident in the periosteum possess the attributes of stem cells. Currently, the molecular mechanism of antler regeneration remains unclear. In the present study, we compared the potentiated and dormant antler stem cells using isobaric tags for the relative and absolute quantification (iTRAQ) labeling of the peptides, coupled with two-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare the proteome profiles. Proteins were identified by searching against the NCBI nr database and our own Cervine transcriptome database, and bioinformatics analysis was conducted to identify the differentially expressed proteins. Based on this searching strategy, we identified 169 differentially expressed proteins in total, consisting of 70 up- and 99 down-regulated in the potentiated vs. dormant antler stem cells. Reliability of the iTRAQ was confirmed via quantitative real-time polymerase chain reaction (qRT-PCR) to measure the expression of selected genes. We identified transduction pathways through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, such as HIF-1 and PI3K-AKT signaling pathways that play important roles in regulating the regeneration of antlers. In summary, the initiation stage of antler regeneration, a process from dormant to potentiated states in antler stem cells, is regulated by multiple proteins and complicated signal networks.
Collapse
Affiliation(s)
- Zhen Dong
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, China.
| | - Hengxing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, China.
| | - Wei Zhang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, China.
| | - Dawn Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 647, Dunedin 9054, New Zealand.
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun 130112, China.
- State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun 130112, China.
| |
Collapse
|
40
|
Romas L, Birse K, Mayer KH, Abou M, Westmacott G, Giguere R, Febo I, Cranston RD, Carballo-Diéguez A, McGowan I, Burgener A. Rectal 1% Tenofovir Gel Use Associates with Altered Epidermal Protein Expression. AIDS Res Hum Retroviruses 2016; 32:1005-1015. [PMID: 27316778 PMCID: PMC5067863 DOI: 10.1089/aid.2015.0381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rectal use of a 1% tenofovir (TFV) gel is currently being evaluated for HIV prevention. While careful assessment of mucosal safety of candidate microbicides is a primary concern, tools to assess mucosal toxicity are limited. Mass spectrometry-based proteomics is a sensitive and high-throughput technique that can provide in-depth information on inflammation processes in biological systems. In this study, we utilized a proteomics approach to characterize mucosal responses in study participants involved in a phase 1 clinical trial of a rectal TFV-based gel. Project Gel was a phase 1 randomized (1:1), double-blind, multisite, placebo-controlled trial in which 24 participants received rectal TFV or a universal placebo [hydroxyethyl cellulose (HEC)] over a course of 8 daily doses. Rectal mucosal swabs were collected after 0, 1, and 8 doses and were analyzed by label-free tandem mass spectrometry. Differential protein expression was evaluated using a combination of paired (time-effects) and unpaired (across study arm) t-tests, and multivariate [least absolute shrinkage and selection operator (LASSO)] modeling. Within the TFV arm, 7% (17/249, p < .05) and 10% (25/249, p < .05) of total proteins changed after 1 and 8 daily applications of TFV gel, respectively, compared to 3% (7/249, p < .05) and 6% (16/249, p < .05) in the HEC arm. Biofunctional analysis associated TFV use with a decrease in epidermal barrier proteins (adj. p = 1.21 × 10−10). Multivariate modeling identified 13 proteins that confidently separated TFV gel users (100% calibration and 96% cross-validation accuracy), including the epithelial integrity factors (FLMNB, CRNN, CALM), serpins (SPB13, SPB5), and cytoskeletal proteins (VILI, VIME, WRD1). This study suggested that daily rectal applications of a 1% TFV gel may be associated with mucosal proteome changes involving epidermal development. Further assessment of more extended use of TFV-gel is recommended to validate these initial associations.
Collapse
Affiliation(s)
- Laura Romas
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kenzie Birse
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | | | - Max Abou
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Rebecca Giguere
- HIV Center for Clinical and Behavioral Studies, Columbia University, New York, New York
| | - Irma Febo
- University of Puerto Rico, San Juan, Puerto Rico
| | - Ross D. Cranston
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alex Carballo-Diéguez
- HIV Center for Clinical and Behavioral Studies, Columbia University, New York, New York
| | - Ian McGowan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adam Burgener
- National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
41
|
Yao H, Shi W, Wu J, Xu C, Wang J, Shao Y, Wu X, Zhang Z. Endothelial Rac1 is essential for hematogenous metastasis to the lung. Oncotarget 2016; 6:17501-13. [PMID: 25991673 PMCID: PMC4627324 DOI: 10.18632/oncotarget.3766] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 04/28/2015] [Indexed: 12/22/2022] Open
Abstract
A variety of vasoactive stimuli induce endothelial permeability through Rac1, a membrane of Rho small GTPases. Here, we determine whether tumor-secreted vasoactive stimulant through Rac1 inducing permeability contributes to hematogenous metastasis. Activation of Rac1 was assayed in human umbilical vein endothelial cells (HUVEC), transendothelial passages were measured by Transwell chambers, and hematogenously metastatic mouse model was generated by intravenous injection with Lewis lung carcinoma cells (LLC). LLC secreted abundant vascular endothelial growth factor (VEGF) in the culture media and sera of mice bearing LLC xenografts or metastatic LLC, and VEGF activated Rac1 through VEGF receptors/PI3Kβ signaling cascade, resulting in hyperoxidative stress and consequent hyperpermeability in HUVEC. Moreover, in co-culture of LLC and HUVEC, significant increases in endothelial permeability and transendothelial migration of LLC were robustly attenuated by either anti-VEGF neutralizing antibody or Rac1 knockdown in HUVEC. Finally, in metastatic mouse model, deletion of one copy of Rac1 in endothelium not only significantly attenuated LLC-induced vascular permeability, but robustly reduced the metastasis of LLC to lungs. This study supports that tumor-secreted vasoactive stimuli activate Rac1 to induce permeability and consequent transendothelial migration of tumor cells, and that loss of Rac1 function in endothelium is an effective therapeutic intervention for hematogenous metastasis.
Collapse
Affiliation(s)
- Hongyi Yao
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Shi
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junsong Wu
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jirong Wang
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanan Shao
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ximei Wu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongmiao Zhang
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Parvathy M, Sreeja S, Kumar R, Pillai MR. Potential role of p21 Activated Kinase 1 (PAK1) in the invasion and motility of oral cancer cells. BMC Cancer 2016; 16 Suppl 1:293. [PMID: 27229476 PMCID: PMC4896241 DOI: 10.1186/s12885-016-2263-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Oral cancer malignancy consists of uncontrolled division of cells primarily in and around the floor of the oral cavity, gingiva, oropharynx, lower lip and base of the tongue. According to GLOBOCAN 2012 report, oral cancer is one of the most common cancers among males and females in India. Even though significant advancements have been made in the field of oral cancer treatment modalities, the overall prognosis for the patients has not improved in the past few decades and hence, this demands a new thrust for the identification of novel therapeutic targets in oral cancer. p21 Activated Kinases (PAKs) are potential therapeutic targets that are involved in numerous physiological functions. PAKs are serine-threonine kinases and they serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signalling, and cell-cycle progression. Although PAKs are known to play crucial roles in cancer progression, the role and clinical significance of PAKs in oral cancer remains poorly understood. RESULTS Our results suggest that PAK1 is over-expressed in oral cancer cell lines. Stimulation of Oral Squamous Cell Carcinoma (OSCC) cells with serum growth factors leads to PAK1 re-localization and might cause a profound cytoskeletal remodelling. PAK1 was also found to be involved in the invasion, migration and cytoskeletal remodelling of OSCC cells. CONCLUSIONS Our study revealed that PAK1 may play a crucial role in the progression of OSCC. Studying the role of PAK1 and its substrates is likely to enhance our understanding of oral carcinogenesis and potential therapeutic value of PAKs in oral cancer.
Collapse
Affiliation(s)
- Muraleedharan Parvathy
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Sreeharshan Sreeja
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Rakesh Kumar
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.,Department of Biochemistry and Molecular Medicine, George Washington University, Washington DC, USA
| | | |
Collapse
|
43
|
Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, Shahrouki P, Redfors B, Omerovic E, Levin M, Borén J, Levin MC. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res 2015; 107:478-86. [DOI: 10.1093/cvr/cvv186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/12/2015] [Indexed: 01/04/2023] Open
|
44
|
Iguchi Y, Ishihara S, Uchida Y, Tajima K, Mizutani T, Kawabata K, Haga H. Filamin B Enhances the Invasiveness of Cancer Cells into 3D Collagen Matrices. Cell Struct Funct 2015; 40:61-7. [PMID: 25925610 DOI: 10.1247/csf.15001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Numerous types of cancer cells migrate into extracellular tissues. This phenomenon is termed invasion, and is associated with poor prognosis in cancer patients. In this study, we demonstrated that filamin B (FLNb), an actin-binding protein, is highly expressed in cancer cell lines that exhibit high invasiveness, with a spindle morphology, into 3D collagen matrices. In addition, we determined that knockdown of FLNb in invasive cancer cells converts cell morphology from spindle-shaped, which is associated with high invasiveness, to round-shaped with low invasiveness. Furthermore, di-phosphorylation of myosin regulatory light chain (MRLC) and phosphorylation of focal adhesion kinase (FAK) are inhibited in FLNb-knockdown cancer cells. These results suggest that FLNb enhances invasion of cancer cells through phosphorylation of MRLC and FAK. Therefore, FLNb may be a new therapeutic target for invasive cancers.
Collapse
Affiliation(s)
- Yuta Iguchi
- Faculty of Advanced Life Science, Hokkaido University
| | | | | | | | | | | | | |
Collapse
|
45
|
Trincone A, Schwegmann-Weßels C. Looking for a needle in a haystack: Cellular proteins that may interact with the tyrosine-based sorting signal of the TGEV S protein. Virus Res 2014; 202:3-11. [PMID: 25481285 PMCID: PMC7114463 DOI: 10.1016/j.virusres.2014.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/23/2014] [Accepted: 11/26/2014] [Indexed: 11/24/2022]
Abstract
The spike protein S of transmissible gastroenteritis virus, an Alphacoronavirus, contains a tyrosine-based sorting signal that is responsible for ERGIC retention and may be important for a correct viral assembly process. To find out whether the S protein interacts with cellular proteins via this sorting signal, a pulldown assay with GST fusion proteins was performed. Filamin A has been identified as a putative interaction candidate. Immunofluorescence assays confirmed a co-localization between the TGEV S protein and filamin A. Further experiments have to be performed to prove a significant impact of filamin A on TGEV infection. Different approaches of several researchers for the identification of cellular interaction candidates relevant for coronavirus replication are summarized. These results may help in the future to identify the role of cellular proteins during coronavirus assembly at the ER-Golgi intermediate compartment.
Collapse
Affiliation(s)
- Anna Trincone
- Institute for Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Christel Schwegmann-Weßels
- Institute for Virology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
46
|
Bandaru S, Grönros J, Redfors B, Çil Ç, Pazooki D, Salimi R, Larsson E, Zhou AX, Ömerovic E, Akyürek LM. Deficiency of filamin A in endothelial cells impairs left ventricular remodelling after myocardial infarction. Cardiovasc Res 2014; 105:151-9. [PMID: 25344364 DOI: 10.1093/cvr/cvu226] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS Actin-binding protein filamin A (FLNA) regulates signal transduction important for cell locomotion, but the role of FLNA after myocardial infarction (MI) has not been explored. The main purpose of this study was to determine the impact of endothelial deletion of FLNA on post-MI remodelling of the left ventricle (LV). METHODS AND RESULTS We found that FLNA is expressed in human and mouse endothelial cells (ECs) during MI. To determine the biological significance of endothelial expression of FLNA, we used mice that are deficient for endothelial FLNA by cross-breeding adult mice expressing floxed Flna (Flna(o/fl)) with mice expressing Cre under the vascular endothelial-specific cadherin promoter (VECadCre+). Male Flna(o/fl) and Flna(o/fl)/VECadCre+ mice were subjected to permanent coronary artery ligation to induce MI. Flna(o/fl)/VECadCre+ mice that were deficient for endothelial FLNA exhibited larger and thinner LV with impaired cardiac function as well as elevated plasma levels of NT-proBNP and decreased secretion of VEGF-A. The number of capillary structures within the infarcted areas was reduced in Flna(o/fl)/VECadCre+ hearts. ECs silenced for Flna mRNA expression exhibited impaired tubular formation and migration, secreted less VEGF-A, and produced lower levels of phosphorylated AKT and ERK1/2 as well as active RAC1. CONCLUSION Deletion of FLNA in ECs aggravated MI-induced LV dysfunction and cardiac failure as a result of defective endothelial response and increased scar formation by impaired endothelial function and signalling.
Collapse
Affiliation(s)
- Sashidar Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | | | - Björn Redfors
- Cardiovascular and Metabolic Research Center, University of Gothenburg, Gothenburg, Sweden Department of Cardiology, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| | - Çağlar Çil
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | - David Pazooki
- Department of Surgery, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| | - Reza Salimi
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden
| | - Alex-Xianghua Zhou
- Cardiovascular and Metabolic Research Center, University of Gothenburg, Gothenburg, Sweden
| | - Elmir Ömerovic
- Cardiovascular and Metabolic Research Center, University of Gothenburg, Gothenburg, Sweden Department of Cardiology, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| | - Levent M Akyürek
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, SE-405 30 Gothenburg, Sweden Department of Clinical Pathology and Genetics, Sahlgrenska Academy Hospital, Gothenburg, Sweden
| |
Collapse
|
47
|
Bandaru S, Zhou AX, Rouhi P, Zhang Y, Bergo MO, Cao Y, Akyürek LM. Targeting filamin B induces tumor growth and metastasis via enhanced activity of matrix metalloproteinase-9 and secretion of VEGF-A. Oncogenesis 2014; 3:e119. [PMID: 25244493 PMCID: PMC4183982 DOI: 10.1038/oncsis.2014.33] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/29/2014] [Accepted: 08/04/2014] [Indexed: 12/12/2022] Open
Abstract
Filamins regulate cell locomotion and associate with diverse signaling molecules. We have recently found that targeting filamin A (FLNA) reduces RAS-induced lung adenocarcinomas. In this study, we explored the role of another major filamin isoform, filamin B (FLNB), in tumor development. In contrast to FLNA, we report that targeting FLNB enhances RAS-induced tumor growth and metastasis which is associated with higher matrix metallopeptidase-9 (MMP-9) and extracellular signal-regulated kinase (ERK) activity. Flnb deficiency in mouse embryonic fibroblasts results in increased proteolytic activity of MMP-9 and cell invasion mediated by the RAS/ERK pathway. Similarly, silencing FLNB in multiple human cancer cells increases the proteolytic activity of MMP-9 and tumor cell invasion. Furthermore, we observed that Flnb-deficient RAS-induced tumors display more capillary structures that is correlated with increased vascular endothelial growth factor-A (VEGF-A) secretion. Inhibition of ERK activation blocks phorbol myristate acetate-induced MMP-9 activity and VEGF-A secretion in vitro. In addition, silencing FLNB in human ovarian cancer cells increases secretion of VEGF-A that induces endothelial cells to form more vascular structures in vitro. We conclude that FLNB suppresses tumor growth and metastasis by regulating the activity of MMP-9 and secretion of VEGF-A which is mediated by the RAS/ERK pathway.
Collapse
Affiliation(s)
- S Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - A-X Zhou
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - P Rouhi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Y Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - M O Bergo
- The Sahlgrenska Cancer Center, University of Gothenburg, Göteborg, Sweden
| | - Y Cao
- 1] Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden [2] Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - L M Akyürek
- 1] Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden [2] Department of Clinical Pathology and Genetics, The Sahlgrenska University Hospital, Göteborg, Sweden
| |
Collapse
|
48
|
Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc Natl Acad Sci U S A 2014; 111:12865-70. [PMID: 25136137 DOI: 10.1073/pnas.1408472111] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The PI3K/Akt pathway is necessary for several key endothelial cell (EC) functions, including cell growth, migration, survival, and vascular tone. However, existing literature supports the idea that Akt can be either pro- or antiangiogenic, possibly due to compensation by multiple isoforms in the EC when a single isoform is deleted. Thus, biochemical, genetic, and proteomic studies were conducted to examine isoform-substrate specificity for Akt1 vs. Akt2. In vitro, Akt1 preferentially phosphorylates endothelial nitric oxide synthase (eNOS) and promotes NO release, whereas nonphysiological overexpression of Akt2 can bypass the loss of Akt1. Conditional deletion of Akt1 in the EC, in the absence or presence of Akt2, retards retinal angiogenesis, implying that Akt1 exerts a nonredundant function during physiological angiogenesis. Finally, proteomic analysis of Akt substrates isolated from Akt1- or Akt2-deficient ECs documents that phosphorylation of multiple Akt substrates regulating angiogenic signaling is reduced in Akt1-deficient, but not Akt2-deficient, ECs, including eNOS and Forkhead box proteins. Therefore, Akt1 promotes angiogenesis largely due to phosphorylation and regulation of important downstream effectors that promote aspects of angiogenic signaling.
Collapse
|
49
|
Lund B, Wesolowska-Andersen A, Lausen B, Borst L, Rasmussen KK, Müller K, Klungland H, Gupta R, Schmiegelow K. Host genome variations and risk of infections during induction treatment for childhood acute lymphoblastic leukaemia. Eur J Haematol 2014; 92:321-30. [DOI: 10.1111/ejh.12243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Bendik Lund
- Department of Paediatrics; St. Olavs Hospital; Trondheim Norway
- Department of Laboratory Medicine, Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | | | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Louise Borst
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Kirsten Kørup Rasmussen
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Klaus Müller
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
| | - Helge Klungland
- Department of Laboratory Medicine, Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology; Trondheim Norway
| | - Ramneek Gupta
- Center for Biological Sequence Analysis; Technical University of Denmark; Lyngby Denmark
| | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine; The University Hospital, Rigshospitalet; Copenhagen Denmark
- The Institute of Gynaecology, Obstetrics and Paediatrics; The Faculty of Health Sciences; The University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
50
|
Abstract
p21-Activated kinases (PAKs) are positioned at the nexus of several oncogenic signalling pathways. Overexpression or mutational activation of PAK isoforms frequently occurs in various human tumours, and recent data suggest that excessive PAK activity drives many of the cellular processes that are the hallmarks of cancer. In this Review, we discuss the mechanisms of PAK activation in cancer, the key substrates that mediate the developmental and oncogenic effects of this family of kinases, and how small-molecule inhibitors of these enzymes might be best developed and deployed for the treatment of cancer.
Collapse
Affiliation(s)
- Maria Radu
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Galina Semenova
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
| | - Rachelle Kosoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- Cancer Biology program, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Biology Program; Fox Chase Cancer Center; Philadelphia, PA, USA
- To whom correspondence should be addressed: Jonathan Chernoff, Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA, Tel.: (215) 728 5319; Fax: (215) 728 3616;
| |
Collapse
|